CINXE.COM
Search results for: Feature reduction
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Feature reduction</title> <meta name="description" content="Search results for: Feature reduction"> <meta name="keywords" content="Feature reduction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Feature reduction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Feature reduction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2416</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Feature reduction</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2416</span> Using PFA in Feature Analysis and Selection for H.264 Adaptation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nora%20A.%20Naguib">Nora A. Naguib</a>, <a href="https://publications.waset.org/search?q=Ahmed%20E.%20Hussein"> Ahmed E. Hussein</a>, <a href="https://publications.waset.org/search?q=Hesham%20A.%20Keshk"> Hesham A. Keshk</a>, <a href="https://publications.waset.org/search?q=Mohamed%20I.%20El-Adawy"> Mohamed I. El-Adawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Classification of video sequences based on their contents is a vital process for adaptation techniques. It helps decide which adaptation technique best fits the resource reduction requested by the client. In this paper we used the principal feature analysis algorithm to select a reduced subset of video features. The main idea is to select only one feature from each class based on the similarities between the features within that class. Our results showed that using this feature reduction technique the source video features can be completely omitted from future classification of video sequences.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Adaptation" title="Adaptation">Adaptation</a>, <a href="https://publications.waset.org/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/search?q=H.264" title=" H.264"> H.264</a>, <a href="https://publications.waset.org/search?q=Principal%20Feature%20Analysis%20%28PFA%29" title=" Principal Feature Analysis (PFA)"> Principal Feature Analysis (PFA)</a> </p> <a href="https://publications.waset.org/1982/using-pfa-in-feature-analysis-and-selection-for-h264-adaptation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1982/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1982/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1982/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1982/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1982/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1982/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1982/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1982/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1982/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1982/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1607</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2415</span> Unsupervised Feature Selection Using Feature Density Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mina%20Alibeigi">Mina Alibeigi</a>, <a href="https://publications.waset.org/search?q=Sattar%20Hashemi"> Sattar Hashemi</a>, <a href="https://publications.waset.org/search?q=Ali%20Hamzeh"> Ali Hamzeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since dealing with high dimensional data is computationally complex and sometimes even intractable, recently several feature reductions methods have been developed to reduce the dimensionality of the data in order to simplify the calculation analysis in various applications such as text categorization, signal processing, image retrieval, gene expressions and etc. Among feature reduction techniques, feature selection is one the most popular methods due to the preservation of the original features. In this paper, we propose a new unsupervised feature selection method which will remove redundant features from the original feature space by the use of probability density functions of various features. To show the effectiveness of the proposed method, popular feature selection methods have been implemented and compared. Experimental results on the several datasets derived from UCI repository database, illustrate the effectiveness of our proposed methods in comparison with the other compared methods in terms of both classification accuracy and the number of selected features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Feature" title="Feature">Feature</a>, <a href="https://publications.waset.org/search?q=Feature%20Selection" title=" Feature Selection"> Feature Selection</a>, <a href="https://publications.waset.org/search?q=Filter" title=" Filter"> Filter</a>, <a href="https://publications.waset.org/search?q=Probability%0ADensity%20Function" title=" Probability Density Function"> Probability Density Function</a> </p> <a href="https://publications.waset.org/11347/unsupervised-feature-selection-using-feature-density-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11347/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11347/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11347/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11347/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11347/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11347/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11347/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11347/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11347/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11347/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2077</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2414</span> Feature Reduction of Nearest Neighbor Classifiers using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Analoui">M. Analoui</a>, <a href="https://publications.waset.org/search?q=M.%20Fadavi%20Amiri"> M. Fadavi Amiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of a pattern classifier includes an attempt to select, among a set of possible features, a minimum subset of weakly correlated features that better discriminate the pattern classes. This is usually a difficult task in practice, normally requiring the application of heuristic knowledge about the specific problem domain. The selection and quality of the features representing each pattern have a considerable bearing on the success of subsequent pattern classification. Feature extraction is the process of deriving new features from the original features in order to reduce the cost of feature measurement, increase classifier efficiency, and allow higher classification accuracy. Many current feature extraction techniques involve linear transformations of the original pattern vectors to new vectors of lower dimensionality. While this is useful for data visualization and increasing classification efficiency, it does not necessarily reduce the number of features that must be measured since each new feature may be a linear combination of all of the features in the original pattern vector. In this paper a new approach is presented to feature extraction in which feature selection, feature extraction, and classifier training are performed simultaneously using a genetic algorithm. In this approach each feature value is first normalized by a linear equation, then scaled by the associated weight prior to training, testing, and classification. A knn classifier is used to evaluate each set of feature weights. The genetic algorithm optimizes a vector of feature weights, which are used to scale the individual features in the original pattern vectors in either a linear or a nonlinear fashion. By this approach, the number of features used in classifying can be finely reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Feature%20reduction" title="Feature reduction">Feature reduction</a>, <a href="https://publications.waset.org/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/search?q=pattern%0Aclassification" title=" pattern classification"> pattern classification</a>, <a href="https://publications.waset.org/search?q=nearest%20neighbor%20rule%20classifiers%20%28k-NNR%29." title=" nearest neighbor rule classifiers (k-NNR)."> nearest neighbor rule classifiers (k-NNR).</a> </p> <a href="https://publications.waset.org/6432/feature-reduction-of-nearest-neighbor-classifiers-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6432/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6432/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6432/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6432/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6432/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6432/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6432/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6432/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6432/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6432/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1767</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2413</span> Feature Point Reduction for Video Stabilization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Theerawat%20Songyot">Theerawat Songyot</a>, <a href="https://publications.waset.org/search?q=Tham%20Manjing"> Tham Manjing</a>, <a href="https://publications.waset.org/search?q=Bunyarit%20Uyyanonvara"> Bunyarit Uyyanonvara</a>, <a href="https://publications.waset.org/search?q=Chanjira%20Sinthanayothin"> Chanjira Sinthanayothin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Corner detection and optical flow are common techniques for feature-based video stabilization. However, these algorithms are computationally expensive and should be performed at a reasonable rate. This paper presents an algorithm for discarding irrelevant feature points and maintaining them for future use so as to improve the computational cost. The algorithm starts by initializing a maintained set. The feature points in the maintained set are examined against its accuracy for modeling. Corner detection is required only when the feature points are insufficiently accurate for future modeling. Then, optical flows are computed from the maintained feature points toward the consecutive frame. After that, a motion model is estimated based on the simplified affine motion model and least square method, with outliers belonging to moving objects presented. Studentized residuals are used to eliminate such outliers. The model estimation and elimination processes repeat until no more outliers are identified. Finally, the entire algorithm repeats along the video sequence with the points remaining from the previous iteration used as the maintained set. As a practical application, an efficient video stabilization can be achieved by exploiting the computed motion models. Our study shows that the number of times corner detection needs to perform is greatly reduced, thus significantly improving the computational cost. Moreover, optical flow vectors are computed for only the maintained feature points, not for outliers, thus also reducing the computational cost. In addition, the feature points after reduction can sufficiently be used for background objects tracking as demonstrated in the simple video stabilizer based on our proposed algorithm.