CINXE.COM
Coeliac Disease Pathogenesis: The Uncertainties of a Well-Known Immune Mediated Disorder - PMC
<!DOCTYPE html> <html lang="en" > <head > <meta charset="UTF-8" /> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <meta name="HandheldFriendly" content="True" /> <meta name="MobileOptimized" content="320" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <link rel="stylesheet" href="/static/assets/style-70b9163a.css" /> <script type="module" crossorigin="" src="/static/assets/base_style-ec2bc71e.js"></script> <link rel="stylesheet" href="/static/assets/style-ef962842.css" /> <link rel="stylesheet" href="/static/assets/style-3ade8b5c.css" /> <script type="module" crossorigin="" src="/static/assets/article_style-d757a0dd.js"></script> <style> @media screen and (min-width: 64em) { div.pmc-wm { background: repeat-y; background-image: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' width='20' height='350' xmlns:xlink='http://www.w3.org/1999/xlink'%3E%3Cdefs%3E%3Cfilter x='-.02' y='0' width='1.05' height='1' id='c'%3E%3CfeFlood flood-color='%23FFF'/%3E%3CfeComposite in='SourceGraphic'/%3E%3C/filter%3E%3Ctext id='b' font-family='Helvetica' font-size='11pt' style='opacity:1;fill:%23005ea2;stroke:none;text-anchor:middle' x='175' y='14'%3E%3C/text%3E%3Cpath id='a' style='fill:%23005ea2' d='M0 8h350v3H0z'/%3E%3C/defs%3E%3Cuse xlink:href='%23a' transform='rotate(90 10 10)'/%3E%3Cuse xlink:href='%23b' transform='rotate(90 10 10)' filter='url(%23c)'/%3E%3C/svg%3E"); padding-left: 3rem; } } </style> <link rel="apple-touch-icon" sizes="180x180" href="/static/img/favicons/apple-touch-icon.png" /> <link rel="icon" type="image/png" sizes="48x48" href="/static/img/favicons/favicon-48x48.png" /> <link rel="icon" type="image/png" sizes="32x32" href="/static/img/favicons/favicon-32x32.png" /> <link rel="icon" type="image/png" sizes="16x16" href="/static/img/favicons/favicon-16x16.png" /> <link rel="manifest" href="/static/img/favicons/site.webmanifest" /> <link rel="mask-icon" href="/static/img/favicons/safari-pinned-tab.svg" color="#0071bc" /> <meta name="msapplication-config" content="/static/img/favicons/browserconfig.xml" /> <meta name="theme-color" content="#ffffff" /> <title> Coeliac Disease Pathogenesis: The Uncertainties of a Well-Known Immune Mediated Disorder - PMC </title> <!-- Logging params: Pinger defaults --> <meta name="ncbi_app" content="cloudpmc-viewer" /> <meta name="ncbi_db" content="pmc" /> <meta name="ncbi_phid" content="76C1A9E7741FF35303A9E70017AD1D81.m_1" /> <!-- Logging params: Pinger custom --> <meta name="ncbi_pdid" content="article" /> <link rel="preconnect" href="https://www.google-analytics.com" /> <link rel="dns-prefetch" href="https://cdn.ncbi.nlm.nih.gov" /> <link rel="preconnect" href="https://code.jquery.com" /> <meta name="ncbi_domain" content="frontimmu"> <meta name="ncbi_type" content="fulltext"> <meta name="ncbi_pcid" content="journal"> <link rel="canonical" href="https://pmc.ncbi.nlm.nih.gov/articles/PMC7360848/"> <meta name="robots" content="INDEX,NOFOLLOW,NOARCHIVE"> <meta name="citation_journal_title" content="Frontiers in Immunology"> <meta name="citation_title" content="Coeliac Disease Pathogenesis: The Uncertainties of a Well-Known Immune Mediated Disorder"> <meta name="citation_author" content="Margaret R Dunne"> <meta name="citation_author_institution" content="Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland"> <meta name="citation_author" content="Greg Byrne"> <meta name="citation_author_institution" content="School of Biological & Health Sciences, Technological University, Dublin, Ireland"> <meta name="citation_author" content="Fernando G Chirdo"> <meta name="citation_author_institution" content="Instituto de Estudios Inmunologicos y Fisiopatologicos - IIFP (UNLP-CONICET), National University of La Plata, La Plata, Argentina"> <meta name="citation_author" content="Conleth Feighery"> <meta name="citation_author_institution" content="Department of Immunology, Trinity College Dublin and St. James's Hospital, Dublin, Ireland"> <meta name="citation_publication_date" content="2020 Jul 8"> <meta name="citation_volume" content="11"> <meta name="citation_firstpage" content="1374"> <meta name="citation_doi" content="10.3389/fimmu.2020.01374"> <meta name="citation_pmid" content="32733456"> <meta name="citation_abstract_html_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC7360848/"> <meta name="citation_fulltext_html_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC7360848/"> <meta name="citation_pdf_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC7360848/pdf/fimmu-11-01374.pdf"> <meta name="description" content="Coeliac disease is a common small bowel enteropathy arising in genetically predisposed individuals and caused by ingestion of gluten in the diet. Great advances have been made in understanding the role of the adaptive immune system in response to ..."> <meta name="og:title" content="Coeliac Disease Pathogenesis: The Uncertainties of a Well-Known Immune Mediated Disorder"> <meta name="og:type" content="article"> <meta name="og:site_name" content="PubMed Central (PMC)"> <meta name="og:description" content="Coeliac disease is a common small bowel enteropathy arising in genetically predisposed individuals and caused by ingestion of gluten in the diet. Great advances have been made in understanding the role of the adaptive immune system in response to ..."> <meta name="og:url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC7360848/"> <meta name="og:image" content="https://cdn.ncbi.nlm.nih.gov/pmc/cms/images/pmc-card-share.jpg?_=0"> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:site" content="@ncbi"> </head> <body > <a class="usa-skipnav " href="#main-content"> Skip to main content </a> <section class="usa-banner " aria-label="Official website of the United States government" > <div class="usa-accordion"> <header class="usa-banner__header"> <div class="usa-banner__inner"> <div class="grid-col-auto"> <img aria-hidden="true" class="usa-banner__header-flag" src="/static/img/us_flag.svg" alt="" /> </div> <div class="grid-col-fill tablet:grid-col-auto" aria-hidden="true"> <p class="usa-banner__header-text"> An official website of the United States government </p> <span class="usa-banner__header-action">Here's how you know</span> </div> <button type="button" class="usa-accordion__button usa-banner__button " aria-expanded="false" aria-controls="gov-banner-default" data-testid="storybook-django-banner" > <span class="usa-banner__button-text">Here's how you know</span> </button> </div> </header> <div class="usa-banner__content usa-accordion__content" id="gov-banner-default" hidden> <div class="grid-row grid-gap-lg"> <div class="usa-banner__guidance tablet:grid-col-6"> <img class="usa-banner__icon usa-media-block__img" src="/static/img/icon-dot-gov.svg" alt="" aria-hidden="true" /> <div class="usa-media-block__body"> <p> <strong>Official websites use .gov</strong> <br /> A <strong>.gov</strong> website belongs to an official government organization in the United States. </p> </div> </div> <div class="usa-banner__guidance tablet:grid-col-6"> <img class="usa-banner__icon usa-media-block__img" src="/static/img/icon-https.svg" alt="" aria-hidden="true" /> <div class="usa-media-block__body"> <p> <strong>Secure .gov websites use HTTPS</strong> <br /> A <strong>lock</strong> ( <span class="icon-lock"> <svg xmlns="http://www.w3.org/2000/svg" width="52" height="64" viewBox="0 0 52 64" class="usa-banner__lock-image" role="graphics-symbol" aria-labelledby="banner-lock-description" focusable="false"> <title id="banner-lock-title">Lock</title> <desc id="banner-lock-description"> Locked padlock icon </desc> <path fill="#000000" fill-rule="evenodd" d="M26 0c10.493 0 19 8.507 19 19v9h3a4 4 0 0 1 4 4v28a4 4 0 0 1-4 4H4a4 4 0 0 1-4-4V32a4 4 0 0 1 4-4h3v-9C7 8.507 15.507 0 26 0zm0 8c-5.979 0-10.843 4.77-10.996 10.712L15 19v9h22v-9c0-6.075-4.925-11-11-11z" /> </svg> </span>) or <strong>https://</strong> means you've safely connected to the .gov website. Share sensitive information only on official, secure websites. </p> </div> </div> </div> </div> </div> </section> <div class="usa-overlay"> </div> <header class="usa-header usa-header--extended usa-header--wide" data-testid="header" data-header > <div class="ncbi-header"> <div class="ncbi-header__container"> <a class="ncbi-header__logo-container" href="/"> <img alt=" PMC home page " class="ncbi-header__logo-image" src="/static/img/ncbi-logos/nih-nlm-ncbi--white.svg" /> </a> <!-- Mobile menu hamburger button --> <button type="button" class="usa-menu-btn ncbi-header__hamburger-button " aria-label="Show menu" data-testid="navMenuButton" > <svg aria-hidden="true" class="ncbi-hamburger-icon" fill="none" focusable="false" height="21" viewBox="0 0 31 21" width="31" xmlns="http://www.w3.org/2000/svg"> <path clip-rule="evenodd" d="M0.125 20.75H30.875V17.3333H0.125V20.75ZM0.125 12.2083H30.875V8.79167H0.125V12.2083ZM0.125 0.25V3.66667H30.875V0.25H0.125Z" fill="#F1F1F1" fill-rule="evenodd" /> </svg> </button> <!-- Desktop buttons--> <div class="ncbi-header__desktop-buttons"> <!-- Desktop search button --> <button type="button" class="usa-button usa-button--unstyled ncbi-header__desktop-button " aria-expanded="false" aria-controls="search-field-desktop-navigation" aria-label="Show search overlay" data-testid="toggleSearchPanelButton" data-toggle-search-panel-button > <svg class="usa-icon " role="graphics-symbol" aria-hidden="true" > <use xlink:href="/static/img/sprite.svg#search" /> </svg> Search </button> <!-- Desktop login dropdown --> <div class="ncbi-header__login-dropdown"> <button type="button" class="usa-button usa-button--unstyled ncbi-header__desktop-button ncbi-header__login-dropdown-button " aria-expanded="false" aria-controls="login-dropdown-menu" aria-label="Show login menu" data-testid="toggleLoginMenuDropdown" data-desktop-login-button > <svg class="usa-icon " role="graphics-symbol" aria-hidden="true" > <use xlink:href="/static/img/sprite.svg#person" /> </svg> <span data-login-dropdown-text>Log in</span> <!-- Dropdown icon pointing up --> <svg class="usa-icon ncbi-header__login-dropdown-icon ncbi-header__login-dropdown-icon--expand-less ncbi-header__login-dropdown-icon--hidden" role="graphics-symbol" aria-hidden="true" data-login-dropdown-up-arrow> <use xlink:href="/static/img/sprite.svg#expand_less" /> </svg> <!-- Dropdown icon pointing down --> <svg class="usa-icon ncbi-header__login-dropdown-icon ncbi-header__login-dropdown-icon--expand-more ncbi-header__login-dropdown-icon--hidden" role="graphics-symbol" aria-hidden="true" data-login-dropdown-down-arrow> <use xlink:href="/static/img/sprite.svg#expand_more" /> </svg> </button> <!-- Login dropdown menu --> <ul class="usa-nav__submenu ncbi-header__login-dropdown-menu" id="login-dropdown-menu" data-desktop-login-menu-dropdown hidden> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/myncbi/" class="usa-link " > Dashboard </a> </li> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/myncbi/collections/bibliography/" class="usa-link " > Publications </a> </li> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/account/settings/" class="usa-link " > Account settings </a> </li> <li class="usa-nav__submenu-item"> <button type="button" class="usa-button usa-button--outline ncbi-header__login-dropdown-logout-button " data-testid="desktopLogoutButton" data-desktop-logout-button > Log out </button> </li> </ul> </div> </div> </div> </div> <!-- Search panel --> <div class="ncbi-search-panel ncbi--show-only-at-desktop" data-testid="searchPanel" data-header-search-panel hidden> <div class="ncbi-search-panel__container"> <form action="https://www.ncbi.nlm.nih.gov/search/all/" aria-describedby="search-field-desktop-navigation-help-text" autocomplete="off" class="usa-search usa-search--big ncbi-search-panel__form" data-testid="form" method="GET" role="search"> <label class="usa-sr-only" data-testid="label" for="search-field-desktop-navigation"> Search… </label> <input class="usa-input" data-testid="textInput" id="search-field-desktop-navigation" name="term" placeholder="Search NCBI" type="search" value="" /> <button type="submit" class="usa-button " data-testid="button" > <span class="usa-search__submit-text"> Search NCBI </span> </button> </form> </div> </div> <nav aria-label="Primary navigation" class="usa-nav"> <p class="usa-sr-only" id="primary-navigation-sr-only-title"> Primary site navigation </p> <!-- Mobile menu close button --> <button type="button" class="usa-nav__close ncbi-nav__close-button " aria-label="Close navigation menu" data-testid="navCloseButton" > <img src="/static/img/usa-icons/close.svg" alt="Close" /> </button> <!-- Mobile search component --> <form class="usa-search usa-search--small ncbi--hide-at-desktop margin-top-6" role="search"> <label class="usa-sr-only" for="search-field"> Search </label> <input class="usa-input" id="search-field-mobile-navigation" type="search" placeholder="Search NCBI" name="search" /> <button type="submit" class="usa-button " > <!-- This SVG should be kept inline and not replaced with a link to the icon as otherwise it will render in the wrong color --> <img src="" class="usa-search__submit-icon" alt="Search" /> </button> </form> <!-- Primary navigation menu items --> <!-- This usa-nav__inner wrapper is required to correctly style the navigation items on Desktop --> <div class="ncbi-nav__mobile-login-menu ncbi--hide-at-desktop" data-mobile-login-menu hidden> <p class="ncbi-nav__mobile-login-menu-status"> Logged in as: <strong class="ncbi-nav__mobile-login-menu-email" data-mobile-login-email-text></strong> </p> <ul class="usa-nav__primary usa-accordion"> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/myncbi/" class="usa-link " > Dashboard </a> </li> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/myncbi/collections/bibliography/" class="usa-link " > Publications </a> </li> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/account/settings/" class="usa-link " > Account settings </a> </li> </ul> </div> <button type="button" class="usa-button ncbi-nav__mobile-login-button ncbi--hide-at-desktop " data-testid="mobileLoginButton" data-mobile-login-button > Log in </button> </nav> </header> <section class="pmc-header pmc-header--basic" aria-label="PMC Header with search box"> <div class="pmc-nav-container"> <div class="pmc-header__bar"> <div class="pmc-header__logo"> <a href="/" title="Home" aria-label="PMC Home"></a> </div> <button type="button" class="usa-button usa-button--unstyled pmc-header__search__button" aria-label="Open search" data-ga-category="search" data-ga-action="PMC" data-ga-label="pmc_search_panel_mobile" > <svg class="usa-icon width-4 height-4 pmc-icon__open" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#search"></use> </svg> <svg class="usa-icon width-4 height-4 pmc-icon__close" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#close"></use> </svg> </button> </div> <div class="pmc-header__search"> <form class="usa-search usa-search--extra usa-search--article-right-column pmc-header__search__form" autocomplete="off" role="search"> <label class="usa-sr-only" for="pmc-search">Search PMC Full-Text Archive</label> <span class="autoComplete_wrapper flex-1"> <input class="usa-input width-full maxw-none" required="required" placeholder="Search PMC Full-Text Archive" id="pmc-search" type="search" name="term" data-autocomplete-url="/search/autocomplete/"/> </span> <button class="usa-button" type="submit" formaction="https://www.ncbi.nlm.nih.gov/pmc/" data-ga-category="search" data-ga-action="PMC" data-ga-label="PMC_search_button" > <span class="usa-search__submit-text">Search in PMC</span> <img src="/static/img/usa-icons-bg/search--white.svg" class="usa-search__submit-icon" alt="Search" /> </button> </form> <ul class="pmc-header__search__menu"> <li> <a class="usa-link" href="https://www.ncbi.nlm.nih.gov/pmc/advanced/" data-ga-action="featured_link" data-ga-label="advanced_search"> Advanced Search </a> </li> <li> <a class="usa-link" href="/journals/" data-ga-action="featured_link" data-ga-label="journal list"> Journal List </a> </li> <li> <a class="usa-link" href="/about/userguide/" data-ga-action="featured_link" data-ga-label="user guide"> User Guide </a> </li> </ul> </div> </div> </section> <div class="usa-section padding-top-0 desktop:padding-top-6 pmc-article-section" data-article-db="pmc" data-article-id="7360848"> <div class="grid-container pmc-actions-bar" aria-label="Actions bar" role="complementary"> <div class="grid-row"> <div class="grid-col-fill display-flex"> <div class="display-flex"> <ul class="usa-list usa-list--unstyled usa-list--horizontal"> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex mob"> <button type="button" class="usa-button pmc-sidenav__container__open usa-button--unstyled width-auto display-flex" aria-label="Open resources" data-extra-class="is-visible-resources" data-ga-category="resources_accordion" data-ga-action="click" data-ga-label="mobile_icon" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#more_vert"></use> </svg> </button> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex mob"> <a href="https://doi.org/10.3389/fimmu.2020.01374" class="usa-link display-flex" role="button" target="_blank" rel="noreferrer noopener" aria-label="View on publisher site" data-ga-category="actions" data-ga-action="click" data-ga-label="publisher_link_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#launch"></use> </svg> </a> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <a href="pdf/fimmu-11-01374.pdf" class="usa-link display-flex" role="button" aria-label="Download PDF" data-ga-category="actions" data-ga-action="click" data-ga-label="pdf_download_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> </a> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <button class="usa-button usa-button--unstyled collections-dialog-trigger collections-button display-flex collections-button-empty" aria-label="Save article in MyNCBI collections." data-ga-category="actions" data-ga-action="click" data-ga-label="collections_button_mobile" data-collections-open-dialog-enabled="false" data-collections-open-dialog-url="https://account.ncbi.nlm.nih.gov/?back_url=https%3A%2F%2Fpmc.ncbi.nlm.nih.gov%2Farticles%2FPMC7360848%2F%23open-collections-dialog" data-in-collections="false" > <svg class="usa-icon width-4 height-4 usa-icon--bookmark-full" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-full.svg#icon"></use> </svg> <svg class="usa-icon width-4 height-4 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-empty.svg#icon"></use> </svg> </button> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <button role="button" class="usa-button usa-button--unstyled citation-dialog-trigger display-flex" aria-label="Open dialog with citation text in different styles" data-ga-category="actions" data-ga-action="open" data-ga-label="cite_mobile" data-all-citations-url="/resources/citations/7360848/" data-citation-style="nlm" data-download-format-link="/resources/citations/7360848/export/" > <svg class="usa-icon width-4 height-4 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#format_quote"></use> </svg> </button> </li> <li class="pmc-permalink display-flex"> <button type="button" class="usa-button usa-button--unstyled display-flex" aria-label="Show article permalink" aria-expanded="false" aria-haspopup="true" data-ga-category="actions" data-ga-action="open" data-ga-label="permalink_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#share"></use> </svg> </button> <div class="pmc-permalink__dropdown" hidden> <div class="pmc-permalink__dropdown__container"> <h2 class="usa-modal__heading margin-top-0 margin-bottom-2">PERMALINK</h2> <div class="pmc-permalink__dropdown__content"> <input type="text" class="usa-input" value="https://pmc.ncbi.nlm.nih.gov/articles/PMC7360848/" aria-label="Article permalink"> <button class="usa-button display-inline-flex pmc-permalink__dropdown__copy__btn margin-right-0" title="Copy article permalink" data-ga-category="save_share" data-ga-action="link" data-ga-label="copy_link"> <svg class="usa-icon" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span class="margin-left-1">Copy</span> </button> </div> </div> </div> </li> </ul> </div> <button type="button" class="usa-button pmc-sidenav__container__open usa-button--unstyled width-auto display-flex" aria-label="Open article navigation" data-extra-class="is-visible-in-page" data-ga-category="actions" data-ga-action="open" data-ga-label="article_nav_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#list"></use> </svg> </button> </div> </div> </div> <div class="grid-container desktop:padding-left-6"> <div id="article-container" class="grid-row grid-gap"> <div class="grid-col-12 desktop:grid-col-8 order-2 pmc-layout__content"> <div class="grid-container padding-left-0 padding-right-0"> <div class="grid-row desktop:margin-left-neg-6"> <div class="grid-col-12"> <div class="pmc-layout__disclaimer" role="complementary" aria-label="Disclaimer note"> As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.<br/> Learn more: <a class="usa-link" data-ga-category="Link click" data-ga-action="Disclaimer" data-ga-label="New disclaimer box" href="/about/disclaimer/">PMC Disclaimer</a> | <a class="usa-link" data-ga-category="Link click" data-ga-action="PMC Copyright Notice" data-ga-label="New disclaimer box" href="/about/copyright/"> PMC Copyright Notice </a> </div> </div> </div> <div class="grid-row pmc-wm desktop:margin-left-neg-6"> <!-- Main content --> <main id="main-content" class="usa-layout-docs__main usa-layout-docs grid-col-12 pmc-layout pmc-prose padding-0" > <section class="pmc-journal-banner text-center line-height-none" aria-label="Journal banner"><img src="https://cdn.ncbi.nlm.nih.gov/pmc/banners/logo-frontimmu.gif" alt="Frontiers in Immunology logo" usemap="#pmc-banner-imagemap" width="500" height="75"><map name="pmc-banner-imagemap"><area alt="Link to Frontiers in Immunology" title="Link to Frontiers in Immunology" shape="default" href="http://www.frontiersin.org/immunology" target="_blank" rel="noopener noreferrer"></map></section><article lang="en"><section aria-label="Article citation and metadata"><section class="pmc-layout__citation font-secondary font-xs"><div> <div class="display-inline-block"><button type="button" class="cursor-pointer text-no-underline bg-transparent border-0 padding-0 text-left margin-0 text-normal text-primary" aria-controls="journal_context_menu">Front Immunol</button></div>. 2020 Jul 8;11:1374. doi: <a href="https://doi.org/10.3389/fimmu.2020.01374" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">10.3389/fimmu.2020.01374</a> </div> <nav id="journal_context_menu" hidden="hidden"><ul class="menu-list font-family-ui" role="menu"> <li role="presentation"><a href="https://www.ncbi.nlm.nih.gov/pmc/?term=%22Front%20Immunol%22%5Bjour%5D" class="usa-link" role="menuitem">Search in PMC</a></li> <li role="presentation"><a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Front%20Immunol%22%5Bjour%5D" lang="en" class="usa-link" role="menuitem">Search in PubMed</a></li> <li role="presentation"><a href="https://www.ncbi.nlm.nih.gov/nlmcatalog?term=%22Front%20Immunol%22%5BTitle%20Abbreviation%5D" class="usa-link" role="menuitem">View in NLM Catalog</a></li> <li role="presentation"><a href="?term=%22Front%20Immunol%22%5Bjour%5D" class="usa-link" role="menuitem" data-add-to-search="true">Add to search</a></li> </ul></nav></section><section class="front-matter"><div class="ameta p font-secondary font-xs"> <hgroup><h1>Coeliac Disease Pathogenesis: The Uncertainties of a Well-Known Immune Mediated Disorder</h1></hgroup><div class="cg p"> <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Dunne%20MR%22%5BAuthor%5D" class="usa-link" aria-describedby="id1"><span class="name western">Margaret R Dunne</span></a><div hidden="hidden" id="id1"> <h3><span class="name western">Margaret R Dunne</span></h3> <div class="p"> <sup>1</sup>Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Dunne%20MR%22%5BAuthor%5D" class="usa-link"><span class="name western">Margaret R Dunne</span></a> </div> </div> <sup>1,</sup><sup>†</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Byrne%20G%22%5BAuthor%5D" class="usa-link" aria-describedby="id2"><span class="name western">Greg Byrne</span></a><div hidden="hidden" id="id2"> <h3><span class="name western">Greg Byrne</span></h3> <div class="p"> <sup>2</sup>School of Biological & Health Sciences, Technological University, Dublin, Ireland</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Byrne%20G%22%5BAuthor%5D" class="usa-link"><span class="name western">Greg Byrne</span></a> </div> </div> <sup>2,</sup><sup>*,</sup><sup>†</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Chirdo%20FG%22%5BAuthor%5D" class="usa-link" aria-describedby="id3"><span class="name western">Fernando G Chirdo</span></a><div hidden="hidden" id="id3"> <h3><span class="name western">Fernando G Chirdo</span></h3> <div class="p"> <sup>3</sup>Instituto de Estudios Inmunologicos y Fisiopatologicos - IIFP (UNLP-CONICET), National University of La Plata, La Plata, Argentina</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Chirdo%20FG%22%5BAuthor%5D" class="usa-link"><span class="name western">Fernando G Chirdo</span></a> </div> </div> <sup>3</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Feighery%20C%22%5BAuthor%5D" class="usa-link" aria-describedby="id4"><span class="name western">Conleth Feighery</span></a><div hidden="hidden" id="id4"> <h3><span class="name western">Conleth Feighery</span></h3> <div class="p"> <sup>4</sup>Department of Immunology, Trinity College Dublin and St. James's Hospital, Dublin, Ireland</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Feighery%20C%22%5BAuthor%5D" class="usa-link"><span class="name western">Conleth Feighery</span></a> </div> </div> <sup>4</sup> </div> <ul class="d-buttons inline-list"> <li><button class="d-button" aria-controls="aip_a" aria-expanded="false">Author information</button></li> <li><button class="d-button" aria-controls="anp_a" aria-expanded="false">Article notes</button></li> <li><button class="d-button" aria-controls="clp_a" aria-expanded="false">Copyright and License information</button></li> </ul> <div class="d-panels font-secondary-light"> <div id="aip_a" class="d-panel p" style="display: none"> <div class="p" id="aff1"> <sup>1</sup>Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland</div> <div id="aff2"> <sup>2</sup>School of Biological & Health Sciences, Technological University, Dublin, Ireland</div> <div id="aff3"> <sup>3</sup>Instituto de Estudios Inmunologicos y Fisiopatologicos - IIFP (UNLP-CONICET), National University of La Plata, La Plata, Argentina</div> <div id="aff4"> <sup>4</sup>Department of Immunology, Trinity College Dublin and St. James's Hospital, Dublin, Ireland</div> <div class="author-notes p"> <div class="fn" id="fn1"><p>Edited by: Pinyi Lu, Biotechnology HPC Software Applications Institute (BHSAI), United States</p></div> <div class="fn" id="fn2"><p>Reviewed by: Walburga Dieterich, University of Erlangen Nuremberg, Germany; Heather Galipeau, McMaster University, Canada</p></div> <div class="fn" id="c001"> <sup>✉</sup><p class="display-inline">*Correspondence: Greg Byrne <span>greg.byrne@tudublin.ie</span></p> </div> <div class="fn" id="fn001"><p>This article was submitted to Nutritional Immunology, a section of the journal Frontiers in Immunology</p></div> <div class="fn" id="fn002"><p>†These authors have contributed equally to this work</p></div> </div> </div> <div id="anp_a" class="d-panel p" style="display: none"><div class="notes p"><section id="historyarticle-meta1" class="history"><p>Received 2019 Nov 21; Accepted 2020 May 28; Collection date 2020.</p></section></div></div> <div id="clp_a" class="d-panel p" style="display: none"> <div>Copyright © 2020 Dunne, Byrne, Chirdo and Feighery.</div> <p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</p> <div class="p"><a href="/about/copyright/" class="usa-link">PMC Copyright notice</a></div> </div> </div> <div>PMCID: PMC7360848 PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/32733456/" class="usa-link">32733456</a> </div> </div></section></section><section aria-label="Article content"><section class="body main-article-body"><section class="abstract" id="abstract1"><h2>Abstract</h2> <p>Coeliac disease is a common small bowel enteropathy arising in genetically predisposed individuals and caused by ingestion of gluten in the diet. Great advances have been made in understanding the role of the adaptive immune system in response to gluten peptides. Despite detailed knowledge of these adaptive immune mechanisms, the complete series of pathogenic events responsible for development of the tissue lesion remains less certain. This review contributes to the field by discussing additional mechanisms which may also contribute to pathogenesis. These include the production of cytokines such as interleukin-15 by intestinal epithelial cells and local antigen presenting cells as a pivotal event in the disease process. A subset of unconventional T cells called gamma/delta T cells are also persistently expanded in the coeliac disease (CD) small intestinal epithelium and recent analysis has shown that these cells contribute to pathogenic inflammation. Other unconventional T cell subsets may play a local immunoregulatory role and require further study. It has also been suggested that, in addition to activation of pathogenic T helper cells by gluten peptides, other peptides may directly interact with the intestinal mucosa, further contributing to the disease process. We also discuss how myofibroblasts, a major source of tissue transglutaminase and metalloproteases, may play a key role in intestinal tissue remodeling. Contribution of each of these factors to pathogenesis is discussed to enhance our view of this complex disorder and to contribute to a wider understanding of chronic immune-mediated disease.</p> <section id="kwd-group1" class="kwd-group"><p><strong>Keywords:</strong> coeliac disease, pathogenesis, enteropathy, immunopathology, innate and adaptive immune response, molecular mechanisms of disease</p></section></section><section id="s1"><h2 class="pmc_sec_title">Introduction</h2> <p>Coeliac disease (CD) is a common inflammatory disorder of the small intestine resulting in malabsorption. The seminal breakthrough was the discovery by Willem Dicke in 1950 that the wheat protein gluten was the essential trigger causing the disease (<a href="#B1" class="usa-link" aria-describedby="B1">1</a>). In the following decades, debate continued about the pathogenic mechanisms involved. Various theories were considered, including the concept that gluten caused direct toxic damage to the intestine, that an enzyme deficiency resulted in failure of gluten degradation or that gluten activated the immune system, driving consequential gut damage (<a href="#B2" class="usa-link" aria-describedby="B2">2</a>).