CINXE.COM

Search results for: benchmark soil

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: benchmark soil</title> <meta name="description" content="Search results for: benchmark soil"> <meta name="keywords" content="benchmark soil"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="benchmark soil" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="benchmark soil"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3411</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: benchmark soil</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3411</span> Large Language Model Powered Chatbots Need End-to-End Benchmarks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debarag%20Banerjee">Debarag Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Singh"> Pooja Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Arjun%20Avadhanam"> Arjun Avadhanam</a>, <a href="https://publications.waset.org/abstracts/search?q=Saksham%20Srivastava"> Saksham Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous conversational agents, i.e., chatbots, are becoming an increasingly common mechanism for enterprises to provide support to customers and partners. In order to rate chatbots, especially ones powered by Generative AI tools like Large Language Models (LLMs), we need to be able to accurately assess their performance. This is where chatbot benchmarking becomes important. In this paper, authors propose the use of a benchmark that they call the E2E (End to End) benchmark and show how the E2E benchmark can be used to evaluate the accuracy and usefulness of the answers provided by chatbots, especially ones powered by LLMs. The authors evaluate an example chatbot at different levels of sophistication based on both our E2E benchmark as well as other available metrics commonly used in the state of the art and observe that the proposed benchmark shows better results compared to others. In addition, while some metrics proved to be unpredictable, the metric associated with the E2E benchmark, which uses cosine similarity, performed well in evaluating chatbots. The performance of our best models shows that there are several benefits of using the cosine similarity score as a metric in the E2E benchmark. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chatbot%20benchmarking" title="chatbot benchmarking">chatbot benchmarking</a>, <a href="https://publications.waset.org/abstracts/search?q=end-to-end%20%28E2E%29%20benchmarking" title=" end-to-end (E2E) benchmarking"> end-to-end (E2E) benchmarking</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20language%20model" title=" large language model"> large language model</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20centric%20evaluation." title=" user centric evaluation."> user centric evaluation.</a> </p> <a href="https://publications.waset.org/abstracts/175727/large-language-model-powered-chatbots-need-end-to-end-benchmarks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3410</span> Stabilization of Clay Soil Using A-3 Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Mustapha%20Alhaji">Mohammed Mustapha Alhaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadiku%20Salawu"> Sadiku Salawu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A clay soil which classified under A-7-6 soil according to AASHTO soil classification system and CH according to the unified soil classification system was stabilized using A-3 soil (AASHTO soil classification system). The clay soil was replaced with 0%, 10%, 20% to 100% A-3 soil, compacted at both the BSL and BSH compaction energy level and using unconfined compressive strength as evaluation criteria. The MDD of the compactions at both the BSL and BSH compaction energy levels showed increase in MDD from 0% A-3 soil replacement to 40% A-3 soil replacement after which the values reduced to 100% A-3 soil replacement. The trend of the OMC with varied A-3 soil replacement is similar to that of MDD but in a reversed order. The OMC reduced from 0% A-3 soil replacement to 40% A-3 soil replacement after which the values increased to 100% A-3 soil replacement. This trend was attributed to the observed reduction in the void ratio from 0% A-3 soil replacement to 40% A-3 soil replacement after which the void ratio increased to 100% A-3 soil replacement. The maximum UCS for clay at varied A-3 soil replacement increased from 272 and 770kN/m2 for BSL and BSH compaction energy level at 0% A-3 soil replacement to 295 and 795kN/m2 for BSL and BSH compaction energy level respectively at 10% A-3 soil replacement after which the values reduced to 22 and 60kN/m2 for BSL and BSH compaction energy level respectively at 70% A-3 soil replacement. Beyond 70% A-3 soil replacement, the mixture cannot be moulded for UCS test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A-3%20soil" title="A-3 soil">A-3 soil</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20minerals" title=" clay minerals"> clay minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolanic%20action" title=" pozzolanic action"> pozzolanic action</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a> </p> <a href="https://publications.waset.org/abstracts/33993/stabilization-of-clay-soil-using-a-3-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3409</span> Seismic Performance of Isolated Bridge Configurations with Soil Structure Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davide%20Forcellini">Davide Forcellini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most recent development of earthquake engineering is based on concept of design consisting in prescribed performance rather than the more traditional prescriptive approaches. The paper aims to assess the effects of isolation devices and soil structure interaction on a benchmark bridge adopting a Performance-Based Earthquake Engineering methodology. Several isolated configurations of abutments and pier connections are compared performing the most representative isolation devices. Isolation systems suitability depends on many factors, mainly connected with ground effects. In this regard, the second purpose of this paper is to assess the effects of soil-structure interaction (SSI) on the studied bridge configurations. Contributions of isolation technique and soil structure interaction are assessed evaluating the resistance effects applied to Peak Ground Acceleration (PGA) levels in terms of cost and time repair quantities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20isolation" title="base isolation">base isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge" title=" bridge"> bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20engineering" title=" earthquake engineering"> earthquake engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20linearity" title=" non linearity"> non linearity</a>, <a href="https://publications.waset.org/abstracts/search?q=PBEE%20methodology" title=" PBEE methodology"> PBEE methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20assessment" title=" seismic assessment"> seismic assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20structure%20interaction" title=" soil structure interaction "> soil structure interaction </a> </p> <a href="https://publications.waset.org/abstracts/4909/seismic-performance-of-isolated-bridge-configurations-with-soil-structure-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3408</span> Effects of Organic Amendments on Primary Nutrients (N, P and K) in a Sandy Soil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nejib%20Turki">Nejib Turki</a>, <a href="https://publications.waset.org/abstracts/search?q=Karima%20Kouki%20Khalfallah"> Karima Kouki Khalfallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of six treatments of organic amendments were evaluated on a sandy soil in the region of Soukra in Tunisia. T1: cattle manure 55 t.ha-1, T2: commercial