CINXE.COM

Ellipsoid – Wikipedia

<!DOCTYPE html> <html class="client-nojs" lang="de" dir="ltr"> <head> <meta charset="UTF-8"> <title>Ellipsoid – Wikipedia</title> <script>(function(){var className="client-js";var cookie=document.cookie.match(/(?:^|; )dewikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","Januar","Februar","März","April","Mai","Juni","Juli","August","September","Oktober","November","Dezember"],"wgRequestId":"28f7e4ee-a045-43fb-a6f4-57d8582f9594","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Ellipsoid","wgTitle":"Ellipsoid","wgCurRevisionId":247956334,"wgRevisionId":247956334,"wgArticleId":93501,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":[ "Geometrie"],"wgPageViewLanguage":"de","wgPageContentLanguage":"de","wgPageContentModel":"wikitext","wgRelevantPageName":"Ellipsoid","wgRelevantArticleId":93501,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":1}}},"wgStableRevisionId":247956334,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"de","pageLanguageDir":"ltr","pageVariantFallbacks":"de"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":true,"wgVector2022LanguageInHeader":false,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId": "Q190046","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.citeRef":"ready","ext.gadget.defaultPlainlinks":"ready","ext.gadget.dewikiCommonHide":"ready","ext.gadget.dewikiCommonLayout":"ready","ext.gadget.dewikiCommonStyle":"ready","ext.gadget.NavFrame":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.styles.legacy":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","codex-search-styles":"ready","ext.uls.interlanguage":"ready", "wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.legacy.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.createNewSection","ext.gadget.WikiMiniAtlas","ext.gadget.OpenStreetMap","ext.gadget.CommonsDirekt","ext.gadget.donateLink","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.compactlinks","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=codex-search-styles%7Cext.cite.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.styles.legacy%7Cwikibase.client.init&amp;only=styles&amp;skin=vector"> <script async="" src="/w/load.php?lang=de&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=ext.gadget.NavFrame%2CciteRef%2CdefaultPlainlinks%2CdewikiCommonHide%2CdewikiCommonLayout%2CdewikiCommonStyle&amp;only=styles&amp;skin=vector"> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=site.styles&amp;only=styles&amp;skin=vector"> <meta name="generator" content="MediaWiki 1.44.0-wmf.6"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/33/Ellipsoide.svg/1200px-Ellipsoide.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="917"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/33/Ellipsoide.svg/800px-Ellipsoide.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="611"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/33/Ellipsoide.svg/640px-Ellipsoide.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="489"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Ellipsoid – Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//de.m.wikipedia.org/wiki/Ellipsoid"> <link rel="alternate" type="application/x-wiki" title="Seite bearbeiten" href="/w/index.php?title=Ellipsoid&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (de)"> <link rel="EditURI" type="application/rsd+xml" href="//de.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://de.wikipedia.org/wiki/Ellipsoid"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de"> <link rel="alternate" type="application/atom+xml" title="Atom-Feed für „Wikipedia“" href="/w/index.php?title=Spezial:Letzte_%C3%84nderungen&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin-vector-legacy mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Ellipsoid rootpage-Ellipsoid skin-vector action-view"><div id="mw-page-base" class="noprint"></div> <div id="mw-head-base" class="noprint"></div> <div id="content" class="mw-body" role="main"> <a id="top"></a> <div id="siteNotice"><!-- CentralNotice --></div> <div class="mw-indicators"> </div> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Ellipsoid</span></h1> <div id="bodyContent" class="vector-body"> <div id="siteSub" class="noprint">aus Wikipedia, der freien Enzyklopädie</div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="contentSub2"></div> <div id="jump-to-nav"></div> <a class="mw-jump-link" href="#mw-head">Zur Navigation springen</a> <a class="mw-jump-link" href="#searchInput">Zur Suche springen</a> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="de" dir="ltr"><figure typeof="mw:File/Thumb"><a href="/wiki/Datei:Ellipsoide.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/33/Ellipsoide.svg/400px-Ellipsoide.svg.png" decoding="async" width="400" height="306" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/33/Ellipsoide.svg/600px-Ellipsoide.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/33/Ellipsoide.svg/800px-Ellipsoide.svg.png 2x" data-file-width="891" data-file-height="681" /></a><figcaption><a href="/wiki/Kugel" title="Kugel">Kugel</a> (oben), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d366942ea55e335b92439f564940a422e749648" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.491ex; height:2.176ex;" alt="{\displaystyle a=4}"></span>,<br /><a href="/wiki/Rotationsellipsoid" title="Rotationsellipsoid">Rotationsellipsoid</a> (unten links), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=b=5,\ c=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mi>b</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>c</mi> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=b=5,\ c=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17ddd8142276a563574c845a2de5f8c6d280ff21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.469ex; height:2.509ex;" alt="{\displaystyle a=b=5,\ c=3}"></span>,<br />triaxiales Ellipsoid (unten rechts), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=4{,}5,\ b=6,\ c=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>b</mi> <mo>=</mo> <mn>6</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>c</mi> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=4{,}5,\ b=6,\ c=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45f6987365d2e75c17b95eefc43041a4679eb02c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.055ex; height:2.509ex;" alt="{\displaystyle a=4{,}5,\ b=6,\ c=3}"></span></figcaption></figure> <p>Ein <b>Ellipsoid</b> ist die <a href="/wiki/3-dimensional" class="mw-redirect" title="3-dimensional">dreidimensionale</a> Entsprechung einer <a href="/wiki/Ellipse" title="Ellipse">Ellipse</a>. So wie sich eine Ellipse als <i><a href="/wiki/Affine_Abbildung" title="Affine Abbildung">affines</a></i> Bild des <a href="/wiki/Einheitskreis" title="Einheitskreis">Einheitskreises</a> auffassen lässt, gilt: </p> <ul><li>Ein Ellipsoid (als <a href="/wiki/Fl%C3%A4che_(Mathematik)" title="Fläche (Mathematik)">Fläche</a>) ist ein affines Bild der <a href="/wiki/Einheitskugel" title="Einheitskugel">Einheitskugel</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+y^{2}+z^{2}=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+y^{2}+z^{2}=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26790310fffdf30f449c78609788054d278dea7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.332ex; height:3.009ex;" alt="{\displaystyle x^{2}+y^{2}+z^{2}=1.}"></span></li></ul> <p>Die einfachsten affinen Abbildungen sind die Skalierungen der <a href="/wiki/Kartesisches_Koordinatensystem" title="Kartesisches Koordinatensystem">kartesischen Koordinaten</a>. Sie liefern Ellipsoide mit <a href="/wiki/Gleichung" title="Gleichung">Gleichungen</a> </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{abc}\colon \quad {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}+{\frac {z^{2}}{c^{2}}}=1,\quad a,b,c&gt;0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> </msub> <mo>&#x003A;<!-- : --></mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="1em" /> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo>&gt;</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{abc}\colon \quad {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}+{\frac {z^{2}}{c^{2}}}=1,\quad a,b,c&gt;0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1d73bf669bebc2b6da640db47302adc9747c3b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:40.351ex; height:6.009ex;" alt="{\displaystyle E_{abc}\colon \quad {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}+{\frac {z^{2}}{c^{2}}}=1,\quad a,b,c&gt;0.}"></span></li></ul> <p>So ein Ellipsoid ist <a href="/wiki/Punktsymmetrisch" class="mw-redirect" title="Punktsymmetrisch">punktsymmetrisch</a> zum Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,0,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,0,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28c6fd55d5621fd95ca93549660fbb355fd9bd22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.365ex; height:2.843ex;" alt="{\displaystyle (0,0,0)}"></span>, dem <i>Mittelpunkt</i> des Ellipsoids. Die Zahlen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f13f068df656c1b1911ae9f81628c49a6181194d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.302ex; height:2.509ex;" alt="{\displaystyle a,b,c}"></span> sind analog zu einer Ellipse die <i>Halbachsen</i> des Ellipsoids und die <a href="/wiki/Punkt_(Geometrie)" title="Punkt (Geometrie)">Punkte</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\pm a,0,0),(0,\pm b,0),(0,0,\pm c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x00B1;<!-- ± --></mo> <mi>a</mi> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mo>&#x00B1;<!-- ± --></mo> <mi>b</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>&#x00B1;<!-- ± --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\pm a,0,0),(0,\pm b,0),(0,0,\pm c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9764c4bf1cd4a9138b39e965fe92de8eb16aa05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.333ex; height:2.843ex;" alt="{\displaystyle (\pm a,0,0),(0,\pm b,0),(0,0,\pm c)}"></span> seine 6 <i><a href="/wiki/Scheitelpunkt" title="Scheitelpunkt">Scheitelpunkte</a>.</i> </p> <ul><li>Falls <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=b=c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mi>b</mi> <mo>=</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=b=c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41dfe5f5f74cb7a2c79093352406fd1d19123882" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.431ex; height:2.176ex;" alt="{\displaystyle a=b=c}"></span> ist, ist das Ellipsoid eine <i><a href="/wiki/Kugel" title="Kugel">Kugel</a>.</i></li> <li>Falls genau zwei Halbachsen übereinstimmen, ist das Ellipsoid ein prolates oder oblates <i><a href="/wiki/Rotationsellipsoid" title="Rotationsellipsoid">Rotationsellipsoid</a>.</i></li> <li>Falls die 3 Halbachsen alle verschieden sind, heißt das Ellipsoid <i>triaxial</i> oder <i><a href="/wiki/Dreiachsiges_Ellipsoid" title="Dreiachsiges Ellipsoid">dreiachsig</a>.</i></li></ul> <p>Alle Ellipsoide <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{abc}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{abc}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b96d78d2f98308cceced7b04e70afcb0261c7f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.234ex; height:2.509ex;" alt="{\displaystyle E_{abc}}"></span> sind <i><a href="/wiki/Symmetrie_(Geometrie)#Spiegelsymmetrie" title="Symmetrie (Geometrie)">symmetrisch</a></i> zu jeder der drei Koordinatenebenen. Beim Rotationsellipsoid kommt noch die <a href="/wiki/Rotationssymmetrie" class="mw-redirect" title="Rotationssymmetrie">Rotationssymmetrie</a> bezüglich der <a href="/wiki/Rotationsachse" title="Rotationsachse">Rotationsachse</a> hinzu. Eine Kugel ist zu <i>jeder</i> <a href="/wiki/Ebene_(Mathematik)" title="Ebene (Mathematik)">Ebene</a> durch den Mittelpunkt symmetrisch. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Jupiter-Ellipsoid.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/75/Jupiter-Ellipsoid.png/220px-Jupiter-Ellipsoid.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/75/Jupiter-Ellipsoid.png/330px-Jupiter-Ellipsoid.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/75/Jupiter-Ellipsoid.png/440px-Jupiter-Ellipsoid.png 2x" data-file-width="860" data-file-height="860" /></a><figcaption>Jupiters Durchmesser von Pol zu Pol ist deutlich kleiner als am Äquator (zum Vergleich roter Kreis).</figcaption></figure> <p>Angenäherte Beispiele für Rotationsellipsoide sind der <a href="/wiki/Rugbyball" title="Rugbyball">Rugbyball</a> und abgeplattete <a href="/wiki/Rotation_(Physik)" title="Rotation (Physik)">rotierende</a> <a href="/wiki/Himmelsk%C3%B6rper" class="mw-redirect" title="Himmelskörper">Himmelskörper</a>, etwa die <a href="/wiki/Erdellipsoid" class="mw-redirect" title="Erdellipsoid">Erde</a> oder andere <a href="/wiki/Planet" title="Planet">Planeten</a> (<a href="/wiki/Jupiter_(Planet)" title="Jupiter (Planet)">Jupiter</a>), <a href="/wiki/Sonne" title="Sonne">Sonnen</a> oder <a href="/wiki/Galaxie" title="Galaxie">Galaxien</a>. <a href="/wiki/Elliptische_Galaxie" title="Elliptische Galaxie">Elliptische Galaxien</a> und <a href="/wiki/Zwergplanet" title="Zwergplanet">Zwergplaneten</a> (z.&#160;B. <a href="/wiki/(136108)_Haumea" title="(136108) Haumea">(136108) Haumea</a>) können auch triaxial sein. </p><p>In der <a href="/wiki/Lineare_Optimierung" title="Lineare Optimierung">Linearen Optimierung</a> werden Ellipsoide in der <a href="/wiki/Ellipsoid-Methode" class="mw-redirect" title="Ellipsoid-Methode">Ellipsoid-Methode</a> verwendet. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="de" dir="ltr"><h2 id="mw-toc-heading">Inhaltsverzeichnis</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Parameterdarstellung"><span class="tocnumber">1</span> <span class="toctext">Parameterdarstellung</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Volumen"><span class="tocnumber">2</span> <span class="toctext">Volumen</span></a></li> <li class="toclevel-1 tocsection-3"><a href="#Oberfläche"><span class="tocnumber">3</span> <span class="toctext">Oberfläche</span></a> <ul> <li class="toclevel-2 tocsection-4"><a href="#Oberfläche_eines_Rotationsellipsoids"><span class="tocnumber">3.1</span> <span class="toctext">Oberfläche eines Rotationsellipsoids</span></a></li> <li class="toclevel-2 tocsection-5"><a href="#Oberfläche_eines_triaxialen_Ellipsoids"><span class="tocnumber">3.2</span> <span class="toctext">Oberfläche eines triaxialen Ellipsoids</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-6"><a href="#Anwendungsbeispiel_zu_den_Formeln"><span class="tocnumber">4</span> <span class="toctext">Anwendungsbeispiel zu den Formeln</span></a></li> <li class="toclevel-1 tocsection-7"><a href="#Ebene_Schnitte"><span class="tocnumber">5</span> <span class="toctext">Ebene Schnitte</span></a> <ul> <li class="toclevel-2 tocsection-8"><a href="#Eigenschaften"><span class="tocnumber">5.1</span> <span class="toctext">Eigenschaften</span></a></li> <li class="toclevel-2 tocsection-9"><a href="#Bestimmung_einer_Schnittellipse"><span class="tocnumber">5.2</span> <span class="toctext">Bestimmung einer Schnittellipse</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-10"><a href="#Fadenkonstruktion"><span class="tocnumber">6</span> <span class="toctext">Fadenkonstruktion</span></a></li> <li class="toclevel-1 tocsection-11"><a href="#Ellipsoid_in_beliebiger_Lage"><span class="tocnumber">7</span> <span class="toctext">Ellipsoid in beliebiger Lage</span></a> <ul> <li class="toclevel-2 tocsection-12"><a href="#Parameterdarstellung_2"><span class="tocnumber">7.1</span> <span class="toctext">Parameterdarstellung</span></a></li> <li class="toclevel-2 tocsection-13"><a href="#Ellipsoid_als_Quadrik"><span class="tocnumber">7.2</span> <span class="toctext">Ellipsoid als Quadrik</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-14"><a href="#Ellipsoid_in_der_projektiven_Geometrie"><span class="tocnumber">8</span> <span class="toctext">Ellipsoid in der projektiven Geometrie</span></a></li> <li class="toclevel-1 tocsection-15"><a href="#Siehe_auch"><span class="tocnumber">9</span> <span class="toctext">Siehe auch</span></a></li> <li class="toclevel-1 tocsection-16"><a href="#Weblinks"><span class="tocnumber">10</span> <span class="toctext">Weblinks</span></a></li> <li class="toclevel-1 tocsection-17"><a href="#Einzelnachweise"><span class="tocnumber">11</span> <span class="toctext">Einzelnachweise</span></a></li> </ul> </div> <div class="mw-heading mw-heading2"><h2 id="Parameterdarstellung">Parameterdarstellung</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ellipsoid&amp;veaction=edit&amp;section=1" title="Abschnitt bearbeiten: Parameterdarstellung" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ellipsoid&amp;action=edit&amp;section=1" title="Quellcode des Abschnitts bearbeiten: Parameterdarstellung"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Parameterdarstellung" title="Parameterdarstellung">Parameterdarstellung</a></i></div> <figure typeof="mw:File/Thumb"><a href="/wiki/Datei:Kugelkoord-def.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/Kugelkoord-def.svg/300px-Kugelkoord-def.svg.png" decoding="async" width="300" height="300" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/Kugelkoord-def.svg/450px-Kugelkoord-def.