CINXE.COM

Search results for: acrylamide

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: acrylamide</title> <meta name="description" content="Search results for: acrylamide"> <meta name="keywords" content="acrylamide"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="acrylamide" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="acrylamide"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 39</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: acrylamide</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Effect of Hydrocolloid Coatings and Bene Kernel Oil Acrylamide Formation during Potato Deep Frying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razieh%20Niazmand">Razieh Niazmand</a>, <a href="https://publications.waset.org/abstracts/search?q=Dina%20Sadat%20Mousavian"> Dina Sadat Mousavian</a>, <a href="https://publications.waset.org/abstracts/search?q=Parvin%20Sharayei"> Parvin Sharayei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the effect of carboxymethyl cellulose (CMC), tragacanth, and saalab hydrocolloids in two concentrations (0.3%, 0.7%) and different frying media, refined canola oil (RCO), RCO + 1% bene kernel oil (BKO), and RCO + 1 mg/l unsaponifiable matter (USM) of BKO on acrylamide formation in fried potato slices. The hydrocolloid coatings significantly reduced acrylamide formation in potatoes fried in all oils. Increasing the hydrocolloid concentration from 0.3% to 0.7% produced no effective inhibition of acrylamide. The 0.7 % CMC solution was identified as the most promising inhibitor of acrylamide formation in RCO oil, with a 62.9% reduction in acrylamide content. The addition of BKO or USM to RCO led to a noticeable reduction in the acrylamide level in fried potato slices. The findings suggest that a 0.7% CMC solution and RCO+USM are promising inhibitors of acrylamide formation in fried potato products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMC" title="CMC">CMC</a>, <a href="https://publications.waset.org/abstracts/search?q=frying" title=" frying"> frying</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a>, <a href="https://publications.waset.org/abstracts/search?q=saalab" title=" saalab"> saalab</a>, <a href="https://publications.waset.org/abstracts/search?q=tracaganth" title=" tracaganth"> tracaganth</a> </p> <a href="https://publications.waset.org/abstracts/6177/effect-of-hydrocolloid-coatings-and-bene-kernel-oil-acrylamide-formation-during-potato-deep-frying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Detection of Acrylamide Using Liquid Chromatography-Tandem Mass Spectrometry and Quantitative Risk Assessment in Selected Food from Saudi Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20A.%20Alotaibi">Sarah A. Alotaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20Almutairi"> Mohammed A. Almutairi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20A.%20Alsayari"> Abdullah A. Alsayari</a>, <a href="https://publications.waset.org/abstracts/search?q=Adibah%20M.%20Almutairi"> Adibah M. Almutairi</a>, <a href="https://publications.waset.org/abstracts/search?q=Somaiah%20K.%20Almubayedh"> Somaiah K. Almubayedh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concerns over the presence of acrylamide in food date back to 2002, when Swedish scientists stated that, in carbohydrate-rich foods, amounts of acrylamide were formed when cooked at high temperatures. Similar findings were reported by other researchers which, consequently, caused major international efforts to investigate dietary exposure and the subsequent health complications in order to properly manage this issue. Due to this issue, in this work, we aim to determine the acrylamide level in different foods (coffee, potato chips, biscuits, and baby food) commonly consumed by the Saudi population. In a total of forty-three samples, acrylamide was detected in twenty-three samples at levels of 12.3 to 2850 µg/kg. In reference to the food groups, the highest concentration of acrylamide was found in coffee samples (<12.3-2850 μg/kg), followed by potato chips (655-1310 μg/kg), then biscuits (23.5-449 μg/kg), whereas the lowest acrylamide level was observed in baby food (<14.75 – 126 μg/kg). Most coffee, biscuits and potato chips products contain high amount of acrylamide content and also the most commonly consumed product. Saudi adults had a mean exposure of acrylamide for coffee, potato, biscuit, and cereal (0.07439, 0.04794, 0.01125, 0.003371 µg/kg-b.w/day), respectively. On the other hand, exposure to acrylamide in Saudi infants and children to the same types of food was (0.1701, 0.1096, 0.02572, 0.00771 µg/kg-b.w/day), respectively. Most groups have a percentile that exceeds the tolerable daily intake (TDI) cancer value (2.6 µg/kg-b.w/day). Overall, the MOE results show that the Saudi population is at high risk of acrylamide-related disease in all food types, and there is a chance of cancer risk in all age groups (all values ˂10,000). Furthermore, it was found that in non-cancer risks, the acrylamide in all tested foods was within the safe limit (˃125), except for potato chips, in which there is a risk for diseases in the population. With potato and coffee as raw materials, additional studies were conducted to assess different factors, including temperature, cocking time, and additives affecting the acrylamide formation in fried potato and roasted coffee, by systematically varying processing temperatures and time values, a mitigation of acrylamide content was achieved when lowering the temperature and decreasing the cooking time. Furthermore, it was shown that the combination of the addition of chitosan and NaCl had a large impact on the formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title="risk assessment">risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary%20exposure" title=" dietary exposure"> dietary exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=MOA" title=" MOA"> MOA</a>, <a href="https://publications.waset.org/abstracts/search?q=acrylamide" title=" acrylamide"> acrylamide</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard" title=" hazard"> hazard</a> </p> <a href="https://publications.waset.org/abstracts/183077/detection-of-acrylamide-using-liquid-chromatography-tandem-mass-spectrometry-and-quantitative-risk-assessment-in-selected-food-from-saudi-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Successful Immobilization of Alcohol Dehydrogenase on Natural and Synthetic Support and Its Reaction on Ethanol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiral%20D.%20Trivedi">Hiral D. Trivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20S.%20Patel"> Dinesh S. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachin%20P.%20Shukla"> Sachin P. Shukla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have immobilized alcohol dehydrogenase on k-carrageenan, which is a natural polysaccharide obtained from seaweeds by entrapment and on copolymer of acrylamide and 2-hydroxy ethylmethaacrylate by covalent coupling. We have optimized all the immobilization parameters and also carried the comparison studies of both. In case of copolymer of acrylamide and 2-hydroxy ethylmethaacrylate, we have activated both the amino and hydroxyl group individually and simultaneously using different activating agents and obtained some interesting results. We have found that covalently bound enzyme was found to be better under all tested conditions. The reaction on ethanol was carried out using these immobilized systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alcohol%20dehydrogenase" title="alcohol dehydrogenase">alcohol dehydrogenase</a>, <a href="https://publications.waset.org/abstracts/search?q=acrylamide-co-2-hydroxy%20ethylmethaacrylate" title=" acrylamide-co-2-hydroxy ethylmethaacrylate"> acrylamide-co-2-hydroxy ethylmethaacrylate</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=k-carrageenan" title=" k-carrageenan"> k-carrageenan</a> </p> <a href="https://publications.waset.org/abstracts/118413/successful-immobilization-of-alcohol-dehydrogenase-on-natural-and-synthetic-support-and-its-reaction-on-ethanol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> The Extension of Monomeric Computational Results to Polymeric Measurable Properties: An Introductory Computational Chemistry Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Zhao">Jing Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongqing%20Bai"> Yongqing Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiaofang%20Shi"> Qiaofang Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Huaihao%20Zhang"> Huaihao Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advances in software technology enable computational chemistry to be commonly applied in various research fields, especially in pedagogy. Thus, in order to expand and improve experimental instructions of computational chemistry for undergraduates, we designed an introductory experiment—research on acrylamide molecular structure and physicochemical properties. Initially, students construct molecular models of acrylamide and polyacrylamide in Gaussian and Materials Studio software respectively. Then, the infrared spectral data, atomic charge and molecular orbitals of acrylamide as well as solvation effect of polyacrylamide are calculated to predict their physicochemical performance. At last, rheological experiments are used to validate these predictions. Through the combination of molecular simulation (performed on Gaussian, Materials Studio) with experimental verification (rheology experiment), learners have deeply comprehended the chemical nature of acrylamide and polyacrylamide, achieving good learning outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=upper-division%20undergraduate" title="upper-division undergraduate">upper-division undergraduate</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-based%20learning" title=" computer-based learning"> computer-based learning</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20instruction" title=" laboratory instruction"> laboratory instruction</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20modeling" title=" molecular modeling"> molecular modeling</a> </p> <a href="https://publications.waset.org/abstracts/144030/the-extension-of-monomeric-computational-results-to-polymeric-measurable-properties-an-introductory-computational-chemistry-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Acrylamide Concentration in Cakes with Different Caloric Sweeteners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Garc%C3%ADa">L. García</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Cobas"> N. Cobas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L%C3%B3pez"> M. López</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acrylamide, a probable carcinogen, is formed in high-temperature processed food (>120ºC) when the free amino acid asparagine reacts with reducing sugars, mainly glucose and fructose. Cane juices' repeated heating would potentially form acrylamide during brown sugar production. This study aims to determine if using panela in yogurt cake preparation increases acrylamide formation. A secondary aim is to analyze the acrylamide concentration in four cake confections with different caloric sweetener ingredients: beet sugar (BS), cane sugar (CS), panela (P), and a panela and chocolate mix (PC). The doughs were obtained by combining ingredients in a planetary mixer. A model system made up of flour (25%), caloric sweeteners (25 %), eggs (23%), yogurt (15.7%), sunflower oil (9.4%), and brewer's yeast (2 %) was applied to BS, CS and P cakes. The ingredients of PC cakes varied: flour (21.5 %), panela chocolate (21.5 %), eggs (25.9 %), yogurt (18 %), sunflower oil (10.8 %), and brewer’s yeast (2.3 %). The preparations were baked for 45' at 180 ºC. Moisture was estimated by AOAC. Protein was determined by the Kjeldahl method. Ash percentage was calculated by weight loss after pyrolysis (≈ 600 °C). Fat content was measured using liquid-solid extraction in hydrolyzed raw ingredients and final confections. Carbohydrates were determined by difference and total sugars by the Luff-Schoorl method, based on the iodometric determination of copper ions. Finally, acrylamide content was determined by LC-MS by the isocratic system (phase A: 97.5 % water with 0.1% formic acid; phase B: 2.5 % methanol), using a standard internal procedure. Statistical analysis was performed using SPSS v.23. One-way variance analysis determined differences between acrylamide content and compositional analysis, with caloric sweeteners as fixed effect. Significance levels were determined by applying Duncan's t-test (p<0.05). P cakes showed a lower energy value than the other baked products; sugar content was similar to BS and CS, with 6.1 % mean crude protein. Acrylamide content in caloric sweeteners was similar to previously reported values. However, P and PC showed significantly higher concentrations, probably explained by the applied procedure. Acrylamide formation depends on both reducing sugars and asparagine concentration and availability. Beet sugar samples did not present acrylamide concentrations within the detection and quantification limit. However, the highest acrylamide content was measured in the BS. This may be due to the higher concentration of reducing sugars and asparagine in other raw ingredients. The cakes made with panela, cane sugar, or panela with chocolate did not differ in acrylamide content. The lack of asparagine measures constitutes a limitation. Cakes made with panela showed lower acrylamide formation than products elaborated with beet or cane sugar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beet%20sugar" title="beet sugar">beet sugar</a>, <a href="https://publications.waset.org/abstracts/search?q=cane%20sugar" title=" cane sugar"> cane sugar</a>, <a href="https://publications.waset.org/abstracts/search?q=panela" title=" panela"> panela</a>, <a href="https://publications.waset.org/abstracts/search?q=yogurt%20cake" title=" yogurt cake"> yogurt cake</a> </p> <a href="https://publications.waset.org/abstracts/146841/acrylamide-concentration-in-cakes-with-different-caloric-sweeteners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Acrylamide Induced Chronic Nephrotoxicity in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Zahedi">Afshin Zahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Keivan%20Jmahidi"> Keivan Jmahidi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acrylamide (AA) has been shown to cause neurotoxic effects in humans and neurotoxic, genotoxic, reproductive, and carcinogenic effects in laboratory animals. To investigate the nephrotoxic effect of acrylamide (ACR) 50 adult male rats (Wistar, approximately 250 g) were randomly assigned in 4 groups; including 3 treatment groups and 1 control group named as A, B, C, and D respectively. Rats in treatment groups were exposed to 0.1, 1, and 10 mg/kg ACR per day×90 days p.o (gavage) respectively. The remaining 10 rats in control group received daily p.o (gavage) of 0.9% saline (3ml/kg). On day 91, two rats were randomly selected, perfused, dissected and proper samples were collected from their kidneys. Results of histopathological studies based on H&E technique did not show morphologic changes in kidneys of rats belong to groups A, B and D, while moderate to severe morphologic changes including glomerular hypercellularity, global pattern of proliferative glomerulonephritis, occupation of capsular space, and tubular cell swelling and hyaline cast formation, were observed in different stained sections obtained from the kidneys of rats belong to group, C. This finding, beside neurotoxic, reproductive and carcinogenic effects, indicates for the first time another important aspect of toxic effect of ACR, ie, chronic nephrotoxicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylamide" title="acrylamide">acrylamide</a>, <a href="https://publications.waset.org/abstracts/search?q=nephrotoxicity" title=" nephrotoxicity"> nephrotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=glomerulonephritis" title=" glomerulonephritis"> glomerulonephritis</a>, <a href="https://publications.waset.org/abstracts/search?q=rats" title=" rats"> rats</a> </p> <a href="https://publications.waset.org/abstracts/10113/acrylamide-induced-chronic-nephrotoxicity-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Acrylamide-Induced Acute Nephrotoxicity in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keivan%20Jamshidi">Keivan Jamshidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Zahedi"> Afshin Zahedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acrylamide (ACR) has been shown to cause neurotoxic effects in humans and neurotoxic, genotoxic, reproductive, and carcinogenic effects in laboratory animals. To investigate the nephrotoxic effect of Acrylamide (ACR), 50 adult male rats (Wistar, approximately 250 g) housed in polycarbonate boxes as 5 per each, and randomly assigned in 5 groups including 4 exposure groups as A, B, C, and D groups of rats (10 rats per exposure group., total) and were exposed to 0.5, 5, 50, 100 mg/kg ACR per day×11days i.p. respectively. The remaining 10 rats were housed in group (E) as control group. Control rats received daily i.p. injections of 0.9% saline (3ml/kg). On day 12, four rats, were randomly selected, perfused , dissected and proper samples were collected from their kidneys. Results of histopathological studies based on H&E technique did show no morphologic changes in kidneys of rats belong to groups A, B and E, while moderate to severe morphologic changes including glomerular hypercellularity, global pattern of proliferative glomerulonephritis, occupation of capsular space, tubular cell swelling and hyaline cast formation, were observed in different stained sections obtained from the kidneys of rats belong to group, C, and D. This finding, beside neurotoxic, reproductive and carcinogenic effects, seems to indicate for the first time another important aspect of toxic effect of ACR, i.e., acute nephrotoxicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylamide" title="acrylamide">acrylamide</a>, <a href="https://publications.waset.org/abstracts/search?q=nephrotoxicity" title=" nephrotoxicity"> nephrotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=glomerulonephritis" title=" glomerulonephritis"> glomerulonephritis</a>, <a href="https://publications.waset.org/abstracts/search?q=rats" title=" rats"> rats</a> </p> <a href="https://publications.waset.org/abstracts/23035/acrylamide-induced-acute-nephrotoxicity-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">617</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Optical Properties of N-(Hydroxymethyl) Acrylamide Polymer Gel Dosimeters for Radiation Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20A.%20Rabaeh">Khalid A. Rabaeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Belal%20Moftah"> Belal Moftah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Basfar"> Ahmed A. Basfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Akram%20A.