CINXE.COM

Ford–Fulkerson algorithm - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Ford–Fulkerson algorithm - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"8402ee14-7e0d-4774-8c3d-a285999b2c66","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Ford–Fulkerson_algorithm","wgTitle":"Ford–Fulkerson algorithm","wgCurRevisionId":1252560419,"wgRevisionId":1252560419,"wgArticleId":53777,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: multiple names: authors list","Use American English from April 2019","All Wikipedia articles written in American English","Articles with short description","Short description is different from Wikidata","Commons category link from Wikidata","Articles with example pseudocode","Articles with example Python (programming language) code","Network flow problem","Graph algorithms"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel" :"wikitext","wgRelevantPageName":"Ford–Fulkerson_algorithm","wgRelevantArticleId":53777,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Ford-Fulkerson_algorithm","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgInternalRedirectTargetUrl":"/wiki/Ford%E2%80%93Fulkerson_algorithm","wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false, "wgWikibaseItemId":"Q284695","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","ext.pygments":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","ext.pygments.view","ext.scribunto.logs","site", "mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.pygments%2CwikimediaBadges%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Ford–Fulkerson algorithm - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Ford%E2%80%93Fulkerson_algorithm&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Ford–Fulkerson_algorithm rootpage-Ford–Fulkerson_algorithm skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Ford%E2%80%93Fulkerson+algorithm" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Ford%E2%80%93Fulkerson+algorithm" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Ford%E2%80%93Fulkerson+algorithm" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Ford%E2%80%93Fulkerson+algorithm" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Algorithm" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Algorithm"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Algorithm</span> </div> </a> <ul id="toc-Algorithm-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Complexity" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Complexity"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Complexity</span> </div> </a> <ul id="toc-Complexity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integer_flow_example" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Integer_flow_example"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Integer flow example</span> </div> </a> <ul id="toc-Integer_flow_example-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Non-terminating_example" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Non-terminating_example"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Non-terminating example</span> </div> </a> <ul id="toc-Non-terminating_example-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Python_implementation_of_the_Edmonds–Karp_algorithm" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Python_implementation_of_the_Edmonds–Karp_algorithm"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Python implementation of the Edmonds–Karp algorithm</span> </div> </a> <ul id="toc-Python_implementation_of_the_Edmonds–Karp_algorithm-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Ford–Fulkerson algorithm</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 19 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-19" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">19 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Algorisme_de_Ford-Fulkerson" title="Algorisme de Ford-Fulkerson – Catalan" lang="ca" hreflang="ca" data-title="Algorisme de Ford-Fulkerson" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Ford%C5%AFv%E2%80%93Fulkerson%C5%AFv_algoritmus" title="Fordův–Fulkersonův algoritmus – Czech" lang="cs" hreflang="cs" data-title="Fordův–Fulkersonův algoritmus" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Algorithmus_von_Ford_und_Fulkerson" title="Algorithmus von Ford und Fulkerson – German" lang="de" hreflang="de" data-title="Algorithmus von Ford und Fulkerson" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Algoritmo_de_Ford-Fulkerson" title="Algoritmo de Ford-Fulkerson – Spanish" lang="es" hreflang="es" data-title="Algoritmo de Ford-Fulkerson" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%D9%84%DA%AF%D9%88%D8%B1%DB%8C%D8%AA%D9%85_%D9%81%D9%88%D8%B1%D8%AF%E2%80%93%D9%81%D8%A7%D9%84%DA%A9%D8%B1%D8%B3%D9%88%D9%86" title="الگوریتم فورد–فالکرسون – Persian" lang="fa" hreflang="fa" data-title="الگوریتم فورد–فالکرسون" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Algorithme_de_Ford-Fulkerson" title="Algorithme de Ford-Fulkerson – French" lang="fr" hreflang="fr" data-title="Algorithme de Ford-Fulkerson" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%96%D5%B8%D6%80%D5%A4-%D6%86%D5%A1%D5%AC%D5%AF%D5%A5%D6%80%D5%BD%D5%B8%D5%B6%D5%AB_%D5%A1%D5%AC%D5%A3%D5%B8%D6%80%D5%AB%D5%A9%D5%B4" title="Ֆորդ-ֆալկերսոնի ալգորիթմ – Armenian" lang="hy" hreflang="hy" data-title="Ֆորդ-ֆալկերսոնի ալգորիթմ" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Algoritmo_di_Ford-Fulkerson" title="Algoritmo di Ford-Fulkerson – Italian" lang="it" hreflang="it" data-title="Algoritmo di Ford-Fulkerson" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A9%D7%99%D7%98%D7%AA_%D7%A4%D7%95%D7%A8%D7%93-%D7%A4%D7%9C%D7%A7%D7%A8%D7%A1%D7%95%D7%9F" title="שיטת פורד-פלקרסון – Hebrew" lang="he" hreflang="he" data-title="שיטת