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/69/Kugelkoord-def.svg/600px-Kugelkoord-def.svg.png 2x" data-file-width="261" data-file-height="261" /></a><figcaption><a href="/wiki/Kugelkoordinaten" title="Kugelkoordinaten">Kugelkoordinaten</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r,\theta ,\varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>,</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r,\theta ,\varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/265c0d2c72d017d4a5f3648b6f78bcbf4af63119" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.727ex; height:2.676ex;" alt="{\displaystyle r,\theta ,\varphi }"></span> eines Punktes und kartesisches <a href="/wiki/Koordinatensystem" title="Koordinatensystem">Koordinatensystem</a></figcaption></figure> <p>Die Punkte auf der <a href="/wiki/Einheitskugel" title="Einheitskugel">Einheitskugel</a> können wie folgt parametrisiert werden (siehe <a href="/wiki/Kugelkoordinaten" title="Kugelkoordinaten">Kugelkoordinaten</a>): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{cll}x&amp;=&amp;\sin \theta \cdot \cos \varphi \\y&amp;=&amp;\sin \theta \cdot \sin \varphi \\z&amp;=&amp;\cos \theta \end{array}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="center left left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{cll}x&amp;=&amp;\sin \theta \cdot \cos \varphi \\y&amp;=&amp;\sin \theta \cdot \sin \varphi \\z&amp;=&amp;\cos \theta \end{array}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3099f6bf3df441b2ece586a1de9ddd6d7981c999" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:19.565ex; height:9.509ex;" alt="{\displaystyle {\begin{array}{cll}x&amp;=&amp;\sin \theta \cdot \cos \varphi \\y&amp;=&amp;\sin \theta \cdot \sin \varphi \\z&amp;=&amp;\cos \theta \end{array}}}"></span></dd></dl> <p>Für den <a href="/wiki/Winkel" title="Winkel">Winkel</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> (von der z-Achse aus gemessen) gilt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq \theta \leq \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq \theta \leq \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f85d6a6521db7f3738e48ea472c8d88f0c4e0c12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.782ex; height:2.343ex;" alt="{\displaystyle 0\leq \theta \leq \pi }"></span>. Für den Winkel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> (von der x-Achse aus gemessen) gilt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq \varphi &lt;2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&lt;</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq \varphi &lt;2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d07ebffe3181ca98c6933cf63cb31d5247fab3f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.374ex; height:2.676ex;" alt="{\displaystyle 0\leq \varphi &lt;2\pi }"></span>. </p><p>Skaliert man die einzelnen <a href="/wiki/Koordinatensystem" title="Koordinatensystem">Koordinaten</a> mit den <a href="/wiki/Faktor_(Mathematik)" class="mw-redirect" title="Faktor (Mathematik)">Faktoren</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f13f068df656c1b1911ae9f81628c49a6181194d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.302ex; height:2.509ex;" alt="{\displaystyle a,b,c}"></span>, so ergibt sich eine Parameterdarstellung des Ellipsoids <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{abc}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{abc}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b96d78d2f98308cceced7b04e70afcb0261c7f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.234ex; height:2.509ex;" alt="{\displaystyle E_{abc}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{cll}x&amp;=&amp;a\cdot \sin \theta \cdot \cos \varphi \\y&amp;=&amp;b\cdot \sin \theta \cdot \sin \varphi \\z&amp;=&amp;c\cdot \cos \theta \end{array}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="center left left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <mi>c</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{cll}x&amp;=&amp;a\cdot \sin \theta \cdot \cos \varphi \\y&amp;=&amp;b\cdot \sin \theta \cdot \sin \varphi \\z&amp;=&amp;c\cdot \cos \theta \end{array}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efab44922dddc89496fdd92b23c9635a323dd9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:22.474ex; height:9.509ex;" alt="{\displaystyle {\begin{array}{cll}x&amp;=&amp;a\cdot \sin \theta \cdot \cos \varphi \\y&amp;=&amp;b\cdot \sin \theta \cdot \sin \varphi \\z&amp;=&amp;c\cdot \cos \theta \end{array}}}"></span></dd></dl> <p>mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq \theta \leq \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq \theta \leq \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f85d6a6521db7f3738e48ea472c8d88f0c4e0c12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.782ex; height:2.343ex;" alt="{\displaystyle 0\leq \theta \leq \pi }"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq \varphi &lt;2\pi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&lt;</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq \varphi &lt;2\pi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfc4ca60655cbea1accc4e20641f1bf82b37293a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.021ex; height:2.676ex;" alt="{\displaystyle 0\leq \varphi &lt;2\pi .}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Volumen">Volumen</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ellipsoid&amp;veaction=edit&amp;section=2" title="Abschnitt bearbeiten: Volumen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ellipsoid&amp;action=edit&amp;section=2" title="Quellcode des Abschnitts bearbeiten: Volumen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Das <a href="/wiki/Volumen" title="Volumen">Volumen</a> des Ellipsoids <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{abc}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{abc}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b96d78d2f98308cceced7b04e70afcb0261c7f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.234ex; height:2.509ex;" alt="{\displaystyle E_{abc}}"></span> ist </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V={\frac {4}{3}}\pi abc.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V={\frac {4}{3}}\pi abc.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c97b4d4165be7ec43988fe62a95c818b0abf0eb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.097ex; height:5.176ex;" alt="{\displaystyle V={\frac {4}{3}}\pi abc.}"></span></dd></dl> <p>Eine <a href="/wiki/Kugel" title="Kugel">Kugel</a> mit <a href="/wiki/Radius" title="Radius">Radius</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> hat das Volumen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V={\tfrac {4}{3}}\pi r^{3}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mstyle> </mrow> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V={\tfrac {4}{3}}\pi r^{3}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13191b552f419d7ade7f65f2047398c17f515991" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:10.626ex; height:3.676ex;" alt="{\displaystyle V={\tfrac {4}{3}}\pi r^{3}.}"></span> </p> <dl><dt>Herleitung</dt></dl> <p>Der Schnitt des Ellipsoids <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{abc}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{abc}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b96d78d2f98308cceced7b04e70afcb0261c7f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.234ex; height:2.509ex;" alt="{\displaystyle E_{abc}}"></span> mit einer <a href="/wiki/Ebene_(Mathematik)" title="Ebene (Mathematik)">Ebene</a> in der <a href="/wiki/H%C3%B6he_(Geometrie)" title="Höhe (Geometrie)">Höhe</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> ist die <a href="/wiki/Ellipse" title="Ellipse">Ellipse</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}=1-{\frac {z^{2}}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}=1-{\frac {z^{2}}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9eb518cf3a62ec823d0e1f16414ee267917844d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:19.193ex; height:6.009ex;" alt="{\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}=1-{\frac {z^{2}}{c^{2}}}}"></span> mit den Halbachsen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a'=a{\sqrt {1-{\frac {z^{2}}{c^{2}}}}},\ b'=b{\sqrt {1-{\frac {z^{2}}{c^{2}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a'=a{\sqrt {1-{\frac {z^{2}}{c^{2}}}}},\ b'=b{\sqrt {1-{\frac {z^{2}}{c^{2}}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4ee71de0ee0a9ba432831472087f611acf01239" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:32.25ex; height:7.509ex;" alt="{\displaystyle a&#039;=a{\sqrt {1-{\frac {z^{2}}{c^{2}}}}},\ b&#039;=b{\sqrt {1-{\frac {z^{2}}{c^{2}}}}}}"></span>.</dd></dl> <p>Der <a href="/wiki/Ellipse#Flächeninhalt" title="Ellipse">Flächeninhalt</a> dieser Ellipse ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A(z)=\pi a'b'=\pi ab(1-{\frac {z^{2}}{c^{2}}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>a</mi> <mo>&#x2032;</mo> </msup> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> <mi>b</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A(z)=\pi a'b'=\pi ab(1-{\frac {z^{2}}{c^{2}}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef32171f83f62d393b43bc51f574c745d7daebc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:28.118ex; height:6.009ex;" alt="{\displaystyle A(z)=\pi a&#039;b&#039;=\pi ab(1-{\frac {z^{2}}{c^{2}}})}"></span>. Das Volumen ergibt sich dann aus </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-c}^{c}A(z)\ \mathrm {d} z=\pi ab\int _{-c}^{c}(1-{\frac {z^{2}}{c^{2}}})\ \mathrm {d} z={\frac {4}{3}}\pi abc.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msubsup> <mi>A</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>z</mi> <mo>=</mo> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> <mi>b</mi> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>z</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-c}^{c}A(z)\ \mathrm {d} z=\pi ab\int _{-c}^{c}(1-{\frac {z^{2}}{c^{2}}})\ \mathrm {d} z={\frac {4}{3}}\pi abc.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09db04d6c06b44ef5c02ba4906f68f1f77868a26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:44.129ex; height:6.343ex;" alt="{\displaystyle \int _{-c}^{c}A(z)\ \mathrm {d} z=\pi ab\int _{-c}^{c}(1-{\frac {z^{2}}{c^{2}}})\ \mathrm {d} z={\frac {4}{3}}\pi abc.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Oberfläche"><span id="Oberfl.C3.A4che"></span>Oberfläche</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ellipsoid&amp;veaction=edit&amp;section=3" title="Abschnitt bearbeiten: Oberfläche" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ellipsoid&amp;action=edit&amp;section=3" title="Quellcode des Abschnitts bearbeiten: Oberfläche"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Oberfläche_eines_Rotationsellipsoids"><span id="Oberfl.C3.A4che_eines_Rotationsellipsoids"></span>Oberfläche eines Rotationsellipsoids</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ellipsoid&amp;veaction=edit&amp;section=4" title="Abschnitt bearbeiten: Oberfläche eines Rotationsellipsoids" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ellipsoid&amp;action=edit&amp;section=4" title="Quellcode des Abschnitts bearbeiten: Oberfläche eines Rotationsellipsoids"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Rotationsellipsoid" title="Rotationsellipsoid">Rotationsellipsoid</a></i></div> <p>Die <a href="/wiki/Fl%C3%A4che_(Mathematik)" title="Fläche (Mathematik)">Oberfläche</a> eines <i><a href="/wiki/Abplattung" title="Abplattung">abgeplatteten</a></i> Rotationsellipsoids <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{aac}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>a</mi> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{aac}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f81c04c72eb2b6fb87773a5b86672fc11f0346e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.399ex; height:2.509ex;" alt="{\displaystyle E_{aac}}"></span> mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&gt;c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&gt;</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&gt;c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/555821d1966fad5b635b19d54e36d88b3623b991" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.335ex; height:1.843ex;" alt="{\displaystyle a&gt;c}"></span> ist </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=2\pi a\left(a+{\frac {c^{2}}{\sqrt {a^{2}-c^{2}}}}\,\operatorname {arsinh} \left({\frac {\sqrt {a^{2}-c^{2}}}{c}}\right)\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>arsinh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> <mi>c</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=2\pi a\left(a+{\frac {c^{2}}{\sqrt {a^{2}-c^{2}}}}\,\operatorname {arsinh} \left({\frac {\sqrt {a^{2}-c^{2}}}{c}}\right)\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3a6e585d39737c217123d383cfd1a9554367762" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:49.107ex; height:7.509ex;" alt="{\displaystyle A=2\pi a\left(a+{\frac {c^{2}}{\sqrt {a^{2}-c^{2}}}}\,\operatorname {arsinh} \left({\frac {\sqrt {a^{2}-c^{2}}}{c}}\right)\right),}"></span></dd></dl> <p>die des <a href="/wiki/Verl%C3%A4ngertes_Ellipsoid" title="Verlängertes Ellipsoid"><i>verlängerten</i> Ellipsoids</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c&gt;a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>&gt;</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c&gt;a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8035c5151ae8e735de542149a111325a3a47a98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.335ex; height:1.843ex;" alt="{\displaystyle c&gt;a}"></span>) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=2\pi a\left(a+{\frac {c^{2}}{\sqrt {c^{2}-a^{2}}}}\,\operatorname {arcsin} \left({\frac {\sqrt {c^{2}-a^{2}}}{c}}\right)\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msqrt> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>arcsin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> <mi>c</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=2\pi a\left(a+{\frac {c^{2}}{\sqrt {c^{2}-a^{2}}}}\,\operatorname {arcsin} \left({\frac {\sqrt {c^{2}-a^{2}}}{c}}\right)\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed3af84635ef8dbf61fa61e20fb2d2a9fdebad5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:48.847ex; height:7.509ex;" alt="{\displaystyle A=2\pi a\left(a+{\frac {c^{2}}{\sqrt {c^{2}-a^{2}}}}\,\operatorname {arcsin} \left({\frac {\sqrt {c^{2}-a^{2}}}{c}}\right)\right).}"></span></dd></dl> <p>Eine <a href="/wiki/Kugel" title="Kugel">Kugel</a> mit <a href="/wiki/Radius" title="Radius">Radius</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> hat die Oberfläche <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=4\pi r^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=4\pi r^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca925588619ce34da35b2c2ffb5b267e313d50ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.439ex; height:2.676ex;" alt="{\displaystyle A=4\pi r^{2}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Oberfläche_eines_triaxialen_Ellipsoids"><span id="Oberfl.C3.A4che_eines_triaxialen_Ellipsoids"></span>Oberfläche eines triaxialen Ellipsoids</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ellipsoid&amp;veaction=edit&amp;section=5" title="Abschnitt bearbeiten: Oberfläche eines triaxialen Ellipsoids" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ellipsoid&amp;action=edit&amp;section=5" title="Quellcode des Abschnitts bearbeiten: Oberfläche eines triaxialen Ellipsoids"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die <a href="/wiki/Fl%C3%A4che_(Mathematik)" title="Fläche (Mathematik)">Oberfläche</a> eines triaxialen Ellipsoids lässt sich nicht mit Hilfe von <a href="/wiki/Funktion_(Mathematik)" title="Funktion (Mathematik)">Funktionen</a> ausdrücken, die man als <a href="/wiki/Elementare_Funktion" title="Elementare Funktion">elementar</a> ansieht, wie z.&#160;B. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {arsinh} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>arsinh</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {arsinh} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78e4506c4572caf5a4700de12122e9690f1f9d3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.222ex; height:2.176ex;" alt="{\displaystyle \operatorname {arsinh} }"></span> oder <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \arcsin }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>arcsin</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \arcsin }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/627fcadc0495786c9167c5487a1a795bb1940edd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.962ex; height:2.176ex;" alt="{\displaystyle \arcsin }"></span> oben beim <a href="/wiki/Rotationsellipsoid" title="Rotationsellipsoid">Rotationsellipsoid</a>. Die Flächenberechnung gelang <a href="/wiki/Adrien-Marie_Legendre" title="Adrien-Marie Legendre">Adrien-Marie Legendre</a> mit Hilfe der <a href="/wiki/Elliptisches_Integral" class="mw-redirect" title="Elliptisches Integral">elliptischen Integrale</a>. Sei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&gt;b&gt;c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&gt;</mo> <mi>b</mi> <mo>&gt;</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&gt;b&gt;c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3756bee44d7cb7e6221499eedb579fb848d2e5ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.431ex; height:2.176ex;" alt="{\displaystyle a&gt;b&gt;c}"></span>. Schreibt man </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k={\frac {a}{b}}{\frac {\sqrt {b^{2}-c^{2}}}{\sqrt {a^{2}-c^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mi>b</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k={\frac {a}{b}}{\frac {\sqrt {b^{2}-c^{2}}}{\sqrt {a^{2}-c^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab15a153ae4e254e313be10367879b547624654d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:16.721ex; height:7.509ex;" alt="{\displaystyle k={\frac {a}{b}}{\frac {\sqrt {b^{2}-c^{2}}}{\sqrt {a^{2}-c^{2}}}}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi =\arcsin {\frac {\sqrt {a^{2}-c^{2}}}{a}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mi>arcsin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> <mi>a</mi> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi =\arcsin {\frac {\sqrt {a^{2}-c^{2}}}{a}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62ccef22cc8837b73dfe71c565679ff7138106c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.96ex; height:6.176ex;" alt="{\displaystyle \varphi =\arcsin {\frac {\sqrt {a^{2}-c^{2}}}{a}},}"></span></dd></dl> <p>so lauten die <a href="/wiki/Integralrechnung" title="Integralrechnung">Integrale</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E(k,\varphi )=\int _{0}^{\sin \varphi }{\sqrt {\frac {1-k^{2}x^{2}}{1-x^{2}}}}\ \mathrm {d} x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </msqrt> </mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E(k,\varphi )=\int _{0}^{\sin \varphi }{\sqrt {\frac {1-k^{2}x^{2}}{1-x^{2}}}}\ \mathrm {d} x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c050589407f3e034a3bf81c35e1dfb5b14af71f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:32.028ex; height:7.676ex;" alt="{\displaystyle E(k,\varphi )=\int _{0}^{\sin \varphi }{\sqrt {\frac {1-k^{2}x^{2}}{1-x^{2}}}}\ \mathrm {d} x}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(k,\varphi )=\int _{0}^{\sin \varphi }{\frac {1}{{\sqrt {1-x^{2}}}{\sqrt {1-k^{2}x^{2}}}}}\ \mathrm {d} x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(k,\varphi )=\int _{0}^{\sin \varphi }{\frac {1}{{\sqrt {1-x^{2}}}{\sqrt {1-k^{2}x^{2}}}}}\ \mathrm {d} x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c07605aedf65ee548cde98378b5490ba6cd21e36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:41.351ex; height:7.009ex;" alt="{\displaystyle F(k,\varphi )=\int _{0}^{\sin \varphi }{\frac {1}{{\sqrt {1-x^{2}}}{\sqrt {1-k^{2}x^{2}}}}}\ \mathrm {d} x.