</p> <p>Gluten-induced activation of the adaptive immune response has now been described in great detail and a central role for immune system involvement is widely accepted. A key finding supporting the role of the adaptive immune response was the discovery that certain MHC class II molecules, in particular HLA-DQ2, were a critical requirement for the development of CD (<a href="#B3" class="usa-link" aria-describedby="B3">3</a>, <a href="#B4" class="usa-link" aria-describedby="B4">4</a>). It was subsequently demonstrated that gluten-derived peptides bound avidly to these MHC class II molecules, enabling T helper (T<sub>H</sub>) cell activation (<a href="#B5" class="usa-link" aria-describedby="B5">5</a>, <a href="#B6" class="usa-link" aria-describedby="B6">6</a>). The binding of these peptides was markedly enhanced following their modification by the enzyme tissue transglutaminase (TG2) (<a href="#B7" class="usa-link" aria-describedby="B7">7</a>). The role of TG2 was in part a serendipitous discovery, following the finding that specific IgA antibodies found in CD were directed against this enzyme (<a href="#B8" class="usa-link" aria-describedby="B8">8</a>).</p> <p>Although initially considered a homogenous disorder, it is now recognized that CD encompasses a wider clinical spectrum. Patients can report a range of symptoms, some with clear evidence of malabsorption and others virtually asymptomatic (<a href="#B9" class="usa-link" aria-describedby="B9">9</a>, <a href="#B10" class="usa-link" aria-describedby="B10">10</a>). Following treatment with a gluten-free diet, some patients become acutely and rapidly sensitive to accidental gluten exposure, whereas others may show little evidence of a reaction (<a href="#B11" class="usa-link" aria-describedby="B11">11</a>–<a href="#B13" class="usa-link" aria-describedby="B13">13</a>). A pediatric presentation was the early classic form of CD but it is now accepted that the condition can present at any age, even into the seventh and eighth decades (<a href="#B14" class="usa-link" aria-describedby="B14">14</a>). A true increasing incidence of CD is also reported, presumably reflecting a range of yet to be identified environmental triggers of the condition (<a href="#B15" class="usa-link" aria-describedby="B15">15</a>). The histological lesion can also vary considerably, with some patients having only a minimal lymphocyte infiltration of the gut epithelium (<a href="#B16" class="usa-link" aria-describedby="B16">16</a>), while others display profound changes, so called villous atrophy (<a href="#B17" class="usa-link" aria-describedby="B17">17</a>, <a href="#B18" class="usa-link" aria-describedby="B18">18</a>). The term “potential coeliac disease” is also used for people with normal small intestinal mucosa who are at increased risk of developing CD as indicated by positive coeliac serology (<a href="#B10" class="usa-link" aria-describedby="B10">10</a>). Malignancy is the final outcome in a subset of patients, but fortunately develops only in a minority of subjects (<a href="#B9" class="usa-link" aria-describedby="B9">9</a>). The common type of malignancy associated with CD, enteropathy-associated T cell lymphoma (EATL), is lymphocytic in origin, reflecting the profound dysregulating effects gluten has on the local immune system.</p> <p>CD is sometimes considered to be an auto-immune disorder and certain features support this contention, including a female predisposition, HLA association, and comorbidity with many classic autoimmune diseases, in particular thyroid disease (e.g., Grave's disease, Hashimoto's thyroiditis) and insulin dependent diabetes mellitus (<a href="#B19" class="usa-link" aria-describedby="B19">19</a>). As in other auto-immune conditions, a contribution by the intestinal microbiome is postulated (<a href="#B20" class="usa-link" aria-describedby="B20">20</a>). However, if CD is caused by autoimmunity, one feature makes this pathology unique: exclusion of an exogenous trigger i.e., gluten from the diet, causes remission of symptoms and mucosal damage. Nonetheless, some doubt continues as to whether gluten exclusion fully restores a normal small intestinal mucosa or whether consequences of the previous strong immune activation remain. It has long been observed that chronic immune activation by gluten in CD patients induces a permanent change in the intra-epithelial lymphocyte (IEL) compartment, characterized by an expanded and persistent presence of γ/δ IELs, which was recently verified using cell sequencing methodology (<a href="#B21" class="usa-link" aria-describedby="B21">21</a>–<a href="#B23" class="usa-link" aria-describedby="B23">23</a>). This observation suggests that even in apparently healthy tissue, some subtle changes persist. However, such findings are difficult to interpret given that many patients ostensibly on a gluten-free diet continue to consume trace amounts of gluten (<a href="#B24" class="usa-link" aria-describedby="B24">24</a>).</p> <p>Irrespective of the above variables, a constant feature in all patients is the MHC class II association, with virtually all displaying a HLA-DQ2 or HLA-DQ8 genotype (<a href="#B25" class="usa-link" aria-describedby="B25">25</a>). As many as 39 other non-HLA loci have been found to associate with CD and their potential contribution to disease heterogeneity has yet to be determined. Remarkably, many non-coding regions are located in these loci and their potential regulatory effects have just started to be revealed (<a href="#B26" class="usa-link" aria-describedby="B26">26</a>). In addition, epigenetic factors may modulate disease risk (<a href="#B27" class="usa-link" aria-describedby="B27">27</a>).</p> <p>In addition to the well-established evidence of the adaptive immune response to gluten, leading to damage to the intestine, in this review we consider the possible involvement of other immune components. Of note, it has been reported that activation of the innate immune response may be a pre-requisite for gluten stimulation of the adaptive response (<a href="#B28" class="usa-link" aria-describedby="B28">28</a>–<a href="#B30" class="usa-link" aria-describedby="B30">30</a>). The α-gliadin peptide, p31-43, claimed to be responsible for activation of this innate response, was also reported to cause direct damage to the CD mucosa (<a href="#B28" class="usa-link" aria-describedby="B28">28</a>). Many studies report that innate immune components such as neutrophils (<a href="#B31" class="usa-link" aria-describedby="B31">31</a>), eosinophils (<a href="#B32" class="usa-link" aria-describedby="B32">32</a>–<a href="#B34" class="usa-link" aria-describedby="B34">34</a>), mast cells (<a href="#B35" class="usa-link" aria-describedby="B35">35</a>, <a href="#B36" class="usa-link" aria-describedby="B36">36</a>) and complement proteins (<a href="#B37" class="usa-link" aria-describedby="B37">37</a>) are activated in the disease process and potentially contribute to disease pathogenesis. Consideration of this information may lead to a more comprehensive understanding of CD pathology.</p></section><section id="s2"><h2 class="pmc_sec_title">How Does the Lesion Develop in CD?</h2> <p>Despite the series of seminal discoveries made concerning activation of the adaptive immune system in CD, the precise mechanisms responsible for development of the lesion remain uncertain. Specifically, what events cause the tall small intestinal villi to take on a flattened appearance in which villi are either entirely absent or stubby in appearance? It is evident from both <em>in vivo</em> and <em>in vitro</em> studies that enterocyte damage happens rapidly following gluten exposure (<a href="#B38" class="usa-link" aria-describedby="B38">38</a>–<a href="#B43" class="usa-link" aria-describedby="B43">43</a>). Yet the question remains, how does this lead to the eventual pathological features of the lesion? Interestingly, although enterocytes are targeted in CD, there is no evidence of tissue necrosis or ulceration, as is observed in small intestinal Crohn's disease (<a href="#B44" class="usa-link" aria-describedby="B44">44</a>). Although it is evident that lymphocytes closely located to enterocytes display cytotoxic properties (<a href="#B45" class="usa-link" aria-describedby="B45">45</a>, <a href="#B46" class="usa-link" aria-describedby="B46">46</a>), is lymphocyte cytotoxicity the exclusive or principal mechanism responsible for the tissue lesion in CD?</p></section><section id="s3"><h2 class="pmc_sec_title">The Histological Lesion in CD</h2> <p>Biopsy of the small intestine is still the gold standard diagnostic test in the investigation of CD. The lesion can display a range of abnormalities and Marsh proposed a grading system, subsequently modified by Oberhuber et al. (<a href="#B18" class="usa-link" aria-describedby="B18">18</a>), which is now commonly used. The Marsh I lesion is characterized by an almost normal mucosa except for the infiltration of villi by IELs, the Marsh II lesion by the additional presence of crypt hypertrophy, and the Marsh III lesion by flattening of the mucosa caused by so-called villous atrophy and swelling of the <em>lamina propria</em>. Although an increase in IELs is observed in all CD biopsies, in some patients this increase may be limited to the tip of villi (<a href="#B16" class="usa-link" aria-describedby="B16">16</a>, <a href="#B47" class="usa-link" aria-describedby="B47">47</a>); even in the presence of this minimal lesion, some display typical clinical features of CD including malabsorption. Paradoxically, in other patients with a Marsh I lesion, there may be no apparent evidence of malabsorption: these include patients with dermatitis herpetiformis (<a href="#B48" class="usa-link" aria-describedby="B48">48</a>), first degree relatives of CD patients and individuals with potential CD (<a href="#B10" class="usa-link" aria-describedby="B10">10</a>).</p> <p>Although villous atrophy and infiltration of IELs are the major reported features in coeliac mucosa, this is based on the limited information provided by standard tissue staining and the two-dimensional image observed with the light microscope. More details can be provided by additional staining of further cell populations and other structures. One feature of the remodeled mucosa is alteration in the microvasculature and these immature vascular structures may result in increased vessel permeability, allowing cells and molecules access to the tissue (<a href="#B49" class="usa-link" aria-describedby="B49">49</a>). It has been proposed that improved understanding of the true nature of the CD lesion could be deduced by 3-D printing and computerized modeling of the tissue (<a href="#B50" class="usa-link" aria-describedby="B50">50</a>). In recent times, robust flow cytometry methodology and quantification of gamma/delta (γδ) T cells have been proposed as complementary methods for aiding CD diagnosis and monitoring, particularly helpful in resolution of more difficult clinical cases (<a href="#B51" class="usa-link" aria-describedby="B51">51</a>, <a href="#B52" class="usa-link" aria-describedby="B52">52</a>). Analysis of an increase in γδ<sup>+</sup> T cells with a decrease in CD3<sup>−</sup> IEL, the so-called “coeliac lymphogram,” was also shown to be useful in diagnosing seronegative CD cases (<a href="#B53" class="usa-link" aria-describedby="B53">53</a>). Such novel methods have proven superior to traditional serological monitoring methods.</p></section><section id="s4"><h2 class="pmc_sec_title">The Enterocyte—A Target Cell in CD?</h2> <p>Abnormalities in the morphology of enterocytes are usually present in CD but are rarely commented on in routine histology reports. These changes include a reduction in cell height with the cell assuming a cuboidal instead of the normal columnar shape and the migration of the nucleus from the typically basal to a more apical position (<a href="#B54" class="usa-link" aria-describedby="B54">54</a>). Using a high content Cellomics analysis system, we studied enterocyte morphology in detail and confirmed a reduction in enterocyte height and noted shape changes in the nucleus (<a href="#B55" class="usa-link" aria-describedby="B55">55</a>). Importantly, these changes were found not only in patients with active CD but also in patients with potential CD. Changes in the microvilli at the enterocyte apex may also be noted, even when examined by light microscopy, although these features are more clearly evident when studied by electron microscopy (<a href="#B56" class="usa-link" aria-describedby="B56">56</a>). Microvilli are found to be either sparse, absent or have irregular shapes.</p> <p>These abnormal enterocyte features are presumably caused by the inflammatory response in CD. The changes may preface cell death, and indeed, increased small intestinal enterocyte apoptosis has been demonstrated in CD in several studies (<a href="#B40" class="usa-link" aria-describedby="B40">40</a>, <a href="#B57" class="usa-link" aria-describedby="B57">57</a>, <a href="#B58" class="usa-link" aria-describedby="B58">58</a>). Using TUNEL staining to detect fragmented DNA, Moss et al. reported this finding in patients with untreated CD, and evidence of apoptosis correlated with the level of enterocyte proliferation (<a href="#B57" class="usa-link" aria-describedby="B57">57</a>). Maiuri et al. also described increased apoptosis in CD tissue but these abnormalities appeared confined to tissue areas displaying evidence of damage (<a href="#B40" class="usa-link" aria-describedby="B40">40</a>). Another study reported increased expression of both FAS and FAS ligand death receptors in the duodenal epithelium in untreated CD patients, together with increased perforin expression and number of TUNEL positive cells (<a href="#B59" class="usa-link" aria-describedby="B59">59</a>).</p> <p>Raised circulating levels of intestinal fatty acid-binding protein (I-FABP) in patients with active CD also provides evidence of enterocyte damage (<a href="#B60" class="usa-link" aria-describedby="B60">60</a>–<a href="#B62" class="usa-link" aria-describedby="B62">62</a>). I-FABP is a low molecular weight protein, specific to small intestinal epithelial cells. Since I-FABP is highly expressed in the cytoplasm of these cells, the circulating level of I-FABP is a very sensitive marker for monitoring enterocyte damage and has been proposed as a potential biomarker of disease activity in CD (<a href="#B63" class="usa-link" aria-describedby="B63">63</a>). Interestingly, in patients with severe enteropathy, strong expression of I-FABP is also noted in the crypts, and this may be linked to an accelerated developmental program of enterocyte proliferation and differentiation. As a consequence, while I-FABP is expressed in fully differentiated enterocytes in homeostasis, it appears earlier in crypt enterocytes when enteropathy is present (<a href="#B64" class="usa-link" aria-describedby="B64">64</a>).</p></section><section id="s5"><h2 class="pmc_sec_title">A Broader Role for Intestinal Epithelial Cells?</h2> <p>Enterocytes are the predominant intestinal epithelial cell type and together with other cells, including goblet cells, Paneth cells and M cells, act as a first line of defense against potential access from the gut of microorganisms and other noxious agents (<a href="#B65" class="usa-link" aria-describedby="B65">65</a>, <a href="#B66" class="usa-link" aria-describedby="B66">66</a>). However, intestinal epithelial cells have a wider role in gut homeostasis, interacting on a constant basis with commensal organisms and influencing the behavior of cells of both the innate and adaptive immune system. Reactions with microogranisms and danger signals is facilitated by the epithelial surface expression of a range of innate receptors including toll like receptors (<a href="#B67" class="usa-link" aria-describedby="B67">67</a>). Epithelial cells influence the behavior of many intestinal cell populations including innate lymphoid cells (ILC), neutrophils, basophils, macrophages, T cells and B cells through the production and release of a range of cytokines and chemokines including tumor necrosis factor alpha (TNF)-α, interleukin (IL)-8, IL-18, IL-25, transforming growth factor (TGF)-β and B cell activating factor (<a href="#B66" class="usa-link" aria-describedby="B66">66</a>, <a href="#B68" class="usa-link" aria-describedby="B68">68</a>). Amongst its many roles, a key function of intestinal epithelial cells is to allow the orderly paracellular absorption of nutrients and ions and to prevent access to potentially damaging substances including dietary antigens. This led to the study of a series of tight junction structures and the discovery of the protein zonulin, the only known physiological modulator of intercellular tight junctions (<a href="#B69" class="usa-link" aria-describedby="B69">69</a>). Increased release of zonulin is associated with gut barrier dysfunction and gliadin peptides have been reported to trigger this reaction (<a href="#B65" class="usa-link" aria-describedby="B65">65</a>).</p></section><section id="s6"><h2 class="pmc_sec_title">A Role for Direct Gluten-Induced Enterocyte Damage?</h2> <p>Details of enterocyte pathology following gluten exposure have been investigated by both <em>in vitro</em> and <em>in vivo</em> challenge studies. In organ culture of biopsies taken from coeliac patients co-cultured with gluten derived proteins, evidence of rapid changes in enterocyte morphology has been reported. In several studies, gluten caused reduction in enterocyte height (<a href="#B70" class="usa-link" aria-describedby="B70">70</a>–<a href="#B73" class="usa-link" aria-describedby="B73">73</a>) and increased apoptosis of enterocytes (<a href="#B28" class="usa-link" aria-describedby="B28">28</a>, <a href="#B41" class="usa-link" aria-describedby="B41">41</a>, <a href="#B74" class="usa-link" aria-describedby="B74">74</a>, <a href="#B75" class="usa-link" aria-describedby="B75">75</a>). We also performed organ culture experiments employing a peptic/tryptic digest of gluten and demonstrated derangement of several enterocyte cytoskeletal proteins, including microfilaments, intermediate filaments and microtubules; these changes were evident after 4 h of culture but were even more marked after 24 h (<a href="#F1" class="usa-link">Figure 1</a>) (<a href="#B76" class="usa-link" aria-describedby="B76">76</a>).</p> <figure class="fig xbox font-sm" id="F1"><h3 class="obj_head">Figure 1.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7360848_fimmu-11-01374-g0001.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bfa/7360848/9677b4bb3715/fimmu-11-01374-g0001.jpg" loading="lazy" height="652" width="663" alt="Figure 1"></a></p> <div class="p text-right font-secondary"><a href="figure/F1/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>Direct effect of peptic-tryptic digests of gliadin on intestinal enterocytes. Representative images of organ culture of healthy (<em>n</em> = 5) and coeliac (<em>n</em> = 5) biopsies in the presence or absence of peptic-tryptic (PT) digests of gliadin demonstrates direct effects of gliadin. Treatment of coeliac biopsies for 24 h with PT gliadin reveals significant changes in cytokeratin and tubulin staining, as demonstrated by fluorescence microscopy.</p></figcaption></figure><p>Several short-term <em>in vivo</em> challenge studies also reported evidence of rapid enterocyte damage following infusion of gluten fractions into the small intestine. When small intestinal biopsies were taken at hourly intervals, significant histological damage was observed after patients were given either gluten (<a href="#B77" class="usa-link" aria-describedby="B77">77</a>), gliadin subfractions (<a href="#B38" class="usa-link" aria-describedby="B38">38</a>, <a href="#B39" class="usa-link" aria-describedby="B39">39</a>) or the associated wheat protein glutenin (<a href="#B78" class="usa-link" aria-describedby="B78">78</a>). The abnormalities included a reduction in enterocyte height, an increase in IELs and a reduction in the villous/crypt ratio. In some instances, these changes were noted as early as 2 h after gluten exposure (<a href="#B78" class="usa-link" aria-describedby="B78">78</a>).</p> <p>Taken together, these studies demonstrate rapid changes in coeliac enterocyte morphology following gluten exposure. The mechanisms responsible have yet to be identified. Although a rapid response is more typical of innate immune involvement, there is now evidence that a histological and cytokine response to gluten and immunodominant gliadin peptides can take place within hours. A study by Fraser et al. demonstrated that <em>in vivo</em> challenge with residues 56–75 of α-gliadin resulted in reduction of enterocyte height and an increase in IELs in biopsy tissue within just 4 h (<a href="#B79" class="usa-link" aria-describedby="B79">79</a>). Moreover, it has been recently reported that oral gluten challenge causes a significant elevation of plasma IL-2, suggestive of rapid activation of T lymphocytes, again within 4 h (<a href="#B80" class="usa-link" aria-describedby="B80">80</a>). The findings of these studies support a prominent role for adaptive immunity in causing early tissue changes in the CD lesion.</p></section><section id="s7"><h2 class="pmc_sec_title">A Role for Enterocyte Proliferation?</h2> <p>It has been suggested that hyperproliferation of enterocytes is the principal pathological event responsible for apparent villous atrophy in CD mucosa, rather than direct destruction of the villous structure (<a href="#B50" class="usa-link" aria-describedby="B50">50</a>, <a href="#B81" class="usa-link" aria-describedby="B81">81</a>, <a href="#B82" class="usa-link" aria-describedby="B82">82</a>). Marsh and Heal in particular have argued this point and state that the term “villous atrophy” is a misnomer (<a href="#B50" class="usa-link" aria-describedby="B50">50</a>). They postulate that the overgrowth of the crypt cell population surrounds and dwarfs the villous structure and cause its shrunken appearance. Crypt cell proliferation was investigated by Wright et al. and an up to 6-fold increase in crypt cell production was calculated with an associated increase in the mitotic index (<a href="#B83" class="usa-link" aria-describedby="B83">83</a>).</p> <p>The increased crypt cell proliferation may due to the reparative process to replace damaged enterocytes shed into the intestinal lumen. However, it has also been reported that proliferation may be due to a direct effect of gliadin peptides on the coeliac mucosa (<a href="#B84" class="usa-link" aria-describedby="B84">84</a>). In cultured coeliac duodenal biopsy tissue the p31-43 gliadin peptide was shown to increase crypt cell proliferation, apparently via the epidermal growth factor pathway (<a href="#B85" class="usa-link" aria-describedby="B85">85</a>). This effect was mediated by enhancing epithelial growth factor receptor signaling in a mechanism involving altered vesicular trafficking (<a href="#B84" class="usa-link" aria-describedby="B84">84</a>, <a href="#B86" class="usa-link" aria-describedby="B86">86</a>). It was also postulated that this proliferative effect was further augmented by increased IL-15 production, stimulated by the gliadin peptide (<a href="#B29" class="usa-link" aria-describedby="B29">29</a>).</p></section><section id="s8"><h2 class="pmc_sec_title">A Role for Gliadin Peptides in Causing an Innate Response?</h2> <p>In addition to its reported effect on crypt cell proliferation (<a href="#B84" class="usa-link" aria-describedby="B84">84</a>), many additional studies have focused on the α-gliadin peptide, p31-43 and its potential to cause direct activation of the innate immune system. Within 20 min of exposure to this peptide evidence of enterocyte actin reorganization was reported in organ culture experiments (<a href="#B87" class="usa-link" aria-describedby="B87">87</a>). Further study has revealed various additional pathogenic effects. p31-43 was shown to inhibit the subunit of the chloride channel (CFTR) and thereby cause NF-kB activation, induction of IL-15 and TG2 activation, with a range of inflammatory consequences (<a href="#B88" class="usa-link" aria-describedby="B88">88</a>). Moreover, p31-43 is able to self-assemble in oligomers with potential important effects (<a href="#B89" class="usa-link" aria-describedby="B89">89</a>). <em>In vivo</em> analysis in a murine model showed that activation of the NLRP3 inflammasome, either by direct detection of oligomers or indirectly by sensing danger signals, is required for histological changes in the small intestinal mucosa (<a href="#B90" class="usa-link" aria-describedby="B90">90</a>). Finally, the peptide was shown to induce a type I interferon (IFN) response in mice (<a href="#B91" class="usa-link" aria-describedby="B91">91</a>). Of note, high levels of IFNα can be observed in the duodenal mucosa from coeliac patients (<a href="#B84" class="usa-link" aria-describedby="B84">84</a>) and this cytokine has been suggested to promote T helper (T<sub>H</sub>) type 1 responses in CD (<a href="#B92" class="usa-link" aria-describedby="B92">92</a>).</p> <p>More recently, various studies were conducted to evaluate the role of a particular enteric virus which causes the induction of proinflammatory signals that may promote breakdown of oral tolerance to gluten (<a href="#B93" class="usa-link" aria-describedby="B93">93</a>). Commensal microbiota also has a role to play in the induction of local inflammation. Elastase-producing <em>Pseudomonas aeruginosa</em> isolated from the duodenal biopsies of CD patients was able to degrade a gluten-derived 33-mer peptide, producing shorter fragments which cross the mucosal barrier and display increased immunogenicity (<a href="#B94" class="usa-link" aria-describedby="B94">94</a>). Therefore, viral infection and the activity of <em>P. aeruginosa</em>, as examples of members of the microbiota which can elicit proinflammatory signals on intestinal cells which drive or amplify villous damage. Other mechanisms, apart from conventional immunogenic peptides, that may play a role are the amylase trypsin inhibitors present in wheat. These proteins are resistant to intestinal digestion, can directly activate Toll-like receptor 4 (TLR4) and may support intestinal T cell activation in celiac disease (<a href="#B95" class="usa-link" aria-describedby="B95">95</a>). However, the main immunogenic peptide, responsible for stimulating the adaptive immune response is a 33-mer gliadin peptide, p56-88, which contains several overlapping sequences that bind with high affinity to susceptibility HLA molecules (<a href="#B92" class="usa-link" aria-describedby="B92">92</a>). A further small eight residue gliadin peptide is reported to act through the stimulation of particular dendritic cells, can amplify the inflammatory response (<a href="#B96" class="usa-link" aria-describedby="B96">96</a>).</p></section><section id="s9"><h2 class="pmc_sec_title">A Role for Conventional and Unconventional Lymphocytes?</h2> <p>T lymphocytes and B cell derived plasma cells are markedly increased in the coeliac lesion. In the untreated coeliac mucosa, plasma cells secreting IgA are increased 2.4-fold and represent some 66% of antibody secreting cells (<a href="#B97" class="usa-link" aria-describedby="B97">97</a>). Increases in IgM and IgG secreting cells also are found, with these cells accounting for some 28 and 6% of plasma cells in the lesion. Antibodies of all three isotypes to gliadin and auto-antigen targets can be detected not only in intestinal secretions but also in the circulation. Assays for these antibodies are of immense value in the diagnosis and monitoring of disease activity in CD patients. In addition, gut-resident plasma cells presenting the immunodominant gluten peptide DQ2.5-glia-α1a have been shown to be abundant in the CD lesion, suggesting an important local antigen presentation role (<a href="#B98" class="usa-link" aria-describedby="B98">98</a>). These cells also act as a source of cytokines, including the chemokine CXCL10 (<a href="#B99" class="usa-link" aria-describedby="B99">99</a>).</p> <p>Gluten-reactive T lymphocytes are found in the <em>lamina propria</em> and are comprised of α/β T cell receptor positive cells bearing a CD4 co-receptor, identifying them as T<sub>H</sub> cells (<a href="#B3" class="usa-link" aria-describedby="B3">3</a>, <a href="#B100" class="usa-link" aria-describedby="B100">100</a>). However, cloning studies have revealed that only 0.5–1.8% of CD gut-derived CD4 T cells are truly gluten reactive (<a href="#B101" class="usa-link" aria-describedby="B101">101</a>). These gluten-reactive cells display a T<sub>H</sub>1 phenotype in response to gluten peptides, with cytokine production predominated by IFNγ (<a href="#B102" class="usa-link" aria-describedby="B102">102</a>). Gliadin-specific T<sub>H</sub>17 cells have also been described, which co-produce IL-17 and IFNγ (<a href="#B103" class="usa-link" aria-describedby="B103">103</a>). Gluten reactive CD8<sup>+</sup> T cells have also been described in the <em>lamina propria</em> following challenge with the pA2 gliadin peptide (<a href="#B41" class="usa-link" aria-describedby="B41">41</a>). Nonetheless, studies in mice and humans have shown that the presence of these gluten-reactive T cells alone is not sufficient to drive pathological changes to the villous architecture (<a href="#B104" class="usa-link" aria-describedby="B104">104</a>–<a href="#B106" class="usa-link" aria-describedby="B106">106</a>). Thus, in potential CD, where individuals demonstrate an adaptive immune response to gluten, characterized by the presence of serum endomysial antibodies, no histological lesion is present. This suggests that additional factors may be required to drive tissue damage (<a href="#B107" class="usa-link" aria-describedby="B107">107</a>).