פורד-פלקרסון" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A9%E3%83%BC%E3%83%89%E3%83%BB%E3%83%95%E3%82%A1%E3%83%AB%E3%82%AB%E3%83%BC%E3%82%BD%E3%83%B3%E3%81%AE%E3%82%A2%E3%83%AB%E3%82%B4%E3%83%AA%E3%82%BA%E3%83%A0" title="フォード・ファルカーソンのアルゴリズム – Japanese" lang="ja" hreflang="ja" data-title="フォード・ファルカーソンのアルゴリズム" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Metoda_Forda-Fulkersona" title="Metoda Forda-Fulkersona – Polish" lang="pl" hreflang="pl" data-title="Metoda Forda-Fulkersona" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Algoritmo_de_Ford-Fulkerson" title="Algoritmo de Ford-Fulkerson – Portuguese" lang="pt" hreflang="pt" data-title="Algoritmo de Ford-Fulkerson" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Algoritmul_Ford_Fulkerson" title="Algoritmul Ford Fulkerson – Romanian" lang="ro" hreflang="ro" data-title="Algoritmul Ford Fulkerson" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%A4%D0%BE%D1%80%D0%B4%D0%B0_%E2%80%94_%D0%A4%D0%B0%D0%BB%D0%BA%D0%B5%D1%80%D1%81%D0%BE%D0%BD%D0%B0" title="Алгоритм Форда — Фалкерсона – Russian" lang="ru" hreflang="ru" data-title="Алгоритм Форда — Фалкерсона" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A4%D0%BE%D1%80%D0%B4-%D0%A4%D1%83%D0%BB%D0%BA%D0%B5%D1%80%D1%81%D0%BE%D0%BD%D0%BE%D0%B2_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%B0%D0%BC" title="Форд-Фулкерсонов алгоритам – Serbian" lang="sr" hreflang="sr" data-title="Форд-Фулкерсонов алгоритам" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%82%E0%B8%B1%E0%B9%89%E0%B8%99%E0%B8%95%E0%B8%AD%E0%B8%99%E0%B8%A7%E0%B8%B4%E0%B8%98%E0%B8%B5%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B8%9F%E0%B8%AD%E0%B8%A3%E0%B9%8C%E0%B8%94-%E0%B9%80%E0%B8%9F%E0%B8%B4%E0%B8%A5%E0%B9%80%E0%B8%81%E0%B8%AD%E0%B8%A3%E0%B9%8C%E0%B8%AA%E0%B8%B1%E0%B8%99" title="ขั้นตอนวิธีของฟอร์ด-เฟิลเกอร์สัน – Thai" lang="th" hreflang="th" data-title="ขั้นตอนวิธีของฟอร์ด-เฟิลเกอร์สัน" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%A4%D0%BE%D1%80%D0%B4%D0%B0_%E2%80%94_%D0%A4%D0%B0%D0%BB%D0%BA%D0%B5%D1%80%D1%81%D0%BE%D0%BD%D0%B0" title="Алгоритм Форда — Фалкерсона – Ukrainian" lang="uk" hreflang="uk" data-title="Алгоритм Форда — Фалкерсона" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Thu%E1%BA%ADt_to%C3%A1n_Ford%E2%80%93Fulkerson" title="Thuật toán Ford–Fulkerson – Vietnamese" lang="vi" hreflang="vi" data-title="Thuật toán Ford–Fulkerson" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%A6%8F%E7%89%B9-%E5%AF%8C%E5%B0%94%E5%85%8B%E6%A3%AE%E7%AE%97%E6%B3%95" title="福特-富尔克森算法 – Chinese" lang="zh" hreflang="zh" data-title="福特-富尔克森算法" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q284695#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ford%E2%80%93Fulkerson_algorithm" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Ford%E2%80%93Fulkerson_algorithm" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ford%E2%80%93Fulkerson_algorithm"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ford%E2%80%93Fulkerson_algorithm&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ford%E2%80%93Fulkerson_algorithm&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Ford%E2%80%93Fulkerson_algorithm"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ford%E2%80%93Fulkerson_algorithm&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ford%E2%80%93Fulkerson_algorithm&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Ford%E2%80%93Fulkerson_algorithm" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Ford%E2%80%93Fulkerson_algorithm" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Ford%E2%80%93Fulkerson_algorithm&amp;oldid=1252560419" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Ford%E2%80%93Fulkerson_algorithm&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Ford%E2%80%93Fulkerson_algorithm&amp;id=1252560419&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFord%25E2%2580%2593Fulkerson_algorithm"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFord%25E2%2580%2593Fulkerson_algorithm"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Ford%E2%80%93Fulkerson_algorithm&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Ford%E2%80%93Fulkerson_algorithm&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Ford-Fulkerson%27s_algorithm" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q284695" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Ford-Fulkerson_algorithm&amp;redirect=no" class="mw-redirect" title="Ford-Fulkerson algorithm">Ford-Fulkerson algorithm</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p class="mw-empty-elt"> </p> <div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Algorithm to compute the maximum flow in a network</div> <p>The <b>Ford–Fulkerson method</b> or <b>Ford–Fulkerson algorithm</b> (<b>FFA</b>) is a <a href="/wiki/Greedy_algorithm" title="Greedy algorithm">greedy algorithm</a> that computes the <a href="/wiki/Maximum_flow_problem" title="Maximum flow problem">maximum flow</a> in a <a href="/wiki/Flow_network" title="Flow network">flow network</a>. It is sometimes called a "method" instead of an "algorithm" as the approach to finding augmenting paths in a residual graph is not fully specified<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> or it is specified in several implementations with different running times.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> It was published in 1956 by <a href="/wiki/L._R._Ford_Jr." title="L. R. Ford Jr.">L. R. Ford Jr.