}"></span></dd></dl> <p>Die Oberfläche hat mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> nach Legendre<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> den Wert </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=2\pi c^{2}+{\frac {2\pi b}{\sqrt {a^{2}-c^{2}}}}\left(c^{2}F(k,\varphi )+(a^{2}-c^{2})E(k,\varphi )\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>b</mi> </mrow> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>F</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mi>E</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=2\pi c^{2}+{\frac {2\pi b}{\sqrt {a^{2}-c^{2}}}}\left(c^{2}F(k,\varphi )+(a^{2}-c^{2})E(k,\varphi )\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/296382cb03c25dee35a4861d297f1577fa65960b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:54.696ex; height:6.676ex;" alt="{\displaystyle A=2\pi c^{2}+{\frac {2\pi b}{\sqrt {a^{2}-c^{2}}}}\left(c^{2}F(k,\varphi )+(a^{2}-c^{2})E(k,\varphi )\right).}"></span></dd></dl> <p>Werden die <a href="/wiki/Ausdruck_(Mathematik)" class="mw-redirect" title="Ausdruck (Mathematik)">Ausdrücke</a> für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> sowie die <a href="/wiki/Substitution_(Mathematik)" title="Substitution (Mathematik)">Substitutionen</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u:={\frac {\sqrt {a^{2}-c^{2}}}{a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> <mi>a</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u:={\frac {\sqrt {a^{2}-c^{2}}}{a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b86ff872f7d16d06038a2249beefe63057b290b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:15.42ex; height:6.176ex;" alt="{\displaystyle u:={\frac {\sqrt {a^{2}-c^{2}}}{a}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v:={\frac {\sqrt {b^{2}-c^{2}}}{b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> <mi>b</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v:={\frac {\sqrt {b^{2}-c^{2}}}{b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04b884b8027c8ddf0c0c08bf5a5258051d8ba819" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.986ex; height:6.343ex;" alt="{\displaystyle v:={\frac {\sqrt {b^{2}-c^{2}}}{b}}}"></span></dd></dl> <p>in die <a href="/wiki/Gleichung" title="Gleichung">Gleichung</a> für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> eingesetzt, so ergibt sich die Schreibweise </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=2\pi c^{2}+2\pi ab\int _{0}^{1}{\frac {1-u^{2}v^{2}x^{2}}{{\sqrt {1-u^{2}x^{2}}}{\sqrt {1-v^{2}x^{2}}}}}\ \mathrm {d} x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> <mi>b</mi> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=2\pi c^{2}+2\pi ab\int _{0}^{1}{\frac {1-u^{2}v^{2}x^{2}}{{\sqrt {1-u^{2}x^{2}}}{\sqrt {1-v^{2}x^{2}}}}}\ \mathrm {d} x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/706e63a9f32ab8946f60927631f336c019e5b451" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:47.925ex; height:7.009ex;" alt="{\displaystyle A=2\pi c^{2}+2\pi ab\int _{0}^{1}{\frac {1-u^{2}v^{2}x^{2}}{{\sqrt {1-u^{2}x^{2}}}{\sqrt {1-v^{2}x^{2}}}}}\ \mathrm {d} x.}"></span></dd></dl> <p>Von Knud Thomsen stammt die integralfreie <a href="/wiki/N%C3%A4herungsformel" class="mw-redirect" title="Näherungsformel">Näherungsformel</a><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\approx 4\pi \left({\frac {(ab)^{\frac {8}{5}}+(ac)^{\frac {8}{5}}+(bc)^{\frac {8}{5}}}{3}}\right)^{\frac {5}{8}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2248;<!-- ≈ --></mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>8</mn> <mn>5</mn> </mfrac> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>8</mn> <mn>5</mn> </mfrac> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>8</mn> <mn>5</mn> </mfrac> </mrow> </msup> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>5</mn> <mn>8</mn> </mfrac> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\approx 4\pi \left({\frac {(ab)^{\frac {8}{5}}+(ac)^{\frac {8}{5}}+(bc)^{\frac {8}{5}}}{3}}\right)^{\frac {5}{8}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc2c7153b99394f3d947433f9024676333615dce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:37.406ex; height:10.009ex;" alt="{\displaystyle A\approx 4\pi \left({\frac {(ab)^{\frac {8}{5}}+(ac)^{\frac {8}{5}}+(bc)^{\frac {8}{5}}}{3}}\right)^{\frac {5}{8}}.}"></span></dd></dl> <p>Die maximale Abweichung vom exakten Resultat beträgt weniger als 1,2&#160;%. </p><p>Im Grenzfall eines vollständig plattgedrückten Ellipsoids <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(c\to 0\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(c\to 0\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de1877930faca6cf84da308a14a9a13dafad7f06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.593ex; height:2.843ex;" alt="{\displaystyle \left(c\to 0\right)}"></span> streben alle drei angegebenen <a href="/wiki/Formel" title="Formel">Formeln</a> für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> gegen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi ab,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> <mi>b</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi ab,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0be44ba692c0e6f70f1873225c138984551e17ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.369ex; height:2.509ex;" alt="{\displaystyle 2\pi ab,}"></span> den doppelten Wert des <a href="/wiki/Fl%C3%A4cheninhalt" title="Flächeninhalt">Flächeninhalts</a> einer <a href="/wiki/Ellipse" title="Ellipse">Ellipse</a> mit den Halbachsen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Anwendungsbeispiel_zu_den_Formeln">Anwendungsbeispiel zu den Formeln</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ellipsoid&amp;veaction=edit&amp;section=6" title="Abschnitt bearbeiten: Anwendungsbeispiel zu den Formeln" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ellipsoid&amp;action=edit&amp;section=6" title="Quellcode des Abschnitts bearbeiten: Anwendungsbeispiel zu den Formeln"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Der Planet Jupiter ist wegen der durch die schnelle Rotation wirkenden <a href="/wiki/Zentrifugalkraft" title="Zentrifugalkraft">Zentrifugalkräfte</a> an den Polen deutlich flacher als am Äquator und hat annähernd die Form eines <a href="/wiki/Rotationsellipsoid" title="Rotationsellipsoid">Rotationsellipsoids</a>. </p><p>Der Jupiter hat den Äquatordurchmesser 142984 km und den Poldurchmesser 133708 km. Also gilt für die Halbachsen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=b=71492\ \mathrm {km} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mi>b</mi> <mo>=</mo> <mn>71492</mn> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">k</mi> <mi mathvariant="normal">m</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=b=71492\ \mathrm {km} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e858a072a95f2d728e2680a05414f04495e49bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:17.981ex; height:2.176ex;" alt="{\displaystyle a=b=71492\ \mathrm {km} }"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=66854\ \mathrm {km} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mn>66854</mn> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">k</mi> <mi mathvariant="normal">m</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=66854\ \mathrm {km} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d9cad00b7aed82ff773c62e6cb58dcdfa05964a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.662ex; height:2.176ex;" alt="{\displaystyle c=66854\ \mathrm {km} }"></span>. Die <a href="/wiki/Masse_(Physik)" title="Masse (Physik)">Masse</a> des Jupiter beträgt etwa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1{,}899\cdot 10^{27}\ \mathrm {kg} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1,899</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>27</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">k</mi> <mi mathvariant="normal">g</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1{,}899\cdot 10^{27}\ \mathrm {kg} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc31cae6ce29df57053217773cc30c8fe186e9d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.147ex; height:3.009ex;" alt="{\displaystyle 1{,}899\cdot 10^{27}\ \mathrm {kg} }"></span>. Daraus ergibt sich mithilfe der oben genannten <a href="/wiki/Mathematische_Formel" class="mw-redirect" title="Mathematische Formel">Formeln</a> für das <a href="/wiki/Volumen" title="Volumen">Volumen</a>, die mittlere <a href="/wiki/Dichte" title="Dichte">Dichte</a> und die <a href="/wiki/Fl%C3%A4che_(Mathematik)" title="Fläche (Mathematik)">Oberfläche</a>: </p> <ul><li><b>Volumen</b>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V={\frac {4}{3}}\cdot \pi \cdot a\cdot b\cdot c\approx 1{,}4313\cdot 10^{15}\ \mathrm {km^{3}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03C0;<!-- π --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>c</mi> <mo>&#x2248;<!-- ≈ --></mo> <mn>1,431</mn> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>15</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">k</mi> <msup> <mi mathvariant="normal">m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V={\frac {4}{3}}\cdot \pi \cdot a\cdot b\cdot c\approx 1{,}4313\cdot 10^{15}\ \mathrm {km^{3}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88f11e3600e53be80d00f666ff67f7eb53e2035f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:38.403ex; height:5.176ex;" alt="{\displaystyle V={\frac {4}{3}}\cdot \pi \cdot a\cdot b\cdot c\approx 1{,}4313\cdot 10^{15}\ \mathrm {km^{3}} }"></span></li></ul> <dl><dd>Das ist etwa 1321-mal so viel wie das <a href="/wiki/Volumen" title="Volumen">Volumen</a> der Erde.</dd></dl> <ul><li><b>Mittlere Dichte</b>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho ={\frac {m}{V}}={\frac {1{,}899\cdot 10^{27}\ \mathrm {kg} }{1{,}4313\cdot 10^{15}\ \mathrm {km^{3}} }}={\frac {1{,}899\cdot 10^{27}\ \mathrm {kg} }{1{,}4313\cdot 10^{24}\ \mathrm {m^{3}} }}\approx 1327\ \mathrm {kg} /\mathrm {m^{3}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <mi>V</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1,899</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>27</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">k</mi> <mi mathvariant="normal">g</mi> </mrow> </mrow> <mrow> <mn>1,431</mn> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>15</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">k</mi> <msup> <mi mathvariant="normal">m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1,899</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>27</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">k</mi> <mi mathvariant="normal">g</mi> </mrow> </mrow> <mrow> <mn>1,431</mn> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>24</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="normal">m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mrow> </mfrac> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>1327</mn> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">k</mi> <mi mathvariant="normal">g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="normal">m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho ={\frac {m}{V}}={\frac {1{,}899\cdot 10^{27}\ \mathrm {kg} }{1{,}4313\cdot 10^{15}\ \mathrm {km^{3}} }}={\frac {1{,}899\cdot 10^{27}\ \mathrm {kg} }{1{,}4313\cdot 10^{24}\ \mathrm {m^{3}} }}\approx 1327\ \mathrm {kg} /\mathrm {m^{3}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a867517f6fb3f6cd3a882fc252379e47884fe8c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:62.965ex; height:6.843ex;" alt="{\displaystyle \rho ={\frac {m}{V}}={\frac {1{,}899\cdot 10^{27}\ \mathrm {kg} }{1{,}4313\cdot 10^{15}\ \mathrm {km^{3}} }}={\frac {1{,}899\cdot 10^{27}\ \mathrm {kg} }{1{,}4313\cdot 10^{24}\ \mathrm {m^{3}} }}\approx 1327\ \mathrm {kg} /\mathrm {m^{3}} }"></span></li></ul> <dl><dd>Der Jupiter hat also insgesamt eine etwas höhere <a href="/wiki/Dichte" title="Dichte">Dichte</a> als Wasser unter <a href="/wiki/Standardbedingungen" title="Standardbedingungen">Standardbedingungen</a>.</dd></dl> <ul><li><b>Oberfläche</b>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\approx 4\cdot \pi \cdot \left({\frac {(a\cdot b)^{\frac {8}{5}}+(a\cdot c)^{\frac {8}{5}}+(b\cdot c)^{\frac {8}{5}}}{3}}\right)^{\frac {5}{8}}\approx 6{,}15\cdot 10^{10}\ \mathrm {km^{2}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2248;<!-- ≈ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03C0;<!-- π --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>8</mn> <mn>5</mn> </mfrac> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>8</mn> <mn>5</mn> </mfrac> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>8</mn> <mn>5</mn> </mfrac> </mrow> </msup> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>5</mn> <mn>8</mn> </mfrac> </mrow> </msup> <mo>&#x2248;<!-- ≈ --></mo> <mn>6</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>15</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">k</mi> <msup> <mi mathvariant="normal">m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\approx 4\cdot \pi \cdot \left({\frac {(a\cdot b)^{\frac {8}{5}}+(a\cdot c)^{\frac {8}{5}}+(b\cdot c)^{\frac {8}{5}}}{3}}\right)^{\frac {5}{8}}\approx 6{,}15\cdot 10^{10}\ \mathrm {km^{2}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8abac1030293e4a2aad3742c59640062ea86d71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:63.066ex; height:10.009ex;" alt="{\displaystyle A\approx 4\cdot \pi \cdot \left({\frac {(a\cdot b)^{\frac {8}{5}}+(a\cdot c)^{\frac {8}{5}}+(b\cdot c)^{\frac {8}{5}}}{3}}\right)^{\frac {5}{8}}\approx 6{,}15\cdot 10^{10}\ \mathrm {km^{2}} }"></span></li></ul> <dl><dd>Das ist etwa 121-mal so viel wie die <a href="/wiki/Fl%C3%A4che_(Mathematik)" title="Fläche (Mathematik)">Oberfläche</a> der Erde.</dd></dl> <div class="mw-heading mw-heading2"><h2 id="Ebene_Schnitte">Ebene Schnitte</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ellipsoid&amp;veaction=edit&amp;section=7" title="Abschnitt bearbeiten: Ebene Schnitte" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ellipsoid&amp;action=edit&amp;section=7" title="Quellcode des Abschnitts bearbeiten: Ebene Schnitte"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Eigenschaften">Eigenschaften</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ellipsoid&amp;veaction=edit&amp;section=8" title="Abschnitt bearbeiten: Eigenschaften" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ellipsoid&amp;action=edit&amp;section=8" title="Quellcode des Abschnitts bearbeiten: Eigenschaften"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Ellipsoid-ebener-Schnitt.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/01/Ellipsoid-ebener-Schnitt.svg/330px-Ellipsoid-ebener-Schnitt.svg.png" decoding="async" width="330" height="131" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/01/Ellipsoid-ebener-Schnitt.svg/495px-Ellipsoid-ebener-Schnitt.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/01/Ellipsoid-ebener-Schnitt.svg/660px-Ellipsoid-ebener-Schnitt.svg.png 2x" data-file-width="636" data-file-height="253" /></a><figcaption>Ebener Schnitt eines Ellipsoids</figcaption></figure> <p>Der Schnitt eines Ellipsoids mit einer <a href="/wiki/Ebene_(Mathematik)" title="Ebene (Mathematik)">Ebene</a> ist </p> <ul><li>eine <i><a href="/wiki/Ellipse" title="Ellipse">Ellipse</a>,</i> falls er wenigstens zwei Punkte enthält,</li> <li>ein <i><a href="/wiki/Punkt_(Geometrie)" title="Punkt (Geometrie)">Punkt</a>,</i> falls die Ebene eine <a href="/wiki/Tangentialebene" title="Tangentialebene">Tangentialebene</a> ist,</li> <li>andernfalls <i><a href="/wiki/Leere_Menge" title="Leere Menge">leer</a>.</i></li></ul> <p>Der erste Fall folgt aus der Tatsache, dass eine Ebene eine <a href="/wiki/Kugel" title="Kugel">Kugel</a> in einem <a href="/wiki/Kreis" title="Kreis">Kreis</a> schneidet und ein Kreis bei einer <a href="/wiki/Affine_Abbildung" title="Affine Abbildung">affinen Abbildung</a> in eine Ellipse übergeht. Dass einige der Schnittellipsen Kreise sind, ist bei einem <a href="/wiki/Rotationsellipsoid" title="Rotationsellipsoid">Rotationsellipsoid</a> offensichtlich: Alle ebenen Schnitte, die wenigstens 2 Punkte enthalten und deren Ebenen <i>senkrecht</i> zur <a href="/wiki/Rotationsachse" title="Rotationsachse">Rotationsachse</a> sind, sind Kreise. Dass aber auch jedes 3-achsige Ellipsoid Kreise enthält, ist nicht offensichtlich und wird im Artikel <a href="/wiki/Kreisschnittebene" title="Kreisschnittebene">Kreisschnittebene</a> erklärt. </p><p>Der <i><a href="/wiki/Umrisskonstruktion" title="Umrisskonstruktion">wahre Umriss</a></i> eines beliebigen Ellipsoids ist sowohl bei <a href="/wiki/Parallelprojektion" title="Parallelprojektion">Parallelprojektion</a> als auch bei <a href="/wiki/Zentralprojektion" title="Zentralprojektion">Zentralprojektion</a> ein ebener Schnitt, also eine Ellipse (siehe Bilder). </p> <div class="mw-heading mw-heading3"><h3 id="Bestimmung_einer_Schnittellipse">Bestimmung einer Schnittellipse</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ellipsoid&amp;veaction=edit&amp;section=9" title="Abschnitt bearbeiten: Bestimmung einer Schnittellipse" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ellipsoid&amp;action=edit&amp;section=9" title="Quellcode des Abschnitts bearbeiten: Bestimmung einer Schnittellipse"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Ellipso-eb-beisp.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Ellipso-eb-beisp.svg/220px-Ellipso-eb-beisp.svg.png" decoding="async" width="220" height="206" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Ellipso-eb-beisp.svg/330px-Ellipso-eb-beisp.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/00/Ellipso-eb-beisp.svg/440px-Ellipso-eb-beisp.svg.png 2x" data-file-width="260" data-file-height="244" /></a><figcaption>Ebener Schnitt eines Ellipsoids</figcaption></figure> <p><i>Gegeben:</i> Ellipsoid <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}+{\frac {z^{2}}{c^{2}}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}+{\frac {z^{2}}{c^{2}}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68f83fa62cd61acf1ca6e1a1ab024fc7bf317df1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:19.193ex; height:6.009ex;" alt="{\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}+{\frac {z^{2}}{c^{2}}}=1}"></span> und eine Ebene mit der <a href="/wiki/Gleichung" title="Gleichung">Gleichung</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{x}x+n_{y}y+n_{z}z=d,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mi>y</mi> <mo>+</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mi>z</mi> <mo>=</mo> <mi>d</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{x}x+n_{y}y+n_{z}z=d,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dbeb37285f4bab5c5682e8662241b825fd7f28c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.623ex; height:2.843ex;" alt="{\displaystyle n_{x}x+n_{y}y+n_{z}z=d,}"></span> die das Ellipsoid in einer Ellipse schneidet.