compost from Germany to 1 t.ha-1, T3: a mixture of 27.5 t.ha-1 of T1 with 0.5 t. ha-1 of T2, T4: commercial compost from France 2 t.ha-1, T5: a Tunisian commercial compost to 10 t.ha-1 and T0: control without treatment. The nitrogen in the soil increase to 0.029 g.kg-1 of soil treatment for the T1 and 0.021 g. kg-1 of soil treatment for the T3. The highest content of P2O5 has been registered by the T3 treatment that 0.44 g kg-1 soil with respect to the control (T0), which shows a content of 0.36 g.kg-1 soil. The soil was initially characterized by a potassium content of 0.8 g kg-1 soil, K2O exchangeable rate varied between 0.63 g.Kg-1 and 0.71 g.kg-1 soil respectively T2 and T1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20amendement" title=" organic amendement"> organic amendement</a>, <a href="https://publications.waset.org/abstracts/search?q=Ntot" title=" Ntot"> Ntot</a>, <a href="https://publications.waset.org/abstracts/search?q=P2O5" title=" P2O5"> P2O5</a>, <a href="https://publications.waset.org/abstracts/search?q=K2O" title=" K2O"> K2O</a> </p> <a href="https://publications.waset.org/abstracts/19419/effects-of-organic-amendments-on-primary-nutrients-n-p-and-k-in-a-sandy-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">633</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3407</span> A Review of Soil Stabilization Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Chegenizadeh">Amin Chegenizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Keramatikerman"> Mahdi Keramatikerman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil stabilization is a crucial issue that helps to remove of risks associated with the soil failure. As soil has applications in different industries such as construction, pavement and railways, the means of stabilizing soil are varied. This paper will focus on the techniques of stabilizing soils. It will do so by gathering useful information on the state of the art in the field of soil stabilization, investigating both traditional and advanced methods. To inquire into the current knowledge, the existing literature will be divided into categories addressing the different techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=review" title="review">review</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=techniques" title=" techniques"> techniques</a> </p> <a href="https://publications.waset.org/abstracts/36500/a-review-of-soil-stabilization-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3406</span> The Effect of Soil Treatment on Micro Metal Contents in Soil at UB Forest in Malang District, East Java, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adam%20Wiryawan">Adam Wiryawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The levels of micro metal elements in the soil are influenced by soil management. In this research, the influence of soil management on the content of micro metal elements in the soil in the UB forest was studied. The metals studied include Zn, Mn, Cu, Fe, Cd, and Pb. Soil samples were taken from five sampling points on soil in the UB forest, both soils tilled and untilled. Before analysis, soil samples were digested with HNO₃ solution, and metal levels in soil samples were measured using atomic absorption spectrometry (AAS). The results of the analysis of metal content in the soil at the UB forest show that tilled land has consistently lower levels of metals like Zn, Mn, Cu, and Fe compared to untilled land. Meanwhile, Pb and Cd metals were not detected in all soil samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20treatment" title="soil treatment">soil treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20content" title=" metal content"> metal content</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20soil" title=" forest soil"> forest soil</a>, <a href="https://publications.waset.org/abstracts/search?q=Malang%20District" title=" Malang District"> Malang District</a> </p> <a href="https://publications.waset.org/abstracts/194568/the-effect-of-soil-treatment-on-micro-metal-contents-in-soil-at-ub-forest-in-malang-district-east-java-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3405</span> Prediction of SOC Stock using ROTH-C Model and Mapping in Different Agroclimatic Zones of Tamil Nadu</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Rajeswari">R. Rajeswari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation was carried out to know the SOC stock and its change over time in benchmark soils of different agroclimatic zones of Tamil Nadu. Roth.C model was used to assess SOC stock under existing and alternate cropping pattern. Soil map prepared on 1:50,000 scale from Natural Resources Information System (NRIS) employed under satellite data (IRS-1C/1D-PAN sharpened LISS-III image) was used to estimate SOC stock in different agroclimatic zones of Tamil Nadu. Fifteen benchmark soils were selected in different agroclimatic zones of Tamil Nadu based on their land use and the areal extent to assess SOC level and its change overtime. This revealed that, between eleven years of period (1997 - 2007). SOC buildup was higher in soils under horticulture system, followed by soils under rice cultivation. Among different agroclimatic zones of Tamil Nadu hilly zone have the highest SOC stock, followed by north eastern, southern, western, cauvery delta, north western, and high rainfall zone. Although organic carbon content in the soils of North eastern, southern, western, North western, Cauvery delta were less than high rainfall zone, the SOC stock was high. SOC density was higher in high rainfall and hilly zone than other agroclimatic zones of Tamil Nadu. Among low rainfall regions of Tamil Nadu cauvery delta zone recorded higher SOC density. Roth.C model was used to assess SOC stock under existing and alternate cropping pattern in viz., Periyanaickenpalayam series (western zone), Peelamedu series (southern zone), Vallam series (north eastern zone), Vannappatti series (north western zone) and Padugai series (cauvery delta zone). Padugai series recorded higher TOC, BIO, and HUM, followed by Periyanaickenpalayam series, Peelamedu series, Vallam series, and Vannappatti series. Vannappatti and Padugai series develop high TOC, BIO, and HUM under existing cropping pattern. Periyanaickenpalayam, Peelamedu, and Vallam series develop high TOC, BIO, and HUM under alternate cropping pattern. Among five selected soil series, Periyanaickenpalayam, Peelamedu, and Padugai series recorded 0.75 per cent TOC during 2025 and 2018, 2100 and 2035, 2013 and 2014 under existing and alternate cropping pattern, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agro%20climatic%20zones" title="agro climatic zones">agro climatic zones</a>, <a href="https://publications.waset.org/abstracts/search?q=benchmark%20soil" title=" benchmark soil"> benchmark soil</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20organic%20carbon" title=" soil organic carbon"> soil organic carbon</a> </p> <a href="https://publications.waset.org/abstracts/164415/prediction-of-soc-stock-using-roth-c-model-and-mapping-in-different-agroclimatic-zones-of-tamil-nadu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3404</span> Impact of Different Tillage Practices on Soil Health Status: Carbon Storage and Pools, Soil Aggregation, and Nutrient Use</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Denis%20Constantin%20Topa">Denis Constantin Topa</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Gabriela%20Cara"> Irina Gabriela Cara</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerard%20Jitareanu"> Gerard Jitareanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tillage is a fundamental soil practice with different soil disturbance intensities and unique implications in soil organic carbon, soil structure, and nutrient dynamics. However, the implication of tillage