%20Almousa"> Akram A. Almousa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer gel dosimeters are tissue equivalent martial that fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of absorbed radiation dose. Polymer gel dosimeters can uniquely record the radiation dose distribution in three-dimensions (3D). A novel composition of normoxic polymer gel dosimeters based on radiation-induced polymerization of N-(Hydroxymethyl)acrylamide (NHMA) is introduced in this study for radiotherapy treatment planning. The dosimeters were irradiated by 10 MV photon beam of a medical linear accelerator at a constant dose rate of 600 cGy/min with doses up to 30 Gy. The polymerization degree is directly proportional to absorbed dose received by the polymer gel. UV/Vis spectrophotometer was used to investigate the degree of white color of irradiated NHMA gel which is associated to the degree of polymerization of polymer gel dosimeters. The absorbance increases with absorbed dose for all gel dosimeters in the dose range between 0 and 30 Gy. Dose rate , energy of radiation and the stability of the polymerization after irradiation were investigated. No appreciable effects of these parameters on the performance of the novel gel dosimeters were observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dosimeter" title="dosimeter">dosimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=gel" title=" gel"> gel</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrophotometer" title=" spectrophotometer"> spectrophotometer</a>, <a href="https://publications.waset.org/abstracts/search?q=N-%28Hydroxymethyl%29acrylamide" title=" N-(Hydroxymethyl)acrylamide "> N-(Hydroxymethyl)acrylamide </a> </p> <a href="https://publications.waset.org/abstracts/34646/optical-properties-of-n-hydroxymethyl-acrylamide-polymer-gel-dosimeters-for-radiation-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Poly (N-Isopropyl Acrylamide-Co-Acrylic Acid)-Graft-Polyaspartate Coated Magnetic Nanoparticles for Molecular Imaging and Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Van%20Tran%20Thi%20Thuy">Van Tran Thi Thuy</a>, <a href="https://publications.waset.org/abstracts/search?q=Dukjoon%20Kim"> Dukjoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A series of pH- and thermosensitive poly(N-isopropyl acrylamide-co-acrylic acid) were synthesized by radical polymerization and grafted on poly succinimide backbones. The poly succinimide derivatives synthesized were coated on iron oxide magnetic nanoparticles for potential applications in drug delivery systems with theranostic and molecular imaging. The structure of polymer shell was confirmed by FT-IR, H-NMR spectroscopies. Its thermal behavior was tested by UV-Vis spectroscopy. The particle size and its distribution are measured by dynamic light scattering (DLS) and transmission electron microscope (TEM). The mean diameter of the core-shell structure is from 20 to 80 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic" title="magnetic">magnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=nano" title=" nano"> nano</a>, <a href="https://publications.waset.org/abstracts/search?q=PNIPAM" title=" PNIPAM"> PNIPAM</a>, <a href="https://publications.waset.org/abstracts/search?q=polysuccinimide" title=" polysuccinimide"> polysuccinimide</a> </p> <a href="https://publications.waset.org/abstracts/19181/poly-n-isopropyl-acrylamide-co-acrylic-acid-graft-polyaspartate-coated-magnetic-nanoparticles-for-molecular-imaging-and-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Light and Electron Study of Acrylamide–Induced Hypothalamic Changes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keivan%20Jamshidi">Keivan Jamshidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Distal swelling and eventual degeneration of axon in the CNS and PNS have been considered to be the characteristic neuropathological effects of acrylamide (ACR) neuropathy. This study was conducted to determine the neurotoxic effects of different doses of ACR (0.5, 5, 50, 100, and 500 mg/kg per day × 11days i. p.) on hypothalamus of rat using the de Olmos amino cupric-silver stain and electron microscopy. For this purpose 60 adult male rats (Wistar, approximately 250 g) were randomly assigned in 5 treatment groups as A, B, C, D, E) exposed to 0.5, 5, 50, 100, and 500 mg/kg per dayx11days i. p. and one control group as F received daily i. p. injections of 0.9% saline (3ml/kg). As indices of developing neurotoxicity, weight gain, gait scores and landing hindlimb foot splay were determined. After 11 days, two rats for silver stain, and two rats for EM were randomly selected; dissected and proper samples were collected from hypothalamus. Results did show no neurological behavior in groups A, B and F were observed in group C. Rats in groups D and E died within 1-2 hours due to sever toxemia. In histopathological studies based on de Olmos technique no argyrophilic neurons or processes were observed in stained sections obtained from hypothalamus of rats belong to groups A, B, and F while moderate to severe argyrophilic changes were observed in different nuclei and regions of stained sections obtained from hypothalamus of rats belong to group C. In ultra-structural studies some variations in the myelin sheet of injured axons including decompactation, interlaminar space formation, disruption of the laminar sheet, accumulation of neurofilaments, vacculation, and clumping inside the axolem, and finally complete disappearance of laminar sheet were observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylamide" title="acrylamide">acrylamide</a>, <a href="https://publications.waset.org/abstracts/search?q=hypothalamus" title=" hypothalamus"> hypothalamus</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a>, <a href="https://publications.waset.org/abstracts/search?q=de%20Olmos%20amino%20cupric" title=" de Olmos amino cupric"> de Olmos amino cupric</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20stain" title=" silver stain"> silver stain</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20microscopy" title=" electron microscopy"> electron microscopy</a> </p> <a href="https://publications.waset.org/abstracts/8721/light-and-electron-study-of-acrylamide-induced-hypothalamic-changes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> The Influence of Lactic Acid Bacteria Combinations on Wheat Bread Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vita%20Lele">Vita Lele</a>, <a href="https://publications.waset.org/abstracts/search?q=Vadims%20Bartkevics"> Vadims Bartkevics</a>, <a href="https://publications.waset.org/abstracts/search?q=Iveta%20Pugajeva"> Iveta Pugajeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulina%20Zavistanaviciute"> Paulina Zavistanaviciute</a>, <a href="https://publications.waset.org/abstracts/search?q=Daiva%20Zadeike"> Daiva Zadeike</a>, <a href="https://publications.waset.org/abstracts/search?q=Grazina%20Juodeikiene"> Grazina Juodeikiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Bartkiene"> Elena Bartkiene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different combinations of appropriate technological properties showing lactic acid bacteria (Pediococcus pentosaceus VLGL183 and Enterococcus pseudoavium VLGL 234, Lactobacillus plantarum VLGL135 and Pediococcus pentosaceus VLGL183, Pediococcus pentosaceus VLGL183 and Lactobacillus brevis VLGL173, Pediococcus pentosaceus VLGL183 and Leuconostoc mesenteroides VLGL242, Pediococcus pentosaceus VLGL183 and Lactobacillus curvatus VLGL51, Lactobacillus plantarum VLGL135 and Lactobacillus curvatus VLGL51) for wheat sourdough production were used, and the influence of different sourdoughs on wheat bread quality parameters was evaluated. The highest overall acceptability (135.8 mm in 140 mm hedonic scale) of the bread produced with L. plantarum VLGL135 and P. pentosaceus VLGL183 sourdough was established. Also, bread produced with above mention sourdough, has the highest specific volume, shape coefficient, moisture content, and porosity, 3.40 ml /g; 2.59, 33.7 %, and 76.6 %, respectively. It was found, that the used sourdoughs reduce acrylamide content in bread (from 29.5 to 67.2%), just, the isolated lactic acid bacteria strains could be recommended for higher quality and safer bread production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylamide" title="acrylamide">acrylamide</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20bacteria" title=" lactic acid bacteria"> lactic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=sourdough" title=" sourdough"> sourdough</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20bread" title=" wheat bread"> wheat bread</a> </p> <a href="https://publications.waset.org/abstracts/80289/the-influence-of-lactic-acid-bacteria-combinations-on-wheat-bread-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Competitive Adsorption of Al, Ga and In by Gamma Irradiation Induced Pectin-Acrylamide-(Vinyl Phosphonic Acid) Hydrogel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Murshed%20Bhuyan">Md Murshed Bhuyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirotaka%20Okabe"> Hirotaka Okabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshiki%20Hidaka"> Yoshiki Hidaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuhiro%20Hara"> Kazuhiro Hara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pectin-Acrylamide- (Vinyl Phosphonic Acid) Hydrogels were prepared from their blend by using gamma radiation of various doses. It was found that the gel fraction of hydrogel increases with increasing the radiation dose reaches a maximum and then started decreasing with increasing the dose. The optimum radiation dose and the composition of raw materials were determined on the basis of equilibrium swelling which resulted in 20 kGy absorbed dose and 1:2:4 (Pectin:AAm:VPA) composition. Differential scanning calorimetry reveals the gel strength for using them as the adsorbent. The FTIR-spectrum confirmed the