</a> and <a href="/wiki/D._R._Fulkerson" title="D. R. Fulkerson">D. R. Fulkerson</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> The name "Ford&#8211;Fulkerson" is often also used for the <a href="/wiki/Edmonds%E2%80%93Karp_algorithm" title="Edmonds–Karp algorithm">Edmonds–Karp algorithm</a>, which is a fully defined implementation of the Ford&#8211;Fulkerson method. </p><p>The idea behind the algorithm is as follows: as long as there is a path from the source (start node) to the sink (end node), with available capacity on all edges in the path, we send flow along one of the paths. Then we find another path, and so on. A path with available capacity is called an <a href="/wiki/Augmenting_path" class="mw-redirect" title="Augmenting path">augmenting path</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Algorithm">Algorithm</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ford%E2%80%93Fulkerson_algorithm&amp;action=edit&amp;section=1" title="Edit section: Algorithm"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(V,E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>V</mi> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(V,E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dc43221ee885a10b87c89373b12b8c1110e7ca5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.233ex; height:2.843ex;" alt="{\displaystyle G(V,E)}"></span> be a graph, and for each edge from <span class="texhtml mvar" style="font-style:italic;">u</span> to <span class="texhtml mvar" style="font-style:italic;">v</span>, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c(u,v)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c(u,v)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3af127906713b7741d8b0562429672f686b449b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.307ex; height:2.843ex;" alt="{\displaystyle c(u,v)}"></span> be the capacity and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(u,v)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(u,v)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f6a108a1020838e47fa6d73a3b9e00d38197ebb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.579ex; height:2.843ex;" alt="{\displaystyle f(u,v)}"></span> be the flow. We want to find the maximum flow from the source <span class="texhtml mvar" style="font-style:italic;">s</span> to the sink <span class="texhtml mvar" style="font-style:italic;">t</span>. After every step in the algorithm the following is maintained: </p> <dl><dd><table class="wikitable"> <tbody><tr> <th style="background: #ececec; color: black; font-weight: bold; vertical-align: middle; text-align: left;" class="table-rh">Capacity constraints </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall (u,v)\in E:\ f(u,v)\leq c(u,v)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>E</mi> <mo>:</mo> <mtext>&#xA0;</mtext> <mi>f</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>c</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall (u,v)\in E:\ f(u,v)\leq c(u,v)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb5a967d919743a24112502057b700aff0608e30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.712ex; height:2.843ex;" alt="{\displaystyle \forall (u,v)\in E:\ f(u,v)\leq c(u,v)}"></span></td> <td>The flow along an edge cannot exceed its capacity. </td></tr> <tr> <th style="background: #ececec; color: black; font-weight: bold; vertical-align: middle; text-align: left;" class="table-rh">Skew symmetry </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall (u,v)\in E:\ f(u,v)=-f(v,u)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>E</mi> <mo>:</mo> <mtext>&#xA0;</mtext> <mi>f</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall (u,v)\in E:\ f(u,v)=-f(v,u)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/662bdc5a184075c960dab8a0eabf1ab3643ccc65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.792ex; height:2.843ex;" alt="{\displaystyle \forall (u,v)\in E:\ f(u,v)=-f(v,u)}"></span></td> <td>The net flow from <span class="texhtml mvar" style="font-style:italic;">u</span> to <span class="texhtml mvar" style="font-style:italic;">v</span> must be the opposite of the net flow from <span class="texhtml mvar" style="font-style:italic;">v</span> to <span class="texhtml mvar" style="font-style:italic;">u</span> (see example). </td></tr> <tr> <th style="background: #ececec; color: black; font-weight: bold; vertical-align: middle; text-align: left;" class="table-rh">Flow conservation </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall u\in V:u\neq s{\text{ and }}u\neq t\Rightarrow \sum _{w\in V}f(u,w)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>u</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>V</mi> <mo>:</mo> <mi>u</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mi>u</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>t</mi> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>V</mi> </mrow> </munder> <mi>f</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall u\in V:u\neq s{\text{ and }}u\neq t\Rightarrow \sum _{w\in V}f(u,w)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fecd1414781830a837c3ca6b6d5dbf3c4926c723" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -3.171ex; width:43.797ex; height:5.676ex;" aria-hidden="true" alt="{\displaystyle \forall u\in V:u\neq s{\text{ and }}u\neq t\Rightarrow \sum _{w\in V}f(u,w)=0}"></span></td> <td>The net flow to a node is zero, except for the source, which "produces" flow, and the sink, which "consumes" flow. </td></tr> <tr> <th style="background: #ececec; color: black; font-weight: bold; vertical-align: middle; text-align: left;" class="table-rh">Value(f) </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{(s,u)\in E}f(s,u)=\sum _{(v,t)\in E}f(v,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>s</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>E</mi> </mrow> </munder> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>v</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>E</mi> </mrow> </munder> <mi>f</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{(s,u)\in E}f(s,u)=\sum _{(v,t)\in