practice on soil organic carbon and soil health is complex and specific to the context. it study evaluated soil health status based on soil carbon sequestration and pools, soil aggregation, and nutrient use under two different tillage practices: conventional and minimum tillage. The results of our study are consistent with the hypothesis that, over time, minimum tillage typically boosts soil health in the 0-10 cm soil layer. Compared to the conventional practice (19.36 t C ha-1) there was a significant accumulation of soil organic carbon (0-30 cm) in the minimum-tillage practice (23.21 t C ha-1). Below 10 cm depth, the soil organic carbon stocks are close to that of the conventional layer (0-30 cm). Soil aggregate stability was improved under conservative tillage, due to soil carbon improvement which facilitated a greater volume of mesopores and micropores. Total nitrogen (TN), available potassium (AK) and phosphorus (AP) content in 0-10 cm depth under minimum-tillage practice were 26%, 6% and 32%, greater respectively, compared to the conventional treatment. Overall, the TN, AP and AK values decreased with depth within the soil profiles as a consequence of soil practice and minimum disturbance. The data show that minimum tillage is a sustainable and effective management practice that maintain soil health with soil carbon increase and efficient nutrient use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=minimum%20tillage" title="minimum tillage">minimum tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20tillage" title=" conventional tillage"> conventional tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20organic%20carbon" title=" soil organic carbon"> soil organic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients" title=" nutrients"> nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20aggregation" title=" soil aggregation"> soil aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20health" title=" soil health"> soil health</a> </p> <a href="https://publications.waset.org/abstracts/194602/impact-of-different-tillage-practices-on-soil-health-status-carbon-storage-and-pools-soil-aggregation-and-nutrient-use" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3403</span> Seismic Performance of Benchmark Building Installed with Semi-Active Dampers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20Raut">B. R. Raut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The seismic performance of 20-storey benchmark building with semi-active dampers is investigated under various earthquake ground motions. The Semi-Active Variable Friction Dampers (SAVFD) and Magnetorheological Dampers (MR) are used in this study. A recently proposed predictive control algorithm is employed for SAVFD and a simple mechanical model based on a Bouc–Wen element with clipped optimal control algorithm is employed for MR damper. A parametric study is carried out to ascertain the optimum parameters of the semi-active controllers, which yields the minimum performance indices of controlled benchmark building. The effectiveness of dampers is studied in terms of the reduction in structural responses and performance criteria. To minimize the cost of the dampers, the optimal location of the damper, rather than providing the dampers at all floors, is also investigated. The semi-active dampers installed in benchmark building effectively reduces the earthquake-induced responses. Lesser number of dampers at appropriate locations also provides comparable response of benchmark building, thereby reducing cost of dampers significantly. The effectiveness of two semi-active devices in mitigating seismic responses is cross compared. Among two semi-active devices majority of the performance criteria of MR dampers are lower than SAVFD installed with benchmark building. Thus the performance of the MR dampers is far better than SAVFD in reducing displacement, drift, acceleration and base shear of mid to high-rise building against seismic forces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benchmark%20building" title="benchmark building">benchmark building</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20strategy" title=" control strategy"> control strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=input%20excitation" title=" input excitation"> input excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=MR%20dampers" title=" MR dampers"> MR dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20response" title=" peak response"> peak response</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-active%20variable%20friction%20dampers" title=" semi-active variable friction dampers"> semi-active variable friction dampers</a> </p> <a href="https://publications.waset.org/abstracts/75132/seismic-performance-of-benchmark-building-installed-with-semi-active-dampers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3402</span> Effects of an Added Foaming Agent on Hydro-Mechanical Properties of Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moez%20Selmi">Moez Selmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariem%20Kacem"> Mariem Kacem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrez%20Jamei"> Mehrez Jamei</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Dubujet"> Philippe Dubujet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earth pressure balance (EPB) tunnel boring machines are designed for digging in different types of soil, especially clay soils. This operation requires the treatment of soil by lubricants to facilitate the procedure of excavation. A possible use of this soil is limited by the effect of treatment on the hydro-mechanical properties of the soil. This work aims to study the effect of a foaming agent on the hydro-mechanical properties of clay soil. The injection of the foam agent in the soil leads to create a soil matrix in which they are incorporated gas bubbles. The state of the foam in the soil is scalable thanks to the degradation of the gas bubbles in the soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EPB" title="EPB">EPB</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20soils" title=" clay soils"> clay soils</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20agent" title=" foam agent"> foam agent</a>, <a href="https://publications.waset.org/abstracts/search?q=hydro-mechanical%20properties" title=" hydro-mechanical properties"> hydro-mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a> </p> <a href="https://publications.waset.org/abstracts/50150/effects-of-an-added-foaming-agent-on-hydro-mechanical-properties-of-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3401</span> Influence of Antecedent Soil Moisture on Soil Erosion: A Two-Year Field Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Da%20Chen">Yu-Da Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Chun%20Wu"> Chia-Chun Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relationship between antecedent soil moisture content and soil erosion is a complicated phenomenon. Some studies confirm the effect of antecedent soil moisture content on soil erosion, but some deny it. Therefore, the objective of this study is to clarify such contradictions through field experiments. This study conducted two-year field observations of soil losses from natural rainfall events on runoff plots with a length of 10 meters, width of 3 meters, and uniform slope of 9%. Volumetric soil moisture sensors were used to log the soil moisture changes for each rainfall event. A total of 49 effective events were monitored. Results of this study show that antecedent soil moisture content promotes the generation of surface runoff, especially for rainfall events with short duration or lower magnitudes. A positive correlation was found between antecedent soil moisture content and soil loss per unit Rainfall-Runoff Erosivity Index, which indicated