</p> <p>Parallels have been drawn between the progression of CD and graft vs. host disease, suggesting a key role for T cells in disease pathogenesis (<a href="#B108" class="usa-link" aria-describedby="B108">108</a>). In addition to gluten-reactive CD4<sup>+</sup> α/β T cells, a role for CD8<sup>+</sup> α/β IELs in enterocyte destruction has also been shown, whereby these cells acquire an aberrant natural killer (NK)-like phenotype and kill enterocytes in a T cell receptor (TCR)-independent manner. These mechanisms, driven by IL-15 (<a href="#B46" class="usa-link" aria-describedby="B46">46</a>, <a href="#B68" class="usa-link" aria-describedby="B68">68</a>), are summarized in <a href="#F2" class="usa-link">Figure 2</a>. This NK-like action is characterized by strong IFNγ production, upregulation of activating NK receptors NKG2D and CD94/NKG2C (<a href="#B46" class="usa-link" aria-describedby="B46">46</a>), concurrent downregulation of inhibitory co-receptors CD94/NKG2A (<a href="#B106" class="usa-link" aria-describedby="B106">106</a>) and cytotoxic ability. Engagement of activating NK receptors by stress molecules expressed on enterocytes triggers the cytolytic function of these CD8<sup>+</sup> IELs. In patients with CD, enterocytes upregulate expression of stress molecules such as heat shock proteins (HSP), MHC class I polypeptide-related sequence A (MICA), HLA-E and IL-15 (<a href="#B45" class="usa-link" aria-describedby="B45">45</a>, <a href="#B109" class="usa-link" aria-describedby="B109">109</a>, <a href="#B110" class="usa-link" aria-describedby="B110">110</a>). However, gluten-reactive CD4<sup>+</sup> T cells have been shown to be required to fully license the cytolytic NK activity of these CD8<sup>+</sup> IELs (<a href="#B106" class="usa-link" aria-describedby="B106">106</a>, <a href="#B111" class="usa-link" aria-describedby="B111">111</a>, <a href="#B112" class="usa-link" aria-describedby="B112">112</a>). A recent mouse model of CD has also demonstrated the key role of CD4<sup>+</sup> T cells and HLA-DQ8 in mediating cytotoxic lymphocyte (CTL)-driven villous destruction (<a href="#B111" class="usa-link" aria-describedby="B111">111</a>). Depletion of either CD4<sup>+</sup> or CD8<sup>+</sup> T cell populations prevented villous damage in these transgenic HLA-DQ8<sup>+</sup> mice overexpressing IL-15. CD4<sup>+</sup> T cell depletion resulted in a failure of CD8<sup>+</sup> CTLs to upregulate RAE-1, the murine ligand for NKG2D, providing further evidence that the NKG2D pathway is important in CD4-mediated CTL licensing. Upregulation of QA-1, the mouse ligand for NKG2 receptors paired with CD94, was unaffected by CD4 depletion, showing that this mechanism is specific to NKG2D. This study also revealed critical roles for gluten, IL-15, HLA-DQ8, TG2, and CD4 T cells, working in concert to promote IFNγ responses and expansion of activated cytolytic CD8 IELs which mediate villous atrophy. IFNγ, a prominent cytokine in CD pathogenesis, is produced not only by gluten-reactive <em>lamina propria</em> T<sub>H</sub> cells but also by populations of IELs, including γ/δ IELs (<a href="#B113" class="usa-link" aria-describedby="B113">113</a>). In addition to IL-15, cytokines IL-2 and IL-21 are two further important cytokine products of gluten reactive T<sub>H</sub> cells and contribute to the adaptive immune pathogenesis of CD (<a href="#B80" class="usa-link" aria-describedby="B80">80</a>, <a href="#B114" class="usa-link" aria-describedby="B114">114</a>–<a href="#B116" class="usa-link" aria-describedby="B116">116</a>), however, of interest they were not shown to be critical for development of villous damage in this recent mouse model (<a href="#B107" class="usa-link" aria-describedby="B107">107</a>). A study on human tissue reports that the majority of CD patients overexpress both IL-15 and IL-21 and <em>in vitro</em> analysis showed these cytokines synergise to activate CTL IEL populations and thus drive villous damage, in a cooperative and non-redundant manner (<a href="#B117" class="usa-link" aria-describedby="B117">117</a>).</p> <figure class="fig xbox font-sm" id="F2"><h3 class="obj_head">Figure 2.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7360848_fimmu-11-01374-g0002.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bfa/7360848/1d1c2d8e41a8/fimmu-11-01374-g0002.jpg" loading="lazy" height="841" width="662" alt="Figure 2"></a></p> <div class="p text-right font-secondary"><a href="figure/F2/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>Mechanisms of pathogenesis in coeliac disease. <strong>(A)</strong> It is well established that peptides derived from gluten are modified by TG2 and presented by antigen presenting cells in mesenteric lymph nodes (MLN) to CD4<sup>+</sup> T cells in the context of HLA-DQ2. The resulting T<sub>H</sub>1 type response results in IFNγ production and intestinal inflammation. Chronic inflammation leads to expansion and persistence of Vδ1<sup>+</sup>γδ T cells, which also contribute to IFNγ production. Gluten peptides induce expression of IL-15 and stress molecules on enterocytes. The increased levels of IL-15 promote a NK-like phenotype in CD8<sup>+</sup> T cells, contributing directly to enterocyte death. A proportion of CD8<sup>+</sup>γδ<sup>+</sup> T cells are thought to play a regulatory role through secretion of TGF-β. Plasma cells are also abundant in the lesion where many express the immunodominant gluten peptide DQ2.5-glia-α1a and are induced to secrete antibodies that bind to TG2 and other targets. <strong>(B)</strong> Other less well-characterized mechanisms may play a role in lesion development. Intestinal myofibroblasts contribute to tissue remodeling by the secretion of matrix metalloproteases (MMPs) and via their contractile properties. These cells strongly express TG2 and α-actin. Innate-like lymphocytes including natural killer (NK cells), innate lymphoid cells (ILC), invariant natural killer T cells (iNKT) and mucosal-associated invariant T (MAIT) cells may all contribute to the lesion. Granulocytes, including eosinophils, neutrophils and basophils, and also mast cells have been detected in higher levels and may be involved in disease pathogenesis.</p></figcaption></figure><p>Intriguingly, individuals with potential CD do not demonstrate an increase in activating NK receptors nor IL-15 or IL-21, suggesting that additional factors may also be required to drive the full NK-like phenotype. Potential candidates include gut microbial components (<a href="#B118" class="usa-link" aria-describedby="B118">118</a>) or viral infection (<a href="#B119" class="usa-link" aria-describedby="B119">119</a>, <a href="#B120" class="usa-link" aria-describedby="B120">120</a>). This is further supported by a recent study in which ubiquitous bacterial peptides were shown to activate gliadin reactive T cells, suggesting the possibility that common bacterial antigens could act as trigger stimuli in the development of CD (<a href="#B121" class="usa-link" aria-describedby="B121">121</a>).</p> <p>Whereas, CD4<sup>+</sup> T cells predominate in the <em>lamina propria</em>, the human small intestinal epithelium is predominantly populated by CD8<sup>+</sup> α/β IELs, γ/δ IELs, and a smaller proportion of lymphocytes which do not express a T cell receptor, and therefore are classed as innate lymphocytes (<a href="#B21" class="usa-link" aria-describedby="B21">21</a>, <a href="#B122" class="usa-link" aria-describedby="B122">122</a>). This latter population includes NK cells and ILCs. The CD8<sup>+</sup> α/β IELs group also includes mucosal-associated invariant T (MAIT) cells and, albeit at low levels, invariant NK T (iNKT) cells (<a href="#B23" class="usa-link" aria-describedby="B23">23</a>). It is assumed that most of these cell types play a lesser but similar destructive role to their conventional T cell counterparts, since unconventional T cells constitutively express NK markers, display an effector memory phenotype, and are capable of rapid and potent cytolytic responses. Indeed, ILCs have been shown to be capable of killing enterocytes via the NK receptor DNAM1 (<a href="#B123" class="usa-link" aria-describedby="B123">123</a>).</p> <p>The role of discrete IEL subsets warrants further study, particularly in light of the long-held observation that γ/δ IELs remain elevated in the coeliac gut long after removal of gluten from the diet and resolution of intestinal damage (<a href="#B23" class="usa-link" aria-describedby="B23">23</a>, <a href="#B124" class="usa-link" aria-describedby="B124">124</a>). In contrast to the deleterious role proposed for CD8<sup>+</sup> α/β IELs in CD, it is hypothesized that γ/δ IELs play a more regulatory role in the gut (<a href="#B125" class="usa-link" aria-describedby="B125">125</a>, <a href="#B126" class="usa-link" aria-describedby="B126">126</a>). We and others have described an abundance of Vδ1 type γ/δ T cells in the CD epithelium, in both pediatric and adult CD (<a href="#B23" class="usa-link" aria-describedby="B23">23</a>, <a href="#B127" class="usa-link" aria-describedby="B127">127</a>–<a href="#B130" class="usa-link" aria-describedby="B130">130</a>). This subset is known to possess potent cytolytic and regulatory functions in humans (<a href="#B131" class="usa-link" aria-describedby="B131">131</a>). Like their mouse counterparts, human γ/δ IELs in skin can secrete growth factors, specifically insulin-like growth factor, and play an important role in tissue repair (<a href="#B132" class="usa-link" aria-describedby="B132">132</a>). Whether this active role in tissue repair also occurs in the gut is unclear, but human NKG2A<sup>+</sup> CD8<sup>+</sup> γ/δ IELs have been shown to effectively dampen the proinflammatory and cytotoxic action of their α/β IELs counterparts via production of the immunosuppressive cytokine TGF-β (<a href="#B133" class="usa-link" aria-describedby="B133">133</a>). TGF-β is an immunosuppressive cytokine which exerts many anti-inflammatory effects, including driving differentiation of regulatory T cells and T<sub>H</sub>17 cell populations, which then produce more TGF-β in an autocrine manner (<a href="#B134" class="usa-link" aria-describedby="B134">134</a>).</p> <p>This suggests that lymphocyte-mediated damage to the coeliac small intestine may require dysregulation of both α/β and γ/δ IEL subtypes. In this scenario, a two-step process would be required to mediate gut damage—CD8<sup>+</sup> α/β IELs acquire an aberrant NK-like cytotoxic phenotype coupled with γ/δ IELs losing regulatory function. This raises an intriguing possibility that maintenance of γ/δ T cell regulatory function could explain the phenotype of potential CD, a scenario where γ/δ IELs keep α/β IEL cytotoxicity in check. Indeed, recent studies detailing long-term genomic and functional changes in the composition of the γ/δ IEL compartment in CD has shown that a subset of Vγ4<sup>+</sup>/Vδ1<sup>+</sup> type γ/δ IELs, which have a role in tissue healing and homeostasis, is lost and replaced by a persistent IFNγ producing Vδ1<sup>+</sup> T cell population, thereby supporting this hypothesis (<a href="#B21" class="usa-link" aria-describedby="B21">21</a>, <a href="#B22" class="usa-link" aria-describedby="B22">22</a>). The role of other lymphocyte subsets such as MAIT cells, iNKT cells and NK cells in CD is less well-understood (<a href="#B23" class="usa-link" aria-describedby="B23">23</a>). NK cells in particular appear to be capable of both deleterious and protective effects on the intestine and are also susceptible to functional and metabolic inhibition by TGF-β (<a href="#B135" class="usa-link" aria-describedby="B135">135</a>); thus, their contribution to CD pathogenesis requires further elucidation (<a href="#B136" class="usa-link" aria-describedby="B136">136</a>).</p></section><section id="s10"><h2 class="pmc_sec_title">A Role for Innate Immune Cells in the Intestinal Lesion?</h2> <p>In addition to the increased number of T cells and plasma cells in patients with active CD, several studies describe increased populations of cells of the innate immune response, including eosinophils (<a href="#B32" class="usa-link" aria-describedby="B32">32</a>–<a href="#B34" class="usa-link" aria-describedby="B34">34</a>), basophils (<a href="#B50" class="usa-link" aria-describedby="B50">50</a>), mast cells (<a href="#B32" class="usa-link" aria-describedby="B32">32</a>, <a href="#B35" class="usa-link" aria-describedby="B35">35</a>, <a href="#B36" class="usa-link" aria-describedby="B36">36</a>), neutrophils (<a href="#B137" class="usa-link" aria-describedby="B137">137</a>, <a href="#B138" class="usa-link" aria-describedby="B138">138</a>) and dendritic cells (<a href="#B139" class="usa-link" aria-describedby="B139">139</a>, <a href="#B140" class="usa-link" aria-describedby="B140">140</a>). The potential contribution of both eosinophils and mast cells is supported by experiments involving gliadin challenge to an isolated segment of jejunum: this caused a four-fold increase in eosinophil granule specific protein secretion and a two-fold increase of histamine secretion, with maximum levels found within 1 h (<a href="#B141" class="usa-link" aria-describedby="B141">141</a>). A prominent extracellular deposit of eosinophil granule specific protein in the <em>lamina propria</em> of the atrophic intestinal mucosa was also found (<a href="#B31" class="usa-link" aria-describedby="B31">31</a>). Furthermore, eosinophils were noted to be in an activated state in CD and Brandtzaeg postulated that IgA might play a role in both eosinophil recruitment and activation (<a href="#B97" class="usa-link" aria-describedby="B97">97</a>). Mast cell numbers are also increased in active CD, and found to correlate with the Marsh histological score and become cellular sources of TNFα, IL-6, IL-17 and monocyte chemoattractant protein 1 (<a href="#B36" class="usa-link" aria-describedby="B36">36</a>, <a href="#B50" class="usa-link" aria-describedby="B50">50</a>). These data indicate that eosinophils and mast cells may both be involved in early gliadin-induced reactions in the small intestine and could contribute to the celiac lesion.</p> <p>Neutrophils may also play a role in the coeliac lesion; in the early phase of gluten challenge, increased numbers of these cells have been observed with a 20-fold increase calculated (<a href="#B137" class="usa-link" aria-describedby="B137">137</a>, <a href="#B138" class="usa-link" aria-describedby="B138">138</a>). The rapid production of the chemokine IL-8 by gluten activated T cells helps explain this neutrophil migration (<a href="#B80" class="usa-link" aria-describedby="B80">80</a>). In isolated jejunal segment experiments, gluten exposure caused a 5-fold increase in prostaglandin E2 (<a href="#B142" class="usa-link" aria-describedby="B142">142</a>) and a 3.5-fold increase in myeloperoxidase in the perfusion fluid (<a href="#B31" class="usa-link" aria-describedby="B31">31</a>). Furthermore, using gene expression profiling, chronic recruitment of activated neutrophils to CD biopsy tissue was discovered, even in patients in remission (<a href="#B143" class="usa-link" aria-describedby="B143">143</a>). In another study, after a 3-day gluten challenge, an increase in density of neutrophils as well as a rapid accumulation of monocyte/dendritic cells was observed (<a href="#B140" class="usa-link" aria-describedby="B140">140</a>). Of interest, in a murine study, gliadin peptides were found to have neutrophil chemoattractant properties (<a href="#B144" class="usa-link" aria-describedby="B144">144</a>). Dendritic cells are the critical players in innate immunity as well as adaptive response. Distinct subsets may display different functions, as induction of strong inflammatory response, driving the gluten-specific T cell response and control the immune response by inducing regulatory T cells (<a href="#B139" class="usa-link" aria-describedby="B139">139</a>, <a href="#B145" class="usa-link" aria-describedby="B145">145</a>).</p></section><section id="s11"><h2 class="pmc_sec_title">A Role for Anti-TG2 Antibodies in CD Pathogenesis?</h2> <p>Detection of anti-TG2 autoantibodies is an exceptionally specific and sensitive tool used for CD diagnosis. The most commonly accepted model for the development of this autoantibody response is the hapten-carrier complex mechanism, as proposed by Sollid et al. (<a href="#B146" class="usa-link" aria-describedby="B146">146</a>). The hypothesis suggests that TG2-gliadin complexes are presented by TG2-specific B cells to gliadin-specific T cells and receive help for antibody production. While this model does not necessitate TG2-reactive T cells, separate studies by Comerford et al. and Ciccocioppo et al. demonstrate that these autoreactive T cells can be detected in patients (<a href="#B147" class="usa-link" aria-describedby="B147">147</a>, <a href="#B148" class="usa-link" aria-describedby="B148">148</a>).</p> <p>Whether or not autoantibodies play a role in the development of the lesion remains unclear. The fact that IgA deficiency does not preclude the development of CD suggests that IgA isotype autoantibodies are not essential for disease development. However, in the related gluten-sensitive condition dermatitis herpetiformis, it appears that autoantibodies against transglutaminase 3 (another member of the TG family) do appear to play a role in pathogenesis as demonstrated by the presence of IgA deposits at sites of neutrophil infiltration in the skin (<a href="#B149" class="usa-link" aria-describedby="B149">149</a>). Unlike CD, dermatitis herpetiformis is not observed in patients that are IgA deficient (<a href="#B150" class="usa-link" aria-describedby="B150">150</a>). It has been proposed that anti-TG2 autoantibodies influence the disease process in CD by having a direct effect upon enterocytes. Purified anti-TG2 antibodies have been shown to inhibit crypt cell differentiation (<a href="#B151" class="usa-link" aria-describedby="B151">151</a>), interfere with proliferation by binding membrane TG2 (<a href="#B85" class="usa-link" aria-describedby="B85">85</a>), and enhance gliadin trafficking across the gut epithelium (<a href="#B152" class="usa-link" aria-describedby="B152">152</a>). It has also been suggested that anti-TG2 could interfere with enterocyte differentiation by blocking TGF-β activation, a cytokine that plays an important role in this process (<a href="#B151" class="usa-link" aria-describedby="B151">151</a>). Other effects have been reported including inhibition of angiogenesis, and increases in vascular permeability (<a href="#B153" class="usa-link" aria-describedby="B153">153</a>).</p></section><section id="s12"><h2 class="pmc_sec_title">A Role for Complement?</h2> <p>Few studies have examined the possibility of complement involvement in CD pathogenesis. In early reports, C3 deposits and proteins of the terminal complement pathway were shown in the small intestine, concentrated sub-epithelially and in the <em>lamina propria</em> (<a href="#B37" class="usa-link" aria-describedby="B37">37</a>). Untreated CD patients typically have high levels of IgG1 and IgG3 anti-gliadin antibodies in their serum (<a href="#B154" class="usa-link" aria-describedby="B154">154</a>) both of which are capable of activating complement (<a href="#B155" class="usa-link" aria-describedby="B155">155</a>). Sub-epithelial IgA-TG2 deposits, found in the early stages of CD (<a href="#B156" class="usa-link" aria-describedby="B156">156</a>) might also play a role, and polymeric IgA has been shown to activate complement via the MBL pathway (<a href="#B157" class="usa-link" aria-describedby="B157">157</a>). Activation of the classical complement pathway would result in increased production of C3a and C5a, both capable of contributing to the coeliac lesion by increasing vascular permeability and causing mast cell degranulation. In addition, C5a as a chemotactic factor could increase the migration of eosinophils, neutrophils and monocytes to the lesion and initiate release of products such as prostaglandins (<a href="#B142" class="usa-link" aria-describedby="B142">142</a>). Complement activation could therefore explain the rapid onset of gluten induced symptoms observed in some patients with CD (<a href="#B11" class="usa-link" aria-describedby="B11">11</a>, <a href="#B12" class="usa-link" aria-describedby="B12">12</a>).</p></section><section id="s13"><h2 class="pmc_sec_title">A Role for Intestinal Myofibroblasts?</h2> <p>Intestinal subepithelial myofibroblasts possess a broad range of biological functions and are likely to play a central role in architectural remodeling in CD. Myofibroblasts synthesize many components required for the extracellular matrix and the basement membrane and also control the degradation of these structures through the release of matrix metalloproteases (MMPs) along with inhibitors of these enzymes, the tissue inhibitors of metalloproteases (TIMPs) (<a href="#B158" class="usa-link" aria-describedby="B158">158</a>). Several studies have described increased mRNA and protein levels of MMP-1, MMP-3, MMP-9, MMP-12, and TIMP-1 in the coeliac lesion (<a href="#B159" class="usa-link" aria-describedby="B159">159</a>–<a href="#B161" class="usa-link" aria-describedby="B161">161</a>). In some instances, levels of MMPs correlated with the degree of histological damage. Several cytokines are critical to the function of myofibroblasts, including TGF-β (<a href="#B162" class="usa-link" aria-describedby="B162">162</a>). In inflammatory bowel disease the production of MMPs by myofibroblasts in is thought to be driven by IL-1β and TNF-α (<a href="#B163" class="usa-link" aria-describedby="B163">163</a>), and the latter cytokine is produced by IEL in CD (<a href="#B164" class="usa-link" aria-describedby="B164">164</a>). IFNγ and IL-21 are additional candidate cytokines which may stimulate MMP production in the coeliac lesion (<a href="#B159" class="usa-link" aria-describedby="B159">159</a>, <a href="#B165" class="usa-link" aria-describedby="B165">165</a>).</p> <p>In assembling the structure of the small intestine, TG2 plays a central role and myofibroblasts have been shown to strongly express TG2 in active CD (<a href="#B166" class="usa-link" aria-describedby="B166">166</a>). Using confocal microscopy, we have confirmed this finding and demonstrated that TG2 expression strongly co-localizes with increased smooth muscle α-actin expressed by these cells in active disease (manuscript in preparation) (<a href="#F3" class="usa-link">Figure 3</a>). In an <em>in vitro</em> model, it was found that IgA autoantibodies to TG2 interfere with the effect of TGF-β on myofibroblasts; this resulted in the increased proliferation of enterocytes (<a href="#B151" class="usa-link" aria-describedby="B151">151</a>). Finally, myofibroblasts also interact with the immune system, express MHC class II as well as CD80 and CD86, and have been shown to act as non-professional antigen presenting cells (<a href="#B167" class="usa-link" aria-describedby="B167">167</a>). It has also been demonstrated that myofibroblasts induce the proliferation and differentiation of regulatory T cells (<a href="#B168" class="usa-link" aria-describedby="B168">168</a>) suggesting a possible role in immune homeostasis.</p> <figure class="fig xbox font-sm" id="F3"><h3 class="obj_head">Figure 3.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7360848_fimmu-11-01374-g0003.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bfa/7360848/a9f8aa8a7542/fimmu-11-01374-g0003.jpg" loading="lazy" height="370" width="711" alt="Figure 3"></a></p> <div class="p text-right font-secondary"><a href="figure/F3/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>Myofibroblasts strongly co-express TG2 and α-actin in coeliac disease. Dual color confocal microscopy demonstrates that intestinal myofibroblasts stain positive for α-actin (green) in healthy control tissue (<em>n</em> = 5) <strong>(a)</strong>. In active coeliac disease (<em>n</em> = 11) <strong>(b)</strong> these cells upregulate TG2 (red) and significant co-expression is apparent (yellow) (Cooper et al., manuscript in preparation). Original magnification x40.</p></figcaption></figure><p>Taken together, these findings suggest that intestinal myofibroblasts could play an important tissue remodeling role in the coeliac lesion as well as being a potential venue for epitope spreading. The potential contribution of myofibroblasts with multiple cellular and other immune components to CD pathogenesis is represented in <a href="#F2" class="usa-link">Figure 2B</a>.</p></section><section id="s14"><h2 class="pmc_sec_title">Conclusion</h2> <p>Features of CD suggest that it can be considered an autoimmune disease with gluten as an environmental trigger causing activation of a highly specific adaptive immune response. An increase in IELs is a classic finding in CD and some conventional lymphocytes with a NK-like phenotype contribute to enterocyte destruction. The function of other IEL populations, such as γ/δ IELs, in CD is less certain and work to date suggests these cells may play an important local immune regulatory role. Intestinal epithelial cells, through their production of IL-15, play a dynamic role in disease pathogenesis in addition to being targets of the immune response. There is also evidence that cells of the innate immune system, including eosinophils, mast cells and neutrophils, contribute to disease pathogenesis. A further cell population, myofibroblasts, are an important source of TG2 and metalloproteases and therefore may also play a central pathogenic role in CD. Controversy surrounds the issue of whether non-immune gliadin peptides contribute to the disease process. Some studies report that one such peptide, p31-43, can cause direct damage to enterocytes and also stimulate enterocyte proliferation. The failure to identify a receptor for this peptide has been used to reject its involvement in the disease process. If alternate gluten peptides cause innate cell activation, this will be important in designing future gluten avoidance strategies.</p></section><section id="s15"><h2 class="pmc_sec_title">Author Contributions</h2> <p>All authors contributed to the planning, writing and editing of this manuscript, and approve this submitted version for publication. MD and GB contributed equally to creating the manuscript. Figures were constructed by GB and MD.</p></section><section id="s16"><h2 class="pmc_sec_title">Conflict of Interest</h2> <p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p></section><section id="ack1" class="ack"><h2 class="pmc_sec_title">Acknowledgments</h2> <p>We thank Dr. Sarah Cooper and Dr. Jean Dunne for their work on the confocal imaging of intestinal myofibroblasts in the coeliac lesion. We would also like to express our gratitude to Sharon Wilson for her organ culture work concerning the effects of gliadin on enterocyte cytoskeletal proteins.</p></section><section id="ref-list1" class="ref-list"><h2 class="pmc_sec_title">References</h2> <section id="ref-list1_sec2"><ul class="ref-list font-sm" style="list-style-type:none"> <li id="B1"> <span class="label">1.</span><cite>Van De Kamer JH, Weijers HA, Dicke WK. Coeliac disease. IV. An investigation into the injurious constituents of wheat in connection with their action on patients with coeliac disease. Acta Paediatr. (1953) 42:223–31. 10.1111/j.1651-2227.1953.tb05586.x</cite> [<a href="https://doi.org/10.1111/j.1651-2227.1953.tb05586.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/13079757/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Acta%20Paediatr&title=Coeliac%20disease&author=De%20Kamer%20JH%20Van&author=HA%20Weijers&author=WK%20Dicke&volume=42&publication_year=1953&pages=223-31&pmid=13079757&doi=10.1111/j.1651-2227.1953.tb05586.x&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B2"> <span class="label">2.</span><cite>Auricchio S, De Ritis G, De Vincenzi M, Silano V. Toxicity mechanisms of wheat and other cereals in celiac disease and related enteropathies. J Pediatr Gastroenterol Nutr. (1985) 4:923–30. 10.1097/00005176-198512000-00012</cite> [<a href="https://doi.org/10.1097/00005176-198512000-00012" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/3906076/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Pediatr%20Gastroenterol%20Nutr&title=Toxicity%20mechanisms%20of%20wheat%20and%20other%20cereals%20in%20celiac%20disease%20and%20related%20enteropathies&author=S%20Auricchio&author=Ritis%20G%20De&author=Vincenzi%20M%20De&author=V%20Silano&volume=4&publication_year=1985&pages=923-30&pmid=3906076&doi=10.1097/00005176-198512000-00012&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B3"> <span class="label">3.</span><cite>Lundin KE, Scott H, Hansen T, Paulsen G, Halstensen TS, Fausa O, et al. Gliadin-specific, HLA-DQ (alpha 1<sup>*</sup>0501,beta 1<sup>*</sup>0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients. J Exp Med. (1993) 178:187–96. 10.1084/jem.178.1.187</cite> [<a href="https://doi.org/10.1084/jem.178.1.187" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2191064/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8315377/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Exp%20Med&title=Gliadin-specific,%20HLA-DQ%20(alpha%201*0501,beta%201*0201)%20restricted%20T%20cells%20isolated%20from%20the%20small%20intestinal%20mucosa%20of%20celiac%20disease%20patients&author=KE%20Lundin&author=H%20Scott&author=T%20Hansen&author=G%20Paulsen&author=TS%20Halstensen&volume=178&publication_year=1993&pages=187-96&pmid=8315377&doi=10.1084/jem.178.1.187&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B4"> <span class="label">4.</span><cite>Lundin KE, Sollid LM, Qvigstad E, Markussen G, Gjertsen HA, Ek J, et al. T lymphocyte recognition of a celiac disease-associated cis- or trans-encoded HLA-DQ alpha/beta-heterodimer. J Immunol. (1990) 145:136–9. </cite> [<a href="https://pubmed.ncbi.nlm.nih.gov/1972714/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Immunol&title=T%20lymphocyte%20recognition%20of%20a%20celiac%20disease-associated%20cis-%20or%20trans-encoded%20HLA-DQ%20alpha/beta-heterodimer&author=KE%20Lundin&author=LM%20Sollid&author=E%20Qvigstad&author=G%20Markussen&author=HA%20Gjertsen&volume=145&publication_year=1990&pages=136-9&pmid=1972714&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B5"> <span class="label">5.</span><cite>Gjertsen HA, Lundin KE, Sollid LM, Eriksen JA, Thorsby E. T cells recognize a peptide derived from alpha-gliadin presented by the celiac disease-associated HLA-DQ (alpha 1<sup>*</sup>0501, beta 1<sup>*</sup>0201) heterodimer. Hum Immunol. (1994) 39:243–52. 10.1016/0198-8859(94)90267-4</cite> [<a href="https://doi.org/10.1016/0198-8859(94)90267-4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7520895/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Hum%20Immunol&title=T%20cells%20recognize%20a%20peptide%20derived%20from%20alpha-gliadin%20presented%20by%20the%20celiac%20disease-associated%20HLA-DQ%20(alpha%201*0501,%20beta%201*0201)%20heterodimer&author=HA%20Gjertsen&author=KE%20Lundin&author=LM%20Sollid&author=JA%20Eriksen&author=E%20Thorsby&volume=39&publication_year=1994&pages=243-52&pmid=7520895&doi=10.1016/0198-8859(94)90267-4&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B6"> <span class="label">6.</span><cite>van de Wal Y, Kooy YM, Drijfhout JW, Amons R, Koning F. Peptide binding characteristics of the coeliac disease-associated DQ (alpha1<sup>*</sup>0501, beta1<sup>*</sup>0201) molecule. Immunogenetics. (1996) 44:246–53. 10.1007/s002510050120</cite> [<a href="https://doi.org/10.1007/s002510050120" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8753854/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Immunogenetics&title=Peptide%20binding%20characteristics%20of%20the%20coeliac%20disease-associated%20DQ%20(alpha1*0501,%20beta1*0201)%20molecule&author=de%20Wal%20Y%20van&author=YM%20Kooy&author=JW%20Drijfhout&author=R%20Amons&author=F%20Koning&volume=44&publication_year=1996&pages=246-53&pmid=8753854&doi=10.1007/s002510050120&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B7"> <span class="label">7.</span><cite>Vader LW, de Ru A, van der Wal Y, Kooy YMC, Benckhuijsen W, Mearin ML, et al. Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J Exp Med. (2002) 195:643–9. 10.1084/jem.20012028</cite> [<a href="https://doi.org/10.1084/jem.20012028" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2193762/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11877487/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Exp%20Med&title=Specificity%20of%20tissue%20transglutaminase%20explains%20cereal%20toxicity%20in%20celiac%20disease&author=LW%20Vader&author=Ru%20A%20de&author=der%20Wal%20Y%20van&author=YMC%20Kooy&author=W%20Benckhuijsen&volume=195&publication_year=2002&pages=643-9&pmid=11877487&doi=10.1084/jem.20012028&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B8"> <span class="label">8.</span><cite>Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med. (1997) 3:797–801. 