<br /><i>Gesucht:</i> Drei <a href="/wiki/Vektor" title="Vektor">Vektoren</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {f}}_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {f}}_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1ae526b00782f0150985cd3fa027d82369c0abd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.719ex; height:3.509ex;" alt="{\displaystyle {\vec {f}}_{0}}"></span> (<a href="/wiki/Mittelpunkt" title="Mittelpunkt">Mittelpunkt</a>) und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {f}}_{1},\;{\vec {f}}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thickmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {f}}_{1},\;{\vec {f}}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50eaca08529d3507b9cb4a288f2447b22d735f72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.117ex; height:3.509ex;" alt="{\displaystyle {\vec {f}}_{1},\;{\vec {f}}_{2}}"></span> (konjugierte Vektoren) so, dass die Schnittellipse durch die <a href="/wiki/Parameterdarstellung" title="Parameterdarstellung">Parameterdarstellung</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {x}}={\vec {f}}_{0}+{\vec {f}}_{1}\cos t+{\vec {f}}_{2}\sin t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>t</mi> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {x}}={\vec {f}}_{0}+{\vec {f}}_{1}\cos t+{\vec {f}}_{2}\sin t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f436e646b8234d29b0bfa1d3da4d6af584b7aec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.46ex; height:3.509ex;" alt="{\displaystyle {\vec {x}}={\vec {f}}_{0}+{\vec {f}}_{1}\cos t+{\vec {f}}_{2}\sin t}"></span></dd></dl> <p>beschrieben werden kann (siehe&#160;<a href="/wiki/Ellipse#Ellipse_als_affines_Bild_des_Einheitskreises" title="Ellipse">Ellipse</a>). </p> <figure typeof="mw:File/Thumb"><a href="/wiki/Datei:Ellipso-eb-ku.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Ellipso-eb-ku.svg/300px-Ellipso-eb-ku.svg.png" decoding="async" width="300" height="160" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Ellipso-eb-ku.svg/450px-Ellipso-eb-ku.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Ellipso-eb-ku.svg/600px-Ellipso-eb-ku.svg.png 2x" data-file-width="331" data-file-height="176" /></a><figcaption>Ebener Schnitt der <a href="/wiki/Einheitskugel" title="Einheitskugel">Einheitskugel</a></figcaption></figure> <p><i>Lösung:</i> Die Skalierung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u={\frac {x}{a}}\ ,\ v={\frac {y}{b}}\,\ w={\frac {z}{c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>a</mi> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>v</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>y</mi> <mi>b</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mtext>&#xA0;</mtext> <mi>w</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mi>c</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u={\frac {x}{a}}\ ,\ v={\frac {y}{b}}\,\ w={\frac {z}{c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54ad3f9f48f20c6f1741318fd4a59f78aef42c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:22.662ex; height:5.009ex;" alt="{\displaystyle u={\frac {x}{a}}\ ,\ v={\frac {y}{b}}\,\ w={\frac {z}{c}}}"></span> führt das Ellipsoid in die <a href="/wiki/Einheitskugel" title="Einheitskugel">Einheitskugel</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u^{2}+v^{2}+w^{2}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u^{2}+v^{2}+w^{2}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e817edbffc7ac3943e53331623518824c6985827" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:17.226ex; height:2.843ex;" alt="{\displaystyle u^{2}+v^{2}+w^{2}=1}"></span> und die gegebene <a href="/wiki/Ebene_(Mathematik)" title="Ebene (Mathematik)">Ebene</a> in die Ebene mit der Gleichung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{x}au+n_{y}bv+n_{z}cw=d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>a</mi> <mi>u</mi> <mo>+</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mi>b</mi> <mi>v</mi> <mo>+</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mi>c</mi> <mi>w</mi> <mo>=</mo> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{x}au+n_{y}bv+n_{z}cw=d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0e0bff6e1123556199b205ace41f7c2aa8875fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.758ex; height:2.843ex;" alt="{\displaystyle n_{x}au+n_{y}bv+n_{z}cw=d}"></span> über. Die <a href="/wiki/Hesse-Normalform" class="mw-redirect" title="Hesse-Normalform">Hesse-Normalform</a> der neuen Ebene sei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{u}u+m_{v}v+m_{w}w=\delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mi>u</mi> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mi>v</mi> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mi>w</mi> <mo>=</mo> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{u}u+m_{v}v+m_{w}w=\delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be81b2303334464ce977ec96cb9f383781175df2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.682ex; height:2.676ex;" alt="{\displaystyle m_{u}u+m_{v}v+m_{w}w=\delta }"></span> mit dem <a href="/wiki/Normaleneinheitsvektor" class="mw-redirect" title="Normaleneinheitsvektor">Normaleneinheitsvektor</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {m}}=(m_{u},m_{v},m_{w})^{T}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>m</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {m}}=(m_{u},m_{v},m_{w})^{T}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a24adf2cfcc1a98fe2de024244e2359892c3c742" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.784ex; height:3.176ex;" alt="{\displaystyle {\vec {m}}=(m_{u},m_{v},m_{w})^{T}.}"></span> Dann ist<br />der <a href="/wiki/Mittelpunkt" title="Mittelpunkt">Mittelpunkt</a> des Schnittkreises <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e}}_{0}=\delta \;{\vec {m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mi>&#x03B4;<!-- δ --></mi> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>m</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e}}_{0}=\delta \;{\vec {m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/499c361276f3892ce36455affdf7b0ce4729558f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.11ex; height:2.676ex;" alt="{\displaystyle {\vec {e}}_{0}=\delta \;{\vec {m}}}"></span> und dessen <a href="/wiki/Radius" title="Radius">Radius</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho ={\sqrt {1-\delta ^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho ={\sqrt {1-\delta ^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbb923d1700dbfc63d1be0c67dc2df2d29211e62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.382ex; height:3.509ex;" alt="{\displaystyle \rho ={\sqrt {1-\delta ^{2}}}.}"></span><br />Falls <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{w}=\pm 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{w}=\pm 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6cb60d3fdd3c0213f7b4ed87e532feaddcfbefd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.518ex; height:2.509ex;" alt="{\displaystyle m_{w}=\pm 1}"></span> ist, sei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e}}_{1}=(\rho ,0,0)^{T},\ {\vec {e}}_{2}=(0,\rho ,0)^{T}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mi>&#x03C1;<!-- ρ --></mi> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>&#x03C1;<!-- ρ --></mi> <mo>,</mo> <mn>0</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e}}_{1}=(\rho ,0,0)^{T},\ {\vec {e}}_{2}=(0,\rho ,0)^{T}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69b216df8df7fd5d6a0e24beb40fe7408d310aa8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.6ex; height:3.176ex;" alt="{\displaystyle {\vec {e}}_{1}=(\rho ,0,0)^{T},\ {\vec {e}}_{2}=(0,\rho ,0)^{T}.}"></span> (Die Ebene ist horizontal!)<br />Falls <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{w}\neq \pm 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mo>&#x2260;<!-- ≠ --></mo> <mo>&#x00B1;<!-- ± --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{w}\neq \pm 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d8da044a7e99b18966263ec8b4b24bb9fa44b70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.518ex; height:2.676ex;" alt="{\displaystyle m_{w}\neq \pm 1}"></span> ist, sei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e}}_{1}=\rho \,{\frac {(m_{v},-m_{u},0)^{T}}{\sqrt {m_{u}^{2}+m_{v}^{2}}}},\ {\vec {e}}_{2}={\vec {m}}\times {\vec {e}}_{1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>&#x03C1;<!-- ρ --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo>,</mo> <mn>0</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mrow> <msqrt> <msubsup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mfrac> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>m</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x00D7;<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e}}_{1}=\rho \,{\frac {(m_{v},-m_{u},0)^{T}}{\sqrt {m_{u}^{2}+m_{v}^{2}}}},\ {\vec {e}}_{2}={\vec {m}}\times {\vec {e}}_{1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5f9bbc471dca0b52e006382d448eb6d9784de24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:37.116ex; height:7.176ex;" alt="{\displaystyle {\vec {e}}_{1}=\rho \,{\frac {(m_{v},-m_{u},0)^{T}}{\sqrt {m_{u}^{2}+m_{v}^{2}}}},\ {\vec {e}}_{2}={\vec {m}}\times {\vec {e}}_{1}.}"></span><br />Die <a href="/wiki/Vektor" title="Vektor">Vektoren</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e}}_{1},{\vec {e}}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e}}_{1},{\vec {e}}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a03096cb1626c143ad3bd9473c694b2ac889ca85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.589ex; height:2.676ex;" alt="{\displaystyle {\vec {e}}_{1},{\vec {e}}_{2}}"></span> sind in jedem Fall zwei in der Schnittebene liegende orthogonale Vektoren der Länge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> (Kreisradius), d.&#160;h., der Schnittkreis wird durch die Parameterdarstellung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {u}}={\vec {e}}_{0}+{\vec {e}}_{1}\cos t+{\vec {e}}_{2}\sin t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>u</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>t</mi> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {u}}={\vec {e}}_{0}+{\vec {e}}_{1}\cos t+{\vec {e}}_{2}\sin t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/028ef0ef0f3579f4a4ebcedc013c49cc1809e797" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:26.135ex; height:2.676ex;" alt="{\displaystyle {\vec {u}}={\vec {e}}_{0}+{\vec {e}}_{1}\cos t+{\vec {e}}_{2}\sin t}"></span> beschrieben. </p><p>Macht man nun die obige Skalierung (<a href="/wiki/Affine_Abbildung" title="Affine Abbildung">affine Abbildung</a>) rückgängig, so wird die Einheitskugel wieder zum gegebenen Ellipsoid und man erhält aus den Vektoren <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e}}_{0},{\vec {e}}_{1},{\vec {e}}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e}}_{0},{\vec {e}}_{1},{\vec {e}}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12fdd38bfc6ef7a56ee7f64b21cb60eca51be7da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.9ex; height:2.676ex;" alt="{\displaystyle {\vec {e}}_{0},{\vec {e}}_{1},{\vec {e}}_{2}}"></span> die gesuchten Vektoren <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {f}}_{0},{\vec {f}}_{1},{\vec {f}}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {f}}_{0},{\vec {f}}_{1},{\vec {f}}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0583853158e69e51d160d215326363e456e6b23a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.225ex; height:3.509ex;" alt="{\displaystyle {\vec {f}}_{0},{\vec {f}}_{1},{\vec {f}}_{2}}"></span>, mit denen man die Schnittellipse beschreiben kann. Wie man daraus die <a href="/wiki/Scheitelpunkt" title="Scheitelpunkt">Scheitelpunkte</a> der Ellipse und damit ihre Halbachsen bestimmt, wird unter <a href="/wiki/Ellipse#Ellipse_als_affines_Bild_des_Einheitskreises" title="Ellipse"><i>Ellipse</i></a> erklärt. </p><p><i>Beispiel:</i> Die Bilder gehören zu dem Beispiel mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=4,\;b=5,\;c=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mi>b</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mi>c</mi> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=4,\;b=5,\;c=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eda8dffad60eb97206db03615335762ea957c189" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.375ex; height:2.509ex;" alt="{\displaystyle a=4,\;b=5,\;c=3}"></span> und der Schnittebene <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+y+z=5.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo>=</mo> <mn>5.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+y+z=5.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe89fdc93db66dbe99012fa4c6d4d0416003c66e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.162ex; height:2.509ex;" alt="{\displaystyle x+y+z=5.}"></span> Das Bild des Ellipsoidschnittes ist eine senkrechte <a href="/wiki/Parallelprojektion" title="Parallelprojektion">Parallelprojektion</a> auf eine Ebene parallel zur Schnittebene, d.&#160;h., die Ellipse erscheint bis auf eine uniforme Skalierung in wahrer Gestalt. Man beachte, dass <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {f}}_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {f}}_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1ae526b00782f0150985cd3fa027d82369c0abd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.719ex; height:3.509ex;" alt="{\displaystyle {\vec {f}}_{0}}"></span> hier im Gegensatz zu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e}}_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e}}_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/686ab9780c489d02208a20dfdccb4c0365f415e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.277ex; height:2.676ex;" alt="{\displaystyle {\vec {e}}_{0}}"></span> nicht auf der Schnittebene senkrecht steht. Die <a href="/wiki/Vektor" title="Vektor">Vektoren</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {f}}_{1},\;{\vec {f}}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thickmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {f}}_{1},\;{\vec {f}}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50eaca08529d3507b9cb4a288f2447b22d735f72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.117ex; height:3.509ex;" alt="{\displaystyle {\vec {f}}_{1},\;{\vec {f}}_{2}}"></span> sind hier im Gegensatz zu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e}}_{1},\;{\vec {e}}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thickmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e}}_{1},\;{\vec {e}}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fc72c0f6efc243a3fd4ef49c8b81c62a2b7cb95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.234ex; height:2.676ex;" alt="{\displaystyle {\vec {e}}_{1},\;{\vec {e}}_{2}}"></span>nicht <a href="/wiki/Orthogonalit%C3%A4t" title="Orthogonalität">orthogonal</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Fadenkonstruktion">Fadenkonstruktion</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ellipsoid&amp;veaction=edit&amp;section=10" title="Abschnitt bearbeiten: Fadenkonstruktion" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ellipsoid&amp;action=edit&amp;section=10" title="Quellcode des Abschnitts bearbeiten: Fadenkonstruktion"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Ellipse-gaertner-k.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Ellipse-gaertner-k.svg/220px-Ellipse-gaertner-k.svg.png" decoding="async" width="220" height="178" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Ellipse-gaertner-k.svg/330px-Ellipse-gaertner-k.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Ellipse-gaertner-k.svg/440px-Ellipse-gaertner-k.svg.png 2x" data-file-width="293" data-file-height="237" /></a><figcaption>Fadenkonstruktion einer <a href="/wiki/Ellipse" title="Ellipse">Ellipse</a><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |S_{1}S_{2}|=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |S_{1}S_{2}|=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4ab5be77b33d1dd06305901fb6143105556d8fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.705ex; height:2.843ex;" alt="{\displaystyle |S_{1}S_{2}|=}"></span> Länge des Fades (rot)</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Fokalks-ellipsoid.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/Fokalks-ellipsoid.svg/260px-Fokalks-ellipsoid.svg.png" decoding="async" width="260" height="235" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/Fokalks-ellipsoid.svg/390px-Fokalks-ellipsoid.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/69/Fokalks-ellipsoid.svg/520px-Fokalks-ellipsoid.svg.png 2x" data-file-width="331" data-file-height="299" /></a><figcaption>Fadenkonstruktion eines Ellipsoids</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Fokalks-ellipsoid-xyz.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Fokalks-ellipsoid-xyz.svg/260px-Fokalks-ellipsoid-xyz.svg.png" decoding="async" width="260" height="425" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Fokalks-ellipsoid-xyz.svg/390px-Fokalks-ellipsoid-xyz.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Fokalks-ellipsoid-xyz.svg/520px-Fokalks-ellipsoid-xyz.svg.png 2x" data-file-width="295" data-file-height="482" /></a><figcaption>Fadenkonstruktion: Bestimmung der Halbachsen</figcaption></figure> <p>Die Fadenkonstruktion eines Ellipsoids ist eine Übertragung der Idee der <a href="/wiki/Ellipse#Gärtnerkonstruktion" title="Ellipse">Gärtnerkonstruktion</a> einer <a href="/wiki/Ellipse" title="Ellipse">Ellipse</a> (siehe Abbildung). Eine Fadenkonstruktion eines <a href="/wiki/Rotationsellipsoid" title="Rotationsellipsoid">Rotationsellipsoids</a> ergibt sich durch Konstruktion der Meridian-Ellipsen mit Hilfe eines Fadens. </p><p>Punkte eines <i>3-achsigen Ellipsoids</i> mit Hilfe eines gespannten Fadens zu konstruieren ist etwas komplizierter. <a href="/wiki/Wolfgang_Boehm_(Mathematiker)" title="Wolfgang Boehm (Mathematiker)">Wolfgang Boehm</a> schreibt in dem Artikel <i>Die Fadenkonstruktion der Flächen zweiter Ordnung</i><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> die Grundidee der Fadenkonstruktion eines Ellipsoids dem schottischen Physiker <a href="/wiki/James_Clerk_Maxwell" title="James Clerk Maxwell">James Clerk Maxwell</a> (1868) zu. <a href="/wiki/Otto_Staude" title="Otto Staude">Otto Staude</a> hat in Arbeiten 1882, 1886, 1898<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> die Fadenkonstruktion dann auf <a href="/wiki/Quadrik" title="Quadrik">Quadriken</a> verallgemeinert. Die Fadenkonstruktion für Ellipsoide und <a href="/wiki/Hyperboloid" title="Hyperboloid">Hyperboloide</a> wird auch in dem Buch <i>Anschauliche Geometrie</i><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> von <a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a> und <a href="/wiki/Stefan_Cohn-Vossen" title="Stefan Cohn-Vossen">Stefan Cohn-Vossen</a> beschrieben. Auch <a href="/wiki/Sebastian_Finsterwalder" title="Sebastian Finsterwalder">Sebastian Finsterwalder</a> beschäftigte sich 1886 mit diesem Thema.