CINXE.COM

Search results for: multidimensional hierarchical graph neuron

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: multidimensional hierarchical graph neuron</title> <meta name="description" content="Search results for: multidimensional hierarchical graph neuron"> <meta name="keywords" content="multidimensional hierarchical graph neuron"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="multidimensional hierarchical graph neuron" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="multidimensional hierarchical graph neuron"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1418</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: multidimensional hierarchical graph neuron</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1418</span> The Problems of Current Earth Coordinate System for Earthquake Forecasting Using Single Layer Hierarchical Graph Neuron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benny%20Benyamin%20Nasution">Benny Benyamin Nasution</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmat%20Widia%20Sembiring"> Rahmat Widia Sembiring</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rahman%20Dalimunthe"> Abdul Rahman Dalimunthe</a>, <a href="https://publications.waset.org/abstracts/search?q=Nursiah%20Mustari"> Nursiah Mustari</a>, <a href="https://publications.waset.org/abstracts/search?q=Nisfan%20Bahri"> Nisfan Bahri</a>, <a href="https://publications.waset.org/abstracts/search?q=Berta%20br%20Ginting"> Berta br Ginting</a>, <a href="https://publications.waset.org/abstracts/search?q=Riadil%20Akhir%20Lubis"> Riadil Akhir Lubis</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Tavip%20Megawati"> Rita Tavip Megawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Indri%20Dithisari"> Indri Dithisari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The earth coordinate system is an important part of an attempt for earthquake forecasting, such as the one using Single Layer Hierarchical Graph Neuron (SLHGN). However, there are a number of problems that need to be worked out before the coordinate system can be utilized for the forecaster. One example of those is that SLHGN requires that the focused area of an earthquake must be constructed in a grid-like form. In fact, within the current earth coordinate system, the same longitude-difference would produce different distances. This can be observed at the distance on the Equator compared to distance at both poles. To deal with such a problem, a coordinate system has been developed, so that it can be used to support the ongoing earthquake forecasting using SLHGN. Two important issues have been developed in this system: 1) each location is not represented through two-value (longitude and latitude), but only a single value, 2) the conversion of the earth coordinate system to the x-y cartesian system requires no angular formulas, which is therefore fast. The accuracy and the performance have not been measured yet, since earthquake data is difficult to obtain. However, the characteristics of the SLHGN results show a very promising answer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20graph%20neuron" title="hierarchical graph neuron">hierarchical graph neuron</a>, <a href="https://publications.waset.org/abstracts/search?q=multidimensional%20hierarchical%20graph%20neuron" title=" multidimensional hierarchical graph neuron"> multidimensional hierarchical graph neuron</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20layer%20hierarchical%20graph%20neuron" title=" single layer hierarchical graph neuron"> single layer hierarchical graph neuron</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20disaster%20forecasting" title=" natural disaster forecasting"> natural disaster forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20forecasting" title=" earthquake forecasting"> earthquake forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=earth%20coordinate%20system" title=" earth coordinate system"> earth coordinate system</a> </p> <a href="https://publications.waset.org/abstracts/118471/the-problems-of-current-earth-coordinate-system-for-earthquake-forecasting-using-single-layer-hierarchical-graph-neuron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1417</span> Modeling of Bioelectric Activity of Nerve Cells Using Bond Graph Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghasemi">M. Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Eskandari"> F. Eskandari</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hamzehei"> B. Hamzehei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Arshi"> A. R. Arshi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioelectric activity of nervous cells might be changed causing by various factors. This alteration can lead to unforeseen circumstances in other organs of the body. Therefore, the purpose of this study was to model a single neuron and its behavior under an initial stimulation. This study was developed based on cable theory by means of the Bond Graph method. The numerical values of the parameters were derived from empirical studies of cellular electrophysiology experiments. Initial excitation was applied through square current functions, and the resulted action potential was estimated along the neuron. The results revealed that the model was developed in this research adapted with the results of experimental studies and demonstrated the electrical behavior of nervous cells properly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bond%20graph" title="bond graph">bond graph</a>, <a href="https://publications.waset.org/abstracts/search?q=stimulation" title=" stimulation"> stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=nervous%20cells" title=" nervous cells"> nervous cells</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/32701/modeling-of-bioelectric-activity-of-nerve-cells-using-bond-graph-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1416</span> Agglomerative Hierarchical Clustering Using the Tθ Family of Similarity Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salima%20Kouici">Salima Kouici</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Khelladi"> Abdelkader Khelladi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we begin with the presentation of the Tθ family of usual similarity measures concerning multidimensional binary data. Subsequently, some properties of these measures are proposed. Finally, the impact of the use of different inter-elements measures on the results of the Agglomerative Hierarchical Clustering Methods is studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20data" title="binary data">binary data</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20measure" title=" similarity measure"> similarity measure</a>, <a href="https://publications.waset.org/abstracts/search?q=T%CE%B8%20measures" title=" Tθ measures"> Tθ measures</a>, <a href="https://publications.waset.org/abstracts/search?q=agglomerative%20hierarchical%20clustering" title=" agglomerative hierarchical clustering"> agglomerative hierarchical clustering</a> </p> <a href="https://publications.waset.org/abstracts/13108/agglomerative-hierarchical-clustering-using-the-tth-family-of-similarity-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1415</span> Description of the Non-Iterative Learning Algorithm of Artificial Neuron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Akhmetov">B. S. Akhmetov</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20T.