that soil with high moisture content is more susceptible to detachment. Once the rainfall duration exceeds 10 hours, the impact from the rainfall duration to soil erosion overwrites, and the effect of antecedent soil moisture is almost negligible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antecedent%20soil%20moisture%20content" title="antecedent soil moisture content">antecedent soil moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20loss" title=" soil loss"> soil loss</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff%20coefficient" title=" runoff coefficient"> runoff coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall-runoff%20erosivity" title=" rainfall-runoff erosivity"> rainfall-runoff erosivity</a> </p> <a href="https://publications.waset.org/abstracts/181070/influence-of-antecedent-soil-moisture-on-soil-erosion-a-two-year-field-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3400</span> Mechanical Properties of a Soil Stabilized With a Portland Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Emad%20Ahmed">Ahmed Emad Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20El%20Abd"> Mostafa El Abd</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Wakeb"> Ahmed Wakeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Moahmmed%20Eissa"> Moahmmed Eissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil modification and reinforcing aims to increase soil shear strength and stiffness. In this report, different amounts of cement were added to the soil to explore its effect on shear strength and penetration using 3 tests. The first test is proctor compaction test which was conducted to determine the optimal moisture content and maximum dry density. The second test was direct shear test which was conducted to measure shear strength of soil. The third experiment was California bearing ratio test which was done to measure the penetration in soil. Each test was done different amount of times using different amounts of cement. The results from every test show that cement improve soil shear strength properties and stiffness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilized" title="soil stabilized">soil stabilized</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties%20of%20soil" title=" mechanical properties of soil"> mechanical properties of soil</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilized%20with%20a%20portland%20cement" title=" soil stabilized with a portland cement"> soil stabilized with a portland cement</a> </p> <a href="https://publications.waset.org/abstracts/156917/mechanical-properties-of-a-soil-stabilized-with-a-portland-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3399</span> Soil Respiration Rate of Laurel-Leaved and Cryptomeria japonica Forests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayuko%20Itsuki">Ayuko Itsuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachiyo%20Aburatani"> Sachiyo Aburatani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We assessed the ecology of the organic and mineral soil layers of laurel-leaved (BB-1) and Cryptomeria japonica (BB-2 and Pw) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The soil respiration rate was higher in the deeper horizons (F and H) of organic layers than in those of mineral soil layers, suggesting organic layers may be where active microbial metabolism occurs. Respiration rates in the soil of BB-1, BB-2 and Pw forests were closely similar at 5 and 10°C. However, the soil respiration rate increased in proportion to temperatures of 15°C or above. We therefore consider the activity of soil microorganisms to markedly decrease at temperatures below 10°C. At a temperature of 15°C or above, the soil respiration rate in the BB-1 organic layers was higher than in those of the BB-2 and Pw organic layers, due to differences in forest vegetation that appeared to influence several salient soil properties, particularly pH and the carbon (C) and nitrogen (N) content of the F and H horizons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest%20soil" title="forest soil">forest soil</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralization%20rate" title=" mineralization rate"> mineralization rate</a>, <a href="https://publications.waset.org/abstracts/search?q=heterotroph" title=" heterotroph"> heterotroph</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20respiration%20rate" title=" soil respiration rate"> soil respiration rate</a> </p> <a href="https://publications.waset.org/abstracts/10278/soil-respiration-rate-of-laurel-leaved-and-cryptomeria-japonica-forests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3398</span> Response of Six Organic Soil Media on the Germination, Seedling Vigor Performance of Jack Fruit Seeds in Chitwan Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Birendra%20Kumar%20Bhattachan">Birendra Kumar Bhattachan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic soil media plays an important role for seed germination, growing, and producing organic jack fruits as the source of food such as vitamin A, C, and others for human health. An experiment was conducted to find out the appropriate organic soil medias to induce germination and seedling vigor of jack fruit seeds at the farm of Agriculture and Forestry University (AFU) Chitwan Nepal during June 2022 to October 2022. The organic soil medias used as treatments were as 1. soil collected under the Molingia tree; 2. soil, FYM and RH (2:1;1); 3. soil, FYM (1:1); 4. sand, FYM and RH (2:1:1), 5, sand, soil, FYM and RH (1:1:1:1) and 6. sand, soil and RH (1:2:1) under Completely Randomized Design (CRD) with four replications. Significantly highest germination of 88% was induced by soil media, followed by media of soil and FYM (!:1) i.e. 63% and the media of soil, FYM and RH (2:1;1) and the least media was sand, soil, FYM and RH (1:1:1:) to induce germination of 28%. Significantly highest seedling length of 73 cm was produced by soil media followed by the media soil, sand, and RH (1:2:1), i.e. 72 cm and the media soil, sand, FYM, and RH (1:1:1:1) and the least media was soil, FYM and RH (2:1:1) to produce 62 cm seedling length, Similarly, significantly highest seedling vigor of 6257 was produced by soil media followed by the media soil and FYM (1:1) i.e. 4253 and the least was the media sand, soil, FYM and RH (1:1:1:1) to produce seedling vigor of1916. Based on this experiment, it was concluded that soil media collected under the Moringia tree could induce the highest germinating capacity of jack fruit seeds and then seedling vigor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jack%20fruit%20seed" title="jack fruit seed">jack fruit seed</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20media" title=" soil media"> soil media</a>, <a href="https://publications.waset.org/abstracts/search?q=farm%20yard%20manure" title=" farm yard manure"> farm yard manure</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20media" title=" sand media"> sand media</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a> </p> <a href="https://publications.waset.org/abstracts/144173/response-of-six-organic-soil-media-on-the-germination-seedling-vigor-performance-of-jack-fruit-seeds-in-chitwan-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3397</span> The Effect of Raindrop Kinetic Energy on Soil Erodibility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Moussouni">A. Moussouni</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Mouzai"> L. Mouzai</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouhadef"> M. Bouhadef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil erosion is a very complex phenomenon, resulting from detachment and transport of soil particles by erosion agents. The kinetic energy of raindrop is the energy available for detachment and transport by splashing rain. The soil erodibility