10.1038/nm0797-797</cite> [<a href="https://doi.org/10.1038/nm0797-797" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9212111/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Med&title=Identification%20of%20tissue%20transglutaminase%20as%20the%20autoantigen%20of%20celiac%20disease&author=W%20Dieterich&author=T%20Ehnis&author=M%20Bauer&author=P%20Donner&author=U%20Volta&volume=3&publication_year=1997&pages=797-801&pmid=9212111&doi=10.1038/nm0797-797&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B9"> <span class="label">9.</span><cite>Lebwohl B, Sanders DS, Green PHR. Coeliac disease. Lancet. (2018) 391:70–81. 10.1016/S0140-6736(17)31796-8</cite> [<a href="https://doi.org/10.1016/S0140-6736(17)31796-8" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28760445/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Lancet&title=Coeliac%20disease&author=B%20Lebwohl&author=DS%20Sanders&author=PHR%20Green&volume=391&publication_year=2018&pages=70-81&pmid=28760445&doi=10.1016/S0140-6736(17)31796-8&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B10"> <span class="label">10.</span><cite>Ludvigsson JF, Leffler DA, Bai JC, Biagi F, Fasano A, Green PHR, et al. The Oslo definitions for coeliac disease and related terms. Gut. (2013) 62:43–52. 10.1136/gutjnl-2011-301346</cite> [<a href="https://doi.org/10.1136/gutjnl-2011-301346" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3440559/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22345659/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gut&title=The%20Oslo%20definitions%20for%20coeliac%20disease%20and%20related%20terms&author=JF%20Ludvigsson&author=DA%20Leffler&author=JC%20Bai&author=F%20Biagi&author=A%20Fasano&volume=62&publication_year=2013&pages=43-52&pmid=22345659&doi=10.1136/gutjnl-2011-301346&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B11"> <span class="label">11.</span><cite>Bruins MJ. The clinical response to gluten challenge: a review of the literature. Nutrients. (2013) 5:4614–41. 10.3390/nu5114614</cite> [<a href="https://doi.org/10.3390/nu5114614" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3847752/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24284613/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nutrients&title=The%20clinical%20response%20to%20gluten%20challenge:%20a%20review%20of%20the%20literature&author=MJ%20Bruins&volume=5&publication_year=2013&pages=4614-41&pmid=24284613&doi=10.3390/nu5114614&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B12"> <span class="label">12.</span><cite>Laurin P, Wolving M, Fälth-Magnusson K. Even small amounts of gluten cause relapse in children with celiac disease. J Pediatr Gastroenterol Nutr. (2002) 34:26–30. 10.1097/00005176-200201000-00007</cite> [<a href="https://doi.org/10.1097/00005176-200201000-00007" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11753160/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Pediatr%20Gastroenterol%20Nutr&title=Even%20small%20amounts%20of%20gluten%20cause%20relapse%20in%20children%20with%20celiac%20disease&author=P%20Laurin&author=M%20Wolving&author=K%20F%C3%A4lth-Magnusson&volume=34&publication_year=2002&pages=26-30&pmid=11753160&doi=10.1097/00005176-200201000-00007&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B13"> <span class="label">13.</span><cite>Barratt SM, Leeds JS, Sanders DS. Factors influencing the type, timing and severity of symptomatic responses to dietary gluten in patients with biopsy-proven coeliac disease. J Gastrointestin Liver Dis. (2013) 22:391–6. </cite> [<a href="https://pubmed.ncbi.nlm.nih.gov/24369320/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Gastrointestin%20Liver%20Dis&title=Factors%20influencing%20the%20type,%20timing%20and%20severity%20of%20symptomatic%20responses%20to%20dietary%20gluten%20in%20patients%20with%20biopsy-proven%20coeliac%20disease&author=SM%20Barratt&author=JS%20Leeds&author=DS%20Sanders&volume=22&publication_year=2013&pages=391-6&pmid=24369320&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B14"> <span class="label">14.</span><cite>Collin P, Vilppula A, Luostarinen L, Holmes GKT, Kaukinen K. Review article: coeliac disease in later life must not be missed. Aliment Pharmacol Ther. (2018) 47:563–72. 10.1111/apt.14490</cite> [<a href="https://doi.org/10.1111/apt.14490" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29322540/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Aliment%20Pharmacol%20Ther&title=Review%20article:%20coeliac%20disease%20in%20later%20life%20must%20not%20be%20missed&author=P%20Collin&author=A%20Vilppula&author=L%20Luostarinen&author=GKT%20Holmes&author=K%20Kaukinen&volume=47&publication_year=2018&pages=563-72&pmid=29322540&doi=10.1111/apt.14490&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B15"> <span class="label">15.</span><cite>Ludvigsson JF, Rubio-Tapia A, van Dyke CT, Melton LJ, Zinsmeister AR, Lahr BD, et al. Increasing incidence of celiac disease in a north American population. Am J Gastroenterol. (2013) 108:818–24. 10.1038/ajg.2013.60</cite> [<a href="https://doi.org/10.1038/ajg.2013.60" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3686116/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23511460/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Am%20J%20Gastroenterol&title=Increasing%20incidence%20of%20celiac%20disease%20in%20a%20north%20American%20population&author=JF%20Ludvigsson&author=A%20Rubio-Tapia&author=Dyke%20CT%20van&author=LJ%20Melton&author=AR%20Zinsmeister&volume=108&publication_year=2013&pages=818-24&pmid=23511460&doi=10.1038/ajg.2013.60&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B16"> <span class="label">16.</span><cite>Järvinen TT, Collin P, Rasmussen M, Kyrönpalo S, Mäki M, Partanen J, et al. Villous tip intraepithelial lymphocytes as markers of early-stage coeliac disease. Scand J Gastroenterol. (2004) 39:428–33. 10.1080/00365520310008773</cite> [<a href="https://doi.org/10.1080/00365520310008773" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15180179/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Scand%20J%20Gastroenterol&title=Villous%20tip%20intraepithelial%20lymphocytes%20as%20markers%20of%20early-stage%20coeliac%20disease&author=TT%20J%C3%A4rvinen&author=P%20Collin&author=M%20Rasmussen&author=S%20Kyr%C3%B6npalo&author=M%20M%C3%A4ki&volume=39&publication_year=2004&pages=428-33&pmid=15180179&doi=10.1080/00365520310008773&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B17"> <span class="label">17.</span><cite>Marsh MN. Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (‘celiac sprue’). Gastroenterology. (1992) 102:330–54. 10.1016/0016-5085(92)91819-P</cite> [<a href="https://doi.org/10.1016/0016-5085(92)91819-P" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1727768/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gastroenterology&title=Gluten,%20major%20histocompatibility%20complex,%20and%20the%20small%20intestine&author=MN%20Marsh&volume=102&publication_year=1992&pages=330-54&pmid=1727768&doi=10.1016/0016-5085(92)91819-P&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B18"> <span class="label">18.</span><cite>Oberhuber G, Granditsch G, Vogelsang H. The histopathology of coeliac disease: time for a standardized report scheme for pathologists. Eur J Gastroenterol Hepatol. (1999) 11:1185–94. 10.1097/00042737-199910000-00019</cite> [<a href="https://doi.org/10.1097/00042737-199910000-00019" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10524652/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Eur%20J%20Gastroenterol%20Hepatol&title=The%20histopathology%20of%20coeliac%20disease:%20time%20for%20a%20standardized%20report%20scheme%20for%20pathologists&author=G%20Oberhuber&author=G%20Granditsch&author=H%20Vogelsang&volume=11&publication_year=1999&pages=1185-94&pmid=10524652&doi=10.1097/00042737-199910000-00019&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B19"> <span class="label">19.</span><cite>Lundin KEA, Wijmenga C. Coeliac disease and autoimmune disease - genetic overlap and screening. Nat Rev Gastroenterol Hepatol. (2015) 12:507–15. 10.1038/nrgastro.2015.136</cite> [<a href="https://doi.org/10.1038/nrgastro.2015.136" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26303674/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Rev%20Gastroenterol%20Hepatol&title=Coeliac%20disease%20and%20autoimmune%20disease%20-%20genetic%20overlap%20and%20screening&author=KEA%20Lundin&author=C%20Wijmenga&volume=12&publication_year=2015&pages=507-15&pmid=26303674&doi=10.1038/nrgastro.2015.136&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B20"> <span class="label">20.</span><cite>Krishnareddy S. The microbiome in celiac disease. Gastroenterol Clin North Am. (2019) 48:115–126. 10.1016/j.gtc.2018.09.008</cite> [<a href="https://doi.org/10.1016/j.gtc.2018.09.008" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30711204/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gastroenterol%20Clin%20North%20Am&title=The%20microbiome%20in%20celiac%20disease&author=S%20Krishnareddy&volume=48&publication_year=2019&pages=115-126&pmid=30711204&doi=10.1016/j.gtc.2018.09.008&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B21"> <span class="label">21.</span><cite>Mayassi T, Ladell K, Gudjonson H, McLaren JE, Shaw DG, Tran MT, et al. Chronic inflammation permanently reshapes tissue-resident immunity in celiac disease. Cell. (2019) 176:967–81.e19. 10.1016/j.cell.2018.12.039</cite> [<a href="https://doi.org/10.1016/j.cell.2018.12.039" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6667191/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30739797/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell&title=Chronic%20inflammation%20permanently%20reshapes%20tissue-resident%20immunity%20in%20celiac%20disease&author=T%20Mayassi&author=K%20Ladell&author=H%20Gudjonson&author=JE%20McLaren&author=DG%20Shaw&volume=176&publication_year=2019&pages=967-81&pmid=30739797&doi=10.1016/j.cell.2018.12.039&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B22"> <span class="label">22.</span><cite>Eggesbø LM, Risnes LF, Neumann RS, Lundin KEA, Christophersen A, Sollid LM. Single-cell TCR sequencing of gut intraepithelial γ<em>δ</em> T cells reveals a vast and diverse repertoire in celiac disease. Mucosal Immunol. (2019) 13:313–21. 10.1038/s41385-019-0222-9</cite> [<a href="https://doi.org/10.1038/s41385-019-0222-9" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31728027/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mucosal%20Immunol&title=Single-cell%20TCR%20sequencing%20of%20gut%20intraepithelial%20%CE%B3%CE%B4%20T%20cells%20reveals%20a%20vast%20and%20diverse%20repertoire%20in%20celiac%20disease&author=LM%20Eggesb%C3%B8&author=LF%20Risnes&author=RS%20Neumann&author=KEA%20Lundin&author=A%20Christophersen&volume=13&publication_year=2019&pages=313-21&pmid=31728027&doi=10.1038/s41385-019-0222-9&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B23"> <span class="label">23.</span><cite>Dunne MR, Elliott L, Hussey S, Mahmud N, Kelly J, Doherty DGDG, et al. Persistent changes in circulating and intestinal γ<em>δ</em> T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease. PLoS ONE. (2013) 8:e76008. 10.1371/journal.pone.0076008</cite> [<a href="https://doi.org/10.1371/journal.pone.0076008" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3790827/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24124528/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=PLoS%20ONE&title=Persistent%20changes%20in%20circulating%20and%20intestinal%20%CE%B3%CE%B4%20T%20cell%20subsets,%20invariant%20natural%20killer%20T%20cells%20and%20mucosal-associated%20invariant%20T%20cells%20in%20children%20and%20adults%20with%20coeliac%20disease&author=MR%20Dunne&author=L%20Elliott&author=S%20Hussey&author=N%20Mahmud&author=J%20Kelly&volume=8&publication_year=2013&pages=e76008&pmid=24124528&doi=10.1371/journal.pone.0076008&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B24"> <span class="label">24.</span><cite>Syage JA, Kelly CP, Dickason MA, Ramirez AC, Leon F, Dominguez R, et al. Determination of gluten consumption in celiac disease patients on a gluten-free diet. Am J Clin Nutr. (2018) 107:201–207. 10.1093/ajcn/nqx049</cite> [<a href="https://doi.org/10.1093/ajcn/nqx049" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29529159/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Am%20J%20Clin%20Nutr&title=Determination%20of%20gluten%20consumption%20in%20celiac%20disease%20patients%20on%20a%20gluten-free%20diet&author=JA%20Syage&author=CP%20Kelly&author=MA%20Dickason&author=AC%20Ramirez&author=F%20Leon&volume=107&publication_year=2018&pages=201-207&pmid=29529159&doi=10.1093/ajcn/nqx049&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B25"> <span class="label">25.</span><cite>Koning F. Pathophysiology of celiac disease. TL - 59 Suppl 1. J Pediatr Gastroenterol Nutr. (2014) 59 (Suppl 1) :S1–4. 10.1097/01.mpg.0000450391.46027.48</cite> [<a href="https://doi.org/10.1097/01.mpg.0000450391.46027.48" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24979191/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Pediatr%20Gastroenterol%20Nutr&title=Pathophysiology%20of%20celiac%20disease.%20TL%20-%2059%20Suppl%201&author=F%20Koning&volume=59&issue=Suppl%201&publication_year=2014&pages=S1-4&pmid=24979191&doi=10.1097/01.mpg.0000450391.46027.48&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B26"> <span class="label">26.</span><cite>Olazagoitia-Garmendia A, Santin I, Castellanos-Rubio A. Functional implication of celiac disease associated lncRNAs in disease pathogenesis. Comput Biol Med. (2018) 102:369–75. 10.1016/j.compbiomed.2018.08.013</cite> [<a href="https://doi.org/10.1016/j.compbiomed.2018.08.013" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30126616/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Comput%20Biol%20Med&title=Functional%20implication%20of%20celiac%20disease%20associated%20lncRNAs%20in%20disease%20pathogenesis&author=A%20Olazagoitia-Garmendia&author=I%20Santin&author=A%20Castellanos-Rubio&volume=102&publication_year=2018&pages=369-75&pmid=30126616&doi=10.1016/j.compbiomed.2018.08.013&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B27"> <span class="label">27.</span><cite>Dieli-Crimi R, Cénit MC, Núñez C. The genetics of celiac disease: a comprehensive review of clinical implications. J Autoimmun. (2015) 64:26–41. 10.1016/j.jaut.2015.07.003</cite> [<a href="https://doi.org/10.1016/j.jaut.2015.07.003" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26194613/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Autoimmun&title=The%20genetics%20of%20celiac%20disease:%20a%20comprehensive%20review%20of%20clinical%20implications&author=R%20Dieli-Crimi&author=MC%20C%C3%A9nit&author=C%20N%C3%BA%C3%B1ez&volume=64&publication_year=2015&pages=26-41&pmid=26194613&doi=10.1016/j.jaut.2015.07.003&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B28"> <span class="label">28.</span><cite>Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Raia V, Auricchio S, et al. Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet. (2003) 362:30–7. 10.1016/S0140-6736(03)13803-2</cite> [<a href="https://doi.org/10.1016/S0140-6736(03)13803-2" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12853196/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Lancet&title=Association%20between%20innate%20response%20to%20gliadin%20and%20activation%20of%20pathogenic%20T%20cells%20in%20coeliac%20disease&author=L%20Maiuri&author=C%20Ciacci&author=I%20Ricciardelli&author=L%20Vacca&author=V%20Raia&volume=362&publication_year=2003&pages=30-7&pmid=12853196&doi=10.1016/S0140-6736(03)13803-2&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B29"> <span class="label">29.</span><cite>Barone MV, Troncone R, Auricchio S. Gliadin peptides as triggers of the proliferative and stress/innate immune response of the celiac small intestinal mucosa. Int J Mol Sci. (2014) 15:20518–37. 10.3390/ijms151120518</cite> [<a href="https://doi.org/10.3390/ijms151120518" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4264181/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25387079/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Int%20J%20Mol%20Sci&title=Gliadin%20peptides%20as%20triggers%20of%20the%20proliferative%20and%20stress/innate%20immune%20response%20of%20the%20celiac%20small%20intestinal%20mucosa&author=MV%20Barone&author=R%20Troncone&author=S%20Auricchio&volume=15&publication_year=2014&pages=20518-37&pmid=25387079&doi=10.3390/ijms151120518&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B30"> <span class="label">30.</span><cite>Kim SM, Mayassi T, Jabri B. Innate immunity: actuating the gears of celiac disease pathogenesis. Best Pract Res Clin Gastroenterol. (2015) 29:425–35. 10.1016/j.bpg.2015.05.001</cite> [<a href="https://doi.org/10.1016/j.bpg.2015.05.001" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4465077/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26060107/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Best%20Pract%20Res%20Clin%20Gastroenterol&title=Innate%20immunity:%20actuating%20the%20gears%20of%20celiac%20disease%20pathogenesis&author=SM%20Kim&author=T%20Mayassi&author=B%20Jabri&volume=29&publication_year=2015&pages=425-35&pmid=26060107&doi=10.1016/j.bpg.2015.05.001&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B31"> <span class="label">31.</span><cite>Hällgren R, Colombel JF, Dahl R, Fredens K, Kruse A, Jacobsen NO, et al. Neutrophil and eosinophil involvement of the small bowel in patients with celiac disease and crohn's disease: studies on the secretion rate and immunohistochemical localization of granulocyte granule constituents. Am J Med. (1989) 86:56–64. 10.1016/0002-9343(89)90230-1</cite> [<a href="https://doi.org/10.1016/0002-9343(89)90230-1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2535919/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Am%20J%20Med&title=Neutrophil%20and%20eosinophil%20involvement%20of%20the%20small%20bowel%20in%20patients%20with%20celiac%20disease%20and%20crohn's%20disease:%20studies%20on%20the%20secretion%20rate%20and%20immunohistochemical%20localization%20of%20granulocyte%20granule%20constituents&author=R%20H%C3%A4llgren&author=JF%20Colombel&author=R%20Dahl&author=K%20Fredens&author=A%20Kruse&volume=86&publication_year=1989&pages=56-64&pmid=2535919&doi=10.1016/0002-9343(89)90230-1&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B32"> <span class="label">32.</span><cite>Marsh MN, Hinde J. Inflammatory component of celiac sprue mucosa. I. Mast cells, basophils, and eosinophils. Gastroenterology. (1985) 89:92–101. 10.1016/0016-5085(85)90749-8</cite> [<a href="https://doi.org/10.1016/0016-5085(85)90749-8" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2408959/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gastroenterology&title=Inflammatory%20component%20of%20celiac%20sprue%20mucosa&author=MN%20Marsh&author=J%20Hinde&volume=89&publication_year=1985&pages=92-101&pmid=2408959&doi=10.1016/0016-5085(85)90749-8&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B33"> <span class="label">33.</span><cite>Desreumaux P, Janin A, Colombel JF, Prin L, Plumas J, Emilie D, et al. Interleukin 5 messenger RNA expression by eosinophils in the intestinal mucosa of patients with coeliac disease. J Exp Med. (1992) 175:293–6. 10.1084/jem.175.1.293</cite> [<a href="https://doi.org/10.1084/jem.175.1.293" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2119074/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1730922/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Exp%20Med&title=Interleukin%205%20messenger%20RNA%20expression%20by%20eosinophils%20in%20the%20intestinal%20mucosa%20of%20patients%20with%20coeliac%20disease&author=P%20Desreumaux&author=A%20Janin&author=JF%20Colombel&author=L%20Prin&author=J%20Plumas&volume=175&publication_year=1992&pages=293-6&pmid=1730922&doi=10.1084/jem.175.1.293&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B34"> <span class="label">34.</span><cite>Colombel JF, Torpier G, Janin A, Klein O, Cortot A, Capron M. Activated eosinophils in adult coeliac disease: Evidence for a local release of major basic protein. Gut. (1992) 33:1190–1194. 10.1136/gut.33.9.1190</cite> [<a href="https://doi.org/10.1136/gut.33.9.1190" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1379484/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1427370/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gut&title=Activated%20eosinophils%20in%20adult%20coeliac%20disease:%20Evidence%20for%20a%20local%20release%20of%20major%20basic%20protein&author=JF%20Colombel&author=G%20Torpier&author=A%20Janin&author=O%20Klein&author=A%20Cortot&volume=33&publication_year=1992&pages=1190-1194&pmid=1427370&doi=10.1136/gut.33.9.1190&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B35"> <span class="label">35.</span><cite>Strobel S, Busuttil A, Ferguson A. Human intestinal mucosal mast cells: expanded population in untreated coeliac disease. Gut. (1983) 24:222–7. 10.1136/gut.24.3.222</cite> [<a href="https://doi.org/10.1136/gut.24.3.222" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1419930/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/6826106/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gut&title=Human%20intestinal%20mucosal%20mast%20cells:%20expanded%20population%20in%20untreated%20coeliac%20disease&author=S%20Strobel&author=A%20Busuttil&author=A%20Ferguson&volume=24&publication_year=1983&pages=222-7&pmid=6826106&doi=10.1136/gut.24.3.222&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B36"> <span class="label">36.</span><cite>Frossi B, Tripodo C, Guarnotta C, Carroccio A, De Carli M, De Carli S, et al. Mast cells are associated with the onset and progression of celiac disease. J Allergy Clin Immunol. (2017) 139:1266–274.e1. 10.1016/j.jaci.2016.08.011</cite> [<a href="https://doi.org/10.1016/j.jaci.2016.08.011" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27619824/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Allergy%20Clin%20Immunol&title=Mast%20cells%20are%20associated%20with%20the%20onset%20and%20progression%20of%20celiac%20disease&author=B%20Frossi&author=C%20Tripodo&author=C%20Guarnotta&author=A%20Carroccio&author=Carli%20M%20De&volume=139&publication_year=2017&pages=1266-274&pmid=27619824&doi=10.1016/j.jaci.2016.08.011&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B37"> <span class="label">37.</span><cite>Halstensen TS, Hvatum M, Scott H, Fausa O, Brandtzaeg P. Association of subepithelial deposition of activated complement and immunoglobulin G and M response to gluten in celiac disease. Gastroenterology. (1992) 102:751–9. 10.1016/0016-5085(92)90155-R</cite> [<a href="https://doi.org/10.1016/0016-5085(92)90155-R" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1537512/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gastroenterology&title=Association%20of%20subepithelial%20deposition%20of%20activated%20complement%20and%20immunoglobulin%20G%20and%20M%20response%20to%20gluten%20in%20celiac%20disease&author=TS%20Halstensen&author=M%20Hvatum&author=H%20Scott&author=O%20Fausa&author=P%20Brandtzaeg&volume=102&publication_year=1992&pages=751-9&pmid=1537512&doi=10.1016/0016-5085(92)90155-R&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B38"> <span class="label">38.</span><cite>Ciclitira PJ, Evans DJ, Fagg NL, Lennox ES, Dowling RH. Clinical testing of gliadin fractions in coeliac patients. Clin Sci. (1984) 66:357–64. 10.1042/cs0660357</cite> [<a href="https://doi.org/10.1042/cs0660357" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/6692666/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Clin%20Sci&title=Clinical%20testing%20of%20gliadin%20fractions%20in%20coeliac%20patients&author=PJ%20Ciclitira&author=DJ%20Evans&author=NL%20Fagg&author=ES%20Lennox&author=RH%20Dowling&volume=66&publication_year=1984&pages=357-64&pmid=6692666&doi=10.1042/cs0660357&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B39"> <span class="label">39.</span><cite>Sturgess R, Day P, Ellis HJ, Lundin KE, Gjertsen HA, Kontakou M, et al. Wheat peptide challenge in coeliac disease. Lancet. (1994) 343:758–61. 10.1016/S0140-6736(94)91837-6</cite> [<a href="https://doi.org/10.1016/S0140-6736(94)91837-6" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7907731/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Lancet&title=Wheat%20peptide%20challenge%20in%20coeliac%20disease&author=R%20Sturgess&author=P%20Day&author=HJ%20Ellis&author=KE%20Lundin&author=HA%20Gjertsen&volume=343&publication_year=1994&pages=758-61&pmid=7907731&doi=10.1016/S0140-6736(94)91837-6&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B40"> <span class="label">40.</span><cite>Maiuri L, Ciacci C, Raia V, Vacca L, Ricciardelli I, Raimondi F, et al. FAS engagement drives apoptosis of enterocytes of coeliac patients. Gut. (2001) 48:418–24. 10.1136/gut.48.3.418</cite> [<a href="https://doi.org/10.1136/gut.48.3.418" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1760155/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11171836/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gut&title=FAS%20engagement%20drives%20apoptosis%20of%20enterocytes%20of%20coeliac%20patients&author=L%20Maiuri&author=C%20Ciacci&author=V%20Raia&author=L%20Vacca&author=I%20Ricciardelli&volume=48&publication_year=2001&pages=418-24&pmid=11171836&doi=10.1136/gut.48.3.418&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B41"> <span class="label">41.</span><cite>Mazzarella G, Stefanile R, Camarca A, Giliberti P, Cosentini E, Marano C, et al. Gliadin activates HLA class I-restricted CD8+ T cells in celiac disease intestinal mucosa and induces the enterocyte apoptosis. Gastroenterology. (2008) 134:1017–27. 10.1053/j.gastro.2008.01.008</cite> [<a href="https://doi.org/10.1053/j.gastro.2008.01.008" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3319059/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18395083/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gastroenterology&title=Gliadin%20activates%20HLA%20class%20I-restricted%20CD8+%20T%20cells%20in%20celiac%20disease%20intestinal%20mucosa%20and%20induces%20the%20enterocyte%20apoptosis&author=G%20Mazzarella&author=R%20Stefanile&author=A%20Camarca&author=P%20Giliberti&author=E%20Cosentini&volume=134&publication_year=2008&pages=1017-27&pmid=18395083&doi=10.1053/j.gastro.2008.01.008&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B42"> <span class="label">42.</span><cite>Londei M, Ciacci C, Ricciardelli I, Vacca L, Quaratino S, Maiuri L. Gliadin as a stimulator of innate responses in celiac disease. Mol Immunol. (2005) 42:913–8. 10.1016/j.molimm.2004.12.005</cite> [<a href="https://doi.org/10.1016/j.molimm.2004.12.005" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15829281/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mol%20Immunol&title=Gliadin%20as%20a%20stimulator%20of%20innate%20responses%20in%20celiac%20disease&author=M%20Londei&author=C%20Ciacci&author=I%20Ricciardelli&author=L%20Vacca&author=S%20Quaratino&volume=42&publication_year=2005&pages=913-8&pmid=15829281&doi=10.1016/j.molimm.2004.12.005&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B43"> <span class="label">43.</span><cite>Maiuri L, Picarelli A, Boirivant M, Coletta S, Mazzilli M, De Vincenzi M, et al. Definition of the initial immunologic modifications upon <em>in vitro</em> gliadin challenge in the small intestine of celiac patients. Gastroenterology. (1996) 110:1368–78. 10.1053/gast.1996.v110.pm8613040</cite> [<a href="https://doi.org/10.1053/gast.1996.v110.pm8613040" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8613040/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gastroenterology&title=Definition%20of%20the%20initial%20immunologic%20modifications%20upon%20in%20vitro%20gliadin%20challenge%20in%20the%20small%20intestine%20of%20celiac%20patients&author=L%20Maiuri&author=A%20Picarelli&author=M%20Boirivant&author=S%20Coletta&author=M%20Mazzilli&volume=110&publication_year=1996&pages=1368-78&pmid=8613040&doi=10.1053/gast.1996.v110.pm8613040&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B44"> <span class="label">44.</span><cite>Gajendran M, Loganathan P, Catinella AP, Hashash JG. A comprehensive review and update on Crohn's disease. Disease-a-Month. (2018) 64:20–57. 10.1016/j.disamonth.2017.07.001</cite> [<a href="https://doi.org/10.1016/j.disamonth.2017.07.001" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28826742/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Disease-a-Month&title=A%20comprehensive%20review%20and%20update%20on%20Crohn's%20disease&author=M%20Gajendran&author=P%20Loganathan&author=AP%20Catinella&author=JG%20Hashash&volume=64&publication_year=2018&pages=20-57&pmid=28826742&doi=10.1016/j.disamonth.2017.07.001&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B45"> <span class="label">45.</span><cite>Hüe S, Mention J-J, Monteiro RC, Zhang S, Cellier C, Schmitz J, et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity. (2004) 21:367–77. 10.1016/j.immuni.2004.06.018</cite> [<a href="https://doi.org/10.1016/j.immuni.2004.06.018" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15357948/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Immunity&title=A%20direct%20role%20for%20NKG2D/MICA%20interaction%20in%20villous%20atrophy%20during%20celiac%20disease&author=S%20H%C3%BCe&author=J-J%20Mention&author=RC%20Monteiro&author=S%20Zhang&author=C%20Cellier&volume=21&publication_year=2004&pages=367-77&pmid=15357948&doi=10.1016/j.immuni.2004.06.018&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B46"> <span class="label">46.</span><cite>Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, Krausz TN, et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity. (2004) 21:357–66. 10.1016/j.immuni.2004.06.020</cite> [<a href="https://doi.org/10.1016/j.immuni.2004.06.020" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15357947/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Immunity&title=Coordinated%20induction%20by%20IL15%20of%20a%20TCR-independent%20NKG2D%20signaling%20pathway%20converts%20CTL%20into%20lymphokine-activated%20killer%20cells%20in%20celiac%20disease&author=B%20Meresse&author=Z%20Chen&author=C%20Ciszewski&author=M%20Tretiakova&author=G%20Bhagat&volume=21&publication_year=2004&pages=357-66&pmid=15357947&doi=10.1016/j.immuni.2004.06.020&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B47"> <span class="label">47.</span><cite>Biagi F, Luinetti O, Campanella J, Klersy C, Zambelli C, Villanacci V, et al. Intraepithelial lymphocytes in the villous tip: do they indicate potential coeliac disease? J Clin Pathol. (2004) 57:835–9. 10.1136/jcp.2003.013607</cite> [<a href="https://doi.org/10.1136/jcp.2003.013607" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1770380/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15280404/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Clin%20Pathol&title=Intraepithelial%20lymphocytes%20in%20the%20villous%20tip:%20do%20they%20indicate%20potential%20coeliac%20disease?&author=F%20Biagi&author=O%20Luinetti&author=J%20Campanella&author=C%20Klersy&author=C%20Zambelli&volume=57&publication_year=2004&pages=835-9&pmid=15280404&doi=10.1136/jcp.2003.013607&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B48"> <span class="label">48.</span><cite>Collin P, Salmi TT, Hervonen K, Kaukinen K, Reunala T. Dermatitis herpetiformis: a cutaneous manifestation of coeliac disease. Ann Med. (2017) 49:23–31. 