%20Akhmetova"> S. T. Akhmetova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Ivanov"> A. I. Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Kartbayev"> T. S. Kartbayev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Y.%20Malygin"> A. Y. Malygin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of training of a network of artificial neurons in biometric appendices is that this process has to be completely automatic, i.e. the person operator should not participate in it. Therefore, this article discusses the issues of training the network of artificial neurons and the description of the non-iterative learning algorithm of artificial neuron. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neuron" title="artificial neuron">artificial neuron</a>, <a href="https://publications.waset.org/abstracts/search?q=biometrics" title=" biometrics"> biometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=biometrical%20applications" title=" biometrical applications"> biometrical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20of%20neuron" title=" learning of neuron"> learning of neuron</a>, <a href="https://publications.waset.org/abstracts/search?q=non-iterative%20algorithm" title=" non-iterative algorithm"> non-iterative algorithm</a> </p> <a href="https://publications.waset.org/abstracts/19446/description-of-the-non-iterative-learning-algorithm-of-artificial-neuron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1414</span> Topological Indices of Some Graph Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Mary">U. Mary </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let be a graph with a finite, nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of called edges. The vertex set is denoted by and the edge set by. Given two graphs and the wiener index of, wiener index for the splitting graph of a graph, the first Zagreb index of and its splitting graph, the 3-steiner wiener index of, the 3-steiner wiener index of a special graph are explored in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complementary%20prism%20graph" title="complementary prism graph">complementary prism graph</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20Zagreb%20index" title=" first Zagreb index"> first Zagreb index</a>, <a href="https://publications.waset.org/abstracts/search?q=neighborhood%20corona%20graph" title=" neighborhood corona graph"> neighborhood corona graph</a>, <a href="https://publications.waset.org/abstracts/search?q=steiner%20distance" title=" steiner distance"> steiner distance</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20graph" title=" splitting graph"> splitting graph</a>, <a href="https://publications.waset.org/abstracts/search?q=steiner%20wiener%20index" title=" steiner wiener index"> steiner wiener index</a>, <a href="https://publications.waset.org/abstracts/search?q=wiener%20index" title=" wiener index"> wiener index</a> </p> <a href="https://publications.waset.org/abstracts/16774/topological-indices-of-some-graph-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1413</span> Survey Paper on Graph Coloring Problem and Its Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prateek%20Chharia">Prateek Chharia</a>, <a href="https://publications.waset.org/abstracts/search?q=Biswa%20Bhusan%20Ghosh"> Biswa Bhusan Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graph coloring is one of the prominent concepts in graph coloring. It can be defined as a coloring of the various regions of the graph such that all the constraints are fulfilled. In this paper various graphs coloring approaches like greedy coloring, Heuristic search for maximum independent set and graph coloring using edge table is described. Graph coloring can be used in various real time applications like student time tabling generation, Sudoku as a graph coloring problem, GSM phone network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph%20coloring" title="graph coloring">graph coloring</a>, <a href="https://publications.waset.org/abstracts/search?q=greedy%20coloring" title=" greedy coloring"> greedy coloring</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20search" title=" heuristic search"> heuristic search</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20table" title=" edge table"> edge table</a>, <a href="https://publications.waset.org/abstracts/search?q=sudoku%20as%20a%20graph%20coloring%20problem" title=" sudoku as a graph coloring problem"> sudoku as a graph coloring problem</a> </p> <a href="https://publications.waset.org/abstracts/19691/survey-paper-on-graph-coloring-problem-and-its-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1412</span> Neuron Dynamics of Single-Compartment Traub Model for Hardware Implementations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Moctezuma">J. C. Moctezuma</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Bre%C3%B1a-Medina"> V. Breña-Medina</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Luis%20Nunez-Yanez"> Jose Luis Nunez-Yanez</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20P.%20McGeehan">Joseph P. McGeehan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work we make a bifurcation analysis for a single compartment representation of Traub model, one of the most important conductance-based models. The analysis focus in two principal parameters: current and leakage conductance. Study of stable and unstable solutions are explored; also Hop-bifurcation and frequency interpretation when current varies is examined. This study allows having control of neuron dynamics and neuron response when these parameters change. Analysis like this is particularly important for several applications such as: tuning parameters in learning process, neuron excitability tests, measure bursting properties of the neuron, etc. Finally, a hardware implementation results were developed to corroborate these results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Traub%20model" title="Traub model">Traub model</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinsky-Rinzel%20model" title=" Pinsky-Rinzel model"> Pinsky-Rinzel model</a>, <a href="https://publications.waset.org/abstracts/search?q=Hopf%20bifurcation" title=" Hopf bifurcation"> Hopf bifurcation</a>, <a href="https://publications.waset.org/abstracts/search?q=single-compartment%20models" title=" single-compartment models"> single-compartment models</a>, <a