grafting/ crosslinking of the monomer on the backbone of pectin chain. The hydrogels were applied in adsorption of Al, Ga, and In from multielement solution where the adsorption capacity order for those three elements was found as – In>Ga>Al. SEM images of hydrogels and metal adsorbed hydrogels indicate the gel network and adherence of the metal ions in the interpenetrating network of the hydrogel which were supported by EDS spectra. The adsorption isotherm models were studied and found that the Langmuir adsorption isotherm model was well fitted with the data. Adsorption data were also fitted to different adsorption kinetic and diffusion models. Desorption of metal adsorbed hydrogels was performed in 5% nitric acid where desorption efficiency was found around 90%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title="hydrogel">hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=vinyl%20phosphonic%20acid" title=" vinyl phosphonic acid"> vinyl phosphonic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20adsorption" title=" metal adsorption"> metal adsorption</a> </p> <a href="https://publications.waset.org/abstracts/94101/competitive-adsorption-of-al-ga-and-in-by-gamma-irradiation-induced-pectin-acrylamide-vinyl-phosphonic-acid-hydrogel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Light and Electron Microscopy Study of Acrylamide-Induced Hypothalamic Neuropathy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keivan%20Jmahidi">Keivan Jmahidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Zahedi"> Afshin Zahedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To evaluate neurotoxic effects of ACR on hypothalamus of rat, amino-cupric silver staining technique of de Olmos and electron microscopic examination were conducted. For this purpose 60 adult male Wistar rats (± 250 g) were selected. Randomly assigned groups of rats (10 rats per exposure group, as A, B, C, D, E) were exposed to 0.5, 5, 50, 100 and 500 mg/kg per day×11days i.p. respectively. The remaining 10 rats were housed in group F as control group. Control rats received daily i.p. injections of 0.9% saline (3ml/kg). As indices of developing neurotoxicity, daily weight gain, gait scores and landing hindlimb foot splay (LHF) were determined. After 11 days, two rats for silver stain, and two rats for EM, were randomly selected, dissected and proper samples were collected from hypothalamus. Rats in groups D and E died within 1-2 hours due to sever toxemia. In histopathological studies no argyrophilic neurons or processes were observed in stained sections obtained from hypothalamus of rats belong to groups A, B and F, while moderate to severe argyrophilic changes were observed in different nuclei and regions of stained sections obtained from hypothalamus of rats belong to group C. In ultrastructural studies some variations in the myelin sheet of injured axons including decompactation, interlaminar space formation, disruption of the laminar sheet, accumulation of neurofilaments, vacculation and clumping inside the axolem, and finaly complete disappearance of laminar sheet were observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylamide%20%28ACR%29" title="acrylamide (ACR)">acrylamide (ACR)</a>, <a href="https://publications.waset.org/abstracts/search?q=amino-cupric%20silver%20staining%20technique%20of%20de%20Olmos" title=" amino-cupric silver staining technique of de Olmos"> amino-cupric silver staining technique of de Olmos</a>, <a href="https://publications.waset.org/abstracts/search?q=argyrophilia" title=" argyrophilia"> argyrophilia</a>, <a href="https://publications.waset.org/abstracts/search?q=hypothalamic%20neuropathy" title=" hypothalamic neuropathy"> hypothalamic neuropathy</a> </p> <a href="https://publications.waset.org/abstracts/6697/light-and-electron-microscopy-study-of-acrylamide-induced-hypothalamic-neuropathy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Acrylamide-Induced Thoracic Spinal Cord Axonopathy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Zahedi">Afshin Zahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Keivan%20Jamshidi"> Keivan Jamshidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to determine the neurotoxic effects of different doses of ACR on the thoracic axons of the spinal cord of rat. To evaluate this hypothesis in the thoracic axons, amino-cupric silver staining technique of the de Olmos was conducted to define the histopathologic characteristic (argyrophilia) of axonal damage following ACR exposure. For this purpose 60 adult male rats (Wistar, approximately 250 g) were selected. Rats were hosed in polycarbonate boxes as two per each. Randomly assigned groups of rats (10 rats per exposure group, total 5 exposure groups as A, B, C, D and E) were exposed to 0.5, 5, 50, 100 and 500 mg/kg per day×11days intraperitoneal injection (IP injection) respectively. The remaining 10 rats were housed in group (F) as control group. Control rats received daily injections of 0.9% saline (3ml/kg). As indices of developing neurotoxicity, weight gain, gait scores and landing hindlimb foot splay (LHF) were determined. Weight gains were measured daily prior to injection. Gait scoring involved observation of spontaneous open field locomotion, included evaluations of ataxia, hopping, rearing and hind foot placement, and hindlimb foot splay were determined 3-4 times per week. Gait score was assigned from 1-4. After 11 days, two rats for silver stain, were randomly selected, dissected and proper samples were collected from thoracic portion of the spinal cord of rat. Results did show no neurological behavior in groups A, B and F, whereas severe neurotoxicity was observed in groups C and D. Rats in groups E died within 1-2 hours due to severe toxemia. In histopathological studies based on the de Olmos technique no argyrophilic neurons or processes were observed in stained sections obtained from the thoracic portion of the spinal cord of rats belong to groups A, B and F, while moderate to severe argyrophilic changes were observed in different stained sections obtained from the thoracic portion of the spinal cord of rats belong to groups C and D. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylamide" title="acrylamide">acrylamide</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a>, <a href="https://publications.waset.org/abstracts/search?q=axonopathy" title=" axonopathy"> axonopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=argyrophily" title=" argyrophily"> argyrophily</a>, <a href="https://publications.waset.org/abstracts/search?q=de%20Olmos" title="de Olmos">de Olmos</a> </p> <a href="https://publications.waset.org/abstracts/28358/acrylamide-induced-thoracic-spinal-cord-axonopathy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Sustainable Hydrogel Nanocomposites Based on Grafted Chitosan and Clay for Effective Adsorption of Cationic Dye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ferfera-Harrar">H. Ferfera-Harrar</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Benhalima"> T. Benhalima</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Lerari"> D. Lerari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contamination of water, due to the discharge of untreated industrial wastewaters into the ecosystem, has become a serious problem for many countries. In this study, bioadsorbents based on chitosan-g-poly(acrylamide) and montmorillonite (MMt) clay (CTS-g-PAAm/MMt) hydrogel nanocomposites were prepared via free‐radical grafting copolymerization and crosslinking of acrylamide monomer (AAm) onto natural polysaccharide chitosan (CTS) as backbone, in presence of various contents of MMt clay as nanofiller. Then, they were hydrolyzed to obtain highly functionalized pH‐sensitive nanomaterials with uppermost swelling properties. Their structure characterization was conducted by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses. The adsorption performances of the developed nanohybrids were examined for removal of methylene blue (MB) cationic dye from aqueous solutions. The factors affecting the removal of MB, such as clay content, pH medium, adsorbent dose, initial dye concentration and temperature were explored. The adsorption process was found to be highly pH dependent. From adsorption kinetic results, the prepared adsorbents showed remarkable adsorption capacity and fast adsorption rate, mainly more than 88% of MB removal efficiency was reached after 50 min in 200 mg L<sup>-1</sup> of dye solution. In addition, the incorporating of various content of clay has enhanced adsorption capacity of CTS-g-PAAm matrix from 1685 to a highest value of 1749 mg g<sup>-1 </sup>for the optimized nanocomposite containing 2 wt.% of MMt. The experimental kinetic data were well described by the pseudo-second-order model, while the equilibrium data were represented perfectly by Langmuir isotherm model. The maximum Langmuir equilibrium adsorption capacity (q<sub>m</sub>) was found to increase from 2173 mg g<sup>&minus;1</sup> until 2221 mg g<sup>&minus;1</sup> by adding 2 wt.