10.1080/07853890.2016.1222450</cite> [<a href="https://doi.org/10.1080/07853890.2016.1222450" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27499257/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Ann%20Med&title=Dermatitis%20herpetiformis:%20a%20cutaneous%20manifestation%20of%20coeliac%20disease&author=P%20Collin&author=TT%20Salmi&author=K%20Hervonen&author=K%20Kaukinen&author=T%20Reunala&volume=49&publication_year=2017&pages=23-31&pmid=27499257&doi=10.1080/07853890.2016.1222450&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B49"> <span class="label">49.</span><cite>Myrsky E, Caja S, Simon-Vecsei Z, Korponay-Szabo IR, Nadalutti C, Collighan R, et al. Celiac disease IgA modulates vascular permeability <em>in vitro</em> through the activity of transglutaminase 2 and RhoA. Cell Mol Life Sci. (2009) 66:3375–85. 10.1007/s00018-009-0116-1</cite> [<a href="https://doi.org/10.1007/s00018-009-0116-1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC11115502/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19680746/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell%20Mol%20Life%20Sci&title=Celiac%20disease%20IgA%20modulates%20vascular%20permeability%20in%20vitro%20through%20the%20activity%20of%20transglutaminase%202%20and%20RhoA&author=E%20Myrsky&author=S%20Caja&author=Z%20Simon-Vecsei&author=IR%20Korponay-Szabo&author=C%20Nadalutti&volume=66&publication_year=2009&pages=3375-85&pmid=19680746&doi=10.1007/s00018-009-0116-1&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B50"> <span class="label">50.</span><cite>Marsh MN, Heal CJ. Evolutionary developments in interpreting the gluten-induced mucosal celiac lesion: an archimedian heuristic. Nutrients. (2017) 9:213 10.3390/nu9030213</cite> [<a href="https://doi.org/10.3390/nu9030213" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5372876/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28264483/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nutrients&title=Evolutionary%20developments%20in%20interpreting%20the%20gluten-induced%20mucosal%20celiac%20lesion:%20an%20archimedian%20heuristic&author=MN%20Marsh&author=CJ%20Heal&volume=9&publication_year=2017&pages=213&pmid=28264483&doi=10.3390/nu9030213&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B51"> <span class="label">51.</span><cite>Leon F. Flow cytometry of intestinal intraepithelial lymphocytes in celiac disease. J Immunol Methods. (2011) 363:177–86. 10.1016/j.jim.2010.09.002</cite> [<a href="https://doi.org/10.1016/j.jim.2010.09.002" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20833175/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Immunol%20Methods&title=Flow%20cytometry%20of%20intestinal%20intraepithelial%20lymphocytes%20in%20celiac%20disease&author=F%20Leon&volume=363&publication_year=2011&pages=177-86&pmid=20833175&doi=10.1016/j.jim.2010.09.002&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B52"> <span class="label">52.</span><cite>Nijeboer P, van Gils T, Reijm M, Ooijevaar R, Lissenberg-Witte BI, Bontkes HJ, et al. Gamma-Delta T Lymphocytes in the diagnostic approach of coeliac disease. J Clin Gastroenterol. (2019) 53:e208–e13. 10.1097/MCG.0000000000001060</cite> [<a href="https://doi.org/10.1097/MCG.0000000000001060" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29782465/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Clin%20Gastroenterol&title=Gamma-Delta%20T%20Lymphocytes%20in%20the%20diagnostic%20approach%20of%20coeliac%20disease&author=P%20Nijeboer&author=Gils%20T%20van&author=M%20Reijm&author=R%20Ooijevaar&author=BI%20Lissenberg-Witte&volume=53&publication_year=2019&pages=e208-e13&pmid=29782465&doi=10.1097/MCG.0000000000001060&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B53"> <span class="label">53.</span><cite>Fernández-Bañares F, Crespo L, Núñez C, López-Palacios N, Tristán E, Vivas S, et al. Gamma delta+ intraepithelial lymphocytes and coeliac lymphogram in a diagnostic approach to coeliac disease in patients with seronegative villous atrophy. Aliment Pharmacol Ther. (2020) 51:699–705. 10.1111/apt.15663</cite> [<a href="https://doi.org/10.1111/apt.15663" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32048756/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Aliment%20Pharmacol%20Ther&title=Gamma%20delta+%20intraepithelial%20lymphocytes%20and%20coeliac%20lymphogram%20in%20a%20diagnostic%20approach%20to%20coeliac%20disease%20in%20patients%20with%20seronegative%20villous%20atrophy&author=F%20Fern%C3%A1ndez-Ba%C3%B1ares&author=L%20Crespo&author=C%20N%C3%BA%C3%B1ez&author=N%20L%C3%B3pez-Palacios&author=E%20Trist%C3%A1n&volume=51&publication_year=2020&pages=699-705&pmid=32048756&doi=10.1111/apt.15663&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B54"> <span class="label">54.</span><cite>Cooke WT, Holmes GKT. Coeliac Disease. New York, NY: Churchill Livingstone; (1984).</cite> [<a href="https://scholar.google.com/scholar_lookup?title=Coeliac%20Disease.&author=WT%20Cooke&author=GKT%20Holmes&publication_year=1984&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B55"> <span class="label">55.</span><cite>Mohamed BM, Feighery C, Williams Y, Davies A, Kelleher D, Volkov Y, et al. The use of cellomics to study enterocyte cytoskeletal proteins in coeliac disease patients. Cent Eur J Biol. (2008) 3:258–67. 10.2478/s11535-008-0029-2</cite> [<a href="https://doi.org/10.2478/s11535-008-0029-2" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cent%20Eur%20J%20Biol&title=The%20use%20of%20cellomics%20to%20study%20enterocyte%20cytoskeletal%20proteins%20in%20coeliac%20disease%20patients&author=BM%20Mohamed&author=C%20Feighery&author=Y%20Williams&author=A%20Davies&author=D%20Kelleher&volume=3&publication_year=2008&pages=258-67&doi=10.2478/s11535-008-0029-2&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B56"> <span class="label">56.</span><cite>Holmes G, Catassi C. Coeliac Disease (Fast Facts) 1st ed Oxford: Health Pr; (2000).</cite> [<a href="https://scholar.google.com/scholar_lookup?title=Coeliac%20Disease%20(Fast%20Facts)&author=G%20Holmes&author=C%20Catassi&publication_year=2000&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B57"> <span class="label">57.</span><cite>Moss SF, Attia L, Scholes J V, Walters JR, Holt PR. Increased small intestinal apoptosis in coeliac disease. Gut. (1996) 39:811–7. 10.1136/gut.39.6.811</cite> [<a href="https://doi.org/10.1136/gut.39.6.811" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1383452/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9038662/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gut&title=Increased%20small%20intestinal%20apoptosis%20in%20coeliac%20disease&author=SF%20Moss&author=L%20Attia&author=J%20V%20Scholes&author=JR%20Walters&author=PR%20Holt&volume=39&publication_year=1996&pages=811-7&pmid=9038662&doi=10.1136/gut.39.6.811&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B58"> <span class="label">58.</span><cite>Das P, Gahlot GPS, Mehta R, Makharia A, Verma AK, Sreenivas V, et al. Patients with mild enteropathy have apoptotic injury of enterocytes similar to that in advanced enteropathy in celiac disease. Dig Liver Dis. (2016) 48:1290–5. 10.1016/j.dld.2016.06.013</cite> [<a href="https://doi.org/10.1016/j.dld.2016.06.013" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27378705/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Dig%20Liver%20Dis&title=Patients%20with%20mild%20enteropathy%20have%20apoptotic%20injury%20of%20enterocytes%20similar%20to%20that%20in%20advanced%20enteropathy%20in%20celiac%20disease&author=P%20Das&author=GPS%20Gahlot&author=R%20Mehta&author=A%20Makharia&author=AK%20Verma&volume=48&publication_year=2016&pages=1290-5&pmid=27378705&doi=10.1016/j.dld.2016.06.013&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B59"> <span class="label">59.</span><cite>Ciccocioppo R, Di Sabatino A, Parroni R, Muzi P, D'Alò S, Ventura T, et al. Increased enterocyte apoptosis and fas-fas ligand system in celiac disease. Am J Clin Pathol. (2001) 115:494–503. 10.1309/UV54-BHP3-A66B-0QUD</cite> [<a href="https://doi.org/10.1309/UV54-BHP3-A66B-0QUD" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11293896/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Am%20J%20Clin%20Pathol&title=Increased%20enterocyte%20apoptosis%20and%20fas-fas%20ligand%20system%20in%20celiac%20disease&author=R%20Ciccocioppo&author=Sabatino%20A%20Di&author=R%20Parroni&author=P%20Muzi&author=S%20D'Al%C3%B2&volume=115&publication_year=2001&pages=494-503&pmid=11293896&doi=10.1309/UV54-BHP3-A66B-0QUD&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B60"> <span class="label">60.</span><cite>Adriaanse MPM, Tack GJ, Passos VL, Damoiseaux JGMC, Schreurs MWJ, van Wijck K, et al. Serum I-FABP as marker for enterocyte damage in coeliac disease and its relation to villous atrophy and circulating autoantibodies. Aliment Pharmacol Ther. (2013) 37:482–90. 10.1111/apt.12194</cite> [<a href="https://doi.org/10.1111/apt.12194" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23289539/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Aliment%20Pharmacol%20Ther&title=Serum%20I-FABP%20as%20marker%20for%20enterocyte%20damage%20in%20coeliac%20disease%20and%20its%20relation%20to%20villous%20atrophy%20and%20circulating%20autoantibodies&author=MPM%20Adriaanse&author=GJ%20Tack&author=VL%20Passos&author=JGMC%20Damoiseaux&author=MWJ%20Schreurs&volume=37&publication_year=2013&pages=482-90&pmid=23289539&doi=10.1111/apt.12194&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B61"> <span class="label">61.</span><cite>Adriaanse MPM, Leffler DA, Kelly CP, Schuppan D, Najarian RM, Goldsmith JD, et al. Serum I-FABP detects gluten responsiveness in adult celiac disease patients on a short-term gluten challenge. Am J Gastroenterol. (2016) 111:1014–22. 10.1038/ajg.2016.162</cite> [<a href="https://doi.org/10.1038/ajg.2016.162" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27185075/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Am%20J%20Gastroenterol&title=Serum%20I-FABP%20detects%20gluten%20responsiveness%20in%20adult%20celiac%20disease%20patients%20on%20a%20short-term%20gluten%20challenge&author=MPM%20Adriaanse&author=DA%20Leffler&author=CP%20Kelly&author=D%20Schuppan&author=RM%20Najarian&volume=111&publication_year=2016&pages=1014-22&pmid=27185075&doi=10.1038/ajg.2016.162&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B62"> <span class="label">62.</span><cite>Hoffmanová I, Sánchez D, Hábová V, Anděl M, Tučková L, Tlaskalová-Hogenová H. Serological markers of enterocyte damage and apoptosis in patients with celiac disease, autoimmune diabetes mellitus and diabetes mellitus type 2. Physiol Res. (2015) 64:537–46. 10.33549/physiolres.932916</cite> [<a href="https://doi.org/10.33549/physiolres.932916" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25470519/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Physiol%20Res&title=Serological%20markers%20of%20enterocyte%20damage%20and%20apoptosis%20in%20patients%20with%20celiac%20disease,%20autoimmune%20diabetes%20mellitus%20and%20diabetes%20mellitus%20type%202&author=I%20Hoffmanov%C3%A1&author=D%20S%C3%A1nchez&author=V%20H%C3%A1bov%C3%A1&author=M%20And%C4%9Bl&author=L%20Tu%C4%8Dkov%C3%A1&volume=64&publication_year=2015&pages=537-46&pmid=25470519&doi=10.33549/physiolres.932916&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B63"> <span class="label">63.</span><cite>Adriaanse MPM, Mubarak A, Riedl RG, Ten Kate FJW, Damoiseaux JGMC, Buurman WA, et al. Progress towards non-invasive diagnosis follow-up of celiac disease in children; a prospective multicentre study to the usefulness of plasma I-FABP. Sci Rep. (2017) 7:8671. 10.1038/s41598-017-07242-4</cite> [<a href="https://doi.org/10.1038/s41598-017-07242-4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5561259/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28819290/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sci%20Rep&title=Progress%20towards%20non-invasive%20diagnosis%20follow-up%20of%20celiac%20disease%20in%20children;%20a%20prospective%20multicentre%20study%20to%20the%20usefulness%20of%20plasma%20I-FABP&author=MPM%20Adriaanse&author=A%20Mubarak&author=RG%20Riedl&author=Kate%20FJW%20Ten&author=JGMC%20Damoiseaux&volume=7&publication_year=2017&pages=8671&pmid=28819290&doi=10.1038/s41598-017-07242-4&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B64"> <span class="label">64.</span><cite>Bottasso Arias NM, García M, Bondar C, Guzman L, Redondo A, Chopita N, et al. Expression pattern of fatty acid binding proteins in celiac disease enteropathy. Mediators Inflamm. (2015) 2015:738563. 10.1155/2015/738563</cite> [<a href="https://doi.org/10.1155/2015/738563" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4540995/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26346822/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mediators%20Inflamm&title=Expression%20pattern%20of%20fatty%20acid%20binding%20proteins%20in%20celiac%20disease%20enteropathy&author=Arias%20NM%20Bottasso&author=M%20Garc%C3%ADa&author=C%20Bondar&author=L%20Guzman&author=A%20Redondo&volume=2015&publication_year=2015&pages=738563&pmid=26346822&doi=10.1155/2015/738563&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B65"> <span class="label">65.</span><cite>Allaire JM, Crowley SM, Law HT, Chang SY, Ko HJ, Vallance BA. The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol. (2018) 39:677–96. 10.1016/j.it.2018.04.002</cite> [<a href="https://doi.org/10.1016/j.it.2018.04.002" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29716793/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Trends%20Immunol&title=The%20intestinal%20epithelium:%20central%20coordinator%20of%20mucosal%20immunity&author=JM%20Allaire&author=SM%20Crowley&author=HT%20Law&author=SY%20Chang&author=HJ%20Ko&volume=39&publication_year=2018&pages=677-96&pmid=29716793&doi=10.1016/j.it.2018.04.002&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B66"> <span class="label">66.</span><cite>Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. (2014) 14:141–53. 10.1038/nri3608</cite> [<a href="https://doi.org/10.1038/nri3608" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24566914/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Rev%20Immunol&title=Intestinal%20epithelial%20cells:%20regulators%20of%20barrier%20function%20and%20immune%20homeostasis&author=LW%20Peterson&author=D%20Artis&volume=14&publication_year=2014&pages=141-53&pmid=24566914&doi=10.1038/nri3608&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B67"> <span class="label">67.</span><cite>Burgueño JF, Abreu MT. Epithelial toll-like receptors and their role in gut homeostasis and disease. Nat Rev Gastroenterol Hepatol. (2020) 17:263–78. 10.1038/s41575-019-0261-4</cite> [<a href="https://doi.org/10.1038/s41575-019-0261-4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32103203/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Rev%20Gastroenterol%20Hepatol&title=Epithelial%20toll-like%20receptors%20and%20their%20role%20in%20gut%20homeostasis%20and%20disease&author=JF%20Burgue%C3%B1o&author=MT%20Abreu&volume=17&publication_year=2020&pages=263-78&pmid=32103203&doi=10.1038/s41575-019-0261-4&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B68"> <span class="label">68.</span><cite>Abadie V, Jabri B. IL-15: A central regulator of celiac disease immunopathology. Immunol Rev. (2014) 260:221–34. 10.1111/imr.12191</cite> [<a href="https://doi.org/10.1111/imr.12191" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4066219/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24942692/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Immunol%20Rev&title=IL-15:%20A%20central%20regulator%20of%20celiac%20disease%20immunopathology&author=V%20Abadie&author=B%20Jabri&volume=260&publication_year=2014&pages=221-34&pmid=24942692&doi=10.1111/imr.12191&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B69"> <span class="label">69.</span><cite>Wang W, Uzzau S, Goldblum SE, Fasano A. Human zonulin, a potential modulator of intestinal tight junctions. J Cell Sci. (2000) 113:4435–40. </cite> [<a href="https://doi.org/10.1242/jcs.113.24.4435" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11082037/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Cell%20Sci&title=Human%20zonulin,%20a%20potential%20modulator%20of%20intestinal%20tight%20junctions&author=W%20Wang&author=S%20Uzzau&author=SE%20Goldblum&author=A%20Fasano&volume=113&publication_year=2000&pages=4435-40&pmid=11082037&doi=10.1242/jcs.113.24.4435&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B70"> <span class="label">70.</span><cite>Fluge G, Aksnes L. Morphological and morphometric assessment of human duodenal biopsies maintained in organ culture. <em>In vitro</em> influences of gluten in coeliac disease. Scand J Gastroenterol. (1981) 16:555–67. 10.3109/00365528109182012</cite> [<a href="https://doi.org/10.3109/00365528109182012" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7323692/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Scand%20J%20Gastroenterol&title=Morphological%20and%20morphometric%20assessment%20of%20human%20duodenal%20biopsies%20maintained%20in%20organ%20culture.%20In%20vitro%20influences%20of%20gluten%20in%20coeliac%20disease&author=G%20Fluge&author=L%20Aksnes&volume=16&publication_year=1981&pages=555-67&pmid=7323692&doi=10.3109/00365528109182012&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B71"> <span class="label">71.</span><cite>Howdle PD, Corazza GR, Bullen AW, Losowsky MS. <em>In vitro</em> diagnosis of coeliac disease: an assessment. Gut. (1981) 22:939–47. 10.1136/gut.22.11.939</cite> [<a href="https://doi.org/10.1136/gut.22.11.939" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1419470/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7030878/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gut&title=In%20vitro%20diagnosis%20of%20coeliac%20disease:%20an%20assessment&author=PD%20Howdle&author=GR%20Corazza&author=AW%20Bullen&author=MS%20Losowsky&volume=22&publication_year=1981&pages=939-47&pmid=7030878&doi=10.1136/gut.22.11.939&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B72"> <span class="label">72.</span><cite>Shidrawi RG, Day P, Przemioslo R, Ellis HJ, Nelufer JM, Ciclitira PJ. <em>In vitro</em> toxicity of gluten peptides in coeliac disease assessed by organ culture. Scand J Gastroenterol. (1995) 30:758–63. 10.3109/00365529509096324</cite> [<a href="https://doi.org/10.3109/00365529509096324" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7481543/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Scand%20J%20Gastroenterol&title=In%20vitro%20toxicity%20of%20gluten%20peptides%20in%20coeliac%20disease%20assessed%20by%20organ%20culture&author=RG%20Shidrawi&author=P%20Day&author=R%20Przemioslo&author=HJ%20Ellis&author=JM%20Nelufer&volume=30&publication_year=1995&pages=758-63&pmid=7481543&doi=10.3109/00365529509096324&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B73"> <span class="label">73.</span><cite>Stenman SM, Lindfors K, Korponay-Szabo IR, Lohi O, Saavalainen P, Partanen J, et al. Secretion of celiac disease autoantibodies after <em>in vitro</em> gliadin challenge is dependent on small-bowel mucosal transglutaminase 2-specific IgA deposits. BMC Immunol. (2008) 9:6. 10.1186/1471-2172-9-6</cite> [<a href="https://doi.org/10.1186/1471-2172-9-6" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2275217/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18312620/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=BMC%20Immunol&title=Secretion%20of%20celiac%20disease%20autoantibodies%20after%20in%20vitro%20gliadin%20challenge%20is%20dependent%20on%20small-bowel%20mucosal%20transglutaminase%202-specific%20IgA%20deposits&author=SM%20Stenman&author=K%20Lindfors&author=IR%20Korponay-Szabo&author=O%20Lohi&author=P%20Saavalainen&volume=9&publication_year=2008&pages=6&pmid=18312620&doi=10.1186/1471-2172-9-6&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B74"> <span class="label">74.</span><cite>Maiuri L, Ciacci C, Auricchio S, Brown V, Quaratino S, Londei M. Interleukin 15 mediates epithelial changes in celiac disease. Gastroenterology. (2000) 119:996–1006. 10.1053/gast.2000.18149</cite> [<a href="https://doi.org/10.1053/gast.2000.18149" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11040186/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gastroenterology&title=Interleukin%2015%20mediates%20epithelial%20changes%20in%20celiac%20disease&author=L%20Maiuri&author=C%20Ciacci&author=S%20Auricchio&author=V%20Brown&author=S%20Quaratino&volume=119&publication_year=2000&pages=996-1006&pmid=11040186&doi=10.1053/gast.2000.18149&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B75"> <span class="label">75.</span><cite>Maiuri L, Ciacci C, Vacca L, Ricciardelli I, Auricchio S, Quaratino S, et al. IL-15 drives the specific migration of CD94+ and TCR-gammadelta+ intraepithelial lymphocytes in organ cultures of treated celiac patients. Am J Gastroenterol. (2001) 96:150–6. 10.1111/j.1572-0241.2001.03437.x</cite> [<a href="https://doi.org/10.1111/j.1572-0241.2001.03437.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11197245/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Am%20J%20Gastroenterol&title=IL-15%20drives%20the%20specific%20migration%20of%20CD94+%20and%20TCR-gammadelta+%20intraepithelial%20lymphocytes%20in%20organ%20cultures%20of%20treated%20celiac%20patients&author=L%20Maiuri&author=C%20Ciacci&author=L%20Vacca&author=I%20Ricciardelli&author=S%20Auricchio&volume=96&publication_year=2001&pages=150-6&pmid=11197245&doi=10.1111/j.1572-0241.2001.03437.x&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B76"> <span class="label">76.</span><cite>Wilson S, Volkov Y, Feighery C. Rearrangement of enterocyte cytoskeletal proteins in coeliac disease. Endoscopy. (2004) 36:36–46. 10.1055/s-2004-825028</cite> [<a href="https://doi.org/10.1055/s-2004-825028" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Endoscopy&title=Rearrangement%20of%20enterocyte%20cytoskeletal%20proteins%20in%20coeliac%20disease&author=S%20Wilson&author=Y%20Volkov&author=C%20Feighery&volume=36&publication_year=2004&pages=36-46&doi=10.1055/s-2004-825028&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B77"> <span class="label">77.</span><cite>Freedman AR, Macartney JC, Nelufer JM, Ciclitira PJ. Timing of infiltration of T lymphocytes induced by gluten into the small intestine in coeliac disease. J Clin Pathol. (1987) 40:741–5. 10.1136/jcp.40.7.741</cite> [<a href="https://doi.org/10.1136/jcp.40.7.741" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1141090/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2957394/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Clin%20Pathol&title=Timing%20of%20infiltration%20of%20T%20lymphocytes%20induced%20by%20gluten%20into%20the%20small%20intestine%20in%20coeliac%20disease&author=AR%20Freedman&author=JC%20Macartney&author=JM%20Nelufer&author=PJ%20Ciclitira&volume=40&publication_year=1987&pages=741-5&pmid=2957394&doi=10.1136/jcp.40.7.741&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B78"> <span class="label">78.</span><cite>Dewar DH, Amato M, Ellis HJ, Pollock EL, Gonzalez-Cinca N, Wieser H, et al. The toxicity of high molecular weight glutenin subunits of wheat to patients with coeliac disease. Eur J Gastroenterol Hepatol. (2006) 18:483–9. 10.1097/00042737-200605000-00005</cite> [<a href="https://doi.org/10.1097/00042737-200605000-00005" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16607142/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Eur%20J%20Gastroenterol%20Hepatol&title=The%20toxicity%20of%20high%20molecular%20weight%20glutenin%20subunits%20of%20wheat%20to%20patients%20with%20coeliac%20disease&author=DH%20Dewar&author=M%20Amato&author=HJ%20Ellis&author=EL%20Pollock&author=N%20Gonzalez-Cinca&volume=18&publication_year=2006&pages=483-9&pmid=16607142&doi=10.1097/00042737-200605000-00005&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B79"> <span class="label">79.</span><cite>Fraser JS, Engel W, Ellis HJ, Moodie SJ, Pollock EL, Wieser H, et al. Coeliac disease: <em>in vivo</em> toxicity of the putative immunodominant epitope. Gut. (2003) 52:1698–702. 10.1136/gut.52.12.1698</cite> [<a href="https://doi.org/10.1136/gut.52.12.1698" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1773874/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/14633945/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gut&title=Coeliac%20disease:%20in%20vivo%20toxicity%20of%20the%20putative%20immunodominant%20epitope&author=JS%20Fraser&author=W%20Engel&author=HJ%20Ellis&author=SJ%20Moodie&author=EL%20Pollock&volume=52&publication_year=2003&pages=1698-702&pmid=14633945&doi=10.1136/gut.52.12.1698&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B80"> <span class="label">80.</span><cite>Goel G, Tye-din JA, Qiao S, Russell AK, Mayassi T, Ciszewski C, et al. Cytokine release and gastrointestinal symptoms after gluten challenge in celiac disease. Immunology. (2019) 5:eaaw7756. 10.1126/sciadv.aaw7756</cite> [<a href="https://doi.org/10.1126/sciadv.aaw7756" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6685723/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31457091/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Immunology&title=Cytokine%20release%20and%20gastrointestinal%20symptoms%20after%20gluten%20challenge%20in%20celiac%20disease&author=G%20Goel&author=JA%20Tye-din&author=S%20Qiao&author=AK%20Russell&author=T%20Mayassi&volume=5&publication_year=2019&pages=eaaw7756&pmid=31457091&doi=10.1126/sciadv.aaw7756&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B81"> <span class="label">81.</span><cite>Booth CC. Enterocyte in coeliac disease. 1. Br Med J. (1970) 3:725–31. 10.1136/bmj.3.5725.725</cite> [<a href="https://doi.org/10.1136/bmj.3.5725.725" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1701643/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/5472755/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Br%20Med%20J&title=Enterocyte%20in%20coeliac%20disease&author=CC%20Booth&volume=3&publication_year=1970&pages=725-31&pmid=5472755&doi=10.1136/bmj.3.5725.725&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B82"> <span class="label">82.</span><cite>Wright N, Watson A, Morley A, Appleton D, Marks J, Douglas A. The cell cycle time in the flat (avillous) mucosa of the human small intestine. Gut. (1973) 14:603–6. 10.1136/gut.14.8.603</cite> [<a href="https://doi.org/10.1136/gut.14.8.603" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1412748/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/4270325/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gut&title=The%20cell%20cycle%20time%20in%20the%20flat%20(avillous)%20mucosa%20of%20the%20human%20small%20intestine&author=N%20Wright&author=A%20Watson&author=A%20Morley&author=D%20Appleton&author=J%20Marks&volume=14&publication_year=1973&pages=603-6&pmid=4270325&doi=10.1136/gut.14.8.603&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B83"> <span class="label">83.</span><cite>Wright N, Watson A, Morley A, Appleton D, Marks J. Cell kinetics in flat (avillous) mucosa of the human small intestine. Gut. (1973) 14:701–10. 10.1136/gut.14.9.701</cite> [<a href="https://doi.org/10.1136/gut.14.9.701" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1412777/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/4752034/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gut&title=Cell%20kinetics%20in%20flat%20(avillous)%20mucosa%20of%20the%20human%20small%20intestine&author=N%20Wright&author=A%20Watson&author=A%20Morley&author=D%20Appleton&author=J%20Marks&volume=14&publication_year=1973&pages=701-10&pmid=4752034&doi=10.1136/gut.14.9.701&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B84"> <span class="label">84.</span><cite>Nanayakkara M, Lania G, Maglio M, Auricchio R, De Musis C, Discepolo V, et al. P31–43, an undigested gliadin peptide, mimics and enhances the innate immune response to viruses and interferes with endocytic trafficking: a role in celiac disease. Sci Rep. (2018) 8:10821. 10.1038/s41598-018-28830-y</cite> [<a href="https://doi.org/10.1038/s41598-018-28830-y" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6050301/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30018339/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sci%20Rep&title=P31%E2%80%9343,%20an%20undigested%20gliadin%20peptide,%20mimics%20and%20enhances%20the%20innate%20immune%20response%20to%20viruses%20and%20interferes%20with%20endocytic%20trafficking:%20a%20role%20in%20celiac%20disease&author=M%20Nanayakkara&author=G%20Lania&author=M%20Maglio&author=R%20Auricchio&author=Musis%20C%20De&volume=8&publication_year=2018&pages=10821&pmid=30018339&doi=10.1038/s41598-018-28830-y&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B85"> <span class="label">85.</span><cite>Barone MV, Gimigliano A, Castoria G, Paolella G, Maurano F, Paparo F, et al. Growth factor-like activity of gliadin, an alimentary protein: implications for coeliac disease. Gut. (2007) 56:480–8. 10.1136/gut.2005.086637</cite> [<a href="https://doi.org/10.1136/gut.2005.086637" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1856836/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16891357/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gut&title=Growth%20factor-like%20activity%20of%20gliadin,%20an%20alimentary%20protein:%20implications%20for%20coeliac%20disease&author=MV%20Barone&author=A%20Gimigliano&author=G%20Castoria&author=G%20Paolella&author=F%20Maurano&volume=56&publication_year=2007&pages=480-8&pmid=16891357&doi=10.1136/gut.2005.086637&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B86"> <span class="label">86.</span><cite>Barone MV, Zanzi D, Maglio M, Nanayakkara M, Santagata S, Lania G, et al. Gliadin-mediated proliferation and innate immune activation in celiac disease are due to alterations in vesicular trafficking. PLoS ONE. (2011) 6:e17039. 10.1371/journal.pone.0017039</cite> [<a href="https://doi.org/10.1371/journal.pone.0017039" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3045409/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21364874/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=PLoS%20ONE&title=Gliadin-mediated%20proliferation%20and%20innate%20immune%20activation%20in%20celiac%20disease%20are%20due%20to%20alterations%20in%20vesicular%20trafficking&author=MV%20Barone&author=D%20Zanzi&author=M%20Maglio&author=M%20Nanayakkara&author=S%20Santagata&volume=6&publication_year=2011&pages=e17039&pmid=21364874&doi=10.1371/journal.pone.0017039&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B87"> <span class="label">87.</span><cite>Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Raia V, Rispo A, et al. Unexpected role of surface transglutaminase type II in celiac disease. Gastroenterology. (2005) 129:1400–13. 10.1053/j.gastro.2005.07.054</cite> [<a href="https://doi.org/10.1053/j.gastro.2005.07.054" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16285941/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gastroenterology&title=Unexpected%20role%20of%20surface%20transglutaminase%20type%20II%20in%20celiac%20disease&author=L%20Maiuri&author=C%20Ciacci&author=I%20Ricciardelli&author=L%20Vacca&author=V%20Raia&volume=129&publication_year=2005&pages=1400-13&pmid=16285941&doi=10.1053/j.gastro.2005.07.054&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B88"> <span class="label">88.</span><cite>Villella VR, Venerando A, Cozza G, Esposito S, Ferrari E, Monzani R, et al. A pathogenic role for cystic fibrosis transmembrane conductance regulator in celiac disease. EMBO J. (2019) 38:e100101. 