href="https://publications.waset.org/abstracts/search?q=bifurcation%20analysis" title=" bifurcation analysis"> bifurcation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=neuron%20modeling" title=" neuron modeling"> neuron modeling</a> </p> <a href="https://publications.waset.org/abstracts/10310/neuron-dynamics-of-single-compartment-traub-model-for-hardware-implementations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1411</span> A New Graph Theoretic Problem with Ample Practical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Hakan%20Karaata">Mehmet Hakan Karaata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we first coin a new graph theocratic problem with numerous applications. Second, we provide two algorithms for the problem. The first solution is using a brute-force techniques, whereas the second solution is based on an initial identification of the cycles in the given graph. We then provide a correctness proof of the algorithm. The applications of the problem include graph analysis, graph drawing and network structuring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=cycle" title=" cycle"> cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20algorithm" title=" graph algorithm"> graph algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20theory" title=" graph theory"> graph theory</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20structuring" title=" network structuring"> network structuring</a> </p> <a href="https://publications.waset.org/abstracts/67285/a-new-graph-theoretic-problem-with-ample-practical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1410</span> Complete Tripartite Graphs with Spanning Maximal Planar Subgraphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Severino%20Gervacio">Severino Gervacio</a>, <a href="https://publications.waset.org/abstracts/search?q=Velimor%20Almonte"> Velimor Almonte</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Natalio"> Emmanuel Natalio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple graph is planar if it there is a way of drawing it in the plane without edge crossings. A planar graph which is not a proper spanning subgraph of another planar graph is a maximal planar graph. We prove that for complete tripartite graphs of order at most 9, the only ones that contain a spanning maximal planar subgraph are K1,1,1, K2,2,2, K2,3,3, and K3,3,3. The main result gives a necessary and sufficient condition for the complete tripartite graph Kx,y,z to contain a spanning maximal planar subgraph. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complete%20tripartite%20graph" title="complete tripartite graph">complete tripartite graph</a>, <a href="https://publications.waset.org/abstracts/search?q=graph" title=" graph"> graph</a>, <a href="https://publications.waset.org/abstracts/search?q=maximal%20planar%20graph" title=" maximal planar graph"> maximal planar graph</a>, <a href="https://publications.waset.org/abstracts/search?q=planar%20graph" title=" planar graph"> planar graph</a>, <a href="https://publications.waset.org/abstracts/search?q=subgraph" title=" subgraph"> subgraph</a> </p> <a href="https://publications.waset.org/abstracts/59157/complete-tripartite-graphs-with-spanning-maximal-planar-subgraphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1409</span> Efficient Filtering of Graph Based Data Using Graph Partitioning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nileshkumar%20Vaishnav">Nileshkumar Vaishnav</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Tatu"> Aditya Tatu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An algebraic framework for processing graph signals axiomatically designates the graph adjacency matrix as the shift operator. In this setup, we often encounter a problem wherein we know the filtered output and the filter coefficients, and need to find out the input graph signal. Solution to this problem using direct approach requires O(N3) operations, where N is the number of vertices in graph. In this paper, we adapt the spectral graph partitioning method for partitioning of graphs and use it to reduce the computational cost of the filtering problem. We use the example of denoising of the temperature data to illustrate the efficacy of the approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph%20signal%20processing" title="graph signal processing">graph signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20partitioning" title=" graph partitioning"> graph partitioning</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20filtering%20on%20graphs" title=" inverse filtering on graphs"> inverse filtering on graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=algebraic%20signal%20processing" title=" algebraic signal processing"> algebraic signal processing</a> </p> <a href="https://publications.waset.org/abstracts/59397/efficient-filtering-of-graph-based-data-using-graph-partitioning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1408</span> Improvement a Lower Bound of Energy for Some Family of Graphs, Related to Determinant of Adjacency Matrix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saieed%20%20Akbari">Saieed Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Bagheri"> Yousef Bagheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hossein%20Ghodrati"> Amir Hossein Ghodrati</a>, <a href="https://publications.waset.org/abstracts/search?q=Sima%20Saadat%20Akhtar"> Sima Saadat Akhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let G be a simple graph with the vertex set V (G) and with the adjacency matrix A (G). The energy E (G) of G is defined to be the sum of the absolute values of all eigenvalues of A (G). Also let n and m be number of edges and vertices of the graph respectively. A regular graph is a graph where each vertex has the same number of neighbours. Given a graph G, its line graph L(G) is a graph such that each vertex of L(G) represents an edge of G; and two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint in G. In this paper we show that for every regular graphs and also for every line graphs such that (G) 3 we have, E(G) 2nm + n 1. Also at the other part of the paper we prove that 2 (G) E(G) for an arbitrary graph G. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title="eigenvalues">eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20graphs" title=" line graphs"> line graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=matching%20number" title=" matching number"> matching number</a> </p> <a href="https://publications.waset.org/abstracts/99652/improvement-a-lower-bound-of-energy-for-some-family-of-graphs-related-to-determinant-of-adjacency-matrix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1407</span> Impact of Neuron with Two Dendrites in Heart Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaouther%20Selmi">Kaouther Selmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaeddine%20Sridi"> Alaeddine Sridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Bouallegue"> Mohamed Bouallegue</a>, <a href="https://publications.waset.org/abstracts/search?q=Kais%20Bouallegue"> Kais Bouallegue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neurons are the fundamental units of the brain and the nervous system. The variable structure model of neurons consists of a system of differential equations with various parameters. By optimizing these parameters, we can create a unique model that describes the dynamic behavior of a single neuron. We introduce a neural network based on neurons with multiple dendrites employing an activation function with a variable structure. In this paper, we present a model for heart behavior. Finally, we showcase our successful simulation of the heart's ECG diagram using our Variable Structure Neuron Model (VSMN). This result could provide valuable insights into cardiology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title="neural networks">neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=neuron" title=" neuron"> neuron</a>, <a href="https://publications.waset.org/abstracts/search?q=dendrites" title=" dendrites"> dendrites</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20behavior" title=" heart behavior"> heart behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG" title=" ECG"> ECG</a> </p> <a href="https://publications.waset.org/abstracts/170171/impact-of-neuron-with-two-dendrites-in-heart-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1406</span> Graph Similarity: Algebraic Model and Its Application to Nonuniform Signal Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nileshkumar%20Vishnav">Nileshkumar Vishnav</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Tatu"> Aditya Tatu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A recent approach of representing graph signals and graph filters as polynomials is useful for graph signal processing. In this approach, the adjacency matrix plays pivotal role; instead of the more common approach involving graph-Laplacian. In this work, we follow the adjacency matrix based approach and corresponding algebraic signal model. We further expand the theory and introduce the concept of similarity of two graphs. The similarity of graphs is useful in that key properties (such as filter-response, algebra related to graph) get transferred from one graph to another. We demonstrate potential applications of the relation between two similar graphs, such as nonuniform filter design, DTMF detection and signal reconstruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph%20signal%20processing" title="graph signal processing">graph signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=algebraic%20signal%20processing" title=" algebraic signal processing"> algebraic signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20similarity" title=" graph similarity"> graph similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=isospectral%20graphs" title=" isospectral graphs"> isospectral graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=nonuniform%20signal%20processing" title=" nonuniform signal processing"> nonuniform signal processing</a> </p> <a href="https://publications.waset.org/abstracts/59404/graph-similarity-algebraic-model-and-its-application-to-nonuniform-signal-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1405</span> Metric Dimension on Line Graph of Honeycomb Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hussain">M. Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Aqsa%20Farooq"> Aqsa Farooq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let G = (V,E) be a connected graph and distance between any two vertices a and b in G is a&minus;b geodesic and is denoted by d(a, b). A set of vertices W resolves a graph G if each vertex is uniquely determined by its vector of distances to the vertices in W. A metric dimension of G is the minimum cardinality of a resolving set of G. In this paper line graph of honeycomb network has been derived and then we calculated the metric dimension on line graph of honeycomb network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Resolving%20set" title="Resolving set">Resolving set</a>, <a href="https://publications.waset.org/abstracts/search?q=Metric%20dimension" title=" Metric dimension"> Metric dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=Honeycomb%20network" title=" Honeycomb network"> Honeycomb network</a>, <a href="https://publications.waset.org/abstracts/search?q=Line%20graph" title=" Line graph"> Line graph</a> </p> <a href="https://publications.waset.org/abstracts/101558/metric-dimension-on-line-graph-of-honeycomb-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1404</span> Speedup Breadth-First Search by Graph Ordering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiuyi%20Lyu">Qiuyi Lyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Gong"> Bin Gong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breadth-First Search(BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improve the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads. We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breadth-first%20search" title="breadth-first search">breadth-first search</a>, <a href="https://publications.waset.org/abstracts/search?q=BFS" title=" BFS"> BFS</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20ordering" title=" graph ordering"> graph ordering</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20algorithm" title=" graph algorithm"> graph algorithm</a> </p> <a href="https://publications.waset.org/abstracts/136790/speedup-breadth-first-search-by-graph-ordering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1403</span> A Study of Families of Bistar and Corona Product of Graph: Reverse Topological Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gowtham%20Kalkere%20Jayanna">Gowtham Kalkere Jayanna</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Nazri%20Husin"> Mohamad Nazri Husin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graph theory, chemistry, and technology are all combined in cheminformatics. The structure and physiochemical properties of organic substances are linked using some useful graph invariants and the corresponding molecular graph. In this paper, we study specific reverse topological indices such as the reverse sum-connectivity index, the reverse Zagreb index, the reverse arithmetic-geometric, and the geometric-arithmetic, the reverse Sombor, the reverse Nirmala indices for the bistar graphs B (n: m) and the corona product Kₘ∘Kₙ', where Kₙ' Represent the complement of a complete graph Kₙ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20topological%20indices" title="reverse topological indices">reverse topological indices</a>, <a href="https://publications.waset.org/abstracts/search?q=bistar%20graph" title=" bistar graph"> bistar