is defined as the ability of soil to resist to erosion. For this purpose, an experimental study was conducted in the laboratory using rainfall simulator to study the effect of the kinetic energy of rain (Ec) on the soil erodibility (K). The soil used was a sandy agricultural soil of 62.08% coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and 7.21% clay. The obtained results show that the kinetic energy of raindrops evolves as a power law with soil erodibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosion" title="erosion">erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=raindrop%20kinetic%20energy" title=" raindrop kinetic energy"> raindrop kinetic energy</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erodibility" title=" soil erodibility"> soil erodibility</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20intensity" title=" rainfall intensity"> rainfall intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=raindrop%20fall%20velocity" title=" raindrop fall velocity"> raindrop fall velocity</a> </p> <a href="https://publications.waset.org/abstracts/19685/the-effect-of-raindrop-kinetic-energy-on-soil-erodibility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3396</span> A Coupled Extended-Finite-Discrete Element Method: On the Different Contact Schemes between Continua and Discontinua</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shervin%20Khazaeli">Shervin Khazaeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahab%20Haj-zamani"> Shahab Haj-zamani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, advanced geotechnical engineering problems related to soil movement, particle loss, and modeling of local failure (i.e. discontinua) as well as modeling the in-contact structures (i.e. continua) are of the great interest among researchers. The aim of this research is to meet the requirements with respect to the modeling of the above-mentioned two different domains simultaneously. To this end, a coupled numerical method is introduced based on Discrete Element Method (DEM) and eXtended-Finite Element Method (X-FEM). In the coupled procedure, DEM is employed to capture the interactions and relative movements of soil particles as discontinua, while X-FEM is utilized to model in-contact structures as continua, which may consist of different types of discontinuities. For verification purposes, the new coupled approach is utilized to examine benchmark problems including different contacts between/within continua and discontinua. Results are validated by comparison with those of existing analytical and numerical solutions. This study proves that extended-finite-discrete element method can be used to robustly analyze not only contact problems, but also other types of discontinuities in continua such as (i) crack formations and propagations, (ii) voids and bimaterial interfaces, and (iii) combination of previous cases. In essence, the proposed method can be used vastly in advanced soil-structure interaction problems to investigate the micro and macro behaviour of the surrounding soil and the response of the embedded structure that contains discontinuities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20problems" title="contact problems">contact problems</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=extended-finite%20element%20method" title=" extended-finite element method"> extended-finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a> </p> <a href="https://publications.waset.org/abstracts/36267/a-coupled-extended-finite-discrete-element-method-on-the-different-contact-schemes-between-continua-and-discontinua" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3395</span> Soil Mass Loss Reduction during Rainfalls by Reinforcing the Slopes with the Surficial Confinement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramli%20Nazir">Ramli Nazir</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Moayedi"> Hossein Moayedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil confinement systems serve as effective solutions to any erosion control project. Various confinements systems, namely triangular, circular and rectangular with the size of 50, 100, and 150 mm, and with a depth of 10 mm, were embedded in soil samples at slope angle of 60&deg;. The observed soil mass losses for the confined soil systems were much smaller than those from unconfined system. As a result, the size of confinement and rainfall intensity have a direct effect on the soil mass loss. The triangular and rectangular confinement systems showed the lowest and highest soil loss masses, respectively. The slopes also failed much faster in the unconfined system than in the confined slope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosion%20control" title="erosion control">erosion control</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20confinement" title=" soil confinement"> soil confinement</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a> </p> <a href="https://publications.waset.org/abstracts/6822/soil-mass-loss-reduction-during-rainfalls-by-reinforcing-the-slopes-with-the-surficial-confinement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">842</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3394</span> An Engineering Review of Grouting in Soil Improvement Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Kazem%20Zamani">Mohamad Kazem Zamani</a>, <a href="https://publications.waset.org/abstracts/search?q=Meldi%20Suhatril"> Meldi Suhatril</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil improvement is one of the main concerns of each civil engineer who is working at soil mechanics and geotechnics. Grouting has been used as a powerful treatment for soil improving. In this paper, we have tried to review the grouting application base on grouts which is used and also we have tried to give a general view of grout applications and where and when can be used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cementious%20grouting" title="cementious grouting">cementious grouting</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20grouting" title=" chemical grouting"> chemical grouting</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20improvement" title=" soil improvement"> soil improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering" title=" civil engineering"> civil engineering</a> </p> <a href="https://publications.waset.org/abstracts/11900/an-engineering-review-of-grouting-in-soil-improvement-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3393</span> Improvement in Plasticity Index and Group Index of Black Cotton Soil Using Palm Kernel Shell Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patel%20Darshan%20Shaileshkumar">Patel Darshan Shaileshkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20Vanza"> M. G. Vanza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Black cotton soil is problematic soil for any construction work. Black cotton soil contains montmorillonite in its structure. Due to this mineral, black cotton soil will attain maximum swelling and shrinkage. Due to these volume changes, it is necessary to stabilize black cotton soil before the construction of the road. For soil stabilization use of pozzolanic waste is found to be a good solution by some researchers. The palm kernel shell ash (PKSA) is a pozzolanic material that can be used for soil stabilization. Basically, PKSA is a waste material, and it is available at a cheap cost. Palm kernel shell is a waste material generated in palm oil mills. Then palm kernel shell is used in industries instead of coal for power generation. After the burning of a palm kernel shell, ash is formed; the ash is called palm kernel shell ash (PKSA). The PKSA contains a free lime content that will react chemically with the silicate and aluminate of black cotton soil and forms a C-S-H and C-A-H