10.15252/embj.2018100101</cite> [<a href="https://doi.org/10.15252/embj.2018100101" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6331719/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30498130/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=EMBO%20J&title=A%20pathogenic%20role%20for%20cystic%20fibrosis%20transmembrane%20conductance%20regulator%20in%20celiac%20disease&author=VR%20Villella&author=A%20Venerando&author=G%20Cozza&author=S%20Esposito&author=E%20Ferrari&volume=38&publication_year=2019&pages=e100101&pmid=30498130&doi=10.15252/embj.2018100101&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B89"> <span class="label">89.</span><cite>Herrera MG, Gómez Castro MF, Prieto E, Barrera E, Dodero VI, Pantano S, et al. Structural conformation and self-assembly process of p31-43 gliadin peptide in aqueous solution. Implications for celiac disease. FEBS J. (2019) 287:2134–49. 10.1111/febs.15109</cite> [<a href="https://doi.org/10.1111/febs.15109" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31659864/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=FEBS%20J&title=Structural%20conformation%20and%20self-assembly%20process%20of%20p31-43%20gliadin%20peptide%20in%20aqueous%20solution&author=MG%20Herrera&author=Castro%20MF%20G%C3%B3mez&author=E%20Prieto&author=E%20Barrera&author=VI%20Dodero&volume=287&publication_year=2019&pages=2134-49&pmid=31659864&doi=10.1111/febs.15109&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B90"> <span class="label">90.</span><cite>Gómez Castro MF, Miculán E, Herrera MG, Ruera C, Perez F, Prieto ED, et al. p31-43 gliadin peptide forms oligomers and induces NLRP3 inflammasome/caspase 1- dependent mucosal damage in small intestine. Front Immunol. (2019) 10:31. 10.3389/fimmu.2019.00031</cite> [<a href="https://doi.org/10.3389/fimmu.2019.00031" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6363691/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30761127/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Front%20Immunol&title=p31-43%20gliadin%20peptide%20forms%20oligomers%20and%20induces%20NLRP3%20inflammasome/caspase%201-%20dependent%20mucosal%20damage%20in%20small%20intestine&author=Castro%20MF%20G%C3%B3mez&author=E%20Micul%C3%A1n&author=MG%20Herrera&author=C%20Ruera&author=F%20Perez&volume=10&publication_year=2019&pages=31&pmid=30761127&doi=10.3389/fimmu.2019.00031&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B91"> <span class="label">91.</span><cite>Araya RE, Gomez Castro MF, Carasi P, McCarville JL, Jury J, Mowat AM, et al. Mechanisms of innate immune activation by gluten peptide p31-43 in mice. Am J Physiol Liver Physiol. (2016) 311:G40–G49. 10.1152/ajpgi.00435.2015</cite> [<a href="https://doi.org/10.1152/ajpgi.00435.2015" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27151946/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Am%20J%20Physiol%20Liver%20Physiol&title=Mechanisms%20of%20innate%20immune%20activation%20by%20gluten%20peptide%20p31-43%20in%20mice&author=RE%20Araya&author=Castro%20MF%20Gomez&author=P%20Carasi&author=JL%20McCarville&author=J%20Jury&volume=311&publication_year=2016&pages=G40-G49&pmid=27151946&doi=10.1152/ajpgi.00435.2015&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B92"> <span class="label">92.</span><cite>Monteleone G, Pender SL, Alstead E, Hauer AC, Lionetti P, McKenzie C, et al. Role of interferon alpha in promoting T helper cell type 1 responses in the small intestine in coeliac disease. Gut. (2001) 48:425–9. 10.1136/gut.48.3.425</cite> [<a href="https://doi.org/10.1136/gut.48.3.425" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1760133/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11171837/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gut&title=Role%20of%20interferon%20alpha%20in%20promoting%20T%20helper%20cell%20type%201%20responses%20in%20the%20small%20intestine%20in%20coeliac%20disease&author=G%20Monteleone&author=SL%20Pender&author=E%20Alstead&author=AC%20Hauer&author=P%20Lionetti&volume=48&publication_year=2001&pages=425-9&pmid=11171837&doi=10.1136/gut.48.3.425&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B93"> <span class="label">93.</span><cite>Bouziat R, Biering SB, Kouame E, Sangani KA, Kang S, Ernest JD, et al. Murine norovirus infection induces TH1 inflammatory responses to dietary antigens. Cell Host Microbe. (2018) 24:677–88.e5. 10.1016/j.chom.2018.10.004</cite> [<a href="https://doi.org/10.1016/j.chom.2018.10.004" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6326098/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30392830/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell%20Host%20Microbe&title=Murine%20norovirus%20infection%20induces%20TH1%20inflammatory%20responses%20to%20dietary%20antigens&author=R%20Bouziat&author=SB%20Biering&author=E%20Kouame&author=KA%20Sangani&author=S%20Kang&volume=24&publication_year=2018&pages=677-88&pmid=30392830&doi=10.1016/j.chom.2018.10.004&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B94"> <span class="label">94.</span><cite>Caminero A, Galipeau HJ, McCarville JL, Johnston CW, Bernier SP, Russell AK, et al. Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity. Gastroenterology. (2016) 151:670–83. 10.1053/j.gastro.2016.06.041</cite> [<a href="https://doi.org/10.1053/j.gastro.2016.06.041" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27373514/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gastroenterology&title=Duodenal%20bacteria%20from%20patients%20with%20celiac%20disease%20and%20healthy%20subjects%20distinctly%20affect%20gluten%20breakdown%20and%20immunogenicity&author=A%20Caminero&author=HJ%20Galipeau&author=JL%20McCarville&author=CW%20Johnston&author=SP%20Bernier&volume=151&publication_year=2016&pages=670-83&pmid=27373514&doi=10.1053/j.gastro.2016.06.041&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B95"> <span class="label">95.</span><cite>Junker Y, Zeissig S, Kim S-J, Barisani D, Wieser H, Leffler DA, et al. Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J Exp Med. (2012) 209:2395–408. 10.1084/jem.20102660</cite> [<a href="https://doi.org/10.1084/jem.20102660" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3526354/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23209313/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Exp%20Med&title=Wheat%20amylase%20trypsin%20inhibitors%20drive%20intestinal%20inflammation%20via%20activation%20of%20toll-like%20receptor%204&author=Y%20Junker&author=S%20Zeissig&author=S-J%20Kim&author=D%20Barisani&author=H%20Wieser&volume=209&publication_year=2012&pages=2395-408&pmid=23209313&doi=10.1084/jem.20102660&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B96"> <span class="label">96.</span><cite>Escudero-Hernández C, Martín Á, Pedro Andrés R, Fernández-Salazar L, Garrote JA, Bernardo D, et al. Circulating dendritic cells from celiac disease patients display a gut-homing profile and are differentially modulated by different gliadin-derived peptides. Mol Nutr Food Res. (2020) 64:1900989. 10.1002/mnfr.201900989</cite> [<a href="https://doi.org/10.1002/mnfr.201900989" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31970917/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mol%20Nutr%20Food%20Res&title=Circulating%20dendritic%20cells%20from%20celiac%20disease%20patients%20display%20a%20gut-homing%20profile%20and%20are%20differentially%20modulated%20by%20different%20gliadin-derived%20peptides&author=C%20Escudero-Hern%C3%A1ndez&author=%C3%81%20Mart%C3%ADn&author=Andr%C3%A9s%20R%20Pedro&author=L%20Fern%C3%A1ndez-Salazar&author=JA%20Garrote&volume=64&publication_year=2020&pages=1900989&pmid=31970917&doi=10.1002/mnfr.201900989&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B97"> <span class="label">97.</span><cite>Brandtzaeg P. The changing immunological paradigm in coeliac disease. Immunol Lett. (2006) 105:127–39. 10.1016/j.imlet.2006.03.004</cite> [<a href="https://doi.org/10.1016/j.imlet.2006.03.004" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16647763/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Immunol%20Lett&title=The%20changing%20immunological%20paradigm%20in%20coeliac%20disease&author=P%20Brandtzaeg&volume=105&publication_year=2006&pages=127-39&pmid=16647763&doi=10.1016/j.imlet.2006.03.004&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B98"> <span class="label">98.</span><cite>Høydahl LS, Richter L, Frick R, Snir O, Gunnarsen KS, Landsverk OJB, et al. Plasma cells are the most abundant gluten peptide MHC-expressing cells in inflamed intestinal tissues from patients with celiac disease. Gastroenterology. (2019) 156:1428–39.e10. 10.1053/j.gastro.2018.12.013</cite> [<a href="https://doi.org/10.1053/j.gastro.2018.12.013" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6441630/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30593798/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gastroenterology&title=Plasma%20cells%20are%20the%20most%20abundant%20gluten%20peptide%20MHC-expressing%20cells%20in%20inflamed%20intestinal%20tissues%20from%20patients%20with%20celiac%20disease&author=LS%20H%C3%B8ydahl&author=L%20Richter&author=R%20Frick&author=O%20Snir&author=KS%20Gunnarsen&volume=156&publication_year=2019&pages=1428-39&pmid=30593798&doi=10.1053/j.gastro.2018.12.013&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B99"> <span class="label">99.</span><cite>Bondar C, Araya RE, Guzman L, Rua EC, Chopita N, Chirdo FG. Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease. PLoS ONE. (2014) 9:e89068. 10.1371/journal.pone.0089068</cite> [<a href="https://doi.org/10.1371/journal.pone.0089068" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3930692/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24586509/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=PLoS%20ONE&title=Role%20of%20CXCR3/CXCL10%20axis%20in%20immune%20cell%20recruitment%20into%20the%20small%20intestine%20in%20celiac%20disease&author=C%20Bondar&author=RE%20Araya&author=L%20Guzman&author=EC%20Rua&author=N%20Chopita&volume=9&publication_year=2014&pages=e89068&pmid=24586509&doi=10.1371/journal.pone.0089068&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B100"> <span class="label">100.</span><cite>Molberg O, Kett K, Scott H, Thorsby E, Sollid LM, Lundin KE. Gliadin specific, HLA DQ2-restricted T cells are commonly found in small intestinal biopsies from coeliac disease patients, but not from controls. Scand J Immunol. (1997) 46:103–8. 10.1046/j.1365-3083.1997.d01-93.x</cite> [<a href="https://doi.org/10.1046/j.1365-3083.1997.d01-93.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9246215/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Scand%20J%20Immunol&title=Gliadin%20specific,%20HLA%20DQ2-restricted%20T%20cells%20are%20commonly%20found%20in%20small%20intestinal%20biopsies%20from%20coeliac%20disease%20patients,%20but%20not%20from%20controls&author=O%20Molberg&author=K%20Kett&author=H%20Scott&author=E%20Thorsby&author=LM%20Sollid&volume=46&publication_year=1997&pages=103-8&pmid=9246215&doi=10.1046/j.1365-3083.1997.d01-93.x&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B101"> <span class="label">101.</span><cite>Bodd M, Ráki M, Bergseng E, Jahnsen J, Lundin KEA, Sollid LM. Direct cloning and tetramer staining to measure the frequency of intestinal gluten-reactive T cells in celiac disease. Eur J Immunol. (2013) 43:2605–12. 10.1002/eji.201343382</cite> [<a href="https://doi.org/10.1002/eji.201343382" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23775608/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Eur%20J%20Immunol&title=Direct%20cloning%20and%20tetramer%20staining%20to%20measure%20the%20frequency%20of%20intestinal%20gluten-reactive%20T%20cells%20in%20celiac%20disease&author=M%20Bodd&author=M%20R%C3%A1ki&author=E%20Bergseng&author=J%20Jahnsen&author=KEA%20Lundin&volume=43&publication_year=2013&pages=2605-12&pmid=23775608&doi=10.1002/eji.201343382&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B102"> <span class="label">102.</span><cite>Nilsen EM, Lundin KE, Krajci P, Scott H, Sollid LM, Brandtzaeg P. Gluten specific, HLA-DQ restricted T cells from coeliac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon gamma. Gut. (1995) 37:766–76. 10.1136/gut.37.6.766</cite> [<a href="https://doi.org/10.1136/gut.37.6.766" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1382937/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8537046/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gut&title=Gluten%20specific,%20HLA-DQ%20restricted%20T%20cells%20from%20coeliac%20mucosa%20produce%20cytokines%20with%20Th1%20or%20Th0%20profile%20dominated%20by%20interferon%20gamma&author=EM%20Nilsen&author=KE%20Lundin&author=P%20Krajci&author=H%20Scott&author=LM%20Sollid&volume=37&publication_year=1995&pages=766-76&pmid=8537046&doi=10.1136/gut.37.6.766&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B103"> <span class="label">103.</span><cite>Mazzarella G. Effector and suppressor T cells in celiac disease. World J Gastroenterol. (2015) 21:7349. 10.3748/wjg.v21.i24.7349</cite> [<a href="https://doi.org/10.3748/wjg.v21.i24.7349" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4481430/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26139981/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=World%20J%20Gastroenterol&title=Effector%20and%20suppressor%20T%20cells%20in%20celiac%20disease&author=G%20Mazzarella&volume=21&publication_year=2015&pages=7349&pmid=26139981&doi=10.3748/wjg.v21.i24.7349&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B104"> <span class="label">104.</span><cite>Black KE, Murray JA, David CS. HLA-DQ determines the response to exogenous wheat proteins: a model of gluten sensitivity in transgenic knockout mice. J Immunol. (2002) 169:5595–600. 10.4049/jimmunol.169.10.5595</cite> [<a href="https://doi.org/10.4049/jimmunol.169.10.5595" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12421937/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Immunol&title=HLA-DQ%20determines%20the%20response%20to%20exogenous%20wheat%20proteins:%20a%20model%20of%20gluten%20sensitivity%20in%20transgenic%20knockout%20mice&author=KE%20Black&author=JA%20Murray&author=CS%20David&volume=169&publication_year=2002&pages=5595-600&pmid=12421937&doi=10.4049/jimmunol.169.10.5595&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B105"> <span class="label">105.</span><cite>de Kauwe AL, Chen Z, Anderson RP, Keech CL, Price JD, Wijburg O, et al. Resistance to celiac disease in humanized HLA-DR3-DQ2-transgenic mice expressing specific anti-gliadin CD4+ T cells. J Immunol. (2009) 182:7440–50. 10.4049/jimmunol.0900233</cite> [<a href="https://doi.org/10.4049/jimmunol.0900233" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19494267/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Immunol&title=Resistance%20to%20celiac%20disease%20in%20humanized%20HLA-DR3-DQ2-transgenic%20mice%20expressing%20specific%20anti-gliadin%20CD4+%20T%20cells&author=Kauwe%20AL%20de&author=Z%20Chen&author=RP%20Anderson&author=CL%20Keech&author=JD%20Price&volume=182&publication_year=2009&pages=7440-50&pmid=19494267&doi=10.4049/jimmunol.0900233&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B106"> <span class="label">106.</span><cite>Setty M, Discepolo V, Abadie V, Kamhawi S, Mayassi T, Kent A, et al. Distinct and synergistic contributions of epithelial stress and adaptive immunity to functions of intraepithelial killer cells and active celiac disease. Gastroenterology. (2015) 149:681–91.e10. 10.1053/j.gastro.2015.05.013</cite> [<a href="https://doi.org/10.1053/j.gastro.2015.05.013" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4550536/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26001928/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gastroenterology&title=Distinct%20and%20synergistic%20contributions%20of%20epithelial%20stress%20and%20adaptive%20immunity%20to%20functions%20of%20intraepithelial%20killer%20cells%20and%20active%20celiac%20disease&author=M%20Setty&author=V%20Discepolo&author=V%20Abadie&author=S%20Kamhawi&author=T%20Mayassi&volume=149&publication_year=2015&pages=681-91&pmid=26001928&doi=10.1053/j.gastro.2015.05.013&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B107"> <span class="label">107.</span><cite>Troncone R, Greco L, Mayer M, Paparo F, Caputo N, Micillo M, et al. Latent and potential coeliac disease. Acta Paediatr Suppl. (1996) 412:10–4. 10.1111/j.1651-2227.1996.tb14240.x</cite> [<a href="https://doi.org/10.1111/j.1651-2227.1996.tb14240.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8783748/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Acta%20Paediatr%20Suppl&title=Latent%20and%20potential%20coeliac%20disease&author=R%20Troncone&author=L%20Greco&author=M%20Mayer&author=F%20Paparo&author=N%20Caputo&volume=412&publication_year=1996&pages=10-4&pmid=8783748&doi=10.1111/j.1651-2227.1996.tb14240.x&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B108"> <span class="label">108.</span><cite>Marsh MN. Screening for latent gluten sensitivity: questions many, but answers few. Eur J Gastroenterol Hepatol. (1996) 8:3–6. 10.1097/00042737-199601000-00002</cite> [<a href="https://doi.org/10.1097/00042737-199601000-00002" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8900901/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Eur%20J%20Gastroenterol%20Hepatol&title=Screening%20for%20latent%20gluten%20sensitivity:%20questions%20many,%20but%20answers%20few&author=MN%20Marsh&volume=8&publication_year=1996&pages=3-6&pmid=8900901&doi=10.1097/00042737-199601000-00002&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B109"> <span class="label">109.</span><cite>Di Sabatino A, Ciccocioppo R, Cupelli F, Cinque B, Millimaggi D, Clarkson MM, et al. Epithelium derived interleukin 15 regulates intraepithelial lymphocyte Th1 cytokine production, cytotoxicity, and survival in coeliac disease. Gut. (2006) 55:469–77. 10.1136/gut.2005.068684</cite> [<a href="https://doi.org/10.1136/gut.2005.068684" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1856172/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16105889/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gut&title=Epithelium%20derived%20interleukin%2015%20regulates%20intraepithelial%20lymphocyte%20Th1%20cytokine%20production,%20cytotoxicity,%20and%20survival%20in%20coeliac%20disease&author=Sabatino%20A%20Di&author=R%20Ciccocioppo&author=F%20Cupelli&author=B%20Cinque&author=D%20Millimaggi&volume=55&publication_year=2006&pages=469-77&pmid=16105889&doi=10.1136/gut.2005.068684&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B110"> <span class="label">110.</span><cite>Allegretti YL, Bondar C, Guzman L, Cueto Rua E, Chopita N, Fuertes M, et al. Broad MICA/B expression in the small bowel mucosa: a link between cellular stress and celiac disease. PLoS ONE. (2013) 8:e73658. 10.1371/journal.pone.0073658</cite> [<a href="https://doi.org/10.1371/journal.pone.0073658" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3772809/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24058482/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=PLoS%20ONE&title=Broad%20MICA/B%20expression%20in%20the%20small%20bowel%20mucosa:%20a%20link%20between%20cellular%20stress%20and%20celiac%20disease&author=YL%20Allegretti&author=C%20Bondar&author=L%20Guzman&author=Rua%20E%20Cueto&author=N%20Chopita&volume=8&publication_year=2013&pages=e73658&pmid=24058482&doi=10.1371/journal.pone.0073658&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B111"> <span class="label">111.</span><cite>Abadie V, Kim SM, Lejeune T, Palanski BA, Ernest JD, Tastet O, et al. IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease. Nature. (2020) 578:600–4. 10.1038/s41586-020-2003-8</cite> [<a href="https://doi.org/10.1038/s41586-020-2003-8" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7047598/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32051586/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nature&title=IL-15,%20gluten%20and%20HLA-DQ8%20drive%20tissue%20destruction%20in%20coeliac%20disease&author=V%20Abadie&author=SM%20Kim&author=T%20Lejeune&author=BA%20Palanski&author=JD%20Ernest&volume=578&publication_year=2020&pages=600-4&pmid=32051586&doi=10.1038/s41586-020-2003-8&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B112"> <span class="label">112.</span><cite>Jabri B, Sollid LM. T cells in celiac disease. J Immunol. (2017) 198:3005–14. 10.4049/jimmunol.1601693</cite> [<a href="https://doi.org/10.4049/jimmunol.1601693" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5426360/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28373482/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Immunol&title=T%20cells%20in%20celiac%20disease&author=B%20Jabri&author=LM%20Sollid&volume=198&publication_year=2017&pages=3005-14&pmid=28373482&doi=10.4049/jimmunol.1601693&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B113"> <span class="label">113.</span><cite>Mayassi T, Jabri B. Human intraepithelial lymphocytes. Mucosal Immunol. (2018) 11:1281–9. 10.1038/s41385-018-0016-5</cite> [<a href="https://doi.org/10.1038/s41385-018-0016-5" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6178824/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29674648/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mucosal%20Immunol&title=Human%20intraepithelial%20lymphocytes&author=T%20Mayassi&author=B%20Jabri&volume=11&publication_year=2018&pages=1281-9&pmid=29674648&doi=10.1038/s41385-018-0016-5&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B114"> <span class="label">114.</span><cite>Kilmartin C, Lynch S, Abuzakouk M, Wieser H, Feighery C. Avenin fails to induce a Th1 response in coeliac tissue following <em>in vitro</em> culture. Gut. (2003) 52:47–52. 10.1136/gut.52.1.47</cite> [<a href="https://doi.org/10.1136/gut.52.1.47" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1773501/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12477758/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gut&title=Avenin%20fails%20to%20induce%20a%20Th1%20response%20in%20coeliac%20tissue%20following%20in%20vitro%20culture&author=C%20Kilmartin&author=S%20Lynch&author=M%20Abuzakouk&author=H%20Wieser&author=C%20Feighery&volume=52&publication_year=2003&pages=47-52&pmid=12477758&doi=10.1136/gut.52.1.47&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B115"> <span class="label">115.</span><cite>Bodd M, Ráki M, Tollefsen S, Fallang LE, Bergseng E, Lundin KEA, et al. HLA-DQ2-restricted gluten-reactive T cells produce IL-21 but not IL-17 or IL-22. Mucosal Immunol. (2010) 3:594–601. 10.1038/mi.2010.36</cite> [<a href="https://doi.org/10.1038/mi.2010.36" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20571486/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mucosal%20Immunol&title=HLA-DQ2-restricted%20gluten-reactive%20T%20cells%20produce%20IL-21%20but%20not%20IL-17%20or%20IL-22&author=M%20Bodd&author=M%20R%C3%A1ki&author=S%20Tollefsen&author=LE%20Fallang&author=E%20Bergseng&volume=3&publication_year=2010&pages=594-601&pmid=20571486&doi=10.1038/mi.2010.36&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B116"> <span class="label">116.</span><cite>van Leeuwen MA, Lindenbergh-Kortleve DJ, Raatgeep HC, de Ruiter LF, de Krijger RR, Groeneweg M, et al. Increased production of interleukin-21, but not interleukin-17A, in the small intestine characterizes pediatric celiac disease. Mucosal Immunol. (2013) 6:1202–13. 10.1038/mi.2013.19</cite> [<a href="https://doi.org/10.1038/mi.2013.19" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23571506/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mucosal%20Immunol&title=Increased%20production%20of%20interleukin-21,%20but%20not%20interleukin-17A,%20in%20the%20small%20intestine%20characterizes%20pediatric%20celiac%20disease&author=Leeuwen%20MA%20van&author=DJ%20Lindenbergh-Kortleve&author=HC%20Raatgeep&author=Ruiter%20LF%20de&author=Krijger%20RR%20de&volume=6&publication_year=2013&pages=1202-13&pmid=23571506&doi=10.1038/mi.2013.19&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B117"> <span class="label">117.</span><cite>Ciszewski C, Discepolo V, Pacis A, Doerr N, Tastet O, Mayassi T, et al. Identification of a γc receptor antagonist that prevents reprogramming of human tissue-resident cytotoxic T cells by IL15 and IL21. Gastroenterology. (2020) 158:625–37.e13. 10.1053/j.gastro.2019.10.006</cite> [<a href="https://doi.org/10.1053/j.gastro.2019.10.006" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7861144/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31622625/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gastroenterology&title=Identification%20of%20a%20%CE%B3c%20receptor%20antagonist%20that%20prevents%20reprogramming%20of%20human%20tissue-resident%20cytotoxic%20T%20cells%20by%20IL15%20and%20IL21&author=C%20Ciszewski&author=V%20Discepolo&author=A%20Pacis&author=N%20Doerr&author=O%20Tastet&volume=158&publication_year=2020&pages=625-37&pmid=31622625&doi=10.1053/j.gastro.2019.10.006&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B118"> <span class="label">118.</span><cite>Verdu EF, Galipeau HJ, Jabri B. Novel players in coeliac disease pathogenesis: role of the gut microbiota. Nat Rev Gastroenterol Hepatol. (2015) 12:497–506. 10.1038/nrgastro.2015.90</cite> [<a href="https://doi.org/10.1038/nrgastro.2015.90" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5102016/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26055247/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Rev%20Gastroenterol%20Hepatol&title=Novel%20players%20in%20coeliac%20disease%20pathogenesis:%20role%20of%20the%20gut%20microbiota&author=EF%20Verdu&author=HJ%20Galipeau&author=B%20Jabri&volume=12&publication_year=2015&pages=497-506&pmid=26055247&doi=10.1038/nrgastro.2015.90&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B119"> <span class="label">119.</span><cite>Bouziat R, Hinterleitner R, Brown JJ, Stencel-Baerenwald JE, Ikizler M, Mayassi T, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science. (2017) 356:44–50. 10.1126/science.aah5298</cite> [<a href="https://doi.org/10.1126/science.aah5298" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5506690/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28386004/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Science&title=Reovirus%20infection%20triggers%20inflammatory%20responses%20to%20dietary%20antigens%20and%20development%20of%20celiac%20disease&author=R%20Bouziat&author=R%20Hinterleitner&author=JJ%20Brown&author=JE%20Stencel-Baerenwald&author=M%20Ikizler&volume=356&publication_year=2017&pages=44-50&pmid=28386004&doi=10.1126/science.aah5298&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B120"> <span class="label">120.</span><cite>Plot L, Amital H. Infectious associations of celiac disease. Autoimmun Rev. (2009) 8:316–9. 10.1016/j.autrev.2008.10.001</cite> [<a href="https://doi.org/10.1016/j.autrev.2008.10.001" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18973831/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Autoimmun%20Rev&title=Infectious%20associations%20of%20celiac%20disease&author=L%20Plot&author=H%20Amital&volume=8&publication_year=2009&pages=316-9&pmid=18973831&doi=10.1016/j.autrev.2008.10.001&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B121"> <span class="label">121.</span><cite>Petersen J, Ciacchi L, Tran MT, Loh KL, Kooy-Winkelaar Y, Croft NP, et al. T cell receptor cross-reactivity between gliadin and bacterial peptides in celiac disease. Nat Struct Mol Biol. (2020) 27:49–61. 10.1038/s41594-019-0353-4</cite> [<a href="https://doi.org/10.1038/s41594-019-0353-4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31873306/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Struct%20Mol%20Biol&title=T%20cell%20receptor%20cross-reactivity%20between%20gliadin%20and%20bacterial%20peptides%20in%20celiac%20disease&author=J%20Petersen&author=L%20Ciacchi&author=MT%20Tran&author=KL%20Loh&author=Y%20Kooy-Winkelaar&volume=27&publication_year=2020&pages=49-61&pmid=31873306&doi=10.1038/s41594-019-0353-4&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B122"> <span class="label">122.</span><cite>Cheroutre H, Lambolez F, Mucida D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat Rev Immunol. (2011) 11:445–56. 10.1038/nri3007</cite> [<a href="https://doi.org/10.1038/nri3007" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3140792/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21681197/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Rev%20Immunol&title=The%20light%20and%20dark%20sides%20of%20intestinal%20intraepithelial%20lymphocytes&author=H%20Cheroutre&author=F%20Lambolez&author=D%20Mucida&volume=11&publication_year=2011&pages=445-56&pmid=21681197&doi=10.1038/nri3007&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B123"> <span class="label">123.</span><cite>Tjon JM-L, Kooy-Winkelaar YMC, Tack GJ, Mommaas AM, Schreurs MWJ, Schilham MW, et al. DNAM-1 mediates epithelial cell-specific cytotoxicity of aberrant intraepithelial lymphocyte lines from refractory celiac disease type II patients. J Immunol. (2011) 186:6304–12. 10.4049/jimmunol.1003382</cite> [<a href="https://doi.org/10.4049/jimmunol.1003382" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21525383/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Immunol&title=DNAM-1%20mediates%20epithelial%20cell-specific%20cytotoxicity%20of%20aberrant%20intraepithelial%20lymphocyte%20lines%20from%20refractory%20celiac%20disease%20type%20II%20patients&author=JM-L%20Tjon&author=YMC%20Kooy-Winkelaar&author=GJ%20Tack&author=AM%20Mommaas&author=MWJ%20Schreurs&volume=186&publication_year=2011&pages=6304-12&pmid=21525383&doi=10.4049/jimmunol.1003382&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B124"> <span class="label">124.</span><cite>Kutlu T, Brousse N, Rambaud C, Le Deist F, Schmitz J, Cerf-Bensussan N. Numbers of T cell receptor (TCR) alpha beta+ but not of TcR gamma delta+ intraepithelial lymphocytes correlate with the grade of villous atrophy in coeliac patients on a long term normal diet. Gut. (1993) 34:208–14. 10.1136/gut.34.2.208</cite> [<a href="https://doi.org/10.1136/gut.34.2.208" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1373972/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8432475/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gut&title=Numbers%20of%20T%20cell%20receptor%20(TCR)%20alpha%20beta+%20but%20not%20of%20TcR%20gamma%20delta+%20intraepithelial%20lymphocytes%20correlate%20with%20the%20grade%20of%20villous%20atrophy%20in%20coeliac%20patients%20on%20a%20long%20term%20normal%20diet&author=T%20Kutlu&author=N%20Brousse&author=C%20Rambaud&author=Deist%20F%20Le&author=J%20Schmitz&volume=34&publication_year=1993&pages=208-14&pmid=8432475&doi=10.1136/gut.34.2.208&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B125"> <span class="label">125.</span><cite>Hayday A, Tigelaar R. Immunoregulation in the tissues by gammadelta T cells. Nat Rev Immunol. (2003) 3:233–42. 10.1038/nri1030</cite> [<a href="https://doi.org/10.1038/nri1030" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12658271/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Rev%20Immunol&title=Immunoregulation%20in%20the%20tissues%20by%20gammadelta%20T%20cells&author=A%20Hayday&author=R%20Tigelaar&volume=3&publication_year=2003&pages=233-42&pmid=12658271&doi=10.1038/nri1030&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B126"> <span class="label">126.