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=background%20object%20tracking" title="background object tracking">background object tracking</a>, <a href="https://publications.waset.org/search?q=feature%20point%20reduction" title=" feature point reduction"> feature point reduction</a>, <a href="https://publications.waset.org/search?q=low%20cost%20tracking" title="low cost tracking">low cost tracking</a>, <a href="https://publications.waset.org/search?q=video%20stabilization." title=" video stabilization."> video stabilization.</a> </p> <a href="https://publications.waset.org/6674/feature-point-reduction-for-video-stabilization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6674/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6674/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6674/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6674/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6674/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6674/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6674/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6674/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6674/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6674/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1767</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2412</span> Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mafarja%20Majdi">Mafarja Majdi</a>, <a href="https://publications.waset.org/search?q=Salwani%20Abdullah"> Salwani Abdullah</a>, <a href="https://publications.waset.org/search?q=Najmeh%20S.%20Jaddi"> Najmeh S. Jaddi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm, to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Rough%20Set%20Theory" title="Rough Set Theory">Rough Set Theory</a>, <a href="https://publications.waset.org/search?q=Attribute%20Reduction" title=" Attribute Reduction"> Attribute Reduction</a>, <a href="https://publications.waset.org/search?q=Fuzzy%0D%0ALogic" title=" Fuzzy Logic"> Fuzzy Logic</a>, <a href="https://publications.waset.org/search?q=Memetic%20Algorithms" title=" Memetic Algorithms"> Memetic Algorithms</a>, <a href="https://publications.waset.org/search?q=Record%20to%20Record%20Algorithm" title=" Record to Record Algorithm"> Record to Record Algorithm</a>, <a href="https://publications.waset.org/search?q=Great%0D%0ADeluge%20Algorithm." title=" Great Deluge Algorithm."> Great Deluge Algorithm.</a> </p> <a href="https://publications.waset.org/10003115/fuzzy-population-based-meta-heuristic-approaches-for-attribute-reduction-in-rough-set-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003115/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003115/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003115/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003115/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003115/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003115/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003115/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003115/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003115/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003115/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1937</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2411</span> A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Javad%20Rahimipour%20Anaraki">Javad Rahimipour Anaraki</a>, <a href="https://publications.waset.org/search?q=Saeed%20Samet"> Saeed Samet</a>, <a href="https://publications.waset.org/search?q=Mahdi%20Eftekhari"> Mahdi Eftekhari</a>, <a href="https://publications.waset.org/search?q=Chang%20Wook%20Ahn"> Chang Wook Ahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Binary%20shuffled%20frog%20leaping%20algorithm" title="Binary shuffled frog leaping algorithm">Binary shuffled frog leaping algorithm</a>, <a href="https://publications.waset.org/search?q=feature%0D%0Aselection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/search?q=fuzzy-rough%20set" title=" fuzzy-rough set"> fuzzy-rough set</a>, <a href="https://publications.waset.org/search?q=minimal%20reduct." title=" minimal reduct."> minimal reduct.</a> </p> <a href="https://publications.waset.org/10009513/a-fuzzy-rough-feature-selection-based-on-binary-shuffled-frog-leaping-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009513/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009513/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009513/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009513/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009513/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009513/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009513/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009513/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009513/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009513/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">731</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2410</span> Wavelet and K-L Seperability Based Feature Extraction Method for Functional Data Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jun%20Wan">Jun Wan</a>, <a href="https://publications.waset.org/search?q=Zehua%20Chen"> Zehua Chen</a>, <a href="https://publications.waset.org/search?q=Yingwu%20Chen"> Yingwu Chen</a>, <a href="https://publications.waset.org/search?q=Zhidong%20Bai"> Zhidong Bai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a novel feature extraction method, based on Discrete Wavelet Transform (DWT) and K-L Seperability (KLS), for the classification of Functional Data (FD). This method combines the decorrelation and reduction property of DWT and the additive independence property of KLS, which is helpful to extraction classification features of FD. It is an advanced approach of the popular wavelet based shrinkage method for functional data reduction and classification. A theory analysis is given in the paper to prove the consistent convergence property, and a simulation study is also done to compare the proposed method with the former shrinkage ones. The experiment results show that this method has advantages in improving classification efficiency, precision and robustness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/search?q=functional%20data" title=" functional data"> functional data</a>, <a href="https://publications.waset.org/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/search?q=K-Lseperability" title=" K-Lseperability"> K-Lseperability</a>, <a href="https://publications.waset.org/search?q=wavelet." title=" wavelet."> wavelet.</a> </p> <a href="https://publications.waset.org/6083/wavelet-and-k-l-seperability-based-feature-extraction-method-for-functional-data-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6083/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6083/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6083/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6083/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6083/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6083/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6083/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6083/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6083/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6083/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1466</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2409</span> Development of a Wiki-based Feature Library for a Process Planning System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hendry%20Muljadi">Hendry Muljadi</a>, <a href="https://publications.waset.org/search?q=Hideaki%20Takeda"> Hideaki Takeda</a>, <a href="https://publications.waset.org/search?q=Koichi%20Ando"> Koichi Ando</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A manufacturing feature can be defined simply as a geometric shape and its manufacturing information to create the shape. In a feature-based process planning system, feature library plays an important role in the extraction of manufacturing features with their proper manufacturing information. However, to manage the manufacturing information flexibly, it is important to build a feature library that is easy to modify. In this paper, a Wiki-based feature library is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Manufacturing%20feature" title="Manufacturing feature">Manufacturing feature</a>, <a href="https://publications.waset.org/search?q=feature%20library" title=" feature library"> feature library</a>, <a href="https://publications.waset.org/search?q=feature%0Aontology" title=" feature ontology"> feature ontology</a>, <a href="https://publications.waset.org/search?q=process%20planning" title=" process planning"> process planning</a>, <a href="https://publications.waset.org/search?q=Wiki" title=" Wiki"> Wiki</a>, <a href="https://publications.waset.org/search?q=MediaWiki." title=" MediaWiki."