gel which will bines soil particles together and reduce the plasticity of the soil. In this study, the PKSA is added to the soil. It was found that with the addition of PKSA content in the soil, the liquid limit of the soil is decreased, the plastic limit of the soil is increased, and the plasticity of the soil is decreased. The group index value of the soil is evaluated, and it was found that with the addition of PKSA GI value of the soil is decreased, which indicates the strength of the soil is improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20kernel%20shell%20ash" title="palm kernel shell ash">palm kernel shell ash</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20cotton%20soil" title=" black cotton soil"> black cotton soil</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20limit" title=" liquid limit"> liquid limit</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20index" title=" group index"> group index</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20limit" title=" plastic limit"> plastic limit</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20index" title=" plasticity index"> plasticity index</a> </p> <a href="https://publications.waset.org/abstracts/167203/improvement-in-plasticity-index-and-group-index-of-black-cotton-soil-using-palm-kernel-shell-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3392</span> Soil Salinity Mapping using Electromagnetic Induction Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fethi%20Bouksila">Fethi Bouksila</a>, <a href="https://publications.waset.org/abstracts/search?q=Nessrine%20Zemni"> Nessrine Zemni</a>, <a href="https://publications.waset.org/abstracts/search?q=Fairouz%20Slama"> Fairouz Slama</a>, <a href="https://publications.waset.org/abstracts/search?q=Magnus%20Persson"> Magnus Persson</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronny%20%20Berndasson"> Ronny Berndasson</a>, <a href="https://publications.waset.org/abstracts/search?q=Akissa%20Bahri"> Akissa Bahri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electromagnetic sensor EM 38 was used to predict and map soil salinity (ECe) in arid oasis. Despite the high spatial variation of soil moisture and shallow watertable, significant ECe-EM relationships were developed. The low drainage network efficiency is the main factor of soil salinization <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20salinity%20map" title="soil salinity map">soil salinity map</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20induction" title="electromagnetic induction">electromagnetic induction</a>, <a href="https://publications.waset.org/abstracts/search?q=EM38" title=" EM38"> EM38</a>, <a href="https://publications.waset.org/abstracts/search?q=oasis" title=" oasis"> oasis</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20watertable" title=" shallow watertable"> shallow watertable</a> </p> <a href="https://publications.waset.org/abstracts/146153/soil-salinity-mapping-using-electromagnetic-induction-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3391</span> Corellation between Soil Electrical Resistivity and Metal Corrosion Based on Soil Types for Structure Designs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20O.%20A.%20Oyinkanola">L. O. A. Oyinkanola</a>, <a href="https://publications.waset.org/abstracts/search?q=J.A.%20%20Fajemiroye"> J.A. Fajemiroye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil resistivity measurements are an important parameter employed in the designing earthing installations. Thus, The knowledge of soil resistivity with respect to how it varies with related parameters such as moisture content, Temperature and depth at the intended site is very vital to determine how the desired earth resistance value can be attained and sustained over the life of the installation with the lowest cost and effort. The relationship between corrosion and soil resistivity has been investigated in this work. Varios soil samples: Sand, Gravel, Loam, Clay and Silt were collected from different spot within the vicinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Corrosion" title="Corrosion">Corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity"> resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20conductivity" title=" hydraulic conductivity"> hydraulic conductivity</a> </p> <a href="https://publications.waset.org/abstracts/2366/corellation-between-soil-electrical-resistivity-and-metal-corrosion-based-on-soil-types-for-structure-designs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3390</span> Assessment of Soil Salinity through Remote Sensing Technique in the Coastal Region of Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Hossen">B. Hossen</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Helmut"> Y. Helmut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil salinity is a major problem for the coastal region of Bangladesh, which has been increasing for the last four decades. Determination of soil salinity is essential for proper land use planning for agricultural crop production. The aim of the research is to estimate and monitor the soil salinity in the study area. Remote sensing can be an effective tool for detecting soil salinity in data-scarce conditions. In the research, Landsat 8 is used, which required atmospheric and radiometric correction, and nine soil salinity indices are applied to develop a soil salinity map. Ground soil salinity data, i.e., EC value, is collected as a printed map which is then scanned and digitized to develop a point shapefile. Linear regression is made between satellite-based generated map and ground soil salinity data, i.e., EC value. The results show that maximum R² value is found for salinity index SI 7 = G*R/B representing 0.022. This minimal R² value refers that there is a negligible relationship between ground EC value and salinity index generated value. Hence, these indices are not appropriate to assess soil salinity though many studies used those soil salinity indices successfully. Therefore, further research is necessary to formulate a model for determining the soil salinity in the coastal of Bangladesh. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20salinity" title="soil salinity">soil salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=EC" title=" EC"> EC</a>, <a href="https://publications.waset.org/abstracts/search?q=Landsat%208" title=" Landsat 8"> Landsat 8</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity%20indices" title=" salinity indices"> salinity indices</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20regression" title=" linear regression"> linear regression</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing "> remote sensing </a> </p> <a href="https://publications.waset.org/abstracts/139666/assessment-of-soil-salinity-through-remote-sensing-technique-in-the-coastal-region-of-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3389</span> Matric Suction Effects on Behavior of Unsaturated Soil Slope</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Mousivand">Mohsen Mousivand</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesam%20Aminpour"> Hesam Aminpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil slopes are usually located above the groundwater level that are largely unsaturated. It is possible that unsaturated soil of slope has expanded or collapsed as a result of wetting by rain or other factor that this type of soil behavior can cause serious problems including human and financial damage. The main factor causing this difference in behavior of saturated and unsaturated state of soil is matric suction that is created by interface of the soil and water in the soil pores. So far theoretical studies show that matric suction has important effect on the mechanical behavior of soil although the impact of this factor on slope stability has not been studied. This paper presents a numerical study of effect of matric suction on slope stability. The results of the study indicate that safety factor and stability of soil slope increase due to an increasing of matric suction and in view of matric suction leads to more accurate results and safety factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slope" title="slope">slope</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20soil" title=" unsaturated soil"> unsaturated soil</a>, <a href="https://publications.waset.org/abstracts/search?q=matric%20suction" title=" matric suction"> matric suction</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/42790/matric-suction-effects-on-behavior-of-unsaturated-soil-slope" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3388</span> Development of an IoT System for Smart Crop Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oyenike%20M.