</span><cite>Nielsen MM, Witherden DA, Havran WL. γ<em>δ</em> T cells in homeostasis and host defence of epithelial barrier tissues. Nat Rev Immunol. (2017) 17:733–45. 10.1038/nri.2017.101</cite> [<a href="https://doi.org/10.1038/nri.2017.101" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5771804/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28920588/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Rev%20Immunol&title=%CE%B3%CE%B4%20T%20cells%20in%20homeostasis%20and%20host%20defence%20of%20epithelial%20barrier%20tissues&author=MM%20Nielsen&author=DA%20Witherden&author=WL%20Havran&volume=17&publication_year=2017&pages=733-45&pmid=28920588&doi=10.1038/nri.2017.101&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B127"> <span class="label">127.</span><cite>Rust C, Kooy Y, Peña S, Mearin ML, Kluin P, Koning F. Phenotypical and functional characterization of small intestinal TcR gamma delta + T cells in coeliac disease. Scand J Immunol. (1992) 35:459–68. 10.1111/j.1365-3083.1992.tb02881.x</cite> [<a href="https://doi.org/10.1111/j.1365-3083.1992.tb02881.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1532668/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Scand%20J%20Immunol&title=Phenotypical%20and%20functional%20characterization%20of%20small%20intestinal%20TcR%20gamma%20delta%20+%20T%20cells%20in%20coeliac%20disease&author=C%20Rust&author=Y%20Kooy&author=S%20Pe%C3%B1a&author=ML%20Mearin&author=P%20Kluin&volume=35&publication_year=1992&pages=459-68&pmid=1532668&doi=10.1111/j.1365-3083.1992.tb02881.x&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B128"> <span class="label">128.</span><cite>Trejdosiewicz LK, Calabrese A, Smart CJ, Oakes DJ, Howdle PD, Crabtree JE, et al. Gamma delta T cell receptor-positive cells of the human gastrointestinal mucosa: occurrence and V region gene expression in heliobacter pylori-associated gastritis, coeliac disease and inflammatory bowel disease. Clin Exp Immunol. (1991) 84:440–4. </cite> [<a href="/articles/PMC1535443/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1828397/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Clin%20Exp%20Immunol&title=Gamma%20delta%20T%20cell%20receptor-positive%20cells%20of%20the%20human%20gastrointestinal%20mucosa:%20occurrence%20and%20V%20region%20gene%20expression%20in%20heliobacter%20pylori-associated%20gastritis,%20coeliac%20disease%20and%20inflammatory%20bowel%20disease&author=LK%20Trejdosiewicz&author=A%20Calabrese&author=CJ%20Smart&author=DJ%20Oakes&author=PD%20Howdle&volume=84&publication_year=1991&pages=440-4&pmid=1828397&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B129"> <span class="label">129.</span><cite>De Libero G, Rocci MP, Casorati G, Giachino C, Oderda G, Tavassoli K, et al. T cell receptor heterogeneity in gamma delta T cell clones from intestinal biopsies of patients with celiac disease. Eur J Immunol. (1993) 23:499–504. 10.1002/eji.1830230230</cite> [<a href="https://doi.org/10.1002/eji.1830230230" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8436183/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Eur%20J%20Immunol&title=T%20cell%20receptor%20heterogeneity%20in%20gamma%20delta%20T%20cell%20clones%20from%20intestinal%20biopsies%20of%20patients%20with%20celiac%20disease&author=Libero%20G%20De&author=MP%20Rocci&author=G%20Casorati&author=C%20Giachino&author=G%20Oderda&volume=23&publication_year=1993&pages=499-504&pmid=8436183&doi=10.1002/eji.1830230230&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B130"> <span class="label">130.</span><cite>Halstensen TS, Scott H, Brandtzaeg P. Intraepithelial T cells of the TcR gamma/delta+ CD8- and V delta 1/J delta 1+ phenotypes are increased in coeliac disease. Scand J Immunol. (1989) 30:665–72. 10.1111/j.1365-3083.1989.tb02474.x</cite> [<a href="https://doi.org/10.1111/j.1365-3083.1989.tb02474.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2481336/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Scand%20J%20Immunol&title=Intraepithelial%20T%20cells%20of%20the%20TcR%20gamma/delta+%20CD8-%20and%20V%20delta%201/J%20delta%201+%20phenotypes%20are%20increased%20in%20coeliac%20disease&author=TS%20Halstensen&author=H%20Scott&author=P%20Brandtzaeg&volume=30&publication_year=1989&pages=665-72&pmid=2481336&doi=10.1111/j.1365-3083.1989.tb02474.x&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B131"> <span class="label">131.</span><cite>Siegers GM, Lamb LS. Cytotoxic and regulatory properties of circulating Vδ1+ γ<em>δ</em> T cells: a new player on the cell therapy field? Mol Ther. (2014) 22:1416–22. 10.1038/mt.2014.104</cite> [<a href="https://doi.org/10.1038/mt.2014.104" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4435582/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24895997/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mol%20Ther&title=Cytotoxic%20and%20regulatory%20properties%20of%20circulating%20V%CE%B41+%20%CE%B3%CE%B4%20T%20cells:%20a%20new%20player%20on%20the%20cell%20therapy%20field?&author=GM%20Siegers&author=LS%20Lamb&volume=22&publication_year=2014&pages=1416-22&pmid=24895997&doi=10.1038/mt.2014.104&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B132"> <span class="label">132.</span><cite>Toulon A, Breton L, Taylor KR, Tenenhaus M, Bhavsar D, Lanigan C, et al. A role for human skin-resident T cells in wound healing. J Exp Med. (2009) 206:743–50. 10.1084/jem.20081787</cite> [<a href="https://doi.org/10.1084/jem.20081787" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2715110/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19307328/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Exp%20Med&title=A%20role%20for%20human%20skin-resident%20T%20cells%20in%20wound%20healing&author=A%20Toulon&author=L%20Breton&author=KR%20Taylor&author=M%20Tenenhaus&author=D%20Bhavsar&volume=206&publication_year=2009&pages=743-50&pmid=19307328&doi=10.1084/jem.20081787&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B133"> <span class="label">133.</span><cite>Bhagat G, Naiyer AJ, Shah JG, Harper J, Jabri B, Wang TC, et al. Small intestinal CD8+TCRgammadelta+NKG2A+ intraepithelial lymphocytes have attributes of regulatory cells in patients with celiac disease. J Clin Invest. (2008) 118:281–93. 10.1172/JCI30989</cite> [<a href="https://doi.org/10.1172/JCI30989" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2117760/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18064301/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Clin%20Invest&title=Small%20intestinal%20CD8+TCRgammadelta+NKG2A+%20intraepithelial%20lymphocytes%20have%20attributes%20of%20regulatory%20cells%20in%20patients%20with%20celiac%20disease&author=G%20Bhagat&author=AJ%20Naiyer&author=JG%20Shah&author=J%20Harper&author=B%20Jabri&volume=118&publication_year=2008&pages=281-93&pmid=18064301&doi=10.1172/JCI30989&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B134"> <span class="label">134.</span><cite>Zhang S. The role of transforming growth factor β in T helper 17 differentiation. Immunology. (2018) 155:24–35. 10.1111/imm.12938</cite> [<a href="https://doi.org/10.1111/imm.12938" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6099164/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29682722/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Immunology&title=The%20role%20of%20transforming%20growth%20factor%20%CE%B2%20in%20T%20helper%2017%20differentiation&author=S%20Zhang&volume=155&publication_year=2018&pages=24-35&pmid=29682722&doi=10.1111/imm.12938&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B135"> <span class="label">135.</span><cite>Zaiatz-Bittencourt V, Finlay DK, Gardiner CM. Canonical TGF-β signaling pathway represses human NK cell metabolism. J Immunol. (2018) 200:3934–41. 10.4049/jimmunol.1701461</cite> [<a href="https://doi.org/10.4049/jimmunol.1701461" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29720425/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Immunol&title=Canonical%20TGF-%CE%B2%20signaling%20pathway%20represses%20human%20NK%20cell%20metabolism&author=V%20Zaiatz-Bittencourt&author=DK%20Finlay&author=CM%20Gardiner&volume=200&publication_year=2018&pages=3934-41&pmid=29720425&doi=10.4049/jimmunol.1701461&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B136"> <span class="label">136.</span><cite>Marafini I, Imeneo MG, Monteleone G. The role of natural killer receptors in celiac disease. Immunome Res. (2017) 13:22906039 10.4172/1745-7580.10000129</cite> [<a href="https://doi.org/10.4172/1745-7580.10000129" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Immunome%20Res&title=The%20role%20of%20natural%20killer%20receptors%20in%20celiac%20disease&author=I%20Marafini&author=MG%20Imeneo&author=G%20Monteleone&volume=13&publication_year=2017&pages=22906039&doi=10.4172/1745-7580.10000129&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B137"> <span class="label">137.</span><cite>Dhesi I, Marsh MN, Kelly C, Crowe P. Morphometric analysis of small intestinal mucosa. II. Determination of lamina propria volumes; plasma cell and neutrophil populations within control and coeliac disease mucosae. Virchows Arch A Pathol Anat Histopathol. (1984) 403:173–80. 10.1007/BF00695233</cite> [<a href="https://doi.org/10.1007/BF00695233" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/6426161/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Virchows%20Arch%20A%20Pathol%20Anat%20Histopathol&title=Morphometric%20analysis%20of%20small%20intestinal%20mucosa.%20II.%20Determination%20of%20lamina%20propria%20volumes;%20plasma%20cell%20and%20neutrophil%20populations%20within%20control%20and%20coeliac%20disease%20mucosae&author=I%20Dhesi&author=MN%20Marsh&author=C%20Kelly&author=P%20Crowe&volume=403&publication_year=1984&pages=173-80&pmid=6426161&doi=10.1007/BF00695233&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B138"> <span class="label">138.</span><cite>Marsh MN, Crowe PT. Morphology of the mucosal lesion in gluten sensitivity. Baillieres Clin Gastroenterol. (1995) 9:273–93. 10.1016/0950-3528(95)90032-2</cite> [<a href="https://doi.org/10.1016/0950-3528(95)90032-2" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7549028/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Baillieres%20Clin%20Gastroenterol&title=Morphology%20of%20the%20mucosal%20lesion%20in%20gluten%20sensitivity&author=MN%20Marsh&author=PT%20Crowe&volume=9&publication_year=1995&pages=273-93&pmid=7549028&doi=10.1016/0950-3528(95)90032-2&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B139"> <span class="label">139.</span><cite>Rescigno M, Di Sabatino A. Dendritic cells in intestinal homeostasis and disease. J Clin Invest. (2009) 119:2441–50. 10.1172/JCI39134</cite> [<a href="https://doi.org/10.1172/JCI39134" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2735931/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19729841/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Clin%20Invest&title=Dendritic%20cells%20in%20intestinal%20homeostasis%20and%20disease&author=M%20Rescigno&author=Sabatino%20A%20Di&volume=119&publication_year=2009&pages=2441-50&pmid=19729841&doi=10.1172/JCI39134&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B140"> <span class="label">140.</span><cite>Beitnes A-CR, Ráki M, Brottveit M, Lundin KEA, Jahnsen FL, Sollid LM. Rapid accumulation of CD14+CD11c+ dendritic cells in gut mucosa of celiac disease after <em>in vivo</em> gluten challenge. PLoS ONE. (2012) 7:e33556. 10.1371/journal.pone.0033556</cite> [<a href="https://doi.org/10.1371/journal.pone.0033556" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3306402/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22438948/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=PLoS%20ONE&title=Rapid%20accumulation%20of%20CD14+CD11c+%20dendritic%20cells%20in%20gut%20mucosa%20of%20celiac%20disease%20after%20in%20vivo%20gluten%20challenge&author=A-CR%20Beitnes&author=M%20R%C3%A1ki&author=M%20Brottveit&author=KEA%20Lundin&author=FL%20Jahnsen&volume=7&publication_year=2012&pages=e33556&pmid=22438948&doi=10.1371/journal.pone.0033556&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B141"> <span class="label">141.</span><cite>Lavo B, Knutson L, Lööf L, Odlind B, Venge P, Hällgren R. Challenge with gliadin induces eosinophil and mast cell activation in the jejunum of patients with celiac disease. Am J Med. (1989) 87:655–60. 10.1016/S0002-9343(89)80399-7</cite> [<a href="https://doi.org/10.1016/S0002-9343(89)80399-7" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2589401/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Am%20J%20Med&title=Challenge%20with%20gliadin%20induces%20eosinophil%20and%20mast%20cell%20activation%20in%20the%20jejunum%20of%20patients%20with%20celiac%20disease&author=B%20Lavo&author=L%20Knutson&author=L%20L%C3%B6%C3%B6f&author=B%20Odlind&author=P%20Venge&volume=87&publication_year=1989&pages=655-60&pmid=2589401&doi=10.1016/S0002-9343(89)80399-7&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B142"> <span class="label">142.</span><cite>Lavö B, Knutson L, Lööf L, Hällgren R. Gliadin challenge-induced jejunal prostaglandin E2 secretion in celiac disease. Gastroenterology. (1990) 99:703–7. 10.1016/0016-5085(90)90958-4</cite> [<a href="https://doi.org/10.1016/0016-5085(90)90958-4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2379776/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gastroenterology&title=Gliadin%20challenge-induced%20jejunal%20prostaglandin%20E2%20secretion%20in%20celiac%20disease&author=B%20Lav%C3%B6&author=L%20Knutson&author=L%20L%C3%B6%C3%B6f&author=R%20H%C3%A4llgren&volume=99&publication_year=1990&pages=703-7&pmid=2379776&doi=10.1016/0016-5085(90)90958-4&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B143"> <span class="label">143.</span><cite>Diosdado B, van Bakel H, Strengman E, Franke L, van Oort E, Mulder CJ, et al. Neutrophil recruitment and barrier impairment in celiac disease: a genomic study. Clin Gastroenterol Hepatol. (2007) 5:574–81. 10.1016/j.cgh.2006.11.014</cite> [<a href="https://doi.org/10.1016/j.cgh.2006.11.014" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17336591/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Clin%20Gastroenterol%20Hepatol&title=Neutrophil%20recruitment%20and%20barrier%20impairment%20in%20celiac%20disease:%20a%20genomic%20study&author=B%20Diosdado&author=Bakel%20H%20van&author=E%20Strengman&author=L%20Franke&author=Oort%20E%20van&volume=5&publication_year=2007&pages=574-81&pmid=17336591&doi=10.1016/j.cgh.2006.11.014&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B144"> <span class="label">144.</span><cite>Lammers KM, Chieppa M, Liu L, Liu S, Omatsu T, Janka-Junttila M, et al. Gliadin induces neutrophil migration via engagement of the formyl peptide receptor, FPR1. PLoS ONE. (2015) 10:e0138338. 10.1371/journal.pone.0138338</cite> [<a href="https://doi.org/10.1371/journal.pone.0138338" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4574934/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26378785/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=PLoS%20ONE&title=Gliadin%20induces%20neutrophil%20migration%20via%20engagement%20of%20the%20formyl%20peptide%20receptor,%20FPR1&author=KM%20Lammers&author=M%20Chieppa&author=L%20Liu&author=S%20Liu&author=T%20Omatsu&volume=10&publication_year=2015&pages=e0138338&pmid=26378785&doi=10.1371/journal.pone.0138338&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B145"> <span class="label">145.</span><cite>Beitnes A-CR, Ráki M, Lundin KEA, Jahnsen J, Sollid LM, Jahnsen FL. Density of CD163+CD11c+ dendritic cells increases and CD103+ dendritic cells decreases in the coeliac lesion. Scand J Immunol. (2011) 74:186–194. 10.1111/j.1365-3083.2011.02549.x</cite> [<a href="https://doi.org/10.1111/j.1365-3083.2011.02549.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21392045/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Scand%20J%20Immunol&title=Density%20of%20CD163+CD11c+%20dendritic%20cells%20increases%20and%20CD103+%20dendritic%20cells%20decreases%20in%20the%20coeliac%20lesion&author=A-CR%20Beitnes&author=M%20R%C3%A1ki&author=KEA%20Lundin&author=J%20Jahnsen&author=LM%20Sollid&volume=74&publication_year=2011&pages=186-194&pmid=21392045&doi=10.1111/j.1365-3083.2011.02549.x&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B146"> <span class="label">146.</span><cite>Sollid LM, Molberg O, McAdam S, Lundin KE. Autoantibodies in coeliac disease: tissue transglutaminase–guilt by association? Gut. (1997) 41:851–2. 10.1136/gut.41.6.851</cite> [<a href="https://doi.org/10.1136/gut.41.6.851" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1891617/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9462222/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gut&title=Autoantibodies%20in%20coeliac%20disease:%20tissue%20transglutaminase%E2%80%93guilt%20by%20association?&author=LM%20Sollid&author=O%20Molberg&author=S%20McAdam&author=KE%20Lundin&volume=41&publication_year=1997&pages=851-2&pmid=9462222&doi=10.1136/gut.41.6.851&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B147"> <span class="label">147.</span><cite>Comerford R, Coates C, Byrne G, Lynch S, Dunne P, Dunne M, et al. Characterisation of tissue transglutaminase-reactive T cells from patients with coeliac disease and healthy controls. Clin Immunol. (2014) 154:155–63. 10.1016/j.clim.2014.08.001</cite> [<a href="https://doi.org/10.1016/j.clim.2014.08.001" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25131137/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Clin%20Immunol&title=Characterisation%20of%20tissue%20transglutaminase-reactive%20T%20cells%20from%20patients%20with%20coeliac%20disease%20and%20healthy%20controls&author=R%20Comerford&author=C%20Coates&author=G%20Byrne&author=S%20Lynch&author=P%20Dunne&volume=154&publication_year=2014&pages=155-63&pmid=25131137&doi=10.1016/j.clim.2014.08.001&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B148"> <span class="label">148.</span><cite>Ciccocioppo R, Finamore A, Mengheri E, Millimaggi D, Esslinger B, Dieterich W, et al. Isolation and characterization of circulating tissue transglutaminase-specific T cells in coeliac disease. Int J Immunopathol Pharmacol. (2010) 23:179–91. 10.1177/039463201002300116</cite> [<a href="https://doi.org/10.1177/039463201002300116" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20377989/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Int%20J%20Immunopathol%20Pharmacol&title=Isolation%20and%20characterization%20of%20circulating%20tissue%20transglutaminase-specific%20T%20cells%20in%20coeliac%20disease&author=R%20Ciccocioppo&author=A%20Finamore&author=E%20Mengheri&author=D%20Millimaggi&author=B%20Esslinger&volume=23&publication_year=2010&pages=179-91&pmid=20377989&doi=10.1177/039463201002300116&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B149"> <span class="label">149.</span><cite>Barnadas MA. Dermatitis herpetiformis: a review of direct immunofluorescence findings. Am J Dermatopathol. (2016) 38:283–8. 10.1097/DAD.0000000000000420</cite> [<a href="https://doi.org/10.1097/DAD.0000000000000420" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26630684/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Am%20J%20Dermatopathol&title=Dermatitis%20herpetiformis:%20a%20review%20of%20direct%20immunofluorescence%20findings&author=MA%20Barnadas&volume=38&publication_year=2016&pages=283-8&pmid=26630684&doi=10.1097/DAD.0000000000000420&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B150"> <span class="label">150.</span><cite>Samolitis NJ, Hull CM, Leiferman KM, Zone JJ. Dermatitis herpetiformis and partial IgA deficiency. J Am Acad Dermatol. (2006) 54:S206–9. 10.1016/j.jaad.2005.06.033</cite> [<a href="https://doi.org/10.1016/j.jaad.2005.06.033" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16631941/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Am%20Acad%20Dermatol&title=Dermatitis%20herpetiformis%20and%20partial%20IgA%20deficiency&author=NJ%20Samolitis&author=CM%20Hull&author=KM%20Leiferman&author=JJ%20Zone&volume=54&publication_year=2006&pages=S206-9&pmid=16631941&doi=10.1016/j.jaad.2005.06.033&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B151"> <span class="label">151.</span><cite>Halttunen T, Mäki M. Serum immunoglobulin a from patients with celiac disease inhibits human T84 intestinal crypt epithelial cell differentiation. Gastroenterology. (1999) 116:566–72. 10.1016/S0016-5085(99)70178-2</cite> [<a href="https://doi.org/10.1016/S0016-5085(99)70178-2" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10029615/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gastroenterology&title=Serum%20immunoglobulin%20a%20from%20patients%20with%20celiac%20disease%20inhibits%20human%20T84%20intestinal%20crypt%20epithelial%20cell%20differentiation&author=T%20Halttunen&author=M%20M%C3%A4ki&volume=116&publication_year=1999&pages=566-72&pmid=10029615&doi=10.1016/S0016-5085(99)70178-2&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B152"> <span class="label">152.</span><cite>Rauhavirta T, Qiao S-W, Jiang Z, Myrsky E, Loponen J, Korponay-Szabó IR, et al. Epithelial transport and deamidation of gliadin peptides: a role for coeliac disease patient immunoglobulin A. Clin Exp Immunol. (2011) 164:127–36. 10.1111/j.1365-2249.2010.04317.x</cite> [<a href="https://doi.org/10.1111/j.1365-2249.2010.04317.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3074225/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21235541/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Clin%20Exp%20Immunol&title=Epithelial%20transport%20and%20deamidation%20of%20gliadin%20peptides:%20a%20role%20for%20coeliac%20disease%20patient%20immunoglobulin%20A&author=T%20Rauhavirta&author=S-W%20Qiao&author=Z%20Jiang&author=E%20Myrsky&author=J%20Loponen&volume=164&publication_year=2011&pages=127-36&pmid=21235541&doi=10.1111/j.1365-2249.2010.04317.x&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B153"> <span class="label">153.</span><cite>Rauhavirta T, Hietikko M, Salmi T, Lindfors K. Transglutaminase 2 and transglutaminase 2 autoantibodies in celiac disease: a review. Clin Rev Allergy Immunol. (2016) 57:23–38. 10.1007/s12016-016-8557-4</cite> [<a href="https://doi.org/10.1007/s12016-016-8557-4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27263022/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Clin%20Rev%20Allergy%20Immunol&title=Transglutaminase%202%20and%20transglutaminase%202%20autoantibodies%20in%20celiac%20disease:%20a%20review&author=T%20Rauhavirta&author=M%20Hietikko&author=T%20Salmi&author=K%20Lindfors&volume=57&publication_year=2016&pages=23-38&pmid=27263022&doi=10.1007/s12016-016-8557-4&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B154"> <span class="label">154.</span><cite>Saalman R, Dahlgren UI, Fällström SP, Hanson LÅ, Ahlstedt S, Wold AE. IgG subclass profile of serum antigliadin antibodies and antibody-dependent cell-mediated cytotoxicity in young children with coeliac disease. Scand J Immunol. (2001) 53:92–98. 10.1046/j.1365-3083.2001.00848.x</cite> [<a href="https://doi.org/10.1046/j.1365-3083.2001.00848.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11169212/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Scand%20J%20Immunol&title=IgG%20subclass%20profile%20of%20serum%20antigliadin%20antibodies%20and%20antibody-dependent%20cell-mediated%20cytotoxicity%20in%20young%20children%20with%20coeliac%20disease&author=R%20Saalman&author=UI%20Dahlgren&author=SP%20F%C3%A4llstr%C3%B6m&author=L%C3%85%20Hanson&author=S%20Ahlstedt&volume=53&publication_year=2001&pages=92-98&pmid=11169212&doi=10.1046/j.1365-3083.2001.00848.x&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B155"> <span class="label">155.</span><cite>Gallagher RB, Cervi P, Kelly J, Dolan C, Weir DG, Feighery C. The subclass profile and complement activating potential of anti-alpha-gliadin antibodies in coeliac disease. J Clin Lab Immunol. (1989) 28:115–21. </cite> [<a href="https://pubmed.ncbi.nlm.nih.gov/2738909/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Clin%20Lab%20Immunol&title=The%20subclass%20profile%20and%20complement%20activating%20potential%20of%20anti-alpha-gliadin%20antibodies%20in%20coeliac%20disease&author=RB%20Gallagher&author=P%20Cervi&author=J%20Kelly&author=C%20Dolan&author=DG%20Weir&volume=28&publication_year=1989&pages=115-21&pmid=2738909&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B156"> <span class="label">156.</span><cite>Salmi TT, Hervonen K, Laurila K, Collin P, Mäki M, Koskinen O, et al. Small bowel transglutaminase 2-specific IgA deposits in dermatitis herpetiformis. Acta Derm Venereol. (2014) 94:393–7. 10.2340/00015555-1764</cite> [<a href="https://doi.org/10.2340/00015555-1764" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24352382/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Acta%20Derm%20Venereol&title=Small%20bowel%20transglutaminase%202-specific%20IgA%20deposits%20in%20dermatitis%20herpetiformis&author=TT%20Salmi&author=K%20Hervonen&author=K%20Laurila&author=P%20Collin&author=M%20M%C3%A4ki&volume=94&publication_year=2014&pages=393-7&pmid=24352382&doi=10.2340/00015555-1764&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B157"> <span class="label">157.</span><cite>Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, Faber-Krol MC, Stahl GL, Daha MR. Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol. (2001) 167:2861–8. 10.4049/jimmunol.167.5.2861</cite> [<a href="https://doi.org/10.4049/jimmunol.167.5.2861" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11509633/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Immunol&title=Human%20IgA%20activates%20the%20complement%20system%20via%20the%20mannan-binding%20lectin%20pathway&author=A%20Roos&author=LH%20Bouwman&author=Gijlswijk-Janssen%20DJ%20van&author=MC%20Faber-Krol&author=GL%20Stahl&volume=167&publication_year=2001&pages=2861-8&pmid=11509633&doi=10.4049/jimmunol.167.5.2861&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B158"> <span class="label">158.</span><cite>Sziksz E, Veres-Székely A, Pap D, Fekete A, Veres G, Tulassay T, et al. Mucosal Architectural Rearrangement in Coeliac Disease. Int J Celiac Dis. (2016) 2:89–92. 10.12691/ijcd-2-3-5</cite> [<a href="https://doi.org/10.12691/ijcd-2-3-5" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Int%20J%20Celiac%20Dis&title=Mucosal%20Architectural%20Rearrangement%20in%20Coeliac%20Disease&author=E%20Sziksz&author=A%20Veres-Sz%C3%A9kely&author=D%20Pap&author=A%20Fekete&author=G%20Veres&volume=2&publication_year=2016&pages=89-92&doi=10.12691/ijcd-2-3-5&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B159"> <span class="label">159.</span><cite>Ciccocioppo R, Di Sabatino A, Bauer M, Della Riccia DN, Bizzini F, Biagi F, et al. Matrix metalloproteinase pattern in celiac duodenal mucosa. Lab Invest. (2005) 85:397–407. 10.1038/labinvest.3700225</cite> [<a href="https://doi.org/10.1038/labinvest.3700225" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15608660/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Lab%20Invest&title=Matrix%20metalloproteinase%20pattern%20in%20celiac%20duodenal%20mucosa&author=R%20Ciccocioppo&author=Sabatino%20A%20Di&author=M%20Bauer&author=Riccia%20DN%20Della&author=F%20Bizzini&volume=85&publication_year=2005&pages=397-407&pmid=15608660&doi=10.1038/labinvest.3700225&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B160"> <span class="label">160.</span><cite>Mohamed BM, Feighery C, Kelly J, Coates C, O'Shea U, Barnes L, et al. Increased protein expression of matrix metalloproteinases -1, -3, and -9 and TIMP-1 in patients with gluten-sensitive enteropathy. Dig Dis Sci. (2006) 51:1862–8. 10.1007/s10620-005-9038-4</cite> [<a href="https://doi.org/10.1007/s10620-005-9038-4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16964549/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Dig%20Dis%20Sci&title=Increased%20protein%20expression%20of%20matrix%20metalloproteinases%20-1,%20-3,%20and%20-9%20and%20TIMP-1%20in%20patients%20with%20gluten-sensitive%20enteropathy&author=BM%20Mohamed&author=C%20Feighery&author=J%20Kelly&author=C%20Coates&author=U%20O'Shea&volume=51&publication_year=2006&pages=1862-8&pmid=16964549&doi=10.1007/s10620-005-9038-4&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B161"> <span class="label">161.</span><cite>Lahdenperä AI, Fälth-Magnusson K, Högberg L, Ludvigsson J, Vaarala O. Expression pattern of T-helper 17 cell signaling pathway and mucosal inflammation in celiac disease. Scand J Gastroenterol. (2014) 49:145–56. 10.3109/00365521.2013.863966</cite> [<a href="https://doi.org/10.3109/00365521.2013.863966" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24325470/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Scand%20J%20Gastroenterol&title=Expression%20pattern%20of%20T-helper%2017%20cell%20signaling%20pathway%20and%20mucosal%20inflammation%20in%20celiac%20disease&author=AI%20Lahdenper%C3%A4&author=K%20F%C3%A4lth-Magnusson&author=L%20H%C3%B6gberg&author=J%20Ludvigsson&author=O%20Vaarala&volume=49&publication_year=2014&pages=145-56&pmid=24325470&doi=10.3109/00365521.2013.863966&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B162"> <span class="label">162.</span><cite>Simmons JG, Pucilowska JB, Keku TO, Lund PK. IGF-I and TGF-beta1 have distinct effects on phenotype and proliferation of intestinal fibroblasts. Am J Physiol Gastrointest Liver Physiol. (2002) 283:G809–18. 10.1152/ajpgi.00057.2002</cite> [<a href="https://doi.org/10.1152/ajpgi.00057.2002" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12181198/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Am%20J%20Physiol%20Gastrointest%20Liver%20Physiol&title=IGF-I%20and%20TGF-beta1%20have%20distinct%20effects%20on%20phenotype%20and%20proliferation%20of%20intestinal%20fibroblasts&author=JG%20Simmons&author=JB%20Pucilowska&author=TO%20Keku&author=PK%20Lund&volume=283&publication_year=2002&pages=G809-18&pmid=12181198&doi=10.1152/ajpgi.00057.2002&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B163"> <span class="label">163.</span><cite>Bamba S, Andoh A, Yasui H, Araki Y, Bamba T, Fujiyama Y. Matrix metalloproteinase-3 secretion from human colonic subepithelial myofibroblasts: role of interleukin-17. J Gastroenterol. (2003) 38:548–54. 10.1007/s00535-002-1101-8</cite> [<a href="https://doi.org/10.1007/s00535-002-1101-8" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12825130/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Gastroenterol&title=Matrix%20metalloproteinase-3%20secretion%20from%20human%20colonic%20subepithelial%20myofibroblasts:%20role%20of%20interleukin-17&author=S%20Bamba&author=A%20Andoh&author=H%20Yasui&author=Y%20Araki&author=T%20Bamba&volume=38&publication_year=2003&pages=548-54&pmid=12825130&doi=10.1007/s00535-002-1101-8&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B164"> <span class="label">164.</span><cite>O'Keeffe J, Lynch S, Whelan A, Jackson J, Kennedy NP, Weir DG, et al. Flow cytometric measurement of intracellular migration inhibition factor and tumour necrosis factor alpha in the mucosa of patients with coeliac disease. Clin Exp Immunol. (2001) 125:376–82. 10.1046/j.1365-2249.2001.01594.x</cite> [<a href="https://doi.org/10.1046/j.1365-2249.2001.01594.