> MediaWiki.</a> </p> <a href="https://publications.waset.org/11944/development-of-a-wiki-based-feature-library-for-a-process-planning-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11944/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11944/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11944/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11944/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11944/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11944/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11944/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11944/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11944/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11944/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1418</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2408</span> Dimensionality Reduction of PSSM Matrix and its Influence on Secondary Structure and Relative Solvent Accessibility Predictions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rafa%C5%82%20Adamczak">Rafał Adamczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>State-of-the-art methods for secondary structure (Porter, Psi-PRED, SAM-T99sec, Sable) and solvent accessibility (Sable, ACCpro) predictions use evolutionary profiles represented by the position specific scoring matrix (PSSM). It has been demonstrated that evolutionary profiles are the most important features in the feature space for these predictions. Unfortunately applying PSSM matrix leads to high dimensional feature spaces that may create problems with parameter optimization and generalization. Several recently published suggested that applying feature extraction for the PSSM matrix may result in improvements in secondary structure predictions. However, none of the top performing methods considered here utilizes dimensionality reduction to improve generalization. In the present study, we used simple and fast methods for features selection (t-statistics, information gain) that allow us to decrease the dimensionality of PSSM matrix by 75% and improve generalization in the case of secondary structure prediction compared to the Sable server.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Secondary%20structure%20prediction" title="Secondary structure prediction">Secondary structure prediction</a>, <a href="https://publications.waset.org/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/search?q=position%20specific%20scoring%20matrix." title=" position specific scoring matrix."> position specific scoring matrix.</a> </p> <a href="https://publications.waset.org/13107/dimensionality-reduction-of-pssm-matrix-and-its-influence-on-secondary-structure-and-relative-solvent-accessibility-predictions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13107/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13107/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13107/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13107/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13107/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13107/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13107/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13107/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13107/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13107/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1936</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2407</span> Development of a Semantic Wiki-based Feature Library for the Extraction of Manufacturing Feature and Manufacturing Information</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hendry%20Muljadi">Hendry Muljadi</a>, <a href="https://publications.waset.org/search?q=Hideaki%20Takeda"> Hideaki Takeda</a>, <a href="https://publications.waset.org/search?q=Koichi%20Ando"> Koichi Ando</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A manufacturing feature can be defined simply as a geometric shape and its manufacturing information to create the shape. In a feature-based process planning system, feature library that consists of pre-defined manufacturing features and the manufacturing information to create the shape of the features, plays an important role in the extraction of manufacturing features with their proper manufacturing information. However, to manage the manufacturing information flexibly, it is important to build a feature library that can be easily modified. In this paper, the implementation of Semantic Wiki for the development of the feature library is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Manufacturing%20feature" title="Manufacturing feature">Manufacturing feature</a>, <a href="https://publications.waset.org/search?q=feature%20library" title=" feature library"> feature library</a>, <a href="https://publications.waset.org/search?q=feature%0Aontology" title=" feature ontology"> feature ontology</a>, <a href="https://publications.waset.org/search?q=process%20planning" title=" process planning"> process planning</a>, <a href="https://publications.waset.org/search?q=Wiki" title=" Wiki"> Wiki</a>, <a href="https://publications.waset.org/search?q=MediaWiki" title=" MediaWiki"> MediaWiki</a>, <a href="https://publications.waset.org/search?q=Semantic%20Wiki." title=" Semantic Wiki."> Semantic Wiki.</a> </p> <a href="https://publications.waset.org/9813/development-of-a-semantic-wiki-based-feature-library-for-the-extraction-of-manufacturing-feature-and-manufacturing-information" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9813/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9813/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9813/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9813/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9813/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9813/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9813/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9813/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9813/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9813/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1437</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2406</span> Face Detection using Variance based Haar-Like feature and SVM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Cuong%20Nguyen%20Khac">Cuong Nguyen Khac</a>, <a href="https://publications.waset.org/search?q=Ju%20H.%20Park"> Ju H. Park</a>, <a href="https://publications.waset.org/search?q=Ho-Youl%20Jung"> Ho-Youl Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a new approach to perform the problem of real-time face detection. The proposed method combines primitive Haar-Like feature and variance value to construct a new feature, so-called Variance based Haar-Like feature. Face in image can be represented with a small quantity of features using this new feature. We used SVM instead of AdaBoost for training and classification. We made a database containing 5,000 face samples and 10,000 non-face samples extracted from real images for learning purposed. The 5,000 face samples contain many images which have many differences of light conditions. And experiments showed that face detection system using Variance based Haar-Like feature and SVM can be much more efficient than face detection system using primitive Haar-Like feature and AdaBoost. We tested our method on two Face databases and one Non-Face database. We have obtained 96.17% of correct detection rate on YaleB face database, which is higher 4.21% than that of using primitive Haar-Like feature and AdaBoost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=AdaBoost" title="AdaBoost">AdaBoost</a>, <a href="https://publications.waset.org/search?q=Haar-Like%20feature" title=" Haar-Like feature"> Haar-Like feature</a>, <a href="https://publications.waset.org/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/search?q=variance" title=" variance"> variance</a>, <a href="https://publications.waset.org/search?q=Variance%20based%20Haar-Like%20feature." title=" Variance based Haar-Like feature."> Variance based Haar-Like feature.</a> </p> <a href="https://publications.waset.org/5120/face-detection-using-variance-based-haar-like-feature-and-svm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5120/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5120/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5120/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5120/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5120/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5120/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5120/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5120/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5120/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5120/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3735</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2405</span> Voice Command Recognition System Based on MFCC and VQ Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mahdi%20Shaneh">Mahdi Shaneh</a>, <a href="https://publications.waset.org/search?q=Azizollah%20Taheri"> Azizollah Taheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this project is to design a system to recognition voice commands. Most of voice recognition systems contain two main modules as follow “feature extraction" and “feature matching". In this project, MFCC algorithm is used to simulate feature extraction module. Using this algorithm, the cepstral coefficients are calculated on mel frequency scale. VQ (vector quantization) method will be used for reduction of amount of data to decrease computation time. In the feature matching stage Euclidean distance is applied as similarity criterion. Because of high accuracy of used algorithms, the accuracy of this voice command system is high. Using these algorithms, by at least 5 times repetition for each command, in a single training session, and then twice in each testing session zero error rate in recognition of commands is achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=MFCC" title="MFCC">MFCC</a>, <a href="https://publications.waset.org/search?q=Vector%20quantization" title=" Vector quantization"> Vector quantization</a>, <a href="https://publications.waset.org/search?q=Vocal%20tract" title=" Vocal tract"> Vocal tract</a>, <a href="https://publications.waset.org/search?q=Voicecommand." title=" Voicecommand."