graph</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20corona%20product" title=" the corona product"> the corona product</a>, <a href="https://publications.waset.org/abstracts/search?q=graph" title=" graph"> graph</a> </p> <a href="https://publications.waset.org/abstracts/166540/a-study-of-families-of-bistar-and-corona-product-of-graph-reverse-topological-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1402</span> On the Zeros of the Degree Polynomial of a Graph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Nayaka">S. R. Nayaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Putta%20Swamy"> Putta Swamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graph polynomial is one of the algebraic representations of the Graph. The degree polynomial is one of the simple algebraic representations of graphs. The degree polynomial of a graph G of order n is the polynomial Deg(G, x) with the coefficients deg(G,i) where deg(G,i) denotes the number of vertices of degree i in G. In this article, we investigate the behavior of the roots of some families of Graphs in the complex field. We investigate for the graphs having only integral roots. Further, we characterize the graphs having single roots or having real roots and behavior of the polynomial at the particular value is also obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degree%20polynomial" title="degree polynomial">degree polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=regular%20graph" title=" regular graph"> regular graph</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20and%20maximum%20degree" title=" minimum and maximum degree"> minimum and maximum degree</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20operations" title=" graph operations"> graph operations</a> </p> <a href="https://publications.waset.org/abstracts/56602/on-the-zeros-of-the-degree-polynomial-of-a-graph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1401</span> Efficient Subgoal Discovery for Hierarchical Reinforcement Learning Using Local Computations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Millea">Adrian Millea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In hierarchical reinforcement learning, one of the main issues encountered is the discovery of subgoal states or options (which are policies reaching subgoal states) by partitioning the environment in a meaningful way. This partitioning usually requires an expensive global clustering operation or eigendecomposition of the Laplacian of the states graph. We propose a local solution to this issue, much more efficient than algorithms using global information, which successfully discovers subgoal states by computing a simple function, which we call heterogeneity for each state as a function of its neighbors. Moreover, we construct a value function using the difference in heterogeneity from one step to the next, as reward, such that we are able to explore the state space much more efficiently than say epsilon-greedy. The same principle can then be applied to higher level of the hierarchy, where now states are subgoals discovered at the level below. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exploration" title="exploration">exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20reinforcement%20learning" title=" hierarchical reinforcement learning"> hierarchical reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=locality" title=" locality"> locality</a>, <a href="https://publications.waset.org/abstracts/search?q=options" title=" options"> options</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20functions" title=" value functions"> value functions</a> </p> <a href="https://publications.waset.org/abstracts/134077/efficient-subgoal-discovery-for-hierarchical-reinforcement-learning-using-local-computations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1400</span> From Convexity in Graphs to Polynomial Rings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ladznar%20S.%20Laja">Ladznar S. Laja</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosalio%20G.%20Artes"> Rosalio G. Artes</a>, <a href="https://publications.waset.org/abstracts/search?q=Jr."> Jr.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduced a graph polynomial relating convexity concepts. A graph polynomial is a polynomial representing a graph given some parameters. On the other hand, a subgraph H of a graph G is said to be convex in G if for every pair of vertices in H, every shortest path with these end-vertices lies entirely in H. We define the convex subgraph polynomial of a graph G to be the generating function of the sequence of the numbers of convex subgraphs of G of cardinalities ranging from zero to the order of G. This graph polynomial is monic since G itself is convex. The convex index which counts the number of convex subgraphs of G of all orders is just the evaluation of this polynomial at 1. Relationships relating algebraic properties of convex subgraphs polynomial with graph theoretic concepts are established. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convex%20subgraph" title="convex subgraph">convex subgraph</a>, <a href="https://publications.waset.org/abstracts/search?q=convex%20index" title=" convex index"> convex index</a>, <a href="https://publications.waset.org/abstracts/search?q=generating%20function" title=" generating function"> generating function</a>, <a href="https://publications.waset.org/abstracts/search?q=polynomial%20ring" title=" polynomial ring"> polynomial ring</a> </p> <a href="https://publications.waset.org/abstracts/9019/from-convexity-in-graphs-to-polynomial-rings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1399</span> An Application of Graph Theory to The Electrical Circuit Using Matrix Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samai%27la%20Abdullahi">Samai&#039;la Abdullahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A graph is a pair of two set and so that a graph is a pictorial representation of a system using two basic element nodes and edges. A node is represented by a circle (either hallo shade) and edge is represented by a line segment connecting two nodes together. In this paper, we present a circuit network in the concept of graph theory application and also circuit models of graph are represented in logical connection method were we formulate matrix method of adjacency and incidence of matrix and application of truth table. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=euler%20circuit%20and%20path" title="euler circuit and path">euler circuit and path</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20representation%20of%20circuit%20networks" title=" graph representation of circuit networks"> graph representation of circuit networks</a>, <a href="https://publications.waset.org/abstracts/search?q=representation%20of%20graph%20models" title=" representation of graph models"> representation of graph models</a>, <a href="https://publications.waset.org/abstracts/search?q=representation%20of%20circuit%20network%20using%20logical%20truth%20table" title=" representation of circuit network using logical truth table"> representation of circuit network using logical truth table</a> </p> <a href="https://publications.waset.org/abstracts/32358/an-application-of-graph-theory-to-the-electrical-circuit-using-matrix-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1398</span> Building 1-Well-Covered Graphs by Corona, Join, and Rooted Product of Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vadim%20E.%20Levit">Vadim E. Levit</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugen%20Mandrescu"> Eugen Mandrescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A graph is well-covered if all its maximal independent sets are of the same size. A well-covered graph is 1-well-covered if deletion of every vertex of the graph leaves it well-covered. It is known that a graph without isolated vertices is 1-well-covered if and only if every two disjoint independent sets are included in two disjoint maximum independent sets. Well-covered graphs are related to combinatorial commutative algebra (e.g., every Cohen-Macaulay graph is well-covered, while each Gorenstein graph without isolated vertices is 1-well-covered). Our intent is to construct several infinite families of 1-well-covered graphs using the following known graph operations: corona, join, and rooted product of graphs. Adopting some known techniques used to advantage for well-covered graphs, one can prove that: if the graph G has no isolated vertices, then the corona of G and H is 1-well-covered if and only if H is a complete graph of order two at least; the join of the graphs G and H is 1-well-covered if and only if G and H have the same independence number and both are 1-well-covered; if H satisfies the property that every three pairwise disjoint independent sets are included in three pairwise disjoint maximum independent sets, then the rooted product of G and H is 1-well-covered, for every graph G. These findings show not only how to generate some more families of 1-well-covered graphs, but also that, to this aim, sometimes, one may use graphs that are not necessarily 1-well-covered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maximum%20independent%20set" title="maximum independent set">maximum independent set</a>, <a href="https://publications.waset.org/abstracts/search?q=corona" title=" corona"> corona</a>, <a href="https://publications.waset.org/abstracts/search?q=concatenation" title=" concatenation"> concatenation</a>, <a href="https://publications.waset.org/abstracts/search?q=join" title=" join"> join</a>, <a href="https://publications.waset.org/abstracts/search?q=well-covered%20graph" title=" well-covered graph"> well-covered graph</a> </p> <a href="https://publications.waset.org/abstracts/86859/building-1-well-covered-graphs-by-corona-join-and-rooted-product-of-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1397</span> The Use of Layered Neural Networks for Classifying Hierarchical Scientific Fields of Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Colin%20Smith">Colin Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Linsey%20S%20Passarella"> Linsey S Passarella</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the proliferation and decentralized nature of academic publication, no widely accepted scheme exists for organizing papers by their scientific field of study (FoS) to the author’s best knowledge. While many academic journals require author provided keywords for papers, these keywords range wildly in scope and are not consistent across papers, journals, or field domains, necessitating alternative approaches to paper classification. Past attempts to perform field-of-study (FoS) classification on scientific texts have largely used a-hierarchical FoS schemas or ignored the schema’s inherently hierarchical structure, e.g. by compressing the structure into a single layer for multi-label classification. In this paper, we introduce an application of a Layered Neural Network (LNN) to the problem of performing supervised hierarchical classification of scientific fields of study (FoS) on research papers. In this approach, paper embeddings from a pretrained language model are fed into a top-down LNN. Beginning with a single neural network (NN) for the highest layer of the class hierarchy, each node uses a separate local NN to classify the subsequent subfield child node(s) for an input embedding of concatenated paper titles and abstracts. We compare our LNN-FOS method to other recent machine learning methods using the Microsoft Academic Graph (MAG) FoS hierarchy and find that the LNN-FOS offers increased classification accuracy at each FoS hierarchical level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20classification" title="hierarchical classification">hierarchical classification</a>, <a href="https://publications.waset.org/abstracts/search?q=layer%20neural%20network" title=" layer neural network"> layer neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=scientific%20field%20of%20study" title=" scientific field of study"> scientific field of study</a>, <a href="https://publications.waset.org/abstracts/search?q=scientific%20taxonomy" title=" scientific taxonomy"> scientific taxonomy</a> </p> <a href="https://publications.waset.org/abstracts/151193/the-use-of-layered-neural-networks-for-classifying-hierarchical-scientific-fields-of-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1396</span> Scene Classification Using Hierarchy Neural Network, Directed Acyclic Graph Structure, and Label Relations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Jen%20Chen">Po-Jen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian-Jiun%20Ding"> Jian-Jiun Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Wei%20Hsu"> Hung-Wei Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Yao%20Wang"> Chien-Yao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia-Ching%20Wang"> Jia-Ching Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A more accurate scene classification algorithm using label relations and the hierarchy neural network was developed in this work. In many classification algorithms, it is assumed that the labels are mutually exclusive. This assumption is true in some specific problems, however, for scene classification, the assumption is not reasonable. Because there are a variety of objects with a photo image, it is more practical to assign multiple labels for an image. In this paper, two label relations, which are exclusive relation and hierarchical relation, were adopted in the classification process to achieve more accurate multiple label classification results. Moreover, the hierarchy neural network (hierarchy NN) is applied to classify the image and the directed acyclic graph structure is used for predicting a more reasonable result which obey exclusive and hierarchical relations. Simulations show that, with these techniques, a much more accurate scene classification result can be achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=label%20relation" title=" label relation"> label relation</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchy%20neural%20network" title=" hierarchy neural network"> hierarchy neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=scene%20classification" title=" scene classification"> scene classification</a> </p> <a href="https://publications.waset.org/abstracts/66516/scene-classification-using-hierarchy-neural-network-directed-acyclic-graph-structure-and-label-relations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1395</span> Nullity of t-Tupple Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khidir%20R.