E}f(v,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aebce0634aca90380812fa83a64bb08f202d3808" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:27.783ex; height:6.009ex;" alt="{\displaystyle \sum _{(s,u)\in E}f(s,u)=\sum _{(v,t)\in E}f(v,t)}"></span></td> <td>The flow leaving from <span class="texhtml mvar" style="font-style:italic;">s</span> must be equal to the flow arriving at <span class="texhtml mvar" style="font-style:italic;">t</span>. </td></tr> </tbody></table></dd></dl> <p>This means that the flow through the network is a <i>legal flow</i> after each round in the algorithm. We define the <b>residual network</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{f}(V,E_{f})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>V</mi> <mo>,</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{f}(V,E_{f})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a89fe286f1b6fc889c04dc4c45ecc7932afbd7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.445ex; height:3.009ex;" alt="{\displaystyle G_{f}(V,E_{f})}"></span> to be the network with capacity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{f}(u,v)=c(u,v)-f(u,v)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>c</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{f}(u,v)=c(u,v)-f(u,v)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2756fd42d49a52b35b33bfe377a74dcbdf1f4b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:26.269ex; height:3.009ex;" alt="{\displaystyle c_{f}(u,v)=c(u,v)-f(u,v)}"></span> and no flow. Notice that it can happen that a flow from <span class="texhtml mvar" style="font-style:italic;">v</span> to <span class="texhtml mvar" style="font-style:italic;">u</span> is allowed in the residual network, though disallowed in the original network: if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(u,v)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(u,v)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dae14fe5525cb06c97321588ea0cc15415f296f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.84ex; height:2.843ex;" alt="{\displaystyle f(u,v)&gt;0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c(v,u)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c(v,u)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6286187b3ce2a46e502166a53c7a4dd954af7ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.568ex; height:2.843ex;" alt="{\displaystyle c(v,u)=0}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{f}(v,u)=c(v,u)-f(v,u)=f(u,v)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>v</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>c</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{f}(v,u)=c(v,u)-f(v,u)=f(u,v)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f57f50a9829b1ad78a9db1a6e9ec7805233f16c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:40.208ex; height:3.009ex;" alt="{\displaystyle c_{f}(v,u)=c(v,u)-f(v,u)=f(u,v)&gt;0}"></span>. </p> <div style="border:1px solid #cccccc; background-color:#f8f8f8; padding:4px;"> <pre><b>Algorithm</b> Ford&#8211;Fulkerson </pre> <dl><dd><b>Inputs</b> Given a Network <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=(V,E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>V</mi> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=(V,E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/644a8d85ee410b6159ca2bdb5dcb9097e2c8f182" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.331ex; height:2.843ex;" alt="{\displaystyle G=(V,E)}"></span> with flow capacity <span class="texhtml mvar" style="font-style:italic;">c</span>, a source node <span class="texhtml mvar" style="font-style:italic;">s</span>, and a sink node <span class="texhtml mvar" style="font-style:italic;">t</span></dd> <dd><b>Output</b> Compute a flow <span class="texhtml mvar" style="font-style:italic;">f</span> from <span class="texhtml mvar" style="font-style:italic;">s</span> to <span class="texhtml mvar" style="font-style:italic;">t</span> of maximum value <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(u,v)\leftarrow 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2190;<!-- ← --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(u,v)\leftarrow 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/262ef8704f4a493f0680aba20a369ca393aa27c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.356ex; height:2.843ex;" alt="{\displaystyle f(u,v)\leftarrow 0}"></span> for all edges <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (u,v)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (u,v)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eadf12294edccd7a29c99cfc1765e4a14bf47e58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.301ex; height:2.843ex;" alt="{\displaystyle (u,v)}"></span></li> <li>While there is a path <span class="texhtml mvar" style="font-style:italic;">p</span> from <span class="texhtml mvar" style="font-style:italic;">s</span> to <span class="texhtml mvar" style="font-style:italic;">t</span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86fb9e8d359d1eacb9be564288c4f2f64ce44ab2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.963ex; height:2.843ex;" alt="{\displaystyle G_{f}}"></span>, such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{f}(u,v)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{f}(u,v)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f2b2b5b836c6b926cb86141c37fca514df744f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.705ex; height:3.009ex;" alt="{\displaystyle c_{f}(u,v)&gt;0}"></span> for all edges <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (u,v)\in p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (u,v)\in p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/563d7547df4819acf35977f8f1725d844f1bbb03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.311ex; height:2.843ex;" alt="{\displaystyle (u,v)\in p}"></span>: <ol><li>Find <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{f}(p)=\min\{c_{f}(u,v):(u,v)\in p\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">min</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>p</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{f}(p)=\min\{c_{f}(u,v):(u,v)\in p\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdd9b66b403535abbf81fb6cd8d81fabdc40755a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:33.112ex; height:3.009ex;" alt="{\displaystyle c_{f}(p)=\min\{c_{f}(u,v):(u,v)\in p\}}"></span></li> <li>For each edge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (u,v)\in p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (u,v)\in p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/563d7547df4819acf35977f8f1725d844f1bbb03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.311ex; height:2.843ex;" alt="{\displaystyle (u,v)\in p}"></span> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(u,v)\leftarrow f(u,v)+c_{f}(p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2190;<!-- ← --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(u,v)\leftarrow f(u,v)+c_{f}(p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98d6172924884035f3b4bc20429a8ffc5fbdabdd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.735ex; height:3.009ex;" alt="{\displaystyle f(u,v)\leftarrow f(u,v)+c_{f}(p)}"></span> (<i>Send flow along the path</i>)</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(v,u)\leftarrow f(v,u)-c_{f}(p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2190;<!-- ← --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(v,u)\leftarrow f(v,u)-c_{f}(p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a9c641db4288171dc25d3d014b1bd23a568fe77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.735ex; height:3.009ex;" alt="{\displaystyle f(v,u)\leftarrow f(v,u)-c_{f}(p)}"></span> (<i>The flow might be "returned" later</i>)</li></ol></li></ol></li></ol></dd></dl> <ul><li><small>"&#8592;" denotes <a href="/wiki/Assignment_(computer_science)" title="Assignment (computer science)">assignment</a>. For instance, "<i>largest</i> &#8592; <i>item</i>" means that the value of <i>largest</i> changes to the value of <i>item</i>.</small></li> <li><small>"<b>return</b>" terminates the algorithm and outputs the following value.</small></li></ul> </div> <p>The path in step 2 can be found with, for example, <a href="/wiki/Breadth-first_search" title="Breadth-first search">breadth-first search</a> (BFS) or <a href="/wiki/Depth-first_search" title="Depth-first search">depth-first search</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{f}(V,E_{f})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>V</mi> <mo>,</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{f}(V,E_{f})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a89fe286f1b6fc889c04dc4c45ecc7932afbd7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.445ex; height:3.009ex;" alt="{\displaystyle G_{f}(V,E_{f})}"></span>. The former is known as the <a href="/wiki/Edmonds%E2%80%93Karp_algorithm" title="Edmonds–Karp algorithm">Edmonds–Karp algorithm</a>. </p><p>When no more paths in step 2 can be found, <span class="texhtml mvar" style="font-style:italic;">s</span> will not be able to reach <span class="texhtml mvar" style="font-style:italic;">t</span> in the residual network. If <span class="texhtml mvar" style="font-style:italic;">S</span> is the set of nodes reachable by <span class="texhtml mvar" style="font-style:italic;">s</span> in the residual network, then the total capacity in the original network of edges from <span class="texhtml mvar" style="font-style:italic;">S</span> to the remainder of <span class="texhtml mvar" style="font-style:italic;">V</span> is on the one hand equal to the total flow we found from <span class="texhtml mvar" style="font-style:italic;">s</span> to <span class="texhtml mvar" style="font-style:italic;">t</span>, and on the other hand serves as an upper bound for all such flows. This proves that the flow we found is maximal. See also <a href="/wiki/Max-flow_min-cut_theorem" title="Max-flow min-cut theorem">Max-flow Min-cut theorem</a>. </p><p>If the graph <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(V,E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>V</mi> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(V,E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dc43221ee885a10b87c89373b12b8c1110e7ca5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.233ex; height:2.843ex;" alt="{\displaystyle G(V,E)}"></span> has multiple sources and sinks, we act as follows: Suppose that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=\{t\mid t{\text{ is a sink}}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>t</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;is a sink</mtext> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=\{t\mid t{\text{ is a sink}}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/668cadd29271f61cddecee43b37e916fd1655dfc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.227ex; height:2.843ex;" alt="{\displaystyle T=\{t\mid t{\text{ is a sink}}\}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=\{s\mid s{\text{ is a source}}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>s</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;is a source</mtext> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=\{s\mid s{\text{ is a source}}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d199670d5197cf3584580935c9ba5f6482d0669" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.856ex; height:2.843ex;" alt="{\displaystyle S=\{s\mid s{\text{ is a source}}\}}"></span>. Add a new source <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0dd30e91ecca56ddf4ee71bf82b506b3249a5f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.145ex; height:2.343ex;" alt="{\displaystyle s^{*}}"></span> with an edge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (s^{*},s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (s^{*},s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/711da7814f811d42bd9693e444ebae8a2519ec22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.078ex; height:2.843ex;" alt="{\displaystyle (s^{*},s)}"></span> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0dd30e91ecca56ddf4ee71bf82b506b3249a5f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.145ex; height:2.343ex;" alt="{\displaystyle s^{*}}"></span> to every node <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\in S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\in S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acce52dffd84d073a24f4606a175da60148fd0c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.43ex; height:2.176ex;" alt="{\displaystyle s\in S}"></span>, with capacity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c(s^{*},s)=d_{s}=\sum _{(s,u)\in E}c(s,u)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo stretchy="false">(</mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>s</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>E</mi> </mrow> </munder> <mi>c</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c(s^{*},s)=d_{s}=\sum _{(s,u)\in E}c(s,u)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/520e04ee7caf4f6c85ebbdc2b6f1322ecd38077f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:27.952ex; height:6.009ex;" alt="{\displaystyle c(s^{*},s)=d_{s}=\sum _{(s,u)\in E}c(s,u)}"></span>. And add a new sink <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25c73524c328c099fbfcff931451272a61e74fb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.894ex; height:2.343ex;" alt="{\displaystyle t^{*}}"></span> with an edge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (t,t^{*})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (t,t^{*})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f893470bca6f483ca73028a51f3b4a05b03431c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.577ex; height:2.843ex;" alt="{\displaystyle (t,t^{*})}"></span> from every node <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\in T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\in T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4fe93f70df3818ecca67c2ca44f087483951856" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.317ex; height:2.176ex;" alt="{\displaystyle t\in T}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25c73524c328c099fbfcff931451272a61e74fb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.894ex; height:2.343ex;" alt="{\displaystyle t^{*}}"></span>, with capacity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c(t,t^{*})=d_{t}=\sum _{(v,t)\in E}c(v,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>v</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>E</mi> </mrow> </munder> <mi>c</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c(t,t^{*})=d_{t}=\sum _{(v,t)\in E}c(v,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953d2b5079c51ea85d6d21a2b1805b0388e6f3d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:26.499ex; height:6.009ex;" alt="{\displaystyle c(t,t^{*})=d_{t}=\sum _{(v,t)\in E}c(v,t)}"></span>. Then apply the Ford&#8211;Fulkerson algorithm. </p><p><br /> Also, if a node <span class="texhtml mvar" style="font-style:italic;">u</span> has capacity constraint <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{u}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{u}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cb2bf0924f9a58e8a5631adddb46fc0a81e9eed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.381ex; height:2.509ex;" alt="{\displaystyle d_{u}}"></span>, we replace this node with two nodes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{\mathrm {in} },u_{\mathrm {out} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> </mrow> </mrow> </msub> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">u</mi> <mi mathvariant="normal">t</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{\mathrm {in} },u_{\mathrm {out} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63064345fe9de0653aeddb55235018ca0e93f71e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.905ex; height:2.009ex;" alt="{\displaystyle u_{\mathrm {in} },u_{\mathrm {out} }}"></span>, and an edge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (u_{\mathrm {in} },u_{\mathrm {out} })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> </mrow> </mrow> </msub> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">u</mi> <mi mathvariant="normal">t</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (u_{\mathrm {in} },u_{\mathrm {out} })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f920f5d79c5d4fa96635767efc25fc28c5d281ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.714ex; height:2.843ex;" alt="{\displaystyle (u_{\mathrm {in} },u_{\mathrm {out} })}"></span>, with capacity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c(u_{\mathrm {in} },u_{\mathrm {out} })=d_{u}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> </mrow> </mrow> </msub> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">u</mi> <mi mathvariant="normal">t</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c(u_{\mathrm {in} },u_{\mathrm {out} })=d_{u}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4aff4498f348913c0bab0be4091a592dab68daae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.201ex; height:2.843ex;" alt="{\displaystyle c(u_{\mathrm {in} },u_{\mathrm {out} })=d_{u}}"></span>. Then apply the Ford&#8211;Fulkerson algorithm. </p> <div class="mw-heading mw-heading2"><h2 id="Complexity">Complexity</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ford%E2%80%93Fulkerson_algorithm&amp;action=edit&amp;section=2" title="Edit section: Complexity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>By adding the flow augmenting path to the flow already established in the graph, the maximum flow will be reached when no more flow augmenting paths can be found in the graph. However, there is no certainty that this situation will ever be reached, so the best that can be guaranteed is that the answer will be correct if the algorithm terminates. In the case that the algorithm runs forever, the flow might not even converge towards the maximum flow. However, this situation only occurs with irrational flow values.