> Voicecommand.</a> </p> <a href="https://publications.waset.org/4967/voice-command-recognition-system-based-on-mfcc-and-vq-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4967/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4967/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4967/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4967/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4967/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4967/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4967/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4967/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4967/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4967/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3157</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2404</span> Dimensionality Reduction in Modal Analysis for Structural Health Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Elia%20Favarelli">Elia Favarelli</a>, <a href="https://publications.waset.org/search?q=Enrico%20Testi"> Enrico Testi</a>, <a href="https://publications.waset.org/search?q=Andrea%20Giorgetti"> Andrea Giorgetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., entropy, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one-class classification (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, principal component analysis (PCA), kernel principal component analysis (KPCA), and autoassociative neural network (ANN) are presented and their performance are compared. It is also shown that, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 95%.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Anomaly%20detection" title="Anomaly detection">Anomaly detection</a>, <a href="https://publications.waset.org/search?q=dimensionality%20reduction" title=" dimensionality reduction"> dimensionality reduction</a>, <a href="https://publications.waset.org/search?q=frequencies%20selection" title=" frequencies selection"> frequencies selection</a>, <a href="https://publications.waset.org/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/search?q=structural%0D%0Ahealth%20monitoring" title=" structural health monitoring"> structural health monitoring</a>, <a href="https://publications.waset.org/search?q=vibration%20measurement." title=" vibration measurement."> vibration measurement.</a> </p> <a href="https://publications.waset.org/10012160/dimensionality-reduction-in-modal-analysis-for-structural-health-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012160/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012160/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012160/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012160/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012160/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012160/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012160/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012160/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012160/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012160/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">708</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2403</span> Continuous Feature Adaptation for Non-Native Speech Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Y.%20Deng">Y. Deng</a>, <a href="https://publications.waset.org/search?q=X.%20Li"> X. Li</a>, <a href="https://publications.waset.org/search?q=C.%20Kwan"> C. Kwan</a>, <a href="https://publications.waset.org/search?q=B.%20Raj"> B. Raj</a>, <a href="https://publications.waset.org/search?q=R.%20Stern"> R. Stern</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current speech interfaces in many military applications may be adequate for native speakers. However, the recognition rate drops quite a lot for non-native speakers (people with foreign accents). This is mainly because the nonnative speakers have large temporal and intra-phoneme variations when they pronounce the same words. This problem is also complicated by the presence of large environmental noise such as tank noise, helicopter noise, etc. In this paper, we proposed a novel continuous acoustic feature adaptation algorithm for on-line accent and environmental adaptation. Implemented by incremental singular value decomposition (SVD), the algorithm captures local acoustic variation and runs in real-time. This feature-based adaptation method is then integrated with conventional model-based maximum likelihood linear regression (MLLR) algorithm. Extensive experiments have been performed on the NATO non-native speech corpus with baseline acoustic model trained on native American English. The proposed feature-based adaptation algorithm improved the average recognition accuracy by 15%, while the MLLR model based adaptation achieved 11% improvement. The corresponding word error rate (WER) reduction was 25.8% and 2.73%, as compared to that without adaptation. The combined adaptation achieved overall recognition accuracy improvement of 29.5%, and WER reduction of 31.8%, as compared to that without adaptation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=speaker%20adaptation%3B%20environment%20adaptation%3B%0Arobust%20speech%20recognition%3B%20SVD%3B%20non-native%20speech%20recognition" title="speaker adaptation; environment adaptation; robust speech recognition; SVD; non-native speech recognition">speaker adaptation; environment adaptation; robust speech recognition; SVD; non-native speech recognition</a> </p> <a href="https://publications.waset.org/1192/continuous-feature-adaptation-for-non-native-speech-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1192/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1192/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1192/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1192/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1192/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1192/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1192/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1192/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1192/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1192/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3217</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2402</span> Hybrid Feature and Adaptive Particle Filter for Robust Object Tracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Xinyue%20Zhao">Xinyue Zhao</a>, <a href="https://publications.waset.org/search?q=Yutaka%20Satoh"> Yutaka Satoh</a>, <a href="https://publications.waset.org/search?q=Hidenori%20Takauji"> Hidenori Takauji</a>, <a href="https://publications.waset.org/search?q=Shun%27ichi%20Kaneko"> Shun'ichi Kaneko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A hybrid feature based adaptive particle filter algorithm is presented for object tracking in real scenarios with static camera. The hybrid feature is combined by two effective features: the Grayscale Arranging Pairs (GAP) feature and the color histogram feature. The GAP feature has high discriminative ability even under conditions of severe illumination variation and dynamic background elements, while the color histogram feature has high reliability to identify the detected objects. The combination of two features covers the shortage of single feature. Furthermore, we adopt an updating target model so that some external problems such as visual angles can be overcame well. An automatic initialization algorithm is introduced which provides precise initial positions of objects. The experimental results show the good performance of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hybrid%20feature" title="Hybrid feature">Hybrid feature</a>, <a href="https://publications.waset.org/search?q=adaptive%20Particle%20Filter" title=" adaptive Particle Filter"> adaptive Particle Filter</a>, <a href="https://publications.waset.org/search?q=robust%20Object%20Tracking" title=" robust Object Tracking"> robust Object Tracking</a>, <a href="https://publications.waset.org/search?q=Grayscale%20Arranging%20Pairs%20%28GAP%29%20feature." title=" Grayscale Arranging Pairs (GAP) feature."> Grayscale Arranging Pairs (GAP) feature.