%20Olanrewaju">Oyenike M. Olanrewaju</a>, <a href="https://publications.waset.org/abstracts/search?q=Faith%20O.%20Echobu"> Faith O. Echobu</a>, <a href="https://publications.waset.org/abstracts/search?q=Aderemi%20G.%20Adesoji"> Aderemi G. Adesoji</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmy%20Danny%20Ajik"> Emmy Danny Ajik</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Nda%20Ndabula"> Joseph Nda Ndabula</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Lucas"> Stephen Lucas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nutrients are required for any soil with which plants thrive to improve efficient growth and productivity. Amongst these nutrients required for proper plant productivity are nitrogen, phosphorus and potassium (NPK). Due to factors like leaching, nutrients uptake by plants, soil erosion and evaporation, these elements tend to be in low quantity and the need to replenish them arises. But these replenishment of soil nutrients cannot be done without a timely soil test to enable farmers to know the amount of each element in short quantity and evaluate the amount required to be added. Though wet soil analysis is good but it comes with a lot of challenges ranging from soil test gargets availability to the technical knowledge of how to conduct such soil test by the common farmer. Internet of things test kit was developed to fill in the gaps created by wet soil analysis, as it can test for N, P, K, soil temperature and soil moisture in a given soil at the time of test. In this implementation, sample test was carried out within 0.2 hectares of land divided into smaller plots. The kits perform adequately well as the range of values obtained across the segments were within a very close range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Internet%20of%20Things" title="Internet of Things">Internet of Things</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20nutrients" title=" soil nutrients"> soil nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20kit" title=" test kit"> test kit</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20temperature" title=" soil temperature"> soil temperature</a> </p> <a href="https://publications.waset.org/abstracts/174522/development-of-an-iot-system-for-smart-crop-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3387</span> Heavy Metal Reduction in Plant Using Soil Amendment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Chaiyaraksa">C. Chaiyaraksa</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Khamko"> T. Khamko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the influence of limestone and sepiolite on heavy metals accumulation in the soil and soybean. The soil was synthesized to contaminate with zinc 150 mg/kg, copper 100 mg/kg, and cadmium 1 mg/kg. The contaminated soil was mixed with limestone and sepiolite at the ratio of 1:0, 0:1, 1:1, and 2:1. The amount of soil modifier added to soil was 0.2%, 0.4%, and 0.8%. The metals determination was performed on soil both before and after soybean planting and in the root, shoot, and seed of soybean after harvesting. The study was also on metal translocate from root to seed and on bioaccumulation factor. Using of limestone and sepiolite resulted in a reduction of metals accumulated in soybean. For soil containing a high concentration of copper, cadmium, and zinc, a mixture of limestone and sepiolite (1:1) was recommended to mix with soil with the amount of 0.2%. Zinc could translocate from root to seed more than copper, and cadmium. From studying the movement of metals from soil to accumulate in soybean, the result was that soybean could absorb the highest amount of cadmium, followed by zinc, and copper, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=limestone" title=" limestone"> limestone</a>, <a href="https://publications.waset.org/abstracts/search?q=sepiolite" title=" sepiolite"> sepiolite</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a> </p> <a href="https://publications.waset.org/abstracts/106714/heavy-metal-reduction-in-plant-using-soil-amendment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3386</span> Applying Massively Parallel Sequencing to Forensic Soil Bacterial Profiling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hui%20Li">Hui Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xueying%20Zhao"> Xueying Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ke%20Ma"> Ke Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Cao"> Yu Cao</a>, <a href="https://publications.waset.org/abstracts/search?q=Fan%20Yang"> Fan Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingwen%20Xu"> Qingwen Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenbin%20Liu"> Wenbin Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil can often link a person or item to a crime scene, which makes it a valuable evidence in forensic casework. Several techniques have been utilized in forensic soil discrimination in previous studies. Because soil contains a vast number of microbiomes, the analyse of soil microbiomes is expected to be a potential way to characterise soil evidence. In this study, we applied massively parallel sequencing (MPS) to soil bacterial profiling on the Ion Torrent Personal Genome Machine (PGM). Soils from different regions were collected repeatedly. V-region 3 and 4 of Bacterial 16S rRNA gene were detected by MPS. Operational taxonomic units (OTU, 97%) were used to analyse soil bacteria. Several bioinformatics methods (PCoA, NMDS, Metastats, LEfse, and Heatmap) were applied in bacterial profiles. Our results demonstrate that MPS can provide a more detailed picture of the soil microbiomes and the composition of soil bacterial components from different region was individualistic. In conclusion, the utility of soil bacterial profiling via MPS of the 16S rRNA gene has potential value in characterising soil evidences and associating them with their place of origin, which can play an important role in forensic science in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20profiling" title="bacterial profiling">bacterial profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic" title=" forensic"> forensic</a>, <a href="https://publications.waset.org/abstracts/search?q=massively%20parallel%20sequencing" title=" massively parallel sequencing"> massively parallel sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20evidence" title=" soil evidence"> soil evidence</a> </p> <a href="https://publications.waset.org/abstracts/80561/applying-massively-parallel-sequencing-to-forensic-soil-bacterial-profiling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3385</span> The Effect of Soil Fractal Dimension on the Performance of Cement Stabilized Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nkiru%20I.%20Ibeakuzie">Nkiru I. Ibeakuzie</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20D.%20J.%20Watson"> Paul D. J. Watson</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20F.