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> When the capacities are integers, the runtime of Ford–Fulkerson is bounded by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(Ef)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(Ef)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef3238c36fab5ff345a902082c3c99e59b58a05a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.637ex; height:2.843ex;" alt="{\displaystyle O(Ef)}"></span> (see <a href="/wiki/Big_O_notation" title="Big O notation">big O notation</a>), where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> is the number of edges in the graph and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is the maximum flow in the graph. This is because each augmenting path can be found in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39127b19b3a94fbf43d7ccc39452a76040197203" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.358ex; height:2.843ex;" alt="{\displaystyle O(E)}"></span> time and increases the flow by an integer amount of at least <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>, with the upper bound <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>. </p><p>A variation of the Ford&#8211;Fulkerson algorithm with guaranteed termination and a runtime independent of the maximum flow value is the <a href="/wiki/Edmonds%E2%80%93Karp_algorithm" title="Edmonds–Karp algorithm">Edmonds–Karp algorithm</a>, which runs in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(VE^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>V</mi> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(VE^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11a040ec69aefbb3d561b989787d5baf5e9f22bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.218ex; height:3.176ex;" alt="{\displaystyle O(VE^{2})}"></span> time. </p> <div class="mw-heading mw-heading2"><h2 id="Integer_flow_example">Integer flow example</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ford%E2%80%93Fulkerson_algorithm&amp;action=edit&amp;section=3" title="Edit section: Integer flow example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following example shows the first steps of Ford–Fulkerson in a flow network with 4 nodes, source <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> and sink <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span>. This example shows the worst-case behaviour of the algorithm. In each step, only a flow of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> is sent across the network. If breadth-first-search were used instead, only two steps would be needed. </p> <table class="wikitable" cellpadding="10"> <tbody><tr style="text-align:center"> <th>Step </th> <th>Flow network </th></tr> <tr> <td>Initial flow network. </td> <td><span typeof="mw:File"><a href="/wiki/File:Ford-Fulkerson_example_0.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f1/Ford-Fulkerson_example_0.svg/300px-Ford-Fulkerson_example_0.svg.png" decoding="async" width="300" height="214" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f1/Ford-Fulkerson_example_0.svg/450px-Ford-Fulkerson_example_0.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f1/Ford-Fulkerson_example_0.svg/600px-Ford-Fulkerson_example_0.svg.png 2x" data-file-width="700" data-file-height="500" /></a></span> </td></tr> <tr> <td>Flow is sent along the augmenting path <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B,C,D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo>,</mo> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B,C,D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/684d01c09b12e5a28987c6127567daef29ee3b44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.3ex; height:2.509ex;" alt="{\displaystyle A,B,C,D}"></span>. Here, the bottleneck is the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>–<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> edge, so only one unit of flow is possible. </td> <td><span typeof="mw:File"><a href="/wiki/File:Ford-Fulkerson_example_1.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/93/Ford-Fulkerson_example_1.svg/300px-Ford-Fulkerson_example_1.svg.png" decoding="async" width="300" height="214" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/93/Ford-Fulkerson_example_1.svg/450px-Ford-Fulkerson_example_1.