</a> </p> <a href="https://publications.waset.org/2674/hybrid-feature-and-adaptive-particle-filter-for-robust-object-tracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2674/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2674/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2674/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2674/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2674/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2674/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2674/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2674/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2674/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2674/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1528</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2401</span> A Survey on Facial Feature Points Detection Techniques and Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rachid%20Ahdid">Rachid Ahdid</a>, <a href="https://publications.waset.org/search?q=Khaddouj%20Taifi"> Khaddouj Taifi</a>, <a href="https://publications.waset.org/search?q=Said%20Safi"> Said Safi</a>, <a href="https://publications.waset.org/search?q=Bouzid%20Manaut"> Bouzid Manaut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic detection of facial feature points plays an important role in applications such as facial feature tracking, human-machine interaction and face recognition. The majority of facial feature points detection methods using two-dimensional or three-dimensional data are covered in existing survey papers. In this article chosen approaches to the facial features detection have been gathered and described. This overview focuses on the class of researches exploiting facial feature points detection to represent facial surface for two-dimensional or three-dimensional face. In the conclusion, we discusses advantages and disadvantages of the presented algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Facial%20feature%20points" title="Facial feature points">Facial feature points</a>, <a href="https://publications.waset.org/search?q=face%20recognition" title=" face recognition"> face recognition</a>, <a href="https://publications.waset.org/search?q=facial%20feature%0D%0Atracking" title=" facial feature tracking"> facial feature tracking</a>, <a href="https://publications.waset.org/search?q=two-dimensional%20data" title=" two-dimensional data"> two-dimensional data</a>, <a href="https://publications.waset.org/search?q=three-dimensional%20data." title=" three-dimensional data."> three-dimensional data.</a> </p> <a href="https://publications.waset.org/10005826/a-survey-on-facial-feature-points-detection-techniques-and-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005826/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005826/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005826/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005826/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005826/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005826/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005826/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005826/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005826/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005826/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1681</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2400</span> Swarmed Discriminant Analysis for Multifunction Prosthesis Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rami%20N.%20Khushaba">Rami N. Khushaba</a>, <a href="https://publications.waset.org/search?q=Ahmed%20Al-Ani"> Ahmed Al-Ani</a>, <a href="https://publications.waset.org/search?q=Adel%20Al-Jumaily"> Adel Al-Jumaily</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the approaches enabling people with amputated limbs to establish some sort of interface with the real world includes the utilization of the myoelectric signal (MES) from the remaining muscles of those limbs. The MES can be used as a control input to a multifunction prosthetic device. In this control scheme, known as the myoelectric control, a pattern recognition approach is usually utilized to discriminate between the MES signals that belong to different classes of the forearm movements. Since the MES is recorded using multiple channels, the feature vector size can become very large. In order to reduce the computational cost and enhance the generalization capability of the classifier, a dimensionality reduction method is needed to identify an informative yet moderate size feature set. This paper proposes a new fuzzy version of the well known Fisher-s Linear Discriminant Analysis (LDA) feature projection technique. Furthermore, based on the fact that certain muscles might contribute more to the discrimination process, a novel feature weighting scheme is also presented by employing Particle Swarm Optimization (PSO) for estimating the weight of each feature. The new method, called PSOFLDA, is tested on real MES datasets and compared with other techniques to prove its superiority. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Discriminant%20Analysis" title="Discriminant Analysis">Discriminant Analysis</a>, <a href="https://publications.waset.org/search?q=Pattern%20Recognition" title=" Pattern Recognition"> Pattern Recognition</a>, <a href="https://publications.waset.org/search?q=SignalProcessing." title=" SignalProcessing."> SignalProcessing.</a> </p> <a href="https://publications.waset.org/9317/swarmed-discriminant-analysis-for-multifunction-prosthesis-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9317/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9317/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9317/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9317/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9317/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9317/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9317/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9317/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9317/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9317/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1556</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2399</span> Codebook Generation for Vector Quantization on Orthogonal Polynomials based Transform Coding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20Krishnamoorthi">R. Krishnamoorthi</a>, <a href="https://publications.waset.org/search?q=N.%20Kannan"> N. Kannan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, a new algorithm for generating codebook is proposed for vector quantization (VQ) in image coding. The significant features of the training image vectors are extracted by using the proposed Orthogonal Polynomials based transformation. We propose to generate the codebook by partitioning these feature vectors into a binary tree. Each feature vector at a non-terminal node of the binary tree is directed to one of the two descendants by comparing a single feature associated with that node to a threshold. The binary tree codebook is used for encoding and decoding the feature vectors. In the decoding process the feature vectors are subjected to inverse transformation with the help of basis functions of the proposed Orthogonal Polynomials based transformation to get back the approximated input image training vectors. The results of the proposed coding are compared with the VQ using Discrete Cosine Transform (DCT) and Pairwise Nearest Neighbor (PNN) algorithm. The new algorithm results in a considerable reduction in computation time and provides better reconstructed picture quality.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Orthogonal%20Polynomials" title="Orthogonal Polynomials">Orthogonal Polynomials</a>, <a href="https://publications.waset.org/search?q=Image%20Coding" title=" Image Coding"> Image Coding</a>, <a href="https://publications.waset.org/search?q=Vector%20Quantization" title=" Vector Quantization"> Vector Quantization</a>, <a href="https://publications.waset.org/search?q=TSVQ" title=" TSVQ"> TSVQ</a>, <a href="https://publications.waset.org/search?q=Binary%20Tree%20Classifier" title=" Binary Tree Classifier"> Binary Tree Classifier</a> </p> <a href="https://publications.waset.org/5503/codebook-generation-for-vector-quantization-on-orthogonal-polynomials-based-transform-coding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5503/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5503/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5503/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5503/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5503/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5503/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5503/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5503/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5503/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5503/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2149</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2398</span> Robust Face Recognition using AAM and Gabor Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sanghoon%20Kim">Sanghoon Kim</a>, <a href="https://publications.waset.org/search?q=Sun-Tae%20Chung"> Sun-Tae Chung</a>, <a href="https://publications.waset.org/search?q=Souhwan%20Jung"> Souhwan Jung</a>, <a href="https://publications.waset.org/search?q=Seoungseon%20Jeon"> Seoungseon Jeon</a>, <a href="https://publications.waset.org/search?q=Jaemin%20Kim"> Jaemin Kim</a>, <a href="https://publications.waset.org/search?q=Seongwon%20Cho"> Seongwon Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a face recognition algorithm using AAM and Gabor features. Gabor feature vectors which are well known to be robust with respect to small variations of shape, scaling, rotation, distortion, illumination and poses in images are popularly employed for feature vectors for many object detection and recognition algorithms. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization method employed in EBGM is based on Gabor jet similarity and is sensitive to initial values. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we devise a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based facial feature localization method with initial points set by the rough facial feature points obtained from AAM, and propose a face recognition algorithm using the devised localization method for facial feature localization and Gabor feature vectors. It is observed through experiments that such a cascaded localization method based on both AAM and Gabor jet similarity is more robust than the localization method based on only Gabor jet similarity. Also, it is shown that the proposed face recognition algorithm using this devised localization method and Gabor feature vectors performs better than the conventional face recognition algorithm using Gabor jet similarity-based localization method and Gabor feature vectors like EBGM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Face%20Recognition" title="Face Recognition">Face Recognition</a>, <a href="https://publications.waset.org/search?q=AAM" title=" AAM"> AAM</a>, <a href="https://publications.waset.org/search?q=Gabor%20features" title=" Gabor features"> Gabor features</a>, <a href="https://publications.waset.org/search?q=EBGM." title=" EBGM."> EBGM.</a> </p> <a href="https://publications.waset.org/3583/robust-face-recognition-using-aam-and-gabor-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3583/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3583/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3583/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3583/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3583/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3583/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3583/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3583/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3583/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3583/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2206</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2397</span> Human Detection using Projected Edge Feature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jaedo%20Kim">Jaedo Kim</a>, <a href="https://publications.waset.org/search?q=Youngjoon%20Han"> Youngjoon Han</a>, <a href="https://publications.waset.org/search?q=Hernsoo%20Hahn"> Hernsoo Hahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to detect human in images. This paper proposes a method for extracting human body feature descriptors consisting of projected edge component series. The feature descriptor can express appearances and shapes of human with local and global distribution of edges. Our method evaluated with a linear SVM classifier on Daimler-Chrysler pedestrian dataset, and test with various sub-region size. The result shows that the accuracy level of proposed method similar to Histogram of Oriented Gradients(HOG) feature descriptor and feature extraction process is simple and faster than existing methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Human%20detection" title="Human detection">Human detection</a>, <a href="https://publications.waset.org/search?q=Projected%20edge%20descriptor" title=" Projected edge descriptor"> Projected edge descriptor</a>, <a href="https://publications.waset.org/search?q=Linear%20SVM" title=" Linear SVM"> Linear SVM</a>, <a href="https://publications.waset.org/search?q=Local%20appearance%20feature" title=" Local appearance feature"> Local appearance feature</a> </p> <a href="https://publications.waset.org/7698/human-detection-using-projected-edge-feature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7698/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7698/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7698/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7698/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7698/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7698/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7698/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7698/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7698/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7698/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1500</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2396</span> Modified Hankel Matrix Approach for Model Order Reduction in Time Domain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20B.%20Vishwakarma">C. B. Vishwakarma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The author presented a method for model order reduction of large-scale time-invariant systems in time domain. In this approach, two modified Hankel matrices are suggested for getting reduced order models. The proposed method is simple, efficient and retains stability feature of the original high order system. The viability of the method is illustrated through the examples taken from literature.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Model%20Order%20Reduction" title="Model Order Reduction">Model Order Reduction</a>, <a href="https://publications.waset.org/search?q=Stability" title=" Stability"> Stability</a>, <a href="https://publications.waset.org/search?q=Hankel%20Matrix" title=" Hankel Matrix"> Hankel Matrix</a>, <a href="https://publications.waset.org/search?q=Time-Domain" title=" Time-Domain"> Time-Domain</a>, <a href="https://publications.waset.org/search?q=Integral%20Square%20Error." title=" Integral Square Error."> Integral Square Error.</a> </p> <a href="https://publications.waset.org/9997728/modified-hankel-matrix-approach-for-model-order-reduction-in-time-domain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997728/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997728/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997728/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997728/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997728/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997728/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997728/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997728/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997728/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997728/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2078</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2395</span> Bidirectional Discriminant Supervised Locality Preserving Projection for Face Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yiqin%20Lin">Yiqin Lin</a>, <a href="https://publications.waset.org/search?q=Wenbo%20Li"> Wenbo Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dimensionality reduction and feature extraction are of crucial importance for achieving high efficiency in manipulating the high dimensional data. Two-dimensional discriminant locality preserving projection (2D-DLPP) and two-dimensional discriminant supervised LPP (2D-DSLPP) are two effective two-dimensional projection methods for dimensionality reduction and feature extraction of face image matrices. Since 2D-DLPP and 2D-DSLPP preserve the local structure information of the original data and exploit the discriminant information, they usually have good recognition performance. However, 2D-DLPP and 2D-DSLPP only employ single-sided projection, and thus the generated low dimensional data matrices have still many features. In this paper, by combining the discriminant supervised LPP with the bidirectional projection, we propose the bidirectional discriminant supervised LPP (BDSLPP). The left and right projection matrices for BDSLPP can be computed iteratively. Experimental results show that the proposed BDSLPP achieves higher recognition accuracy than 2D-DLPP, 2D-DSLPP, and bidirectional discriminant LPP (BDLPP). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Face%20recognition" title="Face recognition">Face recognition</a>, <a href="https://publications.waset.org/search?q=dimension%20reduction" title=" dimension reduction"> dimension reduction</a>, <a href="https://publications.waset.org/search?q=locality%0D%0Apreserving%20projection" title=" locality preserving projection"> locality preserving projection</a>, <a href="https://publications.waset.org/search?q=discriminant%20information" title=" discriminant information"> discriminant information</a>, <a href="https://publications.waset.org/search?q=bidirectional%0D%0Aprojection." title=" bidirectional projection."> bidirectional projection.</a> </p> <a href="https://publications.waset.org/10010925/bidirectional-discriminant-supervised-locality-preserving-projection-for-face-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010925/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010925/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010925/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010925/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010925/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010925/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010925/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010925/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010925/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010925/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">689</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2394</span> Fuzzy Based Visual Texture Feature for Psoriasis Image Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=G.%20Murugeswari">G. Murugeswari</a>, <a href="https://publications.waset.org/search?q=A.%20Suruliandi"> A. Suruliandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper proposes a rotational invariant texture feature based on the roughness property of the image for psoriasis image analysis. In this work, we have applied this feature for image classification and segmentation. The fuzzy concept is employed to overcome the imprecision of roughness. Since the psoriasis lesion is modeled by a rough surface, the feature is extended for calculating the Psoriasis Area Severity Index value. For classification and segmentation, the Nearest Neighbor algorithm is applied. We have obtained promising results for identifying affected lesions by using the roughness index and severity level estimation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fuzzy%20texture%20feature" title="Fuzzy texture feature">Fuzzy texture feature</a>, <a href="https://publications.waset.org/search?q=psoriasis" title=" psoriasis"> psoriasis</a>, <a href="https://publications.waset.org/search?q=roughness%20feature" title=" roughness feature"> roughness feature</a>, <a href="https://publications.waset.org/search?q=skin%20disease." title=" skin disease."