% of clay nanofiller. Thermodynamic parameters revealed the spontaneous and endothermic nature of the process. In addition, the reusability study revealed that these bioadsorbents could be well regenerated with desorption efficiency overhead 87% and without any obvious decrease of removal efficiency as compared to starting ones even after four consecutive adsorption/desorption cycles, which exceeded 64%. These results suggest that the optimized nanocomposites are promising as low cost bioadsorbents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20adsorption" title=" dye adsorption"> dye adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogels%20nanocomposites" title=" hydrogels nanocomposites"> hydrogels nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/115277/sustainable-hydrogel-nanocomposites-based-on-grafted-chitosan-and-clay-for-effective-adsorption-of-cationic-dye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Poly(Acrylamide-Co-Itaconic Acid) Nanocomposite Hydrogels and Its Use in the Removal of Lead in Aqueous Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Farsadrouh%20Rashti">Majid Farsadrouh Rashti</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Mohammadinejad"> Alireza Mohammadinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Shafiee%20Kisomi"> Amir Shafiee Kisomi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead (Pb²⁺), a cation, is a prime constituent of the majority of the industrial effluents such as mining, smelting and coal combustion, Pb-based painting and Pb containing pipes in water supply systems, paper and pulp refineries, printing, paints and pigments, explosive manufacturing, storage batteries, alloy and steel industries. The maximum permissible limit of lead in the water used for drinking and domesticating purpose is 0.01 mg/L as advised by Bureau of Indian Standards, BIS. This becomes the acceptable 'safe' level of lead(II) ions in water beyond which, the water becomes unfit for human use and consumption, and is potential enough to lead health problems and epidemics leading to kidney failure, neuronal disorders, and reproductive infertility. Superabsorbent hydrogels are loosely crosslinked hydrophilic polymers that in contact with aqueous solution can easily water and swell to several times to their initial volume without dissolving in aqueous medium. Superabsorbents are kind of hydrogels capable to swell and absorb a large amount of water in their three-dimensional networks. While the shapes of hydrogels do not change extensively during swelling, because of tremendously swelling capacity of superabsorbent, their shape will broadly change.Because of their superb response to changing environmental conditions including temperature pH, and solvent composition, superabsorbents have been attracting in numerous industrial applications. For instance, water retention property and subsequently. Natural-based superabsorbent hydrogels have attracted much attention in medical pharmaceutical, baby diapers, agriculture, and horticulture because of their non-toxicity, biocompatibility, and biodegradability. Novel superabsorbent hydrogel nanocomposites were prepared by graft copolymerization of acrylamide and itaconic acid in the presence of nanoclay (laponite), using methylene bisacrylamide (MBA) and potassium persulfate, former as a crosslinking agent and the second as an initiator. The superabsorbent hydrogel nanocomposites structure was characterized by FTIR spectroscopy, SEM and TGA Spectroscopy adsorption of metal ions on poly (AAm-co-IA). The equilibrium swelling values of copolymer was determined by gravimetric method. During the adsorption of metal ions on polymer, residual metal ion concentration in the solution and the solution pH were measured. The effects of the clay content of the hydrogel on its metal ions uptake behavior were studied. The NC hydrogels may be considered as a good candidate for environmental applications to retain more water and to remove heavy metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20adsorbent" title=" super adsorbent"> super adsorbent</a> </p> <a href="https://publications.waset.org/abstracts/80094/polyacrylamide-co-itaconic-acid-nanocomposite-hydrogels-and-its-use-in-the-removal-of-lead-in-aqueous-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> The Performance and the Induced Rebar Corrosion of Acrylic Resins for Injection Systems in Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Paglia">C. S. Paglia</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Pesenti"> E. Pesenti</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Krattiger"> A. Krattiger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Commercially available methacrylate and acrylamide-based acrylic resins for injection in concrete systems have been tested with respect to the sealing performance and the rebar corrosion. Among the different resins, a methacrylate-based type of acrylic resin significantly inhibited the rebar corrosion. This was mainly caused by the relatively high pH of the resin and the resin aqueous solution. This resin also exhibited a relatively high sealing performance, in particular after exposing the resin to durability tests. The corrosion inhibition behaviour and the sealing properties after the exposition to durability tests were maintained up to one year. The other resins either promoted the corrosion of the rebar and/or exhibited relatively low sealing properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylic%20resin" title="acrylic resin">acrylic resin</a>, <a href="https://publications.waset.org/abstracts/search?q=sealing%20performance" title=" sealing performance"> sealing performance</a>, <a href="https://publications.waset.org/abstracts/search?q=rebar%20corrosion" title=" rebar corrosion"> rebar corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=materials" title=" materials"> materials</a> </p> <a href="https://publications.waset.org/abstracts/113691/the-performance-and-the-induced-rebar-corrosion-of-acrylic-resins-for-injection-systems-in-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Microwave Assisted Synthesis and Metal Complexes of Some Copolymers Based on Itaconic Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20H.%20El-Newehy">Mohamed H. El-Newehy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameh%20M.%20Osman"> Sameh M. Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=Moamen%20S.%20Refat"> Moamen S. Refat</a>, <a href="https://publications.waset.org/abstracts/search?q=Salem%20S.%20Al-Deyab"> Salem S. Al-Deyab</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20El-Faham"> Ayman El-Faham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The two copolymers itaconic acid-methyl methacrylate and itaconic acid-acrylamide have been prepared in different ratio by radical copolymerization in the presence of azobisisobutyronitrile (AIBN) as initiator and using 2-butanone as reaction medium using microwave irradiation. The microwave technique is safe, fast, and gives high yield of the products with high purity in an optimum time, comparing to the traditional conventional heating. All the prepared copolymers were characterized by FT-IR, thermal analysis and elemental microanalysis. The itaconic acid-based copolymers showed a good sensitivity in alkaline media for scavenging Cu (II) and Pb (II). The chelation behavior of both Cu (II) and Pb (II) complexes were checked using FT-IR, thermogravimetric analysis (TGA), and differential scanning calorimetery (DSC). The infrared data are in a good agreement with the coordination through carboxylate-to-metal, in which the copolymers acting as a bidentate ligand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20synthesis" title="microwave synthesis">microwave synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=itaconic%20acid" title=" itaconic acid"> itaconic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=copolymerization" title=" copolymerization"> copolymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=scavenging" title=" scavenging"> scavenging</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a> </p> <a href="https://publications.waset.org/abstracts/16998/microwave-assisted-synthesis-and-metal-complexes-of-some-copolymers-based-on-itaconic-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Ag and Au Nanoparticles Fabrication in Cross-Linked Polymer Microgels for Their Comparative Catalytic Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luqman%20Ali%20Shah">Luqman Ali Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Murtaza%20Sayed"> Murtaza Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Siddiq"> Mohammad Siddiq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three-dimensional cross-linked polymer microgels with temperature responsive N-isopropyl acrylamide (NIPAM) and pH-sensitive methacrylic acid (MAA) were successfully synthesized by free radical emulsion polymerization with different amount of MAA. Silver and gold nanoparticles with size of 6.5 and 3.5 nm (±0.5 nm) respectively were homogeneously reduced inside these materials by chemical reduction method at pH 2.78 and 8.36 for the preparation of hybrid materials. The samples were characterized by FTIR, DLS and TEM techniques. The catalytic activity of the hybrid materials was investigated for the reduction of 4-nitrophenol (4- NP) using NaBH4 as reducing agent by UV-visible spectroscopy. The hybrid polymer network synthesized at pH 8.36 shows enhanced catalytic efficiency compared to catalysts synthesized at pH 2.78. In this study, it has been explored that catalyst activity strongly depends on amount of MAA, synthesis pH and type of metal nanoparticles entrapped. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-linked%20polymer%20microgels" title="cross-linked polymer microgels">cross-linked polymer microgels</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20radical%20polymerization" title=" free radical polymerization"> free radical polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20nanoparticles" title=" metal nanoparticles"> metal nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=catalytic%20activity" title=" catalytic activity"> catalytic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20study" title=" comparative study"> comparative study</a> </p> <a href="https://publications.waset.org/abstracts/60410/ag-and-au-nanoparticles-fabrication-in-cross-linked-polymer-microgels-for-their-comparative-catalytic-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Photopolymerization of Dimethacrylamide with (Meth)acrylates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuling%20Xu">Yuling Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Haibo%20Wang"> Haibo Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Xie"> Dong Xie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A photopolymerizable dimethacrylamide was synthesized and copolymerized with the selected (meth)acrylates. The polymerization rate, degree of conversion, gel time, and compressive strength of the formed neat resins were investigated. The results show that in situ photo-polymerization of the synthesized dimethacrylamide with comonomers having an electron-withdrawing and/or acrylate group dramatically increased the polymerization rate, degree of conversion, and compressive strength. On the other hand, an electron-donating group on either carbon-carbon double bond or the ester linkage slowed down the polymerization. In contrast, the triethylene glycol dimethacrylate-based system did not show a clear pattern. Both strong hydrogen-bonding between (meth)acrylamide and organic acid groups may be responsible for higher compressive strengths. Within the limitation of this study, the photo-polymerization of dimethacrylamide can be greatly accelerated by copolymerization with monomers having electron-withdrawing and/or acrylate groups. The monomers with methacrylate group can significantly reduce the polymerization rate and degree of conversion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photopolymerization" title="photopolymerization">photopolymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=dimethacrylamide" title=" dimethacrylamide"> dimethacrylamide</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20degree%20of%20conversion" title=" the degree of conversion"> the degree of conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/93577/photopolymerization-of-dimethacrylamide-with-methacrylates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Oxidation of Amitriptyline by Bromamine-T in Acidic Buffer Medium: A Kinetic and Mechanistic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandrashekar">Chandrashekar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20T.%20Radhika"> R. T. Radhika</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Venkatesha"> B. M. Venkatesha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ananda"> S. Ananda</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivalingegowda"> Shivalingegowda</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Shashikumar"> T. S. Shashikumar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ramachandra"> H. Ramachandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The kinetics of the oxidation of amitriptyline (AT) by sodium N-bromotoluene sulphonamide (C<sub>6</sub>H<sub>5</sub>SO<sub>2</sub>NBrNa) has been studied in an acidic buffer medium of pH 1.2 at 303 K. The oxidation reaction of AT was followed spectrophotometrically at maximum wavelength, 410 nm. The reaction rate shows a first order dependence each on concentration of AT and concentration of sodium N-bromotoluene sulphonamide. The reaction also shows an inverse fractional order dependence at low or high concentration of HCl. The dielectric constant of the solvent shows negative effect on the rate of reaction. The addition of halide ions and the reduction product of BAT have no significant effect on the rate. The rate is unchanged with the variation in the ionic strength (NaClO<sub>4</sub>) of the medium. Addition of reaction mixtures to be aqueous acrylamide solution did not initiate polymerization, indicating the absence of free radical species. The stoichiometry of the reaction was found to be 1:1 and oxidation product of AT is identified. The Michaelis-Menton type of kinetics has been proposed. The CH<sub>3</sub>C<sub>6</sub>H<sub>5</sub>SO<sub>2</sub>NHBr has been assumed to be the reactive oxidizing species. Thermodynamical parameters were computed by studying the reactions at different temperatures. A mechanism consistent with observed kinetics is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amitriptyline" title="amitriptyline">amitriptyline</a>, <a href="https://publications.waset.org/abstracts/search?q=bromamine-T" title=" bromamine-T"> bromamine-T</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a> </p> <a href="https://publications.waset.org/abstracts/50625/oxidation-of-amitriptyline-by-bromamine-t-in-acidic-buffer-medium-a-kinetic-and-mechanistic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Antifungal Protein ~35kDa Produced by Bacillus cereus Inhibits the Growth of Some Molds and Yeasts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleh%20H.%20Salmen">Saleh H. Salmen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Ali%20Alharbi"> Sulaiman Ali Alharbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hany%20M.%20Yehia"> Hany M. Yehia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20Khiyami"> Mohammad A. Khiyami</a>, <a href="https://publications.waset.org/abstracts/search?q=Milton%20Wainwright"> Milton Wainwright</a>, <a href="https://publications.waset.org/abstracts/search?q=Naiyf%20S.%20Alharbi"> Naiyf S. Alharbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arunachalam%20Chinnathambi"> Arunachalam Chinnathambi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An antifungal protein synthesized by Bacillus cereus has been partially purified by the use of ammonium sulfate precipitation and Sephadex-G-200 column chromatography. The protein was produced from Bacillus cereus grown in potato Dextrose Broth Medium (PDB) at 30 ºC for 3 days at 100 rpm. The protein showed antagonistic effect against some fungi and yeasts. Crude extract from medium and semi-purified protein were tested in vitro against both fungi and yeasts using the disc diffusion method in order to detect the inhibitory effect of the protein. Zones of inhibition of the following diameter were found (mm) were Alternaria alternate (28), Rhodotorula glutinis (20), Fusarium sp. (16), Rhizopus sp. (15), Penicillium digitatum (13), Mucor sp. (13) and Aspergillus niger (10). The isolated protein was found to have a molecular weight of ~35kDa by sodium deodecyl sulfate-poly acrylamide gel electrophoresis. The data showed that the protein of Bacillus cereus has antifungal activity, a fact which points to the possibility of using it as a bio-control agent against some fungi, findings which emphasize the potential role of B. cereus as an important bio-control agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacillus%20cereus" title="bacillus cereus">bacillus cereus</a>, <a href="https://publications.waset.org/abstracts/search?q=~35kDa%20protein" title=" ~35kDa protein"> ~35kDa protein</a>, <a href="https://publications.waset.org/abstracts/search?q=molds" title=" molds"> molds</a>, <a href="https://publications.waset.org/abstracts/search?q=yeasts" title=" yeasts"> yeasts</a> </p> <a href="https://publications.waset.org/abstracts/3422/antifungal-protein-35kda-produced-by-bacillus-cereus-inhibits-the-growth-of-some-molds-and-yeasts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Novel IPN Hydrogel Beads as pH Sensitive Drug Delivery System for an Anti-Ulcer Drug</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishal%20Kumar%20Gupta">Vishal Kumar Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: This study has been undertaken to develop novel pH sensitive interpenetrating network hydrogel beads. Methods: The pH sensitive PAAM-g-Guar gum copolymer was synthesized by free radical polymerization followed by alkaline hydrolysis. Beads of guar gum-grafted-polyacrylamide and sodium Carboxy methyl cellulose (Na CMC) loaded with Pantoprazole sodium were prepared and evaluated for pH sensitivity, swelling properties, drug entrapment efficiency and in vitro drug release characteristics. Seven formulations were prepared for the drug with varying polymer and cross linker concentrations. Results: The grafting and alkaline hydrolysis reactions were confirmed by FT-IR spectroscopy. Differential scanning calorimetry was carried out to know the compatibility of encapsulated drug with the polymers. Scanning electron microscopic study revealed that the IPN beads were spherical. The entrapment efficiency was found to be in the range of 85-92%. Particle size analysis was carried out by optical microscopy. As the pH of the medium was changed from 1.2 to 7.4, a considerable increase in swelling was observed for all beads. Increase in the copolymer concentration showed sustained the drug release up to 12 hrs. Drug release from the beads followed super case II transport mechanism. Conclusion: It was concluded that guar gum-acrylamide beads, cross-linked with aluminum chloride offer an opportunity for controlled drug release of pantoprazole sodium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IPN" title="IPN">IPN</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogels" title=" hydrogels"> hydrogels</a>, <a href="https://publications.waset.org/abstracts/search?q=DSC" title=" DSC"> DSC</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/8471/novel-ipn-hydrogel-beads-as-ph-sensitive-drug-delivery-system-for-an-anti-ulcer-drug" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Fiber Optic Asparagine Biosensor for Fruit Juices by Co-Immobilization of L-Asparaginase and Phenol Red</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandeep%20Kataria">Mandeep