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dt>Konstruktionsschritte</dt> <dd><b>(1)</b> Man wähle eine <a href="/wiki/Ellipse" title="Ellipse">Ellipse</a> und eine <a href="/wiki/Hyperbel_(Mathematik)" title="Hyperbel (Mathematik)">Hyperbel</a>, die ein Paar von <a href="/wiki/Fokalkegelschnitt" title="Fokalkegelschnitt">Fokalkegelschnitten</a> bilden: <dl><dd>Ellipse: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E(\varphi )=(a\cos \varphi ,b\sin \varphi ,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>,</mo> <mi>b</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E(\varphi )=(a\cos \varphi ,b\sin \varphi ,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4bb14d1e11ea240333124043a370499b4255728" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.026ex; height:2.843ex;" alt="{\displaystyle E(\varphi )=(a\cos \varphi ,b\sin \varphi ,0)}"></span> und</dd> <dd>Hyperbel: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(\psi )=(c\cosh \psi ,0,b\sinh \psi )\quad ,\ c^{2}=a^{2}-b^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mi>cosh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mi>b</mi> <mi>sinh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">)</mo> <mspace width="1em" /> <mo>,</mo> <mtext>&#xA0;</mtext> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(\psi )=(c\cosh \psi ,0,b\sinh \psi )\quad ,\ c^{2}=a^{2}-b^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6445d0f14cbb270759dbcaa95056793c7db2db93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:44.928ex; height:3.176ex;" alt="{\displaystyle H(\psi )=(c\cosh \psi ,0,b\sinh \psi )\quad ,\ c^{2}=a^{2}-b^{2}}"></span></dd></dl></dd> <dd>mit den <a href="/wiki/Scheitelpunkt" title="Scheitelpunkt">Scheitelpunkten</a> und <a href="/wiki/Brennpunkt_(Geometrie)" title="Brennpunkt (Geometrie)">Brennpunkten</a> der Ellipse <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{1}=(a,0,0),\ F_{1}=(c,0,0),\ F_{2}=(-c,0,0),\ S_{2}=(-a,0,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{1}=(a,0,0),\ F_{1}=(c,0,0),\ F_{2}=(-c,0,0),\ S_{2}=(-a,0,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77564e7b919fe60a480a1de44b3480cc03996669" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:60.191ex; height:2.843ex;" alt="{\displaystyle S_{1}=(a,0,0),\ F_{1}=(c,0,0),\ F_{2}=(-c,0,0),\ S_{2}=(-a,0,0)}"></span></dd></dl></dd> <dd>und einen Faden (in der Abbildung Bild rot) der Länge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/829091f745070b9eb97a80244129025440a1cfac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.693ex; height:2.176ex;" alt="{\displaystyle l}"></span>.</dd> <dd><b>(2)</b> Man befestige das eine Ende des Fadens im Scheitelpunkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bf84e7fd4fb8259a9b37f956afdf83ee2a020f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.479ex; height:2.509ex;" alt="{\displaystyle S_{1}}"></span> und das andere Ende im Brennpunkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fd17e0779153d765b40ebef91533489b87b2e37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.549ex; height:2.509ex;" alt="{\displaystyle F_{2}}"></span>. Der Faden wird in einem <a href="/wiki/Punkt_(Geometrie)" title="Punkt (Geometrie)">Punkt</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> so gespannt gehalten, dass der Faden von hinten auf der Hyperbel und von vorn auf der Ellipse gleiten kann (siehe Abbildung). Der Faden geht über denjenigen Hyperbelpunkt, mit dem die Entfernung von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bf84e7fd4fb8259a9b37f956afdf83ee2a020f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.479ex; height:2.509ex;" alt="{\displaystyle S_{1}}"></span> über einen Hyperbelpunkt minimal wird. Analoges gilt für den Fadenteil von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fd17e0779153d765b40ebef91533489b87b2e37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.549ex; height:2.509ex;" alt="{\displaystyle F_{2}}"></span> über einen Ellipsenpunkt.</dd> <dd><b>(3)</b> Wählt man den Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> so, dass er positive y- und z-<a href="/wiki/Koordinatensystem" title="Koordinatensystem">Koordinaten</a> hat, so ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> ein Punkt des Ellipsoids mit der <a href="/wiki/Gleichung" title="Gleichung">Gleichung</a> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {x^{2}}{r_{x}^{2}}}+{\frac {y^{2}}{r_{y}^{2}}}+{\frac {z^{2}}{r_{z}^{2}}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {x^{2}}{r_{x}^{2}}}+{\frac {y^{2}}{r_{y}^{2}}}+{\frac {z^{2}}{r_{z}^{2}}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e500c7e7f2326ce8d813647ade49e42b0a7ecbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:19.193ex; height:6.676ex;" alt="{\displaystyle {\frac {x^{2}}{r_{x}^{2}}}+{\frac {y^{2}}{r_{y}^{2}}}+{\frac {z^{2}}{r_{z}^{2}}}=1}"></span> und</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{x}={\frac {1}{2}}(l-a+c)\ ,\quad r_{y}={\sqrt {r_{x}^{2}-c^{2}}}\ ,\quad r_{z}={\sqrt {r_{x}^{2}-a^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>l</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>,</mo> <mspace width="1em" /> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> <mspace width="1em" /> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{x}={\frac {1}{2}}(l-a+c)\ ,\quad r_{y}={\sqrt {r_{x}^{2}-c^{2}}}\ ,\quad r_{z}={\sqrt {r_{x}^{2}-a^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c897d5ca525a5927fb32dd362e4f32d83da9250" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:55.72ex; height:5.176ex;" alt="{\displaystyle r_{x}={\frac {1}{2}}(l-a+c)\ ,\quad r_{y}={\sqrt {r_{x}^{2}-c^{2}}}\ ,\quad r_{z}={\sqrt {r_{x}^{2}-a^{2}}}.}"></span></dd></dl></dd> <dd><b>(4)</b> Die restlichen Punkte des Ellipsoids erhält man durch geeignetes Umspannen des Fadens an den Fokalkegelschnitten.</dd></dl> <p>Die Gleichungen für die Halbachsen des erzeugten Ellipsoids ergeben sich, wenn man den Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> in die beiden <a href="/wiki/Scheitelpunkt" title="Scheitelpunkt">Scheitelpunkte</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=(0,r_{y},0),\ Z=(0,0,r_{z})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>Z</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y=(0,r_{y},0),\ Z=(0,0,r_{z})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a74350d97ed31d0b935c18bd38c323af027fa2ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.818ex; height:3.009ex;" alt="{\displaystyle Y=(0,r_{y},0),\ Z=(0,0,r_{z})}"></span> fallen lässt: </p><p>Aus der unteren Zeichnung erkennt man, dass <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{1},F_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{1},F_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddbaefad7d000285a069031a623cdc454e4b79e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.132ex; height:2.509ex;" alt="{\displaystyle F_{1},F_{2}}"></span> auch die <a href="/wiki/Brennpunkt_(Geometrie)" title="Brennpunkt (Geometrie)">Brennpunkte</a> der Äquatorellipse sind. D.&#160;h.: Die Äquatorellipse ist <a href="/wiki/Konfokale_Kegelschnitte" title="Konfokale Kegelschnitte">konfokal</a> zur gegebenen Fokalellipse. Also ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l=2r_{x}+(a-c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>l</mi> <mo>=</mo> <mn>2</mn> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l=2r_{x}+(a-c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfbf92c9f5a47d8b4560c1f6d71a5dae0c739f64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.902ex; height:2.843ex;" alt="{\displaystyle l=2r_{x}+(a-c)}"></span>, woraus sich <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{x}={\frac {1}{2}}(l-a+c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>l</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{x}={\frac {1}{2}}(l-a+c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4b1c38da7d9fec7a7fde6b247eef62810a066b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.738ex; height:5.176ex;" alt="{\displaystyle r_{x}={\frac {1}{2}}(l-a+c)}"></span> ergibt. Ferner erkennt man, dass <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{y}^{2}=r_{x}^{2}-c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{y}^{2}=r_{x}^{2}-c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b5f783ce41cf0779274a4257d52c3e92c9e129b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.324ex; height:3.343ex;" alt="{\displaystyle r_{y}^{2}=r_{x}^{2}-c^{2}}"></span> ist.<br />Aus der oberen Zeichnung ergibt sich: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{1},S_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{1},S_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05289e5891f97d54bdc946771362aedd6bb76917" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.992ex; height:2.509ex;" alt="{\displaystyle S_{1},S_{2}}"></span> sind die Brennpunkte der Ellipse in der x-z-<a href="/wiki/Ebene_(Mathematik)" title="Ebene (Mathematik)">Ebene</a> und es gilt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{z}^{2}=r_{x}^{2}-a^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{z}^{2}=r_{x}^{2}-a^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/404bb9a4d9bf81152882db483b3e8e573192f5b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.547ex; height:3.009ex;" alt="{\displaystyle r_{z}^{2}=r_{x}^{2}-a^{2}}"></span>. </p><p><b>Umkehrung:</b><br />Möchte man ein durch seine Gleichung gegebenes 3-achsiges Ellipsoid <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {E}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {E}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c298ed828ff778065aeb5f0f305097f55bb9ae0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.311ex; height:2.176ex;" alt="{\displaystyle {\mathcal {E}}}"></span> mit den Halbachsen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{x},r_{y},r_{z}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{x},r_{y},r_{z}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c32b2530cd4e81bdce43b0aab48beb71faed0c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.437ex; height:2.343ex;" alt="{\displaystyle r_{x},r_{y},r_{z}}"></span> konstruieren, so lassen sich aus den Gleichungen im Schritt <b>(3)</b> die für die Fadenkonstruktion nötigen Parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55e5e377020203e03a8c19bc70bd84e6eb3fc8d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.989ex; height:2.509ex;" alt="{\displaystyle a,b,l}"></span> berechnen. Für die folgenden Überlegungen wichtig sind die Gleichungen </p> <dl><dd><b>(5)</b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle :\ r_{x}^{2}-r_{y}^{2}=c^{2},\quad r_{x}^{2}-r_{z}^{2}=a^{2},\quad r_{y}^{2}-r_{z}^{2}=a^{2}-c^{2}=b^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>:</mo> <mtext>&#xA0;</mtext> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mspace width="1em" /> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mspace width="1em" /> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle :\ r_{x}^{2}-r_{y}^{2}=c^{2},\quad r_{x}^{2}-r_{z}^{2}=a^{2},\quad r_{y}^{2}-r_{z}^{2}=a^{2}-c^{2}=b^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db58a40933193d1dc9168374d0d6eb6277ff6286" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:56.584ex; height:3.343ex;" alt="{\displaystyle :\ r_{x}^{2}-r_{y}^{2}=c^{2},\quad r_{x}^{2}-r_{z}^{2}=a^{2},\quad r_{y}^{2}-r_{z}^{2}=a^{2}-c^{2}=b^{2}.}"></span></dd></dl> <p><b>Konfokale Ellipsoide:</b><br />Ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {\overline {E}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {\overline {E}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eda78acf40a35f89df13b66d0407d3b940acab5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.48ex; height:3.009ex;" alt="{\displaystyle {\mathcal {\overline {E}}}}"></span> ein zu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {E}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {E}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c298ed828ff778065aeb5f0f305097f55bb9ae0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.311ex; height:2.176ex;" alt="{\displaystyle {\mathcal {E}}}"></span> <a href="/wiki/Konfokale_Quadriken" class="mw-redirect" title="Konfokale Quadriken">konfokales Ellipsoid</a> mit den Quadraten der Halbachsen </p> <dl><dd><b>(6)</b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle :\ {\overline {r}}_{x}^{2}=r_{x}^{2}-\lambda ,\quad {\overline {r}}_{y}^{2}=r_{y}^{2}-\lambda ,\quad {\overline {r}}_{z}^{2}=r_{z}^{2}-\lambda ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>:</mo> <mtext>&#xA0;</mtext> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo>,</mo> <mspace width="1em" /> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo>,</mo> <mspace width="1em" /> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle :\ {\overline {r}}_{x}^{2}=r_{x}^{2}-\lambda ,\quad {\overline {r}}_{y}^{2}=r_{y}^{2}-\lambda ,\quad {\overline {r}}_{z}^{2}=r_{z}^{2}-\lambda ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a67e686937096ddfda97a0a58737c78dde604454" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:44.314ex; height:3.676ex;" alt="{\displaystyle :\ {\overline {r}}_{x}^{2}=r_{x}^{2}-\lambda ,\quad {\overline {r}}_{y}^{2}=r_{y}^{2}-\lambda ,\quad {\overline {r}}_{z}^{2}=r_{z}^{2}-\lambda ,}"></span></dd></dl> <p>so erkennt man aus den vorigen Gleichungen, dass die zu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {\overline {E}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {\overline {E}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eda78acf40a35f89df13b66d0407d3b940acab5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.48ex; height:3.009ex;" alt="{\displaystyle {\mathcal {\overline {E}}}}"></span> gehörigen Fokalkegelschnitte für die Fadenerzeugung <i>dieselben</i> Halbachsen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f13f068df656c1b1911ae9f81628c49a6181194d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.302ex; height:2.509ex;" alt="{\displaystyle a,b,c}"></span> wie die von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {E}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {E}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c298ed828ff778065aeb5f0f305097f55bb9ae0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.311ex; height:2.176ex;" alt="{\displaystyle {\mathcal {E}}}"></span> besitzen. Deshalb fasst man –&#160;analog der Rolle der <a href="/wiki/Brennpunkt_(Geometrie)" title="Brennpunkt (Geometrie)">Brennpunkte</a> bei der Fadenerzeugung einer Ellipse&#160;– die Fokalkegelschnitte eines 3-achsigen Ellipsoids als deren unendlich viele Brennpunkte auf und nennt sie <b>Fokalkurven</b> des Ellipsoids.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>Auch die Umkehrung ist richtig: Wählt man einen zweiten Faden der Länge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {l}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>l</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {l}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/334e4ddd1db99bab51300576cbdc346a2f033c5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.808ex; height:3.009ex;" alt="{\displaystyle {\overline {l}}}"></span> und setzt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda =r_{x}^{2}-{\overline {r}}_{x}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>=</mo> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda =r_{x}^{2}-{\overline {r}}_{x}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a65ecfcd4f2649ea29fd40dc6a471e1c32d873f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.851ex; height:3.343ex;" alt="{\displaystyle \lambda =r_{x}^{2}-{\overline {r}}_{x}^{2}}"></span>, so gilt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {r}}_{y}^{2}=r_{y}^{2}-\lambda ,\ {\overline {r}}_{z}^{2}=r_{z}^{2}-\lambda .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo>,</mo> <mtext>&#xA0;</mtext> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {r}}_{y}^{2}=r_{y}^{2}-\lambda ,\ {\overline {r}}_{z}^{2}=r_{z}^{2}-\lambda .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74644faf45c5610bdcb0d0b7d1c81c7b7c4a0d2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:25.491ex; height:3.676ex;" alt="{\displaystyle {\overline {r}}_{y}^{2}=r_{y}^{2}-\lambda ,\ {\overline {r}}_{z}^{2}=r_{z}^{2}-\lambda .}"></span> D.&#160;h.: Die beiden Ellipsoide sind konfokal. </p><p><b>Grenzfall <a href="/wiki/Rotationsellipsoid" title="Rotationsellipsoid">Rotationsellipsoid</a>:</b><br />Im Fall <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1beb3f1b1ad87e99791ba713839204a88b27239a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.335ex; height:1.676ex;" alt="{\displaystyle a=c}"></span> ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{1}=F_{1},\;S_{2}=F_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thickmathspace" /> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{1}=F_{1},\;S_{2}=F_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb1ec6f346234c478e40598a35e4f245a1ad1587" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.932ex; height:2.509ex;" alt="{\displaystyle S_{1}=F_{1},\;S_{2}=F_{2}}"></span>, d.&#160;h., die Fokalellipse artet in eine Strecke und die <a href="/wiki/Hyperbel_(Mathematik)" title="Hyperbel (Mathematik)">Hyperbel</a> in zwei <a href="/wiki/Strahl_(Geometrie)" title="Strahl (Geometrie)">Strahlen</a> auf der x-Achse aus. Das Ellipsoid ist dann ein Rotationsellipsoid mit der x-Achse als <a href="/wiki/Rotationsachse" title="Rotationsachse">Rotationsachse</a>. Es ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{x}={\tfrac {l}{2}},\;r_{y}=r_{z}={\sqrt {r_{x}^{2}-c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>l</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{x}={\tfrac {l}{2}},\;r_{y}=r_{z}={\sqrt {r_{x}^{2}-c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/544f97db5787e4f07d691e555f0c9aa44a33db5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:28.448ex; height:4.843ex;" alt="{\displaystyle r_{x}={\tfrac {l}{2}},\;r_{y}=r_{z}={\sqrt {r_{x}^{2}-c^{2}}}}"></span>. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Ellipsoid-pk-zk.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Ellipsoid-pk-zk.svg/330px-Ellipsoid-pk-zk.svg.png" decoding="async" width="330" height="288" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Ellipsoid-pk-zk.svg/495px-Ellipsoid-pk-zk.