> skin disease.</a> </p> <a href="https://publications.waset.org/10000824/fuzzy-based-visual-texture-feature-for-psoriasis-image-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000824/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000824/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000824/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000824/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000824/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000824/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000824/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000824/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000824/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000824/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2115</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2393</span> Face Recognition Using Double Dimension Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20A%20Anjum">M. A Anjum</a>, <a href="https://publications.waset.org/search?q=M.%20Y.%20Javed"> M. Y. Javed</a>, <a href="https://publications.waset.org/search?q=A.%20Basit"> A. Basit </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper a new approach to face recognition is presented that achieves double dimension reduction making the system computationally efficient with better recognition results. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results improve with increase in face image resolution and levels off when arriving at a certain resolution level. In the proposed model of face recognition, first image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to better computational speed and feature extraction potential of Discrete Cosine Transform (DCT) it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A trade of between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL database, Yale database and a color database. The proposed technique has performed much better compared to other techniques. The significance of the model is two fold: (1) dimension reduction up to an effective and suitable face image resolution (2) appropriate DCT coefficients are retained to achieve best recognition results with varying image poses, intensity and illumination level.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Biometrics" title="Biometrics">Biometrics</a>, <a href="https://publications.waset.org/search?q=DCT" title=" DCT"> DCT</a>, <a href="https://publications.waset.org/search?q=Face%20Recognition" title=" Face Recognition"> Face Recognition</a>, <a href="https://publications.waset.org/search?q=Feature%0D%0Aextraction." title=" Feature extraction."> Feature extraction.</a> </p> <a href="https://publications.waset.org/11707/face-recognition-using-double-dimension-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11707/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11707/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11707/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11707/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11707/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11707/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11707/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11707/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11707/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11707/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1492</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2392</span> Automated Feature Points Management for Video Mosaic Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jing%20Li">Jing Li</a>, <a href="https://publications.waset.org/search?q=Quan%20Pan"> Quan Pan</a>, <a href="https://publications.waset.org/search?q=Stan.%20Z.%20Li"> Stan. Z. Li</a>, <a href="https://publications.waset.org/search?q=Tao%20Yang"> Tao Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A novel algorithm for construct a seamless video mosaic of the entire panorama continuously by automatically analyzing and managing feature points, including management of quantity and quality, from the sequence is presented. Since a video contains significant redundancy, so that not all consecutive video images are required to create a mosaic. Only some key images need to be selected. Meanwhile, feature-based methods for mosaicing rely on correction of feature points? correspondence deeply, and if the key images have large frame interval, the mosaic will often be interrupted by the scarcity of corresponding feature points. A unique character of the method is its ability to handle all the problems above in video mosaicing. Experiments have been performed under various conditions, the results show that our method could achieve fast and accurate video mosaic construction. Keywords?video mosaic, feature points management, homography estimation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Video%20mosaic" title="Video mosaic">Video mosaic</a>, <a href="https://publications.waset.org/search?q=feature%20points%20management" title=" feature points management"> feature points management</a>, <a href="https://publications.waset.org/search?q=homography%20estimation." title=" homography estimation. "> homography estimation. </a> </p> <a href="https://publications.waset.org/6227/automated-feature-points-management-for-video-mosaic-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6227/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6227/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6227/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6227/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6227/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6227/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6227/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6227/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6227/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6227/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1823</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2391</span> Reduction of False Positives in Head-Shoulder Detection Based on Multi-Part Color Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Lae-Jeong%20Park">Lae-Jeong Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The paper presents a method that utilizes figure-ground color segmentation to extract effective global feature in terms of false positive reduction in the head-shoulder detection. Conventional detectors that rely on local features such as HOG due to real-time operation suffer from false positives. Color cue in an input image provides salient information on a global characteristic which is necessary to alleviate the false positives of the local feature based detectors. An effective approach that uses figure-ground color segmentation has been presented in an effort to reduce the false positives in object detection. In this paper, an extended version of the approach is presented that adopts separate multipart foregrounds instead of a single prior foreground and performs the figure-ground color segmentation with each of the foregrounds. The multipart foregrounds include the parts of the head-shoulder shape and additional auxiliary foregrounds being optimized by a search algorithm. A classifier is constructed with the feature that consists of a set of the multiple resulting segmentations. Experimental results show that the presented method can discriminate more false positive than the single prior shape-based classifier as well as detectors with the local features. The improvement is possible because the presented approach can reduce the false positives that have the same colors in the head and shoulder foregrounds.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Pedestrian%20detection" title="Pedestrian detection">Pedestrian detection</a>, <a href="https://publications.waset.org/search?q=color%20segmentation" title=" color segmentation"> color segmentation</a>, <a href="https://publications.waset.org/search?q=false%20positives" title=" false positives"> false positives</a>, <a href="https://publications.waset.org/search?q=feature%20extraction." title=" feature extraction."> feature extraction.</a> </p> <a href="https://publications.waset.org/10006008/reduction-of-false-positives-in-head-shoulder-detection-based-on-multi-part-color-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006008/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006008/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006008/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006008/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006008/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006008/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006008/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006008/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006008/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006008/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1144</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2390</span> Learning to Recognize Faces by Local Feature Design and Selection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yanwei%20Pang">Yanwei Pang</a>, <a href="https://publications.waset.org/search?q=Lei%20Zhang"> Lei Zhang</a>, <a href="https://publications.waset.org/search?q=Zhengkai%20Liu"> Zhengkai Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies in neuroscience suggest that both global and local feature information are crucial for perception and recognition of faces. It is widely believed that local feature is less sensitive to variations caused by illumination, expression and illumination. In this paper, we target at designing and learning local features for face recognition. We designed three types of local features. They are semi-global feature, local patch feature and tangent shape feature. The designing of semi-global feature aims at taking advantage of global-like feature and meanwhile avoiding suppressing AdaBoost algorithm in boosting weak classifies established from small local patches. The designing of local patch feature targets at automatically selecting discriminative features, and is thus different with traditional ways, in which local patches are usually selected manually to cover the salient facial components. Also, shape feature is considered in this paper for frontal view face recognition. These features are selected and combined under the framework of boosting algorithm and cascade structure. The experimental results demonstrate that the proposed approach outperforms the standard eigenface method and Bayesian method. Moreover, the selected local features and observations in the experiments are enlightening to researches in local feature design in face recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Face%20recognition" title="Face recognition">Face recognition</a>, <a href="https://publications.waset.org/search?q=local%20feature" title=" local feature"> local feature</a>, <a href="https://publications.waset.org/search?q=AdaBoost" title=" AdaBoost"> AdaBoost</a>, <a href="https://publications.waset.org/search?q=subspace%0Aanalysis." title=" subspace analysis."