Kataria</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritu%20Narula"> Ritu Narula</a>, <a href="https://publications.waset.org/abstracts/search?q=Navneet%20Kaur"> Navneet Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asparagine is vital amino acid which is required for the development of brain and it regulates the equilibrium of central nervous system. Asparagine is the chief amino acid that forms acrylamide in baked food by reacting with reducing sugars at high temperature ( Millard Reaction i.e. amino acids and sugars give new flavors at high temperature). It can also be a parameter of freshness in fruit juices because on storage of juices at 37°C caused an 87% loss in the total free amino acids and major decrease was recorded in asparagine contents. With this significance of monitoring asparagine, in the present work a biosensor for determining asparagine in fruit juices is developed. For the construction of biosensor L-asparaginase enzyme (0.5 IU) was co-immobilized with phenol red on TEOS chitosan sol-gel plastic disc and fixed on the fiber optic tip. Tip was immersed in a cell having 5ml of substrate and absorption was noted at response time of 5 min with 10-1 - 10-10 M concentrations of asparagine at 538 nm. L-asparaginase was extracted and from Solanum nigrum Asparagine biosensor was applied fruit juices on the monitoring asparagine contents. L-asparagine concentration found to be present in fruit juices like Guava Juice, Apple Juice, Mango Juice, Litchi juice, Strawberry juice, Pineapple juice Lemon juice, and Orange juice. Hence the developed biosensor has commercial aspects in quality insurance of fruit juices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20optic%20biosensor" title="fiber optic biosensor">fiber optic biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=teos" title=" teos"> teos</a>, <a href="https://publications.waset.org/abstracts/search?q=l-asparaginase" title=" l-asparaginase"> l-asparaginase</a> </p> <a href="https://publications.waset.org/abstracts/47241/fiber-optic-asparagine-biosensor-for-fruit-juices-by-co-immobilization-of-l-asparaginase-and-phenol-red" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Application of Synthetic Monomers Grafted Xanthan Gum for Rhodamine B Removal in Aqueous Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Moremedi">T. Moremedi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Katata-Seru"> L. Katata-Seru</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sardar"> S. Sardar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bandyopadhyay"> A. Bandyopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Makhado"> E. Makhado</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Joseph%20Hato"> M. Joseph Hato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid industrialisation and population growth have led to a steady fall in freshwater supplies worldwide. As a result, water systems are affected by modern methods upon use due to secondary contamination. The application of novel adsorbents derived from natural polymer holds a great promise in addressing challenges in water treatment. In this study, the UV irradiation technique was used to prepare acrylamide (AAm) monomer, and acrylic acid (AA) monomer grafted xanthan gum (XG) copolymer. Furthermore, the factors affecting rhodamine B (RhB) adsorption from aqueous media, such as pH, dosage, concentration, and time were also investigated. The FTIR results confirmed the formation of graft copolymer by the strong vibrational bands at 1709 cm<sup>-1</sup> and 1612 cm<sup>-1</sup> for AA and AAm, respectively. Additionally, more irregular, porous and wrinkled surface observed from SEM of XG-g-AAm/AA indicated copolymerization interaction of monomers. The optimum conditions for removing RhB dye with a maximum adsorption capacity of 313 mg/g at 25 <sup>0</sup>C from aqueous solution were pH approximately 5, initial dye concentration = 200 ppm, adsorbent dose = 30 mg. Also, the detailed investigation of the isothermal and adsorption kinetics of RhB from aqueous solution showed that the adsorption of the dye followed a Freundlich model (R<sup>2</sup> = 0.96333) and pseudo-second-order kinetics. The results further indicated that this absorbent based on XG had the universality to remove dye through the mechanism of chemical adsorption. The outstanding adsorption potential of the grafted copolymer could be used to remove cationic dyes from aqueous solution as a low-cost product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=xanthan%20gum" title="xanthan gum">xanthan gum</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorbents" title=" adsorbents"> adsorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=rhodamine%20B" title=" rhodamine B"> rhodamine B</a>, <a href="https://publications.waset.org/abstracts/search?q=Freundlich" title=" Freundlich"> Freundlich</a> </p> <a href="https://publications.waset.org/abstracts/116908/application-of-synthetic-monomers-grafted-xanthan-gum-for-rhodamine-b-removal-in-aqueous-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Investigation on the Structure of Temperature-Responsive N-isopropylacrylamide Microgels Containing a New Hydrophobic Crosslinker</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Roshan%20Deen">G. Roshan Deen</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Pedersen"> J. S. Pedersen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature-responsive poly(N-isopropyl acrylamide) PNIPAM microgels crosslinked with a new hydrophobic chemical crosslinker was prepared by surfactant-mediated precipitation emulsion polymerization. The temperature-responsive property of the microgel and the influence of the crosslinker on the swelling behaviour was studied systematically by light scattering and small-angle X-ray scattering (SAXS). The radius of gyration (Rg) and the hydrodynamic radius (Rh) of the microgels decreased with increase in temperature due to the volume phase transition from a swollen to a collapsed state. The ratio of Rg/Rh below the transition temperature was lower than that of hard-spheres due to the lower crosslinking density of the microgels. The SAXS data was analysed by a model in which the microgels were modelled as core-shell particles with a graded interface. The model at intermediate temperatures included a central core and a more diffuse outer layer describing pending polymer chains with a low crosslinking density. In the fully swollen state, the microgels were modelled with a single component with a broad graded surface. In the collapsed state they were modelled as homogeneous and relatively compact particles. The polymer volume fraction inside the microgel was also derived based on the model and was found to increase with increase in temperature as a result of collapse of the microgel to compact particles. The polymer volume fraction in the core of the microgel in the collapsed state was about 60% which is higher than that of similar microgels crosslinked with hydrophilic and flexible cross-linkers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microgels" title="microgels">microgels</a>, <a href="https://publications.waset.org/abstracts/search?q=SAXS" title=" SAXS"> SAXS</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20crosslinker" title=" hydrophobic crosslinker"> hydrophobic crosslinker</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20scattering" title=" light scattering"> light scattering</a> </p> <a href="https://publications.waset.org/abstracts/20600/investigation-on-the-structure-of-temperature-responsive-n-isopropylacrylamide-microgels-containing-a-new-hydrophobic-crosslinker" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> The Fabrication of Stress Sensing Based on Artificial Antibodies to Cortisol by Molecular Imprinted Polymer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supannika%20Klangphukhiew">Supannika Klangphukhiew</a>, <a href="https://publications.waset.org/abstracts/search?q=Roongnapa%20Srichana"> Roongnapa Srichana</a>, <a href="https://publications.waset.org/abstracts/search?q=Rina%20Patramanon"> Rina Patramanon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cortisol has been used as a well-known commercial stress biomarker. A homeostasis response to psychological stress is indicated by an increased level of cortisol produced in hypothalamus-pituitary-adrenal (HPA) axis. Chronic psychological stress contributing to the high level of cortisol relates to several health problems. In this study, the cortisol biosensor was fabricated that mimicked the natural receptors. The artificial antibodies were prepared using molecular imprinted polymer technique that can imitate the performance of natural anti-cortisol antibody with high stability. Cortisol-molecular imprinted polymer (cortisol-MIP) was obtained using the multi-step swelling and polymerization protocol with cortisol as a target molecule combining methacrylic acid:acrylamide (2:1) with bisacryloyl-1,2-dihydroxy-1,2-ethylenediamine and ethylenedioxy-N-methylamphetamine as cross-linkers. Cortisol-MIP was integrated to the sensor. It was coated on the disposable screen-printed carbon electrode (SPCE) for portable electrochemical analysis. The physical properties of Cortisol-MIP were characterized by means of electron microscope techniques. The binding characteristics were evaluated via covalent patterns changing in FTIR spectra which were related to voltammetry response. The performance of cortisol-MIP modified SPCE was investigated in terms of detection range, high selectivity with a detection limit of 1.28 ng/ml. The disposable cortisol biosensor represented an application of MIP technique to recognize steroids