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Ellipsoid-pk-zk.svg/660px-Ellipsoid-pk-zk.svg.png 2x" data-file-width="777" data-file-height="678" /></a><figcaption>Unten: <a href="/wiki/Parallelprojektion" title="Parallelprojektion">Parallelprojektion</a> und <a href="/wiki/Zentralprojektion" title="Zentralprojektion">Zentralprojektion</a> eines 3-achsigen Ellipsoids, wo der scheinbare Umriss ein <a href="/wiki/Kreis" title="Kreis">Kreis</a> ist</figcaption></figure> <p><b>Eigenschaften der Fokalhyperbel:</b><br />Betrachtet man ein Ellipsoid von einem außerhalb gelegenen Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> auf der zugehörigen Fokalhyperbel aus, so erscheint der Umriss des Ellipsoids als <a href="/wiki/Kreis" title="Kreis">Kreis</a>. Oder, anders ausgedrückt: Die <a href="/wiki/Tangente" title="Tangente">Tangenten</a> des Ellipsoids durch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> bilden einen senkrechten <a href="/wiki/Kreiskegel" class="mw-redirect" title="Kreiskegel">Kreiskegel</a>, dessen Rotationsachse Tangente in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> an die Hyperbel ist.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> Lässt man den Augpunkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> ins Unendliche laufen, entsteht die Ansicht einer senkrechten <a href="/wiki/Parallelprojektion" title="Parallelprojektion">Parallelprojektion</a> mit einer <a href="/wiki/Asymptote" title="Asymptote">Asymptote</a> der Fokalhyperbel als Projektionsrichtung. Die <a href="/wiki/Umrisskonstruktion" title="Umrisskonstruktion">wahre Umrisskurve</a> auf dem Ellipsoid ist im Allgemeinen kein Kreis.<br />In der Abbildung ist unten links eine Parallelprojektion eines 3-achsigen Ellipsoids (Halbachsen: 60, 40, 30) in Richtung einer Asymptote und unten rechts eine <a href="/wiki/Zentralprojektion" title="Zentralprojektion">Zentralprojektion</a> mit Zentrum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> auf der Fokalhyperbel und Hauptpunkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> auf der Tangente an die Hyperbel in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> dargestellt. In beiden Projektionen sind die scheinbaren Umrisse Kreise. Links ist das Bild des <a href="/wiki/Koordinatenursprung" class="mw-redirect" title="Koordinatenursprung">Koordinatenursprungs</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span> der <a href="/wiki/Mittelpunkt" title="Mittelpunkt">Mittelpunkt</a> des Umrisskreises, rechts ist der Hauptpunkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> der Mittelpunkt. </p><p>Die Fokalhyperbel eines Ellipsoids schneidet das Ellipsoid in seinen vier <a href="/wiki/Nabelpunkt" class="mw-redirect" title="Nabelpunkt">Nabelpunkten</a>.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p><p><b>Eigenschaft der Fokalellipse:</b><br />Die Fokalellipse mit ihrem Inneren kann als <a href="/wiki/Grenzfl%C3%A4che" title="Grenzfläche">Grenzfläche</a> der durch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/181523deba732fda302fd176275a0739121d3bc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.261ex; height:2.509ex;" alt="{\displaystyle a,b}"></span> bestimmten Schar von konfokalen Ellipsoide für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{z}\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{z}\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06e0481a91dddd073574ecb497b7df55497b0225" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.827ex; height:2.509ex;" alt="{\displaystyle r_{z}\to 0}"></span> als unendlich dünnes Ellipsoid angesehen werden. Es ist dann <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{x}=a,\;r_{y}=b,\;l=3a-c.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mo>,</mo> <mspace width="thickmathspace" /> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mi>b</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mi>l</mi> <mo>=</mo> <mn>3</mn> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{x}=a,\;r_{y}=b,\;l=3a-c.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e8ddebb473ee1ba0e915985a4d29d7ed28b3edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:26.78ex; height:2.843ex;" alt="{\displaystyle r_{x}=a,\;r_{y}=b,\;l=3a-c.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Ellipsoid_in_beliebiger_Lage">Ellipsoid in beliebiger Lage</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ellipsoid&amp;veaction=edit&amp;section=11" title="Abschnitt bearbeiten: Ellipsoid in beliebiger Lage" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ellipsoid&amp;action=edit&amp;section=11" title="Quellcode des Abschnitts bearbeiten: Ellipsoid in beliebiger Lage"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Ellipsoid-affin.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Ellipsoid-affin.svg/330px-Ellipsoid-affin.svg.png" decoding="async" width="330" height="142" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Ellipsoid-affin.svg/495px-Ellipsoid-affin.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Ellipsoid-affin.svg/660px-Ellipsoid-affin.svg.png 2x" data-file-width="366" data-file-height="157" /></a><figcaption>Ellipsoid als <a href="/wiki/Affine_Abbildung" title="Affine Abbildung">affines</a> Bild der <a href="/wiki/Einheitskugel" title="Einheitskugel">Einheitskugel</a></figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Parameterdarstellung_2">Parameterdarstellung</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ellipsoid&amp;veaction=edit&amp;section=12" title="Abschnitt bearbeiten: Parameterdarstellung" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ellipsoid&amp;action=edit&amp;section=12" title="Quellcode des Abschnitts bearbeiten: Parameterdarstellung"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Eine <a href="/wiki/Affine_Abbildung" title="Affine Abbildung">affine Abbildung</a> lässt sich durch eine <a href="/wiki/Parallelverschiebung" title="Parallelverschiebung">Parallelverschiebung</a> um <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {f}}_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {f}}_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1ae526b00782f0150985cd3fa027d82369c0abd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.719ex; height:3.509ex;" alt="{\displaystyle {\vec {f}}_{0}}"></span> und eine <a href="/wiki/Regul%C3%A4re_Matrix" title="Reguläre Matrix">reguläre</a> 3×3-<a href="/wiki/Matrix_(Mathematik)" title="Matrix (Mathematik)">Matrix</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> beschreiben: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {x}}\mapsto {\vec {f}}_{0}+A{\vec {x}}={\vec {f}}_{0}+x{\vec {f}}_{1}+y{\vec {f}}_{2}+z{\vec {f}}_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>x</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>y</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>z</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {x}}\mapsto {\vec {f}}_{0}+A{\vec {x}}={\vec {f}}_{0}+x{\vec {f}}_{1}+y{\vec {f}}_{2}+z{\vec {f}}_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5352c98396678906bce3d9b56b3c1f7acc7b433c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.645ex; height:3.509ex;" alt="{\displaystyle {\vec {x}}\mapsto {\vec {f}}_{0}+A{\vec {x}}={\vec {f}}_{0}+x{\vec {f}}_{1}+y{\vec {f}}_{2}+z{\vec {f}}_{3}}"></span>,</dd></dl> <p>wobei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {f}}_{1},{\vec {f}}_{2},{\vec {f}}_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {f}}_{1},{\vec {f}}_{2},{\vec {f}}_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca9be64134bc95772a521100b1190af3d2fee43f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.225ex; height:3.509ex;" alt="{\displaystyle {\vec {f}}_{1},{\vec {f}}_{2},{\vec {f}}_{3}}"></span> die Spaltenvektoren der Matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> sind. </p><p>Die <a href="/wiki/Parameterdarstellung" title="Parameterdarstellung">Parameterdarstellung</a> eines beliebigen Ellipsoids ergibt sich aus der obigen Parameterdarstellung der <a href="/wiki/Einheitskugel" title="Einheitskugel">Einheitskugel</a> und der Beschreibung einer affinen Abbildung: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {x}}(\theta ,\varphi )={\vec {f}}_{0}+{\vec {f}}_{1}\cos \theta \cos \varphi +{\vec {f}}_{2}\cos \theta \sin \varphi +{\vec {f}}_{3}\sin \theta ,\quad -\pi /2\leq \theta \leq \pi /2,\ 0\leq \varphi &lt;2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mspace width="1em" /> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&lt;</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {x}}(\theta ,\varphi )={\vec {f}}_{0}+{\vec {f}}_{1}\cos \theta \cos \varphi +{\vec {f}}_{2}\cos \theta \sin \varphi +{\vec {f}}_{3}\sin \theta ,\quad -\pi /2\leq \theta \leq \pi /2,\ 0\leq \varphi &lt;2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74b842756cf08dad99864ec536d631f31579692e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:87.261ex; height:3.509ex;" alt="{\displaystyle {\vec {x}}(\theta ,\varphi )={\vec {f}}_{0}+{\vec {f}}_{1}\cos \theta \cos \varphi +{\vec {f}}_{2}\cos \theta \sin \varphi +{\vec {f}}_{3}\sin \theta ,\quad -\pi /2\leq \theta \leq \pi /2,\ 0\leq \varphi &lt;2\pi }"></span></dd></dl> <p>Umgekehrt gilt: Wählt man einen <a href="/wiki/Vektor" title="Vektor">Vektor</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {f}}_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {f}}_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1ae526b00782f0150985cd3fa027d82369c0abd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.719ex; height:3.509ex;" alt="{\displaystyle {\vec {f}}_{0}}"></span> beliebig und die Vektoren <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {f}}_{1},{\vec {f}}_{2},{\vec {f}}_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {f}}_{1},{\vec {f}}_{2},{\vec {f}}_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca9be64134bc95772a521100b1190af3d2fee43f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.225ex; height:3.509ex;" alt="{\displaystyle {\vec {f}}_{1},{\vec {f}}_{2},{\vec {f}}_{3}}"></span> beliebig, aber <a href="/wiki/Linear_unabh%C3%A4ngig" class="mw-redirect" title="Linear unabhängig">linear unabhängig</a>, so beschreibt die obige <a href="/wiki/Parameterdarstellung" title="Parameterdarstellung">Parameterdarstellung</a> in jedem Fall ein Ellipsoid. Bilden die Vektoren <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {f}}_{1},{\vec {f}}_{2},{\vec {f}}_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {f}}_{1},{\vec {f}}_{2},{\vec {f}}_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca9be64134bc95772a521100b1190af3d2fee43f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.225ex; height:3.509ex;" alt="{\displaystyle {\vec {f}}_{1},{\vec {f}}_{2},{\vec {f}}_{3}}"></span> ein <a href="/wiki/Orthogonalsystem" title="Orthogonalsystem">Orthogonalsystem</a>, so sind die <a href="/wiki/Punkt_(Geometrie)" title="Punkt (Geometrie)">Punkte</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {f}}_{0}\pm {\vec {f}}_{i},\ i=1,2,3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x00B1;<!-- ± --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {f}}_{0}\pm {\vec {f}}_{i},\ i=1,2,3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/282a154dceb23ce03fabf9df906342c293819f6c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.095ex; height:3.509ex;" alt="{\displaystyle {\vec {f}}_{0}\pm {\vec {f}}_{i},\ i=1,2,3}"></span> die <a href="/wiki/Scheitelpunkt" title="Scheitelpunkt">Scheitelpunkte</a> des Ellipsoids und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |{\vec {f}}_{1}|,|{\vec {f}}_{2}|,|{\vec {f}}_{3}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |{\vec {f}}_{1}|,|{\vec {f}}_{2}|,|{\vec {f}}_{3}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/996d4d7abf22008638853b19f251e7f9b84d5938" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.106ex; height:3.509ex;" alt="{\displaystyle |{\vec {f}}_{1}|,|{\vec {f}}_{2}|,|{\vec {f}}_{3}|}"></span> die zugehörigen Halbachsen. </p><p>Ein <a href="/wiki/Normalenvektor" title="Normalenvektor">Normalenvektor</a> im <a href="/wiki/Punkt_(Geometrie)" title="Punkt (Geometrie)">Punkt</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {x}}(\theta ,\varphi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {x}}(\theta ,\varphi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49378df5a954a5038c081aecd3acddd20b80cc72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.784ex; height:2.843ex;" alt="{\displaystyle {\vec {x}}(\theta ,\varphi )}"></span> ist </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {n}}(\theta ,\varphi )={\vec {f}}_{2}\times {\vec {f}}_{3}\cos \theta \cos \varphi +{\vec {f}}_{3}\times {\vec {f}}_{1}\cos \theta \sin \varphi +{\vec {f}}_{1}\times {\vec {f}}_{2}\sin \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {n}}(\theta ,\varphi )={\vec {f}}_{2}\times {\vec {f}}_{3}\cos \theta \cos \varphi +{\vec {f}}_{3}\times {\vec {f}}_{1}\cos \theta \sin \varphi +{\vec {f}}_{1}\times {\vec {f}}_{2}\sin \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f9dbecc78969ba810bac73f8a80e05fa2d8d7db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:65.69ex; height:3.509ex;" alt="{\displaystyle {\vec {n}}(\theta ,\varphi )={\vec {f}}_{2}\times {\vec {f}}_{3}\cos \theta \cos \varphi +{\vec {f}}_{3}\times {\vec {f}}_{1}\cos \theta \sin \varphi +{\vec {f}}_{1}\times {\vec {f}}_{2}\sin \theta }"></span></dd></dl> <p>Zu einer Parameterdarstellung eines beliebigen Ellipsoids lässt sich auch eine <a href="/wiki/Implizite_Fl%C3%A4che" title="Implizite Fläche">implizite</a> Beschreibung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x,y,z)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x,y,z)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0796f292c93e738b5c7c46a9aea6023ceb2d8ec7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.452ex; height:2.843ex;" alt="{\displaystyle F(x,y,z)=0}"></span> angeben. Für ein Ellipsoid mit <a href="/wiki/Mittelpunkt" title="Mittelpunkt">Mittelpunkt</a> im <a href="/wiki/Koordinatenursprung" class="mw-redirect" title="Koordinatenursprung">Koordinatenursprung</a>, d.&#160;h. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {f}}_{0}=(0,0,0)^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {f}}_{0}=(0,0,0)^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/803dc776afa0e7e9cb99129d0f6b7a9dd98f70b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.571ex; height:3.509ex;" alt="{\displaystyle {\vec {f}}_{0}=(0,0,0)^{T}}"></span>, ist </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x,y,z)=\operatorname {det} ({\vec {x}},{\vec {f}}_{2},{\vec {f}}_{3})^{2}\;+\;\operatorname {det} ({\vec {f}}_{1},{\vec {x}},{\vec {f}}_{3})^{2}\;+\;\operatorname {det} ({\vec {f}}_{1},{\vec {f}}_{2},{\vec {x}})^{2}\;-\;\operatorname {det} ({\vec {f}}_{1},{\vec {f}}_{2},{\vec {f}}_{3})^{2}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>det</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mo>+</mo> <mspace width="thickmathspace" /> <mi>det</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mo>+</mo> <mspace width="thickmathspace" /> <mi>det</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mo>&#x2212;<!-- − --></mo> <mspace width="thickmathspace" /> <mi>det</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x,y,z)=\operatorname {det} ({\vec {x}},{\vec {f}}_{2},{\vec {f}}_{3})^{2}\;+\;\operatorname {det} ({\vec {f}}_{1},{\vec {x}},{\vec {f}}_{3})^{2}\;+\;\operatorname {det} ({\vec {f}}_{1},{\vec {f}}_{2},{\vec {x}})^{2}\;-\;\operatorname {det} ({\vec {f}}_{1},{\vec {f}}_{2},{\vec {f}}_{3})^{2}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80684c980982334fd3f44976ec5ca5990a525556" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:90.047ex; height:3.509ex;" alt="{\displaystyle F(x,y,z)=\operatorname {det} ({\vec {x}},{\vec {f}}_{2},{\vec {f}}_{3})^{2}\;+\;\operatorname {det} ({\vec {f}}_{1},{\vec {x}},{\vec {f}}_{3})^{2}\;+\;\operatorname {det} ({\vec {f}}_{1},{\vec {f}}_{2},{\vec {x}})^{2}\;-\;\operatorname {det} ({\vec {f}}_{1},{\vec {f}}_{2},{\vec {f}}_{3})^{2}=0}"></span></dd></dl> <p>eine implizite Darstellung.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p><p><i>Bemerkung:</i> Das durch obige Parameterdarstellung beschriebene Ellipsoid ist in dem eventuell schiefen <a href="/wiki/Koordinatensystem" title="Koordinatensystem">Koordinatensystem</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {f}}_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {f}}_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1ae526b00782f0150985cd3fa027d82369c0abd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.719ex; height:3.509ex;" alt="{\displaystyle {\vec {f}}_{0}}"></span> (<a href="/wiki/Koordinatenursprung" class="mw-redirect" title="Koordinatenursprung">Koordinatenursprung</a>), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {f}}_{1},{\vec {f}}_{2},{\vec {f}}_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {f}}_{1},{\vec {f}}_{2},{\vec {f}}_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca9be64134bc95772a521100b1190af3d2fee43f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.225ex; height:3.509ex;" alt="{\displaystyle {\vec {f}}_{1},{\vec {f}}_{2},{\vec {f}}_{3}}"></span> (<a href="/wiki/Basisvektor" class="mw-redirect" title="Basisvektor">Basisvektoren</a>) die Einheitskugel. </p> <div class="mw-heading mw-heading3"><h3 id="Ellipsoid_als_Quadrik">Ellipsoid als Quadrik</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ellipsoid&amp;veaction=edit&amp;section=13" title="Abschnitt bearbeiten: Ellipsoid als Quadrik" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ellipsoid&amp;action=edit&amp;section=13" title="Quellcode des Abschnitts bearbeiten: Ellipsoid als Quadrik"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Quadrik" title="Quadrik">Quadrik</a></i></div> <p>Ein beliebiges Ellipsoid mit <a href="/wiki/Mittelpunkt" title="Mittelpunkt">Mittelpunkt</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {f}}_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {f}}_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1ae526b00782f0150985cd3fa027d82369c0abd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.719ex; height:3.509ex;" alt="{\displaystyle {\vec {f}}_{0}}"></span> lässt sich als <a href="/wiki/L%C3%B6sungsmenge" title="Lösungsmenge">Lösungsmenge</a> einer <a href="/wiki/Gleichung" title="Gleichung">Gleichung</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\vec {x}}-{\vec {f}}_{0})^{\top }A\,({\vec {x}}-{\vec {f}}_{0})=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x22A4;<!