> subspace analysis.</a> </p> <a href="https://publications.waset.org/431/learning-to-recognize-faces-by-local-feature-design-and-selection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/431/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/431/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/431/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/431/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/431/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/431/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/431/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/431/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/431/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/431/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1597</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2389</span> A New Approach to Face Recognition Using Dual Dimension Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Almas%20Anjum">M. Almas Anjum</a>, <a href="https://publications.waset.org/search?q=M.%20Younus%20Javed"> M. Younus Javed</a>, <a href="https://publications.waset.org/search?q=A.%20Basit"> A. Basit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper a new approach to face recognition is presented that achieves double dimension reduction, making the system computationally efficient with better recognition results and out perform common DCT technique of face recognition. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results change with change in face image resolution and provide optimal results when arriving at a certain resolution level. In the proposed model of face recognition, initially image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to increased computational speed and feature extraction potential of Discrete Cosine Transform (DCT), it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A tradeoff between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL , Yale and EME color database. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Biometrics" title="Biometrics">Biometrics</a>, <a href="https://publications.waset.org/search?q=DCT" title=" DCT"> DCT</a>, <a href="https://publications.waset.org/search?q=Face%20Recognition" title=" Face Recognition"> Face Recognition</a>, <a href="https://publications.waset.org/search?q=Illumination" title=" Illumination"> Illumination</a>, <a href="https://publications.waset.org/search?q=Computation" title=" Computation"> Computation</a>, <a href="https://publications.waset.org/search?q=Feature%20extraction." title=" Feature extraction."> Feature extraction.</a> </p> <a href="https://publications.waset.org/4885/a-new-approach-to-face-recognition-using-dual-dimension-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4885/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4885/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4885/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4885/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4885/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4885/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4885/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4885/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4885/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4885/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1686</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2388</span> Ant Colony Optimization for Feature Subset Selection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ahmed%20Al-Ani">Ahmed Al-Ani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Ant Colony Optimization (ACO) is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It has recently attracted a lot of attention and has been successfully applied to a number of different optimization problems. Due to the importance of the feature selection problem and the potential of ACO, this paper presents a novel method that utilizes the ACO algorithm to implement a feature subset search procedure. Initial results obtained using the classification of speech segments are very promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ant%20Colony%20Optimization" title="Ant Colony Optimization">Ant Colony Optimization</a>, <a href="https://publications.waset.org/search?q=ant%20systems" title=" ant systems"> ant systems</a>, <a href="https://publications.waset.org/search?q=feature%0Aselection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/search?q=pattern%20recognition." title=" pattern recognition."> pattern recognition.</a> </p> <a href="https://publications.waset.org/10371/ant-colony-optimization-for-feature-subset-selection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10371/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10371/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10371/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10371/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10371/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10371/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10371/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10371/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10371/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10371/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3143</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2387</span> Classification of Political Affiliations by Reduced Number of Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Vesile%20Evrim">Vesile Evrim</a>, <a href="https://publications.waset.org/search?q=Aliyu%20Awwal"> Aliyu Awwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By the evolvement in technology, the way of expressing opinions switched direction to the digital world. The domain of politics, as one of the hottest topics of opinion mining research, merged together with the behavior analysis for affiliation determination in texts, which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 were constituted by Linguistic Inquiry and Word Count (LIWC) features were tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that the “Decision Tree”, “Rule Induction” and “M5 Rule” classifiers when used with “SVM” and “IGR” feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “Function”, as an aggregate feature of the linguistic category, was found as the most differentiating feature among the 68 features with the accuracy of 81% in classifying articles either as Republican or Democrat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Politics" title="Politics">Politics</a>, <a href="https://publications.waset.org/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/search?q=LIWC." title=" LIWC."> LIWC.</a> </p> <a href="https://publications.waset.org/10001769/classification-of-political-affiliations-by-reduced-number-of-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001769/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001769/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001769/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001769/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001769/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001769/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001769/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001769/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001769/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001769/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2365</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Feature%20reduction&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Feature%20reduction&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Feature%20reduction&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Feature%20reduction&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Feature%20reduction&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Feature%20reduction&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Feature%20reduction&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Feature%20reduction&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Feature%20reduction&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Feature%20reduction&page=80">80</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Feature%20reduction&page=81">81</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Feature%20reduction&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>