according to their structures with feasibility and cost-effectiveness that can be developed to use in point-of-care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20biomarker" title="stress biomarker">stress biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=cortisol" title=" cortisol"> cortisol</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20imprinted%20polymer" title=" molecular imprinted polymer"> molecular imprinted polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=screen-printed%20carbon%20electrode" title=" screen-printed carbon electrode"> screen-printed carbon electrode</a> </p> <a href="https://publications.waset.org/abstracts/63750/the-fabrication-of-stress-sensing-based-on-artificial-antibodies-to-cortisol-by-molecular-imprinted-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Preparation of Conductive Composite Fiber by the Reduction of Silver Particles onto Hydrolyzed Polyacrylonitrile Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Okay">Z. Okay</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kalkan%20Erdo%C4%9Fan"> M. Kalkan Erdoğan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20%C5%9Eahin"> M. Şahin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sa%C3%A7ak"> M. Saçak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyacrylonitrile (PAN) is one of the most common and cheap fiber-forming polymers because of its high strength and high abrasion resistance properties. The result of alkaline hydrolysis of PAN fiber could be formed the products with conjugated sequences of –C=N–, acrylamide, sodium acrylate, and amidine. In this study, PAN fiber was hydrolyzed in a solution of sodium hydroxide, and this hydrolyzed PAN (HPAN) fiber was used to prepare conductive composite fiber by silver particles. The electrically conductive PAN fiber has the usage potential to produce variety of materials such as antistatic materials, life jackets and static charge reducing products. We monitored the change in the weight loss values of the PAN fiber with hydrolysis time. It was observed that a 60 % of weight loss was obtained in the fiber weight after 7h hydrolysis under the investigated conditions, but the fiber lost its fibrous structure. The hydrolysis time of 5h was found to be suitable in terms of preserving its fibrous structure. The change in the conductivity values of the composite with the preparation conditions such as hydrolysis time, silver ion concentration was studied. PAN fibers with different degrees of hydrolysis were treated with aqueous solutions containing different concentrations of silver ions by continuous stirring at 20 oC for 30 min, and the composite having the maximum conductivity of 2 S/cm could be prepared. The antibacterial property of the conductive HPAN fibers participated silver was also investigated. While the hydrolysis of the PAN fiber was characterized with FTIR and SEM techniques, the silver reduction process of the HPAN fiber was investigated with SEM and TGA-DTA techniques. The SEM micrographs showed that the surface of HPAN fiber was rougher and much more corroded than that of the PAN fiber. Composite, Conducting polymer, Fiber, Polyacrylonitrile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title=" conducting polymer"> conducting polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylonitrile" title=" polyacrylonitrile"> polyacrylonitrile</a> </p> <a href="https://publications.waset.org/abstracts/37131/preparation-of-conductive-composite-fiber-by-the-reduction-of-silver-particles-onto-hydrolyzed-polyacrylonitrile-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Application of Water Soluble Polymers in Chemical Enhanced Oil Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Shahzad%20Kamal">M. Shahzad Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20S.%20Sultan"> Abdullah S. Sultan</a>, <a href="https://publications.waset.org/abstracts/search?q=Usamah%20A.%20Al-Mubaiyedh"> Usamah A. Al-Mubaiyedh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibnelwaleed%20A.%20Hussein"> Ibnelwaleed A. Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil recovery from reservoirs using conventional oil recovery techniques like water flooding is less than 20%. Enhanced oil recovery (EOR) techniques are applied to recover additional oil. Surfactant-polymer flooding is a promising EOR technique used to recover residual oil from reservoirs. Water soluble polymers are used to increase the viscosity of displacing fluids. Surfactants increase the capillary number by reducing the interfacial tension between oil and displacing fluid. Hydrolyzed polyacrylamide (HPAM) is widely used in polymer flooding applications due to its low cost and other desirable properties. HPAM works well in low-temperature and low salinity-environment. In the presence of salts HPAM viscosity decrease due to charge screening effect and it can precipitate at high temperatures in the presence of salts. Various strategies have been adopted to extend the application of water soluble polymers to high-temperature high-salinity (HTHS) reservoir. These include addition of monomers to acrylamide chain that can protect it against thermal hydrolysis. In this work, rheological properties of various water soluble polymers were investigated to find out suitable polymer and surfactant-polymer systems for HTHS reservoirs. Polymer concentration ranged from 0.1 to 1 % (w/v). Effect of temperature, salinity and polymer concentration was investigated using both steady shear and dynamic measurements. Acrylamido tertiary butyl sulfonate based copolymer showed better performance under HTHS conditions compared to HPAM. Moreover, thermoviscosifying polymer showed excellent rheological properties and increase in the viscosity was observed with increase temperature. This property is highly desirable for EOR application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheology" title="rheology">rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylamide" title=" polyacrylamide"> polyacrylamide</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery" title=" enhanced oil recovery"> enhanced oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20flooding" title=" polymer flooding"> polymer flooding</a> </p> <a href="https://publications.waset.org/abstracts/9556/application-of-water-soluble-polymers-in-chemical-enhanced-oil-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Performance Evaluation and Plugging Characteristics of Controllable Self-Aggregating Colloidal Particle Profile Control Agent </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiguo%20Yang">Zhiguo Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangan%20Yue"> Xiangan Yue</a>, <a href="https://publications.waset.org/abstracts/search?q=Minglu%20Shao"> Minglu Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yue%20Yang"> Yue Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Rongjie%20Yan"> Rongjie Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is difficult to realize deep profile control because of the small pore-throats and easy water channeling in low-permeability heterogeneous reservoir, and the traditional polymer microspheres have the contradiction between injection and plugging. In order to solve this contradiction, the controllable self-aggregating colloidal particles (CSA) containing amide groups on the surface of microspheres was prepared based on emulsion polymerization of styrene and acrylamide. The dispersed solution of CSA colloidal particles, whose particle size is much smaller than the diameter of pore-throats, was injected into the reservoir. When the microspheres migrated to the deep part of reservoir, , these CSA colloidal particles could automatically self-aggregate into large particle clusters under the action of the shielding agent and the control agent, so as to realize the plugging of the water channels. In this paper, the morphology, temperature resistance and self-aggregation properties of CSA microspheres were studied by transmission electron microscopy (TEM) and bottle test. The results showed that CSA microspheres exhibited heterogeneous core-shell structure, good dispersion, and outstanding thermal stability. The microspheres remain regular and uniform spheres at 100℃ after aging for 35 days. With the increase of the concentration of the cations, the self-aggregation time of CSA was gradually shortened, and the influence of bivalent cations was greater than that of monovalent cations. Core flooding experiments showed that CSA polymer microspheres have good injection properties, CSA particle clusters can effective plug the water channels and migrate to the deep part of the reservoir for profile control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20reservoir" title="heterogeneous reservoir">heterogeneous reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20profile%20control" title=" deep profile control"> deep profile control</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsion%20polymerization" title=" emulsion polymerization"> emulsion polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=colloidal%20particles" title=" colloidal particles"> colloidal particles</a>, <a href="https://publications.waset.org/abstracts/search?q=plugging%20characteristic" title=" plugging characteristic"> plugging characteristic</a> </p> <a href="https://publications.waset.org/abstracts/134409/performance-evaluation-and-plugging-characteristics-of-controllable-self-aggregating-colloidal-particle-profile-control-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acrylamide&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acrylamide&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10