%20Sharaf">Khidir R. Sharaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Didar%20A.%20Ali"> Didar A. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nullity η (G) of a graph is the occurrence of zero as an eigenvalue in its spectra. A zero-sum weighting of a graph G is real valued function, say f from vertices of G to the set of real numbers, provided that for each vertex of G the summation of the weights f (w) over all neighborhood w of v is zero for each v in G.A high zero-sum weighting of G is one that uses maximum number of non-zero independent variables. If G is graph with an end vertex, and if H is an induced sub-graph of G obtained by deleting this vertex together with the vertex adjacent to it, then, η(G)= η(H). In this paper, a high zero-sum weighting technique and the end vertex procedure are applied to evaluate the nullity of t-tupple and generalized t-tupple graphs are derived and determined for some special types of graphs. Also, we introduce and prove some important results about the t-tupple coalescence, Cartesian and Kronecker products of nut graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph%20theory" title="graph theory">graph theory</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20spectra" title=" graph spectra"> graph spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=nullity%20of%20graphs" title=" nullity of graphs"> nullity of graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=statistic" title=" statistic"> statistic</a> </p> <a href="https://publications.waset.org/abstracts/4759/nullity-of-t-tupple-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1394</span> Meta-Learning for Hierarchical Classification and Applications in Bioinformatics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Fabris">Fabio Fabris</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20A.%20Freitas"> Alex A. Freitas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work&rsquo;s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm%20recommendation" title="algorithm recommendation">algorithm recommendation</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-learning" title=" meta-learning"> meta-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20classification" title=" hierarchical classification"> hierarchical classification</a> </p> <a href="https://publications.waset.org/abstracts/81005/meta-learning-for-hierarchical-classification-and-applications-in-bioinformatics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1393</span> Existence and Construction of Maximal Rectangular Duals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishnendra%20Shekhawat">Krishnendra Shekhawat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given a graph G = (V, E), a rectangular dual of G represents the vertices of G by a set of interior-disjoint rectangles such that two rectangles touch if and only if there is an edge between the two corresponding vertices in G. Rectangular duals do not exist for every graph, so we can define maximal rectangular duals. A maximal rectangular dual is a rectangular dual of a graph G such that there exists no graph G ′ with a rectangular dual where G is a subgraph of G ′. In this paper, we enumerate all maximal rectangular duals (or, to be precise, the corresponding planar graphs) up to six nodes and presents a necessary condition for the existence of a rectangular dual. This work allegedly has applications in integrated circuit design and architectural floor plans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adjacency" title="adjacency">adjacency</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20sequence" title=" degree sequence"> degree sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20graph" title=" dual graph"> dual graph</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20dual" title=" rectangular dual"> rectangular dual</a> </p> <a href="https://publications.waset.org/abstracts/62583/existence-and-construction-of-maximal-rectangular-duals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1392</span> Characterising Stable Model by Extended Labelled Dependency Graph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asraful%20Islam">Asraful Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extended dependency graph (EDG) is a state-of-the-art isomorphic graph to represent normal logic programs (NLPs) that can characterize the consistency of NLPs by graph analysis. To construct the vertices and arcs of an EDG, additional renaming atoms and rules besides those the given program provides are used, resulting in higher space complexity compared to the corresponding traditional dependency graph (TDG). In this article, we propose an extended labeled dependency graph (ELDG) to represent an NLP that shares an equal number of nodes and arcs with TDG and prove that it is isomorphic to the domain program. The number of nodes and arcs used in the underlying dependency graphs are formulated to compare the space complexity. Results show that ELDG uses less memory to store nodes, arcs, and cycles compared to EDG. To exhibit the desirability of ELDG, firstly, the stable models of the kernel form of NLP are characterized by the admissible coloring of ELDG; secondly, a relation of the stable models of a kernel program with the handles of the minimal, odd cycles appearing in the corresponding ELDG has been established; thirdly, to our best knowledge, for the first time an inverse transformation from a dependency graph to the representing NLP w.r.t. ELDG has been defined that enables transferring analytical results from the graph to the program straightforwardly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=normal%20logic%20program" title="normal logic program">normal logic program</a>, <a href="https://publications.waset.org/abstracts/search?q=isomorphism%20of%20graph" title=" isomorphism of graph"> isomorphism of graph</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20labelled%20dependency%20graph" title=" extended labelled dependency graph"> extended labelled dependency graph</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20graph%20transforma-tion" title=" inverse