-- ⊤ --></mi> </mrow> </msup> <mi>A</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\vec {x}}-{\vec {f}}_{0})^{\top }A\,({\vec {x}}-{\vec {f}}_{0})=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52f5f59795ec2297800706f0c2510f19bf2cd8e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.299ex; height:3.509ex;" alt="{\displaystyle ({\vec {x}}-{\vec {f}}_{0})^{\top }A\,({\vec {x}}-{\vec {f}}_{0})=1}"></span></dd></dl> <p>schreiben, wobei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> eine <a href="/wiki/Positiv_definite_Matrix" class="mw-redirect" title="Positiv definite Matrix">positiv definite Matrix</a> ist. </p><p>Die <a href="/wiki/Eigenvektor" class="mw-redirect" title="Eigenvektor">Eigenvektoren</a> der <a href="/wiki/Matrix_(Mathematik)" title="Matrix (Mathematik)">Matrix</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> bestimmen die Hauptachsenrichtungen des Ellipsoids und die <a href="/wiki/Eigenwerte" class="mw-redirect" title="Eigenwerte">Eigenwerte</a> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> sind die <a href="/wiki/Kehrwert" title="Kehrwert">Kehrwerte</a> der Quadrate der Halbachsen: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{-2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{-2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbecdccf102d1e32bb76f6079b283352aec4df73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.563ex; height:2.676ex;" alt="{\displaystyle a^{-2}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{-2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{-2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c51f7411d1c9b892dd0d025b35701da226d74dc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.33ex; height:2.676ex;" alt="{\displaystyle b^{-2}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{-2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{-2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d2f059b44c0119a3fd80d157590d2cd16fc751b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.34ex; height:2.676ex;" alt="{\displaystyle c^{-2}}"></span>.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Ellipsoid_in_der_projektiven_Geometrie">Ellipsoid in der projektiven Geometrie</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ellipsoid&amp;veaction=edit&amp;section=14" title="Abschnitt bearbeiten: Ellipsoid in der projektiven Geometrie" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ellipsoid&amp;action=edit&amp;section=14" title="Quellcode des Abschnitts bearbeiten: Ellipsoid in der projektiven Geometrie"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Schließt man den <a href="/wiki/3-dimensional" class="mw-redirect" title="3-dimensional">3-dimensionalen</a> <a href="/wiki/Affiner_Raum" title="Affiner Raum">affinen Raum</a> und die einzelnen <a href="/wiki/Quadrik" title="Quadrik">Quadriken</a> <a href="/wiki/Projektiver_Raum" title="Projektiver Raum">projektiv</a> durch eine <a href="/wiki/Fernebene" class="mw-redirect" title="Fernebene">Fernebene</a> bzw. Fernpunkte ab, so sind die folgenden Quadriken <i>projektiv äquivalent,</i> d.&#160;h., es gibt jeweils eine <i>projektive</i> <a href="/wiki/Kollineation" title="Kollineation">Kollineation</a>, die die eine Quadrik in die andere überführt: </p> <ul><li>Ellipsoid, elliptisches <a href="/wiki/Paraboloid" title="Paraboloid">Paraboloid</a> und 2-schaliges <a href="/wiki/Hyperboloid" title="Hyperboloid">Hyperboloid</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Siehe_auch">Siehe auch</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ellipsoid&amp;veaction=edit&amp;section=15" title="Abschnitt bearbeiten: Siehe auch" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ellipsoid&amp;action=edit&amp;section=15" title="Quellcode des Abschnitts bearbeiten: Siehe auch"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Referenzellipsoid" title="Referenzellipsoid">Referenzellipsoid</a></li> <li><a href="/wiki/Tr%C3%A4gheitsellipsoid" title="Trägheitsellipsoid">Trägheitsellipsoid</a></li> <li><a href="/wiki/Indexellipsoid" title="Indexellipsoid">Indexellipsoid</a></li> <li><a href="/wiki/Hom%C3%B6oid" title="Homöoid">Homöoid</a></li> <li><a href="/wiki/Fokaloid" title="Fokaloid">Fokaloid</a></li> <li><a href="/wiki/Konfokale_Quadriken" class="mw-redirect" title="Konfokale Quadriken">Konfokale Quadriken</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Weblinks">Weblinks</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ellipsoid&amp;veaction=edit&amp;section=16" title="Abschnitt bearbeiten: Weblinks" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ellipsoid&amp;action=edit&amp;section=16" title="Quellcode des Abschnitts bearbeiten: Weblinks"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://keisan.casio.com/has10/SpecExec.cgi?path=05000000.Mathematics%2f01000300.Volume%20and%20surface%20area%2f13000600.Volume%20of%20an%20ellipsoid%2fdefault.xml&amp;charset=utf-8">Online-Berechnung von Volumen und Oberfläche eines Ellipsoids</a> (englisch)</li> <li><span class="cite"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20150203063110/http://pi.physik.uni-bonn.de/~dieckman/SurfaceEllipsoid/SurfEll.html"><i>Herleitung der Formel für die Oberfläche eines Ellipsoids.</i></a>&#32;Juli 2003,&#32;archiviert&#32;vom&#32;<style data-mw-deduplicate="TemplateStyles:r250917974">.mw-parser-output .dewiki-iconexternal>a{background-position:center right!important;background-repeat:no-repeat!important}body.skin-minerva .mw-parser-output .dewiki-iconexternal>a{background-image:url("https://upload.wikimedia.org/wikipedia/commons/a/a4/OOjs_UI_icon_external-link-ltr-progressive.svg")!important;background-size:10px!important;padding-right:13px!important}body.skin-timeless .mw-parser-output .dewiki-iconexternal>a,body.skin-monobook .mw-parser-output .dewiki-iconexternal>a{background-image:url("https://upload.wikimedia.org/wikipedia/commons/3/30/MediaWiki_external_link_icon.svg")!important;padding-right:13px!important}body.skin-vector .mw-parser-output .dewiki-iconexternal>a{background-image:url("https://upload.wikimedia.org/wikipedia/commons/9/96/Link-external-small-ltr-progressive.svg")!important;background-size:0.857em!important;padding-right:1em!important}</style><span class="dewiki-iconexternal"><a class="external text" href="https://redirecter.toolforge.org/?url=http%3A%2F%2Fpi.physik.uni-bonn.de%2F%7Edieckman%2FSurfaceEllipsoid%2FSurfEll.html">Original</a></span>&#32;am&#32;<span style="white-space:nowrap;">3.&#160;Februar 2015</span><span>;</span><span class="Abrufdatum">&#32;abgerufen am 3.&#160;Februar 2015</span>&#32;(englisch).</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3AEllipsoid&amp;rft.title=Herleitung+der+Formel+f%C3%BCr+die+Oberfl%C3%A4che+eines+Ellipsoids&amp;rft.description=Herleitung+der+Formel+f%C3%BCr+die+Oberfl%C3%A4che+eines+Ellipsoids&amp;rft.identifier=https%3A%2F%2Fweb.archive.org%2Fweb%2F20150203063110%2Fhttp%3A%2F%2Fpi.physik.uni-bonn.de%2F%7Edieckman%2FSurfaceEllipsoid%2FSurfEll.html&amp;rft.date=2003-07&amp;rft.source=http&#58;//pi.physik.uni-bonn.de/~dieckman/SurfaceEllipsoid/SurfEll.html&amp;rft.language=en">&#160;</span></li> <li><a rel="nofollow" class="external text" href="http://www.mathematische-basteleien.de/ellipsoid.html">Mathematische Basteleien: Ellipsoid</a></li> <li><a href="/wiki/Eric_Weisstein" title="Eric Weisstein">Eric W. Weisstein</a>: <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Ellipsoid.html"><i>Ellipsoid</i>.</a> In: <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i> (englisch).</li></ul> <div class="mw-heading mw-heading2"><h2 id="Einzelnachweise">Einzelnachweise</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ellipsoid&amp;veaction=edit&amp;section=17" title="Abschnitt bearbeiten: Einzelnachweise" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ellipsoid&amp;action=edit&amp;section=17" title="Quellcode des Abschnitts bearbeiten: Einzelnachweise"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text">Adrien-Marie Legendre: <i>Traite des fonctions elliptiques et des intégrales <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Euleriennes</a>, Bd.&#160;1.</i> Hugard-Courier, Paris 1825, S.&#160;357.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text">Suzanne M. Kresta, Arthur W. Etchells III, David S. Dickey, Victor A. Atiemo-Obeng (Hrsg.): <i>Advances in Industrial Mixing: A Companion to the Handbook of Industrial Mixing.</i> John Wiley &amp; Sons, 11. März 2016, <a href="/wiki/Spezial:ISBN-Suche/9780470523827" class="internal mw-magiclink-isbn">ISBN 978-0-470-52382-7</a>, <a rel="nofollow" class="external text" href="https://books.google.de/books?id=fia8CwAAQBAJ&amp;pg=PA524#v=onepage">Seite 524 unten</a>&#32;in der Google-Buchsuche.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text">W. Böhm: <i>Die Fadenkonstruktion der Flächen zweiter Ordnung</i>, Mathemat. Nachrichten 13, 1955, S. 151.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text">O. Staude: <i>Ueber Fadenconstructionen des Ellipsoides.</i> Math. Ann. 20, 147–184 (1882).</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text">O. Staude: <i>Ueber neue Focaleigenschaften der Flächen 2. Grades.</i> Math. Ann. 27, 253–271 (1886).</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><a href="#cite_ref-6">↑</a></span> <span class="reference-text">O. Staude: <i>Die algebraischen Grundlagen der Focaleigenschaften der Flächen 2. Ordnung.</i> Math. Ann. 50, 398–428 (1898).</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><a href="#cite_ref-7">↑</a></span> <span class="reference-text">D. Hilbert, S. Cohn-Vossen: <i>Anschauliche Geometrie.</i> Springer-Verlag, 2013, <a href="/wiki/Spezial:ISBN-Suche/3662366851" class="internal mw-magiclink-isbn">ISBN 3662366851</a>, S. 18.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><a href="#cite_ref-8">↑</a></span> <span class="reference-text">S. Finsterwalder: <i>Über die Fadenconstruction des Ellipsoides.</i> Mathematische Annalen Bd. 26, 1886, S. 546–556.</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><a href="#cite_ref-9">↑</a></span> <span class="reference-text">O. Hesse: <i>Analytische Geometrie des Raumes.</i> Teubner, Leipzig 1861, S.&#160;287.</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><a href="#cite_ref-10">↑</a></span> <span class="reference-text">D. Hilbert, S. Cohn-Vossen: <i>Anschauliche Geometrie.</i> S. 22.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><a href="#cite_ref-11">↑</a></span> <span class="reference-text">O. Hesse: <i>Analytische Geometrie des Raumes.</i> S.&#160;301.</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><a href="#cite_ref-12">↑</a></span> <span class="reference-text">W. Blaschke: <i>Analytische Geometrie.</i> S. 125.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><a href="#cite_ref-13">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.mathematik.tu-darmstadt.de/~ehartmann/cdg-skript-1998.pdf"><i>Computerunterstützte Darstellende und Konstruktive Geometrie.</i></a> Uni Darmstadt (PDF; 3,4&#160;MB), S.&#160;88.</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><a href="#cite_ref-14">↑</a></span> <span class="reference-text"><i><a rel="nofollow" class="external text" href="http://see.stanford.edu/materials/lsoeldsee263/15-symm.pdf">Symmetric matrices, quadratic forms, matrix norm, and SVD.</a></i></span> </li> </ol></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Abgerufen von „<a dir="ltr" href="https://de.wikipedia.org/w/index.php?title=Ellipsoid&amp;oldid=247956334">https://de.wikipedia.org/w/index.php?title=Ellipsoid&amp;oldid=247956334</a>“</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Wikipedia:Kategorien" title="Wikipedia:Kategorien">Kategorie</a>: <ul><li><a href="/wiki/Kategorie:Geometrie" title="Kategorie:Geometrie">Geometrie</a></li></ul></div></div> </div> </div> <div id="mw-navigation"> <h2>Navigationsmenü</h2> <div id="mw-head"> <nav id="p-personal" class="mw-portlet mw-portlet-personal vector-user-menu-legacy vector-menu" aria-labelledby="p-personal-label" > <h3 id="p-personal-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Meine Werkzeuge</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anonuserpage" class="mw-list-item"><span title="Benutzerseite der IP-Adresse, von der aus du Änderungen durchführst">Nicht angemeldet</span></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Spezial:Meine_Diskussionsseite" title="Diskussion über Änderungen von dieser IP-Adresse [n]" accesskey="n"><span>Diskussionsseite</span></a></li><li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Spezial:Meine_Beitr%C3%A4ge" title="Eine Liste der Bearbeitungen, die von dieser IP-Adresse gemacht wurden [y]" accesskey="y"><span>Beiträge</span></a></li><li id="pt-createaccount" class="mw-list-item"><a href="/w/index.php?title=Spezial:Benutzerkonto_anlegen&amp;returnto=Ellipsoid" title="Wir ermutigen dich dazu, ein Benutzerkonto zu erstellen und dich anzumelden. Es ist jedoch nicht zwingend erforderlich."><span>Benutzerkonto erstellen</span></a></li><li id="pt-login" class="mw-list-item"><a href="/w/index.php?title=Spezial:Anmelden&amp;returnto=Ellipsoid" title="Anmelden ist zwar keine Pflicht, wird aber gerne gesehen. [o]" accesskey="o"><span>Anmelden</span></a></li> </ul> </div> </nav> <div id="left-navigation"> <nav id="p-namespaces" class="mw-portlet mw-portlet-namespaces vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-namespaces-label" > <h3 id="p-namespaces-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Namensräume</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected mw-list-item"><a href="/wiki/Ellipsoid" title="Seiteninhalt anzeigen [c]" accesskey="c"><span>Artikel</span></a></li><li id="ca-talk" class="mw-list-item"><a href="/wiki/Diskussion:Ellipsoid" rel="discussion" title="Diskussion zum Seiteninhalt [t]" accesskey="t"><span>Diskussion</span></a></li> </ul> </div> </nav> <nav id="p-variants" class="mw-portlet mw-portlet-variants emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-variants-label" > <input type="checkbox" id="p-variants-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-variants" class="vector-menu-checkbox" aria-labelledby="p-variants-label" > <label id="p-variants-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Deutsch</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> </div> <div id="right-navigation"> <nav id="p-views" class="mw-portlet mw-portlet-views vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-views-label" > <h3 id="p-views-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Ansichten</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected mw-list-item"><a href="/wiki/Ellipsoid"><span>Lesen</span></a></li><li id="ca-ve-edit" class="mw-list-item"><a href="/w/index.php?title=Ellipsoid&amp;veaction=edit" title="Diese Seite mit dem VisualEditor bearbeiten [v]" accesskey="v"><span>Bearbeiten</span></a></li><li id="ca-edit" class="collapsible mw-list-item"><a href="/w/index.php?title=Ellipsoid&amp;action=edit" title="Den Quelltext dieser Seite bearbeiten [e]" accesskey="e"><span>Quelltext bearbeiten</span></a></li><li id="ca-history" class="mw-list-item"><a href="/w/index.php?title=Ellipsoid&amp;action=history" title="Frühere Versionen dieser Seite [h]" accesskey="h"><span>Versionsgeschichte</span></a></li> </ul> </div> </nav> <nav id="p-cactions" class="mw-portlet mw-portlet-cactions emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-cactions-label" title="Weitere Optionen" > <input type="checkbox" id="p-cactions-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-cactions" class="vector-menu-checkbox" aria-labelledby="p-cactions-label" > <label id="p-cactions-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Weitere</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <h3 >Suche</h3> <form action="/w/index.php" id="searchform" class="vector-search-box-form"> <div id="simpleSearch" class="vector-search-box-inner" data-search-loc="header-navigation"> <input class="vector-search-box-input" type="search" name="search" placeholder="Wikipedia durchsuchen" aria-label="Wikipedia durchsuchen" autocapitalize="sentences" title="Durchsuche die Wikipedia [f]" accesskey="f" id="searchInput" > <input type="hidden" name="title" value="Spezial:Suche"> <input id="mw-searchButton" class="searchButton mw-fallbackSearchButton" type="submit" name="fulltext" title="Suche nach Seiten, die diesen Text enthalten" value="Suchen"> <input id="searchButton" class="searchButton" type="submit" name="go" title="Gehe direkt zu der Seite mit genau diesem Namen, falls sie vorhanden ist." value="Artikel"> </div> </form> </div> </div> </div> <div id="mw-panel" class="vector-legacy-sidebar"> <div id="p-logo" role="banner"> <a class="mw-wiki-logo" href="/wiki/Wikipedia:Hauptseite" title="Hauptseite"></a> </div> <nav id="p-navigation" class="mw-portlet mw-portlet-navigation vector-menu-portal portal vector-menu" aria-labelledby="p-navigation-label" > <h3 id="p-navigation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Navigation</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:Hauptseite" title="Hauptseite besuchen [z]" accesskey="z"><span>Hauptseite</span></a></li><li id="n-topics" class="mw-list-item"><a href="/wiki/Portal:Wikipedia_nach_Themen"><span>Themenportale</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Spezial:Zuf%C3%A4llige_Seite" title="Zufällige Seite aufrufen [x]" accesskey="x"><span>Zufälliger Artikel</span></a></li> </ul> </div> </nav> <nav id="p-Mitmachen" class="mw-portlet mw-portlet-Mitmachen vector-menu-portal portal vector-menu" aria-labelledby="p-Mitmachen-label" > <h3 id="p-Mitmachen-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Mitmachen</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Artikel-verbessern" class="mw-list-item"><a href="/wiki/Wikipedia:Beteiligen"><span>Artikel verbessern</span></a></li><li id="n-Neuerartikel" class="mw-list-item"><a href="/wiki/Hilfe:Neuen_Artikel_anlegen"><span>Neuen Artikel anlegen</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Autorenportal" title="Info-Zentrum über Beteiligungsmöglichkeiten"><span>Autorenportal</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Hilfe:%C3%9Cbersicht" title="Übersicht über Hilfeseiten"><span>Hilfe</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Spezial:Letzte_%C3%84nderungen" title="Liste der letzten Änderungen in Wikipedia [r]" accesskey="r"><span>Letzte Änderungen</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:Kontakt" title="Kontaktmöglichkeiten"><span>Kontakt</span></a></li><li id="n-sitesupport" class="mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=de.wikipedia.org&amp;uselang=de" title="Unterstütze uns"><span>Spenden</span></a></li> </ul> </div> </nav> <nav id="p-tb" class="mw-portlet mw-portlet-tb vector-menu-portal portal vector-menu" aria-labelledby="p-tb-label" > <h3 id="p-tb-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Werkzeuge</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Spezial:Linkliste/Ellipsoid" title="Liste aller Seiten, die hierher verlinken [j]" accesskey="j"><span>Links auf diese Seite</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Spezial:%C3%84nderungen_an_verlinkten_Seiten/Ellipsoid" rel="nofollow" title="Letzte