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1906145/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11531944/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Clin%20Exp%20Immunol&title=Flow%20cytometric%20measurement%20of%20intracellular%20migration%20inhibition%20factor%20and%20tumour%20necrosis%20factor%20alpha%20in%20the%20mucosa%20of%20patients%20with%20coeliac%20disease&author=J%20O'Keeffe&author=S%20Lynch&author=A%20Whelan&author=J%20Jackson&author=NP%20Kennedy&volume=125&publication_year=2001&pages=376-82&pmid=11531944&doi=10.1046/j.1365-2249.2001.01594.x&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B165"> <span class="label">165.</span><cite>Monteleone G, Caruso R, Fina D, Peluso I, Gioia V, Stolfi C, et al. Control of matrix metalloproteinase production in human intestinal fibroblasts by interleukin 21. Gut. (2006) 55:1774–80. 10.1136/gut.2006.093187</cite> [<a href="https://doi.org/10.1136/gut.2006.093187" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1856468/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16682426/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gut&title=Control%20of%20matrix%20metalloproteinase%20production%20in%20human%20intestinal%20fibroblasts%20by%20interleukin%2021&author=G%20Monteleone&author=R%20Caruso&author=D%20Fina&author=I%20Peluso&author=V%20Gioia&volume=55&publication_year=2006&pages=1774-80&pmid=16682426&doi=10.1136/gut.2006.093187&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B166"> <span class="label">166.</span><cite>Roncoroni L, Elli L, Bardella MT, Perrucci G, Ciulla M, Lombardo V, et al. Extracellular matrix proteins and displacement of cultured fibroblasts from duodenal biopsies in celiac patients and controls. J Transl Med. (2013) 11:91. 10.1186/1479-5876-11-91</cite> [<a href="https://doi.org/10.1186/1479-5876-11-91" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3637115/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23566365/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Transl%20Med&title=Extracellular%20matrix%20proteins%20and%20displacement%20of%20cultured%20fibroblasts%20from%20duodenal%20biopsies%20in%20celiac%20patients%20and%20controls&author=L%20Roncoroni&author=L%20Elli&author=MT%20Bardella&author=G%20Perrucci&author=M%20Ciulla&volume=11&publication_year=2013&pages=91&pmid=23566365&doi=10.1186/1479-5876-11-91&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B167"> <span class="label">167.</span><cite>Saada JI, Pinchuk I V, Barrera CA, Adegboyega PA, Suarez G, Mifflin RC, et al. Subepithelial myofibroblasts are novel nonprofessional APCs in the human colonic mucosa. J Immunol. (2006) 177:5968–79. 10.4049/jimmunol.177.9.5968</cite> [<a href="https://doi.org/10.4049/jimmunol.177.9.5968" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17056521/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Immunol&title=Subepithelial%20myofibroblasts%20are%20novel%20nonprofessional%20APCs%20in%20the%20human%20colonic%20mucosa&author=JI%20Saada&author=I%20V%20Pinchuk&author=CA%20Barrera&author=PA%20Adegboyega&author=G%20Suarez&volume=177&publication_year=2006&pages=5968-79&pmid=17056521&doi=10.4049/jimmunol.177.9.5968&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B168"> <span class="label">168.</span><cite>Pinchuk IV, Beswick EJ, Saada JI, Boya G, Schmitt D, Raju GS, et al. Human colonic myofibroblasts promote expansion of CD4+ CD25 high foxp3+ regulatory T cells. Gastroenterology. (2011) 140:2019–30. 10.1053/j.gastro.2011.02.059</cite> [<a href="https://doi.org/10.1053/j.gastro.2011.02.059" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3109194/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21376048/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gastroenterology&title=Human%20colonic%20myofibroblasts%20promote%20expansion%20of%20CD4+%20CD25%20high%20foxp3+%20regulatory%20T%20cells&author=IV%20Pinchuk&author=EJ%20Beswick&author=JI%20Saada&author=G%20Boya&author=D%20Schmitt&volume=140&publication_year=2011&pages=2019-30&pmid=21376048&doi=10.1053/j.gastro.2011.02.059&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> </ul></section></section></section><footer class="p courtesy-note font-secondary font-sm text-center"><hr class="headless"> <p>Articles from Frontiers in Immunology are provided here courtesy of <strong>Frontiers Media SA</strong></p></footer></section></article> </main> </div> </div> </div> <!-- Secondary navigation placeholder --> <div class="pmc-sidenav desktop:grid-col-4 display-flex"> <section class="pmc-sidenav__container" aria-label="Article resources and navigation"> <button type="button" class="usa-button pmc-sidenav__container__close usa-button--unstyled"> <img src="/static/img/usa-icons/close.svg" role="img" alt="Close" /> </button> <div class="display-none desktop:display-block"> <section class="margin-top-4 desktop:margin-top-0"> <h2 class="margin-top-0">ACTIONS</h2> <ul class="usa-list usa-list--unstyled usa-list--actions"> <li> <a href="https://doi.org/10.3389/fimmu.2020.01374" class="usa-button usa-button--outline width-24 font-xs usa-link--external padding-left-0 padding-right-0" target="_blank" rel="noreferrer noopener" data-ga-category="actions" data-ga-action="click" data-ga-label="publisher_link_desktop" > <span class="height-3 display-inline-flex flex-align-center">View on publisher site</span> </a> </li> <li> <a href="pdf/fimmu-11-01374.pdf" class="usa-button usa-button--outline width-24 display-inline-flex flex-align-center flex-justify-start padding-left-1" data-ga-category="actions" data-ga-action="click" data-ga-label="pdf_download_desktop" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1">PDF (1.3 MB)</span> </a> </li> <li> <button role="button" class="usa-button width-24 citation-dialog-trigger display-inline-flex flex-align-center flex-justify-start padding-left-1" aria-label="Open dialog with citation text in different styles" data-ga-category="actions" data-ga-action="open" data-ga-label="cite_desktop" data-all-citations-url="/resources/citations/7360848/" data-citation-style="nlm" data-download-format-link="/resources/citations/7360848/export/" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#format_quote"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1 button-label">Cite</span> </button> </li> <li> <button class="usa-button width-24 collections-dialog-trigger collections-button display-inline-flex flex-align-center flex-justify-start padding-left-1 collections-button-empty" aria-label="Save article in MyNCBI collections." data-ga-category="actions" data-ga-action="click" data-ga-label="collections_button_desktop" data-collections-open-dialog-enabled="false" data-collections-open-dialog-url="https://account.ncbi.nlm.nih.gov/?back_url=https%3A%2F%2Fpmc.ncbi.nlm.nih.gov%2Farticles%2FPMC7360848%2F%23open-collections-dialog" data-in-collections="false"> <svg class="usa-icon width-3 height-3 usa-icon--bookmark-full" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-full.svg#icon"></use> </svg> <svg class="usa-icon width-3 height-3 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-empty.svg#icon"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1">Collections</span> </button> </li> <li class="pmc-permalink"> <button type="button" class="usa-button usa-button--outline width-24 display-inline-flex flex-align-center flex-justify padding-left-1 shadow-none" aria-label="Show article permalink" aria-expanded="false" aria-haspopup="true" data-ga-category="actions" data-ga-action="open" data-ga-label="permalink_desktop" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#share"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1 button-label">Permalink</span> </button> <div class="pmc-permalink__dropdown" hidden> <div class="pmc-permalink__dropdown__container"> <h2 class="usa-modal__heading margin-top-0 margin-bottom-2">PERMALINK</h2> <div class="pmc-permalink__dropdown__content"> <input type="text" class="usa-input" value="https://pmc.ncbi.nlm.nih.gov/articles/PMC7360848/" aria-label="Article permalink"> <button class="usa-button display-inline-flex pmc-permalink__dropdown__copy__btn margin-right-0" title="Copy article permalink" data-ga-category="save_share" data-ga-action="link" data-ga-label="copy_link"> <svg class="usa-icon" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span class="margin-left-1">Copy</span> </button> </div> </div> </div> </li> </ul> </section> </div> <section class="pmc-resources margin-top-6 desktop:margin-top-4" data-page-path="/articles/PMC7360848/"> <h2 class="margin-top-0">RESOURCES</h2> <div class="usa-accordion usa-accordion--multiselectable" data-allow-multiple> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-similar-articles" data-ga-category="resources_accordion" data-ga-action="open_similar_articles" data-ga-label="/articles/PMC7360848/" data-action-open="open_similar_articles" data-action-close="close_similar_articles" > Similar articles </button> </h3> <div id="resources-similar-articles" class="usa-accordion__content usa-prose" data-source-url="/resources/similar-article-links/32733456/" > </div> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-cited-by-other-articles" data-ga-category="resources_accordion" data-ga-action="open_cited_by" data-ga-label="/articles/PMC7360848/" data-action-open="open_cited_by" data-action-close="close_cited_by" > Cited by other articles </button> </h3> <div id="resources-cited-by-other-articles" class="usa-accordion__content usa-prose" data-source-url="/resources/cited-by-links/32733456/" > </div> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-links-to-ncbi-databases" data-ga-category="resources_accordion" data-ga-action="open_NCBI_links" data-ga-label="/articles/PMC7360848/" data-action-open="open_NCBI_links" data-action-close="close_NCBI_link" > Links to NCBI Databases </button> </h3> <div id="resources-links-to-ncbi-databases" class="usa-accordion__content usa-prose" data-source-url="/resources/db-links/7360848/" > </div> </div> </section> <section class="usa-in-page-nav usa-in-page-nav--wide margin-top-6 desktop:margin-top-4" data-title-text="On this page" data-title-heading-level="h2" data-scroll-offset="0" data-root-margin="-10% 0px -80% 0px" data-main-content-selector="main" data-threshold="1" hidden ></section> </section> </div> <div class="overlay" role="dialog" aria-label="Citation Dialog" hidden> <div class="dialog citation-dialog" aria-hidden="true"> <div class="display-inline-flex flex-align-center flex-justify width-full margin-bottom-2"> <h2 class="usa-modal__heading margin-0">Cite</h2> <button type="button" class="usa-button usa-button--unstyled close-overlay text-black width-auto" tabindex="1"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#close"></use> </svg> </button> </div> <div class="citation-text-block"> <div class="citation-text margin-bottom-2"></div> <ul class="usa-list usa-list--unstyled display-inline-flex flex-justify width-full flex-align-center"> <li> <button class="usa-button usa-button--unstyled text-no-underline display-flex flex-align-center copy-button dialog-focus" data-ga-category="save_share" data-ga-action="cite" data-ga-label="copy" tabindex="2"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span>Copy</span> </button> </li> <li> <a href="#" role="button" class="usa-button usa-button--unstyled text-no-underline display-flex flex-align-center export-button" data-ga-category="save_share" data-ga-action="cite" data-ga-label="download" title="Download a file for external citation management software" tabindex="3"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> <span class="display-none mobile-lg:display-inline">Download .nbib</span> <span class="display-inline mobile-lg:display-none">.nbib</span> </a> </li> <li> <div class="display-inline-flex flex-align-center"> <label class="usa-label margin-top-0">Format:</label> <select aria-label="Format" class="usa-select citation-style-selector padding-1 margin-top-0 border-0 padding-right-4" tabindex="4" > <option data-style-url-name="ama" value="AMA" > AMA </option> <option data-style-url-name="apa" value="APA" > APA </option> <option data-style-url-name="mla" value="MLA" > MLA </option> <option data-style-url-name="nlm" value="NLM" selected="selected"> NLM </option> </select> </div> </li> </ul> </div> </div> </div> <div class="overlay" role="dialog" hidden> <div id="collections-action-dialog" class="dialog collections-dialog" aria-hidden="true"> <div class="display-inline-flex flex-align-center flex-justify width-full margin-bottom-2"> <h2 class="usa-modal__heading margin-0">Add to Collections</h2> </div> <div class="collections-action-panel action-panel"> <form id="collections-action-dialog-form" class="usa-form maxw-full collections-action-panel-form action-panel-content action-form action-panel-smaller-selectors" data-existing-collections-url="/list-existing-collections/" data-add-to-existing-collection-url="/add-to-existing-collection/" data-create-and-add-to-new-collection-url="/create-and-add-to-new-collection/" data-myncbi-max-collection-name-length="100" data-collections-root-url="https://www.ncbi.nlm.nih.gov/myncbi/collections/"> <input type="hidden" name="csrfmiddlewaretoken" value="R8Uo4AlJr08JYkhGk8UCiiI6GXyyI750FmvJbKmAFGQqh87YGIhvVlfFPEvzSSg1"> <fieldset class="usa-fieldset margin-bottom-2"> <div class="usa-radio"> <input type="radio" id="collections-action-dialog-new" class="usa-radio__input usa-radio__input--tile collections-new margin-top-0" name="collections" value="new" data-ga-category="collections_button" data-ga-action="click" data-ga-label="collections_radio_new" /> <label class="usa-radio__label" for="collections-action-dialog-new">Create a new collection</label> </div> <div class="usa-radio"> <input type="radio" id="collections-action-dialog-existing" class="usa-radio__input usa-radio__input--tile collections-existing" name="collections" value="existing" checked="true" data-ga-category="collections_button" data-ga-action="click" data-ga-label="collections_radio_existing" /> <label class="usa-radio__label" for="collections-action-dialog-existing">Add to an existing collection</label> </div> </fieldset> <fieldset class="usa-fieldset margin-bottom-2"> <div class="action-panel-control-wrap new-collections-controls"> <label for="collections-action-dialog-add-to-new" class="usa-label margin-top-0"> Name your collection <abbr title="required" class="usa-hint usa-hint--required text-no-underline">*</abbr> </label> <input type="text" name="add-to-new-collection" id="collections-action-dialog-add-to-new" class="usa-input collections-action-add-to-new" pattern="[^"&=<>/]*" title="The following characters are not allowed in the Name field: "&=<>/" maxlength="" data-ga-category="collections_button" data-ga-action="create_collection" data-ga-label="non_favorties_collection" required /> </div> <div class="action-panel-control-wrap existing-collections-controls"> <label for="collections-action-dialog-add-to-existing" class="usa-label margin-top-0"> Choose a collection </label> <select id="collections-action-dialog-add-to-existing" class="usa-select collections-action-add-to-existing" data-ga-category="collections_button" data-ga-action="select_collection" data-ga-label="($('.collections-action-add-to-existing').val() === 'Favorites') ? 'Favorites' : 'non_favorites_collection'"> </select> <div class="collections-retry-load-on-error usa-input-error-message selection-validation-message"> Unable to load your collection due to an error<br> <a href="#">Please try again</a> </div> </div> </fieldset> <div class="display-inline-flex"> <button class="usa-button margin-top-0 action-panel-submit" type="submit" data-loading-label="Adding..." data-pinger-ignore data-ga-category="collections_button" data-ga-action="click" data-ga-label="add"> Add </button> <button class="usa-button usa-button--outline margin-top-0 action-panel-cancel" aria-label="Close 'Add to Collections' panel" ref="linksrc=close_collections_panel" data-ga-category="collections_button" data-ga-action="click" data-ga-label="cancel"> Cancel </button> </div> </form> </div> </div> </div> </div> </div> </div> <footer class="ncbi-footer ncbi-dark-background " > <div class="ncbi-footer__icon-section"> <div class="ncbi-footer__social-header"> Follow NCBI </div> <div class="grid-container ncbi-footer__ncbi-social-icons-container"> <a href="https://twitter.com/ncbi" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="40" height="40" viewBox="0 0 40 40" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="m6.067 8 10.81 13.9L6 33.2h4.2l8.4-9.1 7.068 9.1H34L22.8 18.5 31.9 8h-3.5l-7.7 8.4L14.401 8H6.067Zm3.6 1.734h3.266l16.8 21.732H26.57L9.668 9.734Z"> </path> </svg> <span class="usa-sr-only">NCBI on X (formerly known as Twitter)</span> </a> <a href="https://www.facebook.com/ncbi.nlm" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="16" height="29" focusable="false" aria-hidden="true" viewBox="0 0 16 29" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M3.8809 21.4002C3.8809 19.0932 3.8809 16.7876 3.8809 14.478C3.8809 14.2117 3.80103 14.1452 3.54278 14.1492C2.53372 14.1638 1.52334 14.1492 0.514288 14.1598C0.302626 14.1598 0.248047 14.0972 0.248047 13.8936C0.256034 12.4585 0.256034 11.0239 0.248047 9.58978C0.248047 9.37013 0.302626 9.30224 0.528931 9.3049C1.53798 9.31688 2.54837 9.3049 3.55742 9.31555C3.80103 9.31555 3.8809 9.26097 3.87957 9.00272C3.87158 8.00565 3.85428 7.00592 3.90753 6.00884C3.97142 4.83339 4.31487 3.73115 5.04437 2.78467C5.93095 1.63318 7.15699 1.09005 8.56141 0.967577C10.5582 0.79319 12.555 0.982221 14.5518 0.927641C14.7102 0.927641 14.7462 0.99287 14.7449 1.13664C14.7449 2.581 14.7449 4.02668 14.7449 5.47104C14.7449 5.67604 14.6517 5.68669 14.4946 5.68669C13.4523 5.68669 12.4113 5.68669 11.3703 5.68669C10.3506 5.68669 9.92057 6.10868 9.90593 7.13904C9.89661 7.7647 9.91525 8.39303 9.89794 9.01869C9.88995 9.26364 9.96583 9.31822 10.2015 9.31688C11.7204 9.30623 13.2393 9.31688 14.7595 9.3049C15.0257 9.3049 15.0723 9.3728 15.0444 9.62439C14.89 10.9849 14.7515 12.3467 14.6144 13.7085C14.5691 14.1571 14.5785 14.1585 14.1458 14.1585C12.8386 14.1585 11.5313 14.1665 10.2254 14.1518C9.95119 14.1518 9.89794 14.2317 9.89794 14.4899C9.90593 19.0799 9.89794 23.6752 9.91125 28.2612C9.91125 28.5674 9.8407 28.646 9.53186 28.6433C7.77866 28.6273 6.02414 28.6366 4.27094 28.634C3.82499 28.634 3.87158 28.6992 3.87158 28.22C3.87602 25.9472 3.87913 23.6739 3.8809 21.4002Z"> </path> </svg> <span class="usa-sr-only">NCBI on Facebook</span> </a> <a href="https://www.linkedin.com/company/ncbinlm" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="25" height="23" viewBox="0 0 26 24" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M14.6983 9.98423C15.6302 9.24808 16.5926 8.74754 17.6762 8.51991C19.673 8.09126 21.554 8.30824 23.1262 9.7526C24.2351 10.7723 24.7529 12.1115 25.0165 13.5612C25.1486 14.3363 25.2105 15.1218 25.2015 15.9081C25.2015 18.3043 25.2015 20.6898 25.2082 23.0806C25.2082 23.3468 25.1549 23.444 24.8621 23.4414C23.1297 23.4272 21.3992 23.4272 19.6704 23.4414C19.4041 23.4414 19.3429 23.3588 19.3442 23.1019C19.3535 20.5194 19.3442 17.9368 19.3442 15.3543C19.3442 14.0005 18.3258 12.9448 17.0266 12.9488C15.7273 12.9528 14.6983 14.0071 14.6983 15.361C14.6983 17.9328 14.6917 20.5047 14.6983 23.0753C14.6983 23.3708 14.6198 23.444 14.3296 23.4427C12.6185 23.4294 10.9079 23.4294 9.19779 23.4427C8.93155 23.4427 8.86099 23.3735 8.86232 23.1086C8.8783 19.7619 8.88628 16.4144 8.88628 13.066C8.88628 11.5688 8.87874 10.0708 8.86365 8.57182C8.86365 8.3575 8.90758 8.27896 9.14054 8.28029C10.9048 8.29094 12.6687 8.29094 14.4321 8.28029C14.6464 8.28029 14.6983 8.34818 14.6983 8.54653C14.6903 9.00047 14.6983 9.45441 14.6983 9.98423Z"> </path> <path d="M6.55316 15.8443C6.55316 18.2564 6.55316 20.6699 6.55316 23.082C6.55316 23.3629 6.48127 23.4388 6.19906 23.4374C4.47737 23.4241 2.75568 23.4241 1.03399 23.4374C0.767751 23.4374 0.69986 23.3629 0.701191 23.1006C0.709178 18.2648 0.709178 13.4281 0.701191 8.59053C0.701191 8.34026 0.765089 8.27237 1.01669 8.2737C2.74991 8.28435 4.48048 8.28435 6.20838 8.2737C6.47462 8.2737 6.5465 8.33627 6.54517 8.6065C6.54783 11.0186 6.55316 13.4308 6.55316 15.8443Z"> </path> <path d="M3.65878 0.243898C5.36804 0.243898 6.58743 1.45529 6.58743 3.1406C6.58743 4.75801 5.32145 5.95742 3.60819 5.96807C3.22177 5.97614 2.83768 5.90639 2.47877 5.76299C2.11985 5.61959 1.79344 5.40546 1.51897 5.13334C1.24449 4.86123 1.02755 4.53668 0.881058 4.17902C0.734563 3.82136 0.661505 3.43788 0.666231 3.05141C0.67555 1.42601 1.9362 0.242566 3.65878 0.243898Z"> </path> </svg> <span class="usa-sr-only">NCBI on LinkedIn</span> </a> <a href="https://github.com/ncbi" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="28" height="27" viewBox="0 0 28 28" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M16.7228 20.6334C17.5057 20.5527 18.2786 20.3944 19.0301 20.1608C21.3108 19.4193 22.5822 17.8259 22.963 15.4909C23.1228 14.5112 23.1814 13.5287 22.9883 12.5437C22.8106 11.6423 22.4013 10.8028 21.8007 10.1076C21.7526 10.0605 21.7197 10 21.7064 9.934C21.6931 9.86799 21.7 9.79952 21.7262 9.73748C22.0856 8.6206 21.9711 7.51969 21.601 6.42677C21.582 6.3497 21.5345 6.2827 21.468 6.23923C21.4016 6.19577 21.3211 6.17906 21.2429 6.19248C20.7329 6.21649 20.2313 6.33051 19.7611 6.52928C19.1103 6.7908 18.4899 7.12198 17.9104 7.51703C17.84 7.56996 17.7581 7.60551 17.6713 7.62078C17.5846 7.63605 17.4954 7.6306 17.4112 7.60489C15.2596 7.05882 13.0054 7.06203 10.8554 7.61421C10.7806 7.63586 10.7018 7.63967 10.6253 7.62534C10.5487 7.611 10.4766 7.57892 10.4148 7.53167C9.64788 7.03247 8.85171 6.58918 7.96368 6.33359C7.65781 6.24338 7.34123 6.19458 7.02239 6.18849C6.94879 6.17986 6.87462 6.19893 6.81432 6.242C6.75402 6.28507 6.71191 6.34904 6.69621 6.42145C6.32342 7.51437 6.2209 8.61527 6.56307 9.73348C6.59635 9.84264 6.64694 9.93316 6.54177 10.0516C5.47666 11.2604 5.09988 12.6834 5.19574 14.2676C5.2663 15.4244 5.46201 16.5466 6.01454 17.5769C6.84399 19.1171 8.21664 19.9119 9.85158 20.3352C10.3938 20.4706 10.9444 20.5698 11.4998 20.632C11.5384 20.7492 11.4506 20.7798 11.408 20.8291C11.1734 21.1179 10.9894 21.4441 10.8634 21.7942C10.7622 22.0458 10.8315 22.4039 10.6065 22.5516C10.263 22.7766 9.83827 22.8485 9.42421 22.8871C8.17936 23.0056 7.26471 22.4877 6.6283 21.4348C6.25552 20.8184 5.76956 20.3325 5.08523 20.0663C4.76981 19.9325 4.42139 19.8967 4.08537 19.9638C3.7898 20.029 3.73788 20.1901 3.93891 20.4111C4.03639 20.5234 4.14989 20.6207 4.27575 20.6999C4.9796 21.1318 5.51717 21.7884 5.80152 22.5636C6.37002 23.9973 7.48039 24.5697 8.93825 24.6323C9.43741 24.6575 9.93768 24.615 10.4254 24.5058C10.5892 24.4672 10.6531 24.4872 10.6517 24.6762C10.6451 25.4936 10.6637 26.3123 10.6517 27.131C10.6517 27.6635 10.1684 27.9297 9.58663 27.7393C8.17396 27.2671 6.84977 26.5631 5.66838 25.656C2.59555 23.2891 0.720966 20.1861 0.217704 16.3376C-0.357453 11.9127 0.911353 8.00824 3.98551 4.73881C6.11909 2.42656 8.99932 0.939975 12.1203 0.540191C16.5351 -0.0601815 20.4347 1.14323 23.7232 4.16373C26.2449 6.47869 27.724 9.37672 28.1048 12.7726C28.5828 17.0325 27.3686 20.7945 24.4768 23.9827C22.9762 25.6323 21.0956 26.8908 18.9982 27.6488C18.8783 27.6927 18.7585 27.738 18.636 27.7726C18.0356 27.9404 17.6189 27.6395 17.6189 27.0098C17.6189 25.7452 17.6308 24.4806 17.6295 23.2159C17.6329 22.9506 17.6128 22.6856 17.5696 22.4238C17.4325 21.6664 17.3419 21.484 16.7228 20.6334Z"> </path> </svg> <span class="usa-sr-only">NCBI on GitHub</span> </a> <a href="https://ncbiinsights.ncbi.nlm.nih.gov/" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="26" height="26" viewBox="0 0 27 27" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M23.7778 26.4574C23.1354 26.3913 22.0856 26.8024 21.636 26.3087C21.212 25.8444 21.4359 24.8111 21.324 24.0347C19.9933 14.8323 14.8727 8.80132 6.09057 5.85008C4.37689 5.28406 2.58381 4.99533 0.779072 4.99481C0.202773 4.99481 -0.0229751 4.83146 0.00455514 4.21479C0.0660406 3.08627 0.0660406 1.95525 0.00455514 0.826734C-0.0413285 0.0815827 0.259669 -0.0193618 0.896534 0.00266238C6.96236 0.222904 12.3693 2.24179 16.9889 6.16209C22.9794 11.2478 26.1271 17.7688 26.4372 25.648C26.4629 26.294 26.3179 26.5271 25.6609 26.4684C25.0827 26.417 24.4991 26.4574 23.7778 26.4574Z"> </path> <path d="M14.8265 26.441C14.0924 26.441 13.2371 26.6795 12.6626 26.3786C12.0092 26.0372 12.3781 25.0644 12.246 24.378C11.1154 18.5324 6.6849 14.5497 0.74755 14.1001C0.217135 14.0615 -0.0104482 13.9422 0.0134113 13.3659C0.0519536 12.1454 0.0482829 10.9213 0.0134113 9.69524C-0.00127145 9.14464 0.196946 9.03268 0.703502 9.04736C9.21217 9.27128 16.5994 16.2511 17.2804 24.7231C17.418 26.4446 17.418 26.4446 15.6579 26.4446H14.832L14.8265 26.441Z"> </path> <path d="M3.58928 26.4555C2.64447 26.4618 1.73584 26.0925 1.06329 25.4289C0.39073 24.7653 0.00933763 23.8617 0.0030097 22.9169C-0.00331824 21.9721 0.365937 21.0635 1.02954 20.3909C1.69315 19.7184 2.59675 19.337 3.54156 19.3306C4.48637 19.3243 5.39499 19.6936 6.06755 20.3572C6.7401 21.0208 7.1215 21.9244 7.12782 22.8692C7.13415 23.814 6.7649 24.7226 6.10129 25.3952C5.43768 26.0677 4.53409 26.4491 3.58928 26.4555Z"> </path> </svg> <span class="usa-sr-only">NCBI RSS feed</span> </a> </div> </div> <div data-testid="gridContainer" class="grid-container ncbi-footer__container"> <div class="grid-row ncbi-footer__main-content-container" data-testid="grid"> <div class="ncbi-footer__column"> <p class="ncbi-footer__circled-icons-heading"> Connect with NLM </p> <div class="ncbi-footer__circled-icons-list"> <a href=https://twitter.com/nlm_nih class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="32" height="32" viewBox="0 0 40 40" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="m6.067 8 10.81 13.9L6 33.2h4.2l8.4-9.1 7.068 9.1H34L22.8 18.5 31.9 8h-3.5l-7.7 8.4L14.401 8H6.067Zm3.6 1.734h3.266l16.8 21.732H26.57L9.668 9.734Z"> </path> </svg> <span class="usa-sr-only">NLM on X (formerly known as Twitter)</span> </a> <a href=https://www.facebook.com/nationallibraryofmedicine class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="13" height="24" viewBox="0 0 13 24" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M4.11371 23.1369C4.11371 23.082 4.11371 23.0294 4.11371 22.9745V12.9411H0.817305C0.6709 12.9411 0.670898 12.9411 0.670898 12.8016C0.670898 11.564 0.670898 10.3287 0.670898 9.09341C0.670898 8.97903 0.705213 8.95158 0.815017 8.95158C1.8673 8.95158 2.91959 8.95158 3.97417 8.95158H4.12057V8.83263C4.12057 7.8055 4.12057 6.7738 4.12057 5.74897C4.1264 4.92595 4.31387 4.11437 4.66959 3.37217C5.12916 2.38246 5.94651 1.60353 6.95717 1.1921C7.64827 0.905008 8.3913 0.764035 9.13953 0.778051C10.0019 0.791777 10.8644 0.830666 11.7268 0.860404C11.8869 0.860404 12.047 0.894717 12.2072 0.90158C12.2964 0.90158 12.3261 0.940469 12.3261 1.02968C12.3261 1.5421 12.3261 2.05452 12.3261 2.56465C12.3261 3.16857 12.3261 3.7725 12.3261 4.37642C12.3261 4.48165 12.2964 4.51367 12.1912 4.51138C11.5369 4.51138 10.8804 4.51138 10.2261 4.51138C9.92772 4.51814 9.63058 4.5526 9.33855 4.61433C9.08125 4.6617 8.84537 4.78881 8.66431 4.97766C8.48326 5.16652 8.3662 5.40755 8.32972 5.66661C8.28476 5.89271 8.26027 6.1224 8.25652 6.35289C8.25652 7.19014 8.25652 8.02969 8.25652 8.86923C8.25652 8.89439 8.25652 8.91955 8.25652 8.95615H12.0219C12.1797 8.95615 12.182 8.95616 12.1614 9.10714C12.0768 9.76596 11.9876 10.4248 11.9029 11.0813C11.8312 11.6319 11.7626 12.1824 11.697 12.733C11.6719 12.9434 11.6787 12.9434 11.4683 12.9434H8.26338V22.899C8.26338 22.979 8.26338 23.0591 8.26338 23.1392L4.11371 23.1369Z"> </path> </svg> <span class="usa-sr-only">NLM on Facebook</span> </a> <a href=https://www.youtube.com/user/NLMNIH class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="21" height="15" viewBox="0 0 21 15" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M19.2561 1.47914C18.9016 1.15888 18.5699 0.957569 17.2271 0.834039C15.5503 0.678484 13.2787 0.655608 11.563 0.65332H9.43556C7.71987 0.65332 5.4483 0.678484 3.77151 0.834039C2.43098 0.957569 2.097 1.15888 1.74242 1.47914C0.813665 2.32097 0.619221 4.62685 0.598633 6.89384C0.598633 7.31781 0.598633 7.74101 0.598633 8.16345C0.626084 10.4121 0.827391 12.686 1.74242 13.521C2.097 13.8412 2.4287 14.0425 3.77151 14.1661C5.4483 14.3216 7.71987 14.3445 9.43556 14.3468H11.563C13.2787 14.3468 15.5503 14.3216 17.2271 14.1661C18.5676 14.0425 18.9016 13.8412 19.2561 13.521C20.1712 12.6929 20.3725 10.451 20.3999 8.22064C20.3999 7.74025 20.3999 7.25986 20.3999 6.77946C20.3725 4.54907 20.1689 2.30724 19.2561 1.47914ZM8.55942 10.5311V4.65201L13.5601 7.50005L8.55942 10.5311Z" fill="white" /> </svg> <span class="usa-sr-only">NLM on YouTube</span> </a> </div> </div> <address class="ncbi-footer__address ncbi-footer__column"> <p> <a class="usa-link usa-link--external" href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/%4038.9959508, -77.101021,17z/data%3D!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb%3A0x19156f88b27635b8!8m2!3d38.9959508! 4d-77.0988323" rel="noopener noreferrer" target="_blank">National Library of Medicine <br/> 8600 Rockville Pike<br/> Bethesda, MD 20894</a> </p> </address> <ul class="usa-list usa-list--unstyled ncbi-footer__vertical-list ncbi-footer__column"> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/web_policies.html" class="usa-link usa-link--alt ncbi-footer__link" > Web Policies </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="usa-link usa-link--alt ncbi-footer__link" > FOIA </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > HHS Vulnerability Disclosure </a> </li> </ul> <ul class="usa-list usa-list--unstyled ncbi-footer__vertical-list ncbi-footer__column"> <li class="ncbi-footer__vertical-list-item"> <a href="https://support.nlm.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > Help </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/accessibility.html" class="usa-link usa-link--alt ncbi-footer__link" > Accessibility </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/careers/careers.html" class="usa-link usa-link--alt ncbi-footer__link" > Careers </a> </li> </ul> </div> <div class="grid-row grid-col-12" data-testid="grid"> <ul class="ncbi-footer__bottom-links-list"> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.nlm.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > NLM </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > NIH </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.hhs.gov/" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > HHS </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.usa.gov/" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > USA.gov </a> </li> </ul> </div> </div> </footer> <script type="text/javascript" src="https://cdn.ncbi.nlm.nih.gov/core/pinger/pinger.js"> </script> <button class="back-to-top" data-ga-category="pagination" data-ga-action="back_to_top"> <label>Back to Top</label> <svg class="usa-icon order-0" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#arrow_upward"></use> </svg> </button> <script src="https://code.jquery.com/jquery-3.5.0.min.js" integrity="sha256-xNzN2a4ltkB44Mc/Jz3pT4iU1cmeR0FkXs4pru/JxaQ=" crossorigin="anonymous"> </script> <script type="text/javascript">var exports = {};</script> <script src="/static/CACHE/js/output.13b077bc3ffd.js"></script> <script type="application/javascript"> window.ncbi = window.ncbi || {}; window.ncbi.pmc = window.ncbi.pmc || {}; window.ncbi.pmc.options = { logLevel: 'INFO', staticEndpoint: '/static/', citeCookieName: 'pmc-cf', }; </script> <script type="module" crossorigin="" src="/static/assets/base-9bea7450.js"></script> <script type="module" crossorigin="" src="/static/assets/article-722d91a2.js"></script> </body> </html>