%20Pescatore"> John F. Pescatore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In roadway construction, the cost of soil-cement stabilization per unit area is significantly influenced by the binder content, hence the need to optimise cement usage. This research work will characterize the influence of soil fractal geometry on properties of cement-stabilized soil, and strive to determine a correlation between mechanical proprieties of cement-stabilized soil and the mass fractal dimension Dₘ indicated by particle size distribution (PSD) of aggregate mixtures. Since strength development in cemented soil relies not only on cement content but also on soil PSD, this study will investigate the possibility of reducing cement content by changing the PSD of soil, without compromising on strength, reduced permeability, and compressibility. A series of soil aggregate mixes will be prepared in the laboratory. The mass fractal dimension Dₘ of each mix will be determined from sieve analysis data prior to stabilization with cement. Stabilized soil samples will be tested for strength, permeability, and compressibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractal%20dimension" title="fractal dimension">fractal dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20stabilization" title=" cement stabilization"> cement stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20content" title=" cement content"> cement content</a> </p> <a href="https://publications.waset.org/abstracts/101303/the-effect-of-soil-fractal-dimension-on-the-performance-of-cement-stabilized-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3384</span> Soil Reinforcement by Fibers Using Triaxial Compression Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Negadi%20Kheira">Negadi Kheira</a>, <a href="https://publications.waset.org/abstracts/search?q=Arab%20Ahmed"> Arab Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Elbokl%20Mohamed"> Kamal Elbokl Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Setti%20Fatima"> Setti Fatima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to evaluate influences of roots on soil shear strength, monotonic drained and undrained triaxial laboratory tests were carried out on reconstituted specimens at various confining pressure (σc’=50, 100, 200, 300, 400 kPa) and a constant relative density (Dr = 50%). Reinforcement of soil by fibrous roots is crucial for preventing soil erosion and degradation. Therefore, we investigated soil reinforcement by roots of acacia planted in the area of Chlef where shallow landslides and slope instability are frequent. These roots were distributed in soil in two forms: vertically and horizontally. The monotonic test results showed that roots have more impacts on the soil shear strength than the friction angle, and the presence of roots in soil substantially increased the soil shear strength. Also, the results showed that the contribution of roots on the shear strength mobilized increases with increase in the confining pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=monotonic" title=" monotonic"> monotonic</a>, <a href="https://publications.waset.org/abstracts/search?q=triaxial%20test" title=" triaxial test"> triaxial test</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20fiber" title=" root fiber"> root fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=undrained" title=" undrained"> undrained</a> </p> <a href="https://publications.waset.org/abstracts/6925/soil-reinforcement-by-fibers-using-triaxial-compression-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3383</span> Experimental Simulation of Soil Boundary Condition for Dynamic Studies </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20S.%20Qaftan">Omar S. Qaftan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20T.%20Sabbagh"> T. T. Sabbagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the free-field response by adopting a flexible membrane container as soil boundary for experimental shaking table tests. The influence of the soil container boundary on the soil behaviour and the dynamic soil properties under seismic effect were examined. A flexible container with 1/50 scale factor was adopted in the experimental tests, including construction, instrumentation, and determination of the results of dynamic tests on a shaking table. Horizontal face displacements and accelerations were analysed to determine the influence of the container boundary on the performance of the soil. The outputs results show that the flexible boundary container allows more displacement and larger accelerations. The soil in a rigid wall container cannot deform as similar as the soil in the real field does. Therefore, the response of flexible container tested is believed to be more reliable for soil boundary than that in the rigid container. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a> </p> <a href="https://publications.waset.org/abstracts/74384/experimental-simulation-of-soil-boundary-condition-for-dynamic-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3382</span> Seismic Soil-Pile Interaction Considering Nonlinear Soil Column Behavior in Saturated and Dry Soil Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Moeini">Mohammad Moeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Ghyabi"> Mehrdad Ghyabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiarash%20Mohtasham%20Dolatshahi"> Kiarash Mohtasham Dolatshahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates seismic soil-pile interaction using the Beam on Nonlinear Winkler Foundation (BNWF) approach. Three soil types are considered to cover all the possible responses, as well as nonlinear site response analysis using finite element method in OpenSees platform. Excitations at each elevation that are output of the site response analysis are used as the input excitation to the soil pile system implementing multi-support excitation method. Spectral intensities of acceleration show that the extent of the response in sand is more severe than that of clay, in addition, increasing the PGA of ground strong motion will affect the sandy soil more, in comparison with clayey medium, which is an indicator of the sensitivity of soil-pile systems in sandy soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BNWF%20method" title="BNWF method">BNWF method</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-support%20excitation" title=" multi-support excitation"> multi-support excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20site%20response%20analysis" title=" nonlinear site response analysis"> nonlinear site response analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20soil-pile%20interaction" title=" seismic soil-pile interaction"> seismic soil-pile interaction</a> </p> <a href="https://publications.waset.org/abstracts/64350/seismic-soil-pile-interaction-considering-nonlinear-soil-column-behavior-in-saturated-and-dry-soil-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=benchmark%20soil&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=benchmark%20soil&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=benchmark%20soil&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=benchmark%20soil&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=benchmark%20soil&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=benchmark%20soil&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=benchmark%20soil&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=benchmark%20soil&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=benchmark%20soil&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=benchmark%20soil&amp;page=113">113</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=benchmark%20soil&amp;page=114">114</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=benchmark%20soil&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10