Änderungen an Seiten, die von hier verlinkt sind [k]" accesskey="k"><span>Änderungen an verlinkten Seiten</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Spezial:Spezialseiten" title="Liste aller Spezialseiten [q]" accesskey="q"><span>Spezialseiten</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Ellipsoid&amp;oldid=247956334" title="Dauerhafter Link zu dieser Seitenversion"><span>Permanenter Link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Ellipsoid&amp;action=info" title="Weitere Informationen über diese Seite"><span>Seiten­­informationen</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Spezial:Zitierhilfe&amp;page=Ellipsoid&amp;id=247956334&amp;wpFormIdentifier=titleform" title="Hinweise, wie diese Seite zitiert werden kann"><span>Artikel zitieren</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Spezial:URL-K%C3%BCrzung&amp;url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FEllipsoid"><span>Kurzlink</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Spezial:QrKodu&amp;url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FEllipsoid"><span>QR-Code herunterladen</span></a></li> </ul> </div> </nav> <nav id="p-coll-print_export" class="mw-portlet mw-portlet-coll-print_export vector-menu-portal portal vector-menu" aria-labelledby="p-coll-print_export-label" > <h3 id="p-coll-print_export-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Drucken/​exportieren</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Spezial:DownloadAsPdf&amp;page=Ellipsoid&amp;action=show-download-screen"><span>Als PDF herunterladen</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Ellipsoid&amp;printable=yes" title="Druckansicht dieser Seite [p]" accesskey="p"><span>Druckversion</span></a></li> </ul> </div> </nav> <nav id="p-wikibase-otherprojects" class="mw-portlet mw-portlet-wikibase-otherprojects vector-menu-portal portal vector-menu" aria-labelledby="p-wikibase-otherprojects-label" > <h3 id="p-wikibase-otherprojects-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">In anderen Projekten</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Ellipsoids" hreflang="en"><span>Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q190046" title="Link zum verbundenen Objekt im Datenrepositorium [g]" accesskey="g"><span>Wikidata-Datenobjekt</span></a></li> </ul> </div> </nav> <nav id="p-lang" class="mw-portlet mw-portlet-lang vector-menu-portal portal vector-menu" aria-labelledby="p-lang-label" > <h3 id="p-lang-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">In anderen Sprachen</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B3%D8%B7%D8%AD_%D9%86%D8%A7%D9%82%D8%B5%D9%8A" title="سطح ناقصي – Arabisch" lang="ar" hreflang="ar" data-title="سطح ناقصي" data-language-autonym="العربية" data-language-local-name="Arabisch" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Elipsoide_de_revoluci%C3%B3n" title="Elipsoide de revolución – Asturisch" lang="ast" hreflang="ast" data-title="Elipsoide de revolución" data-language-autonym="Asturianu" data-language-local-name="Asturisch" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Ellipsoid" title="Ellipsoid – Aserbaidschanisch" lang="az" hreflang="az" data-title="Ellipsoid" data-language-autonym="Azərbaycanca" data-language-local-name="Aserbaidschanisch" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%AD%D0%BB%D1%96%D0%BF%D1%81%D0%BE%D1%96%D0%B4" title="Эліпсоід – Belarussisch" lang="be" hreflang="be" data-title="Эліпсоід" data-language-autonym="Беларуская" data-language-local-name="Belarussisch" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%95%D0%BB%D0%B8%D0%BF%D1%81%D0%BE%D0%B8%D0%B4" title="Елипсоид – Bulgarisch" lang="bg" hreflang="bg" data-title="Елипсоид" data-language-autonym="Български" data-language-local-name="Bulgarisch" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/El%C2%B7lipsoide" title="El·lipsoide – Katalanisch" lang="ca" hreflang="ca" data-title="El·lipsoide" data-language-autonym="Català" data-language-local-name="Katalanisch" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Elipsoid" title="Elipsoid – Tschechisch" lang="cs" hreflang="cs" data-title="Elipsoid" data-language-autonym="Čeština" data-language-local-name="Tschechisch" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%AD%D0%BB%D0%BB%D0%B8%D0%BF%D1%81%D0%BE%D0%B8%D0%B4" title="Эллипсоид – Tschuwaschisch" lang="cv" hreflang="cv" data-title="Эллипсоид" data-language-autonym="Чӑвашла" data-language-local-name="Tschuwaschisch" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Elipsoid" title="Elipsoid – Walisisch" lang="cy" hreflang="cy" data-title="Elipsoid" data-language-autonym="Cymraeg" data-language-local-name="Walisisch" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Ellipsoide" title="Ellipsoide – Dänisch" lang="da" hreflang="da" data-title="Ellipsoide" data-language-autonym="Dansk" data-language-local-name="Dänisch" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%95%CE%BB%CE%BB%CE%B5%CE%B9%CF%88%CE%BF%CE%B5%CE%B9%CE%B4%CE%AE" title="Ελλειψοειδή – Griechisch" lang="el" hreflang="el" data-title="Ελλειψοειδή" data-language-autonym="Ελληνικά" data-language-local-name="Griechisch" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Ellipsoid" title="Ellipsoid – Englisch" lang="en" hreflang="en" data-title="Ellipsoid" data-language-autonym="English" data-language-local-name="Englisch" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Elipsoido" title="Elipsoido – Esperanto" lang="eo" hreflang="eo" data-title="Elipsoido" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Elipsoide" title="Elipsoide – Spanisch" lang="es" hreflang="es" data-title="Elipsoide" data-language-autonym="Español" data-language-local-name="Spanisch" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Ellipsoid" title="Ellipsoid – Estnisch" lang="et" hreflang="et" data-title="Ellipsoid" data-language-autonym="Eesti" data-language-local-name="Estnisch" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Elipsoide" title="Elipsoide – Baskisch" lang="eu" hreflang="eu" data-title="Elipsoide" data-language-autonym="Euskara" data-language-local-name="Baskisch" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A8%DB%8C%D8%B6%DB%8C%E2%80%8C%DA%AF%D9%88%D9%86" title="بیضی‌گون – Persisch" lang="fa" hreflang="fa" data-title="بیضی‌گون" data-language-autonym="فارسی" data-language-local-name="Persisch" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Ellipsoidi" title="Ellipsoidi – Finnisch" lang="fi" hreflang="fi" data-title="Ellipsoidi" data-language-autonym="Suomi" data-language-local-name="Finnisch" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Ellipso%C3%AFde" title="Ellipsoïde – Französisch" lang="fr" hreflang="fr" data-title="Ellipsoïde" data-language-autonym="Français" data-language-local-name="Französisch" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/%C3%89ileaps%C3%B3ideach" title="Éileapsóideach – Irisch" lang="ga" hreflang="ga" data-title="Éileapsóideach" data-language-autonym="Gaeilge" data-language-local-name="Irisch" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%90%D7%9C%D7%99%D7%A4%D7%A1%D7%95%D7%90%D7%99%D7%93" title="אליפסואיד – Hebräisch" lang="he" hreflang="he" data-title="אליפסואיד" data-language-autonym="עברית" data-language-local-name="Hebräisch" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%A6%E0%A5%80%E0%A4%B0%E0%A5%8D%E0%A4%98%E0%A4%B5%E0%A5%83%E0%A4%A4%E0%A5%8D%E0%A4%A4%E0%A4%BE%E0%A4%AD" title="दीर्घवृत्ताभ – Hindi" lang="hi" hreflang="hi" data-title="दीर्घवृत्ताभ" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Ellipszoid" title="Ellipszoid – Ungarisch" lang="hu" hreflang="hu" data-title="Ellipszoid" data-language-autonym="Magyar" data-language-local-name="Ungarisch" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B7%D5%AC%D5%AB%D5%BA%D5%BD%D5%B8%D5%AB%D5%A4" title="Էլիպսոիդ – Armenisch" lang="hy" hreflang="hy" data-title="Էլիպսոիդ" data-language-autonym="Հայերեն" data-language-local-name="Armenisch" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Elipsoid" title="Elipsoid – Indonesisch" lang="id" hreflang="id" data-title="Elipsoid" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesisch" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Sporvala" title="Sporvala – Isländisch" lang="is" hreflang="is" data-title="Sporvala" data-language-autonym="Íslenska" data-language-local-name="Isländisch" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Ellissoide" title="Ellissoide – Italienisch" lang="it" hreflang="it" data-title="Ellissoide" data-language-autonym="Italiano" data-language-local-name="Italienisch" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%A5%95%E5%86%86%E4%BD%93" title="楕円体 – Japanisch" lang="ja" hreflang="ja" data-title="楕円体" data-language-autonym="日本語" data-language-local-name="Japanisch" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%94%E1%83%9A%E1%83%98%E1%83%A4%E1%83%A1%E1%83%9D%E1%83%98%E1%83%93%E1%83%98" title="ელიფსოიდი – Georgisch" lang="ka" hreflang="ka" data-title="ელიფსოიდი" data-language-autonym="ქართული" data-language-local-name="Georgisch" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%AD%D0%BB%D0%BB%D0%B8%D0%BF%D1%81%D0%BE%D0%B8%D0%B4" title="Эллипсоид – Kasachisch" lang="kk" hreflang="kk" data-title="Эллипсоид" data-language-autonym="Қазақша" data-language-local-name="Kasachisch" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%83%80%EC%9B%90%EB%A9%B4" title="타원면 – Koreanisch" lang="ko" hreflang="ko" data-title="타원면" data-language-autonym="한국어" data-language-local-name="Koreanisch" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%AD%D0%BB%D0%BB%D0%B8%D0%BF%D1%81%D0%BE%D0%B8%D0%B4" title="Эллипсоид – Kirgisisch" lang="ky" hreflang="ky" data-title="Эллипсоид" data-language-autonym="Кыргызча" data-language-local-name="Kirgisisch" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Ellipsoid" title="Ellipsoid – Luxemburgisch" lang="lb" hreflang="lb" data-title="Ellipsoid" data-language-autonym="Lëtzebuergesch" data-language-local-name="Luxemburgisch" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Elipso%C4%ABds" title="Elipsoīds – Lettisch" lang="lv" hreflang="lv" data-title="Elipsoīds" data-language-autonym="Latviešu" data-language-local-name="Lettisch" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Ellipso%C3%AFde" title="Ellipsoïde – Niederländisch" lang="nl" hreflang="nl" data-title="Ellipsoïde" data-language-autonym="Nederlands" data-language-local-name="Niederländisch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Ellipsoide" title="Ellipsoide – Norwegisch (Nynorsk)" lang="nn" hreflang="nn" data-title="Ellipsoide" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegisch (Nynorsk)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Ellipsoide" title="Ellipsoide – Norwegisch (Bokmål)" lang="nb" hreflang="nb" data-title="Ellipsoide" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegisch (Bokmål)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Elipsoida" title="Elipsoida – Polnisch" lang="pl" hreflang="pl" data-title="Elipsoida" data-language-autonym="Polski" data-language-local-name="Polnisch" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Elipsoide" title="Elipsoide – Portugiesisch" lang="pt" hreflang="pt" data-title="Elipsoide" data-language-autonym="Português" data-language-local-name="Portugiesisch" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Elipsoid" title="Elipsoid – Rumänisch" lang="ro" hreflang="ro" data-title="Elipsoid" data-language-autonym="Română" data-language-local-name="Rumänisch" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%BB%D0%B8%D0%BF%D1%81%D0%BE%D0%B8%D0%B4" title="Эллипсоид – Russisch" lang="ru" hreflang="ru" data-title="Эллипсоид" data-language-autonym="Русский" data-language-local-name="Russisch" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Ellipsoid" title="Ellipsoid – einfaches Englisch" lang="en-simple" hreflang="en-simple" data-title="Ellipsoid" data-language-autonym="Simple English" data-language-local-name="einfaches Englisch" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Elipsoid" title="Elipsoid – Slowakisch" lang="sk" hreflang="sk" data-title="Elipsoid" data-language-autonym="Slovenčina" data-language-local-name="Slowakisch" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Elipsoid" title="Elipsoid – Slowenisch" lang="sl" hreflang="sl" data-title="Elipsoid" data-language-autonym="Slovenščina" data-language-local-name="Slowenisch" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Elipsoidi" title="Elipsoidi – Albanisch" lang="sq" hreflang="sq" data-title="Elipsoidi" data-language-autonym="Shqip" data-language-local-name="Albanisch" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Ellipsoid" title="Ellipsoid – Schwedisch" lang="sv" hreflang="sv" data-title="Ellipsoid" data-language-autonym="Svenska" data-language-local-name="Schwedisch" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A8%E0%AF%80%E0%AE%B3%E0%AF%8D%E0%AE%B5%E0%AE%9F%E0%AF%8D%E0%AE%9F%E0%AE%A4%E0%AF%8D%E0%AE%A4%E0%AE%BF%E0%AE%A3%E0%AF%8D%E0%AE%AE%E0%AE%AE%E0%AF%8D" title="நீள்வட்டத்திண்மம் – Tamil" lang="ta" hreflang="ta" data-title="நீள்வட்டத்திண்மம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%97%E0%B8%A3%E0%B8%87%E0%B8%A3%E0%B8%B5" title="ทรงรี – Thailändisch" lang="th" hreflang="th" data-title="ทรงรี" data-language-autonym="ไทย" data-language-local-name="Thailändisch" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Elipsoit" title="Elipsoit – Türkisch" lang="tr" hreflang="tr" data-title="Elipsoit" data-language-autonym="Türkçe" data-language-local-name="Türkisch" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%95%D0%BB%D1%96%D0%BF%D1%81%D0%BE%D1%97%D0%B4" title="Еліпсоїд – Ukrainisch" lang="uk" hreflang="uk" data-title="Еліпсоїд" data-language-autonym="Українська" data-language-local-name="Ukrainisch" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Ellipsoid" title="Ellipsoid – Usbekisch" lang="uz" hreflang="uz" data-title="Ellipsoid" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Usbekisch" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ellipsoid" title="Ellipsoid – Vietnamesisch" lang="vi" hreflang="vi" data-title="Ellipsoid" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamesisch" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%A4%AD%E7%90%83" title="椭球 – Chinesisch" lang="zh" hreflang="zh" data-title="椭球" data-language-autonym="中文" data-language-local-name="Chinesisch" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%A9%A2%E7%90%83" title="橢球 – Kantonesisch" lang="yue" hreflang="yue" data-title="橢球" data-language-autonym="粵語" data-language-local-name="Kantonesisch" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q190046#sitelinks-wikipedia" title="Links auf Artikel in anderen Sprachen bearbeiten" class="wbc-editpage">Links bearbeiten</a></span></div> </div> </nav> </div> </div> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Diese Seite wurde zuletzt am 22. August 2024 um 16:49 Uhr bearbeitet.</li> <li id="footer-info-copyright"><div id="footer-info-copyright-stats" class="noprint"><a rel="nofollow" class="external text" href="https://pageviews.wmcloud.org/?pages=Ellipsoid&amp;project=de.wikipedia.org">Abrufstatistik</a>&#160;· <a rel="nofollow" class="external text" href="https://xtools.wmcloud.org/authorship/de.wikipedia.org/Ellipsoid?uselang=de">Autoren</a> </div><div id="footer-info-copyright-separator"><br /></div><div id="footer-info-copyright-info"> <p>Der Text ist unter der Lizenz <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de">„Creative-Commons Namensnennung – Weitergabe unter gleichen Bedingungen“</a> verfügbar; Informationen zu den Urhebern und zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können im Regelfall durch Anklicken dieser abgerufen werden. Möglicherweise unterliegen die Inhalte jeweils zusätzlichen Bedingungen. Durch die Nutzung dieser Website erklären Sie sich mit den <span class="plainlinks"><a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/de">Nutzungsbedingungen</a> und der <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Privacy_policy/de">Datenschutzrichtlinie</a></span> einverstanden.<br /> </p> Wikipedia® ist eine eingetragene Marke der Wikimedia Foundation Inc.</div></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/de">Datenschutz</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%C3%9Cber_Wikipedia">Über Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Impressum">Impressum</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Verhaltenskodex</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Entwickler</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/de.wikipedia.org">Statistiken</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Stellungnahme zu Cookies</a></li> <li id="footer-places-mobileview"><a href="//de.m.wikipedia.org/w/index.php?title=Ellipsoid&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile Ansicht</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> <script>(RLQ=window.RLQ||[]).push(function(){mw.log.warn("This page is using the deprecated ResourceLoader module \"codex-search-styles\".\n[1.43] Use a CodexModule with codexComponents to set your specific components used: https://www.mediawiki.org/wiki/Codex#Using_a_limited_subset_of_components");mw.config.set({"wgHostname":"mw-web.codfw.main-59b954b7fb-xdpbd","wgBackendResponseTime":149,"wgPageParseReport":{"limitreport":{"cputime":"0.247","walltime":"0.457","ppvisitednodes":{"value":1832,"limit":1000000},"postexpandincludesize":{"value":6833,"limit":2097152},"templateargumentsize":{"value":2730,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":13224,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 129.866 1 -total"," 67.39% 87.516 1 Vorlage:Internetquelle"," 12.68% 16.468 1 Vorlage:Referrer"," 11.26% 14.624 1 Vorlage:IconExternal"," 10.73% 13.931 1 Vorlage:MathWorld"," 10.57% 13.727 2 Vorlage:FormatDate"," 7.14% 9.271 1 Vorlage:Google_Buch"," 4.60% 5.971 3 Vorlage:Hauptartikel"," 4.14% 5.372 1 Vorlage:Str_len"," 1.67% 2.169 1 Vorlage:Str_find"]},"scribunto":{"limitreport-timeusage":{"value":"0.021","limit":"10.000"},"limitreport-memusage":{"value":2034137,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-7c4dcdbb87-c4pkv","timestamp":"20241203121229","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Ellipsoid","url":"https:\/\/de.wikipedia.org\/wiki\/Ellipsoid","sameAs":"http:\/\/www.wikidata.org\/entity\/Q190046","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q190046","author":{"@type":"Organization","name":"Autoren der Wikimedia-Projekte"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-12-31T18:20:12Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/3\/33\/Ellipsoide.svg","headline":"dreidimensionale Entsprechung einer Ellipse"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10