graph transforma-tion"> inverse graph transforma-tion</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20colouring" title=" graph colouring"> graph colouring</a> </p> <a href="https://publications.waset.org/abstracts/137606/characterising-stable-model-by-extended-labelled-dependency-graph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1391</span> Forecast Financial Bubbles: Multidimensional Phenomenon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zouari%20Ezzeddine">Zouari Ezzeddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghraieb%20Ikram"> Ghraieb Ikram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From the results of the academic literature which evokes the limitations of previous studies, this article shows the reasons for multidimensionality Prediction of financial bubbles. A new framework for modeling study predicting financial bubbles by linking a set of variable presented on several dimensions dictating its multidimensional character. It takes into account the preferences of financial actors. A multicriteria anticipation of the appearance of bubbles in international financial markets helps to fight against a possible crisis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classical%20measures" title="classical measures">classical measures</a>, <a href="https://publications.waset.org/abstracts/search?q=predictions" title=" predictions"> predictions</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20bubbles" title=" financial bubbles"> financial bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=multidimensional" title=" multidimensional"> multidimensional</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a> </p> <a href="https://publications.waset.org/abstracts/19511/forecast-financial-bubbles-multidimensional-phenomenon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">577</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1390</span> Stimulus-Dependent Polyrhythms of Central Pattern Generator Hardware</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Le%20Zhao">Le Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Alain%20Nogaret"> Alain Nogaret</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have built universal Central Pattern Generator (CPG) hardware by interconnecting Hodgkin-Huxley neurons with reciprocally inhibitory synapses. We investigate the dynamics of neuron oscillations as a function of the time delay between current steps applied to individual neurons. We demonstrate stimulus dependent switching between spiking polyrhythms and map the phase portraits of the neuron oscillations to reveal the basins of attraction of the system. We experimentally study the dependence of the attraction basins on the network parameters: the neuron response time and the strength of inhibitory connections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20pattern%20generator" title="central pattern generator">central pattern generator</a>, <a href="https://publications.waset.org/abstracts/search?q=winnerless%20competition%20principle" title=" winnerless competition principle"> winnerless competition principle</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=synapses" title=" synapses"> synapses</a> </p> <a href="https://publications.waset.org/abstracts/5011/stimulus-dependent-polyrhythms-of-central-pattern-generator-hardware" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1389</span> Hybrid Hierarchical Clustering Approach for Community Detection in Social Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radhia%20Toujani">Radhia Toujani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalel%20Akaichi"> Jalel Akaichi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Social Networks generally present a hierarchy of communities. To determine these communities and the relationship between them, detection algorithms should be applied. Most of the existing algorithms, proposed for hierarchical communities identification, are based on either agglomerative clustering or divisive clustering. In this paper, we present a hybrid hierarchical clustering approach for community detection based on both bottom-up and bottom-down clustering. Obviously, our approach provides more relevant community structure than hierarchical method which considers only divisive or agglomerative clustering to identify communities. Moreover, we performed some comparative experiments to enhance the quality of the clustering results and to show the effectiveness of our algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agglomerative%20hierarchical%20clustering" title="agglomerative hierarchical clustering">agglomerative hierarchical clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20structure" title=" community structure"> community structure</a>, <a href="https://publications.waset.org/abstracts/search?q=divisive%20hierarchical%20clustering" title=" divisive hierarchical clustering"> divisive hierarchical clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20hierarchical%20clustering" title=" hybrid hierarchical clustering"> hybrid hierarchical clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=opinion%20mining" title=" opinion mining"> opinion mining</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20network" title=" social network"> social network</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20network%20analysis" title=" social network analysis"> social network analysis</a> </p> <a href="https://publications.waset.org/abstracts/63702/hybrid-hierarchical-clustering-approach-for-community-detection-in-social-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multidimensional%20hierarchical%20graph%20neuron&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multidimensional%20hierarchical%20graph%20neuron&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multidimensional%20hierarchical%20graph%20neuron&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multidimensional%20hierarchical%20graph%20neuron&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multidimensional%20hierarchical%20graph%20neuron&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multidimensional%20hierarchical%20graph%20neuron&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multidimensional%20hierarchical%20graph%20neuron&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multidimensional%20hierarchical%20graph%20neuron&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multidimensional%20hierarchical%20graph%20neuron&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multidimensional%20hierarchical%20graph%20neuron&amp;page=47">47</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multidimensional%20hierarchical%20graph%20neuron&amp;page=48">48</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multidimensional%20hierarchical%20graph%20neuron&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10