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/93/Ford-Fulkerson_example_1.svg/600px-Ford-Fulkerson_example_1.svg.png 2x" data-file-width="700" data-file-height="500" /></a></span> </td></tr> <tr> <td>Here, one unit of flow is sent along the augmenting path <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,C,B,D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>C</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,C,B,D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a0aa3415a8834bd416a53db4d59e906c609a8f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.3ex; height:2.509ex;" alt="{\displaystyle A,C,B,D}"></span>. In this case, flow is "pushed back" from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>. The flow into <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> that originally came from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> now comes from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> is now free to send flow to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> directly. As a result, the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>–<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> edge is left with zero flow, but the overall flow increases by one. </td> <td><span typeof="mw:File"><a href="/wiki/File:Ford-Fulkerson_example_2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Ford-Fulkerson_example_2.svg/300px-Ford-Fulkerson_example_2.svg.png" decoding="async" width="300" height="214" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Ford-Fulkerson_example_2.svg/450px-Ford-Fulkerson_example_2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/13/Ford-Fulkerson_example_2.svg/600px-Ford-Fulkerson_example_2.svg.png 2x" data-file-width="700" data-file-height="500" /></a></span> </td></tr> <tr> <td colspan="2">1998 intermediate steps are omitted here. </td></tr> <tr> <td>The final flow network, with a total flow of 2000 units. </td> <td><span typeof="mw:File"><a href="/wiki/File:Ford-Fulkerson_example_final.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f2/Ford-Fulkerson_example_final.svg/300px-Ford-Fulkerson_example_final.svg.png" decoding="async" width="300" height="214" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f2/Ford-Fulkerson_example_final.svg/450px-Ford-Fulkerson_example_final.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f2/Ford-Fulkerson_example_final.svg/600px-Ford-Fulkerson_example_final.svg.png 2x" data-file-width="700" data-file-height="500" /></a></span> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Non-terminating_example">Non-terminating example</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ford%E2%80%93Fulkerson_algorithm&amp;action=edit&amp;section=4" title="Edit section: Non-terminating example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File"><a href="/wiki/File:Ford-Fulkerson_forever.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6e/Ford-Fulkerson_forever.svg/355px-Ford-Fulkerson_forever.svg.png" decoding="async" width="355" height="248" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6e/Ford-Fulkerson_forever.svg/533px-Ford-Fulkerson_forever.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6e/Ford-Fulkerson_forever.svg/710px-Ford-Fulkerson_forever.svg.png 2x" data-file-width="355" data-file-height="248" /></a><figcaption></figcaption></figure> <p>Consider the flow network shown on the right, with source <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span>, sink <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>, capacities of edges <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{1}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{1}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0f4f5130a651995815633649bed89a37e0da7ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.399ex; height:2.509ex;" alt="{\displaystyle e_{1}=1}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{2}=r=({\sqrt {5}}-1)/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>r</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{2}=r=({\sqrt {5}}-1)/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75c8cbd0ce98b5f0ee313a3c605f20e115f163e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.619ex; height:3.009ex;" alt="{\displaystyle e_{2}=r=({\sqrt {5}}-1)/2}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{3}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{3}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fc8ced91cf11c0f9fdaf254f278e54945dd52e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.399ex; height:2.509ex;" alt="{\displaystyle e_{3}=1}"></span>, and the capacity of all other edges some integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M\geq 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M\geq 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b495c8eb91ff77dae41aec5ca3ce89596a2d6ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.703ex; height:2.343ex;" alt="{\displaystyle M\geq 2}"></span>. The constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> was chosen so, that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{2}=1-r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{2}=1-r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eefeb5c9481298475e475e4e260519bf833f4a09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.253ex; height:2.843ex;" alt="{\displaystyle r^{2}=1-r}"></span>. We use augmenting paths according to the following table, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1}=\{s,v_{4},v_{3},v_{2},v_{1},t\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>s</mi> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>t</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1}=\{s,v_{4},v_{3},v_{2},v_{1},t\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae7adbdd037841bc62ddf953e553d2f77319dffc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:23.564ex; height:2.843ex;" alt="{\displaystyle p_{1}=\{s,v_{4},v_{3},v_{2},v_{1},t\}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{2}=\{s,v_{2},v_{3},v_{4},t\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>s</mi> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>,</mo> <mi>t</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{2}=\{s,v_{2},v_{3},v_{4},t\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbd8a86b88232693ba5065919799e72436aff781" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:20.348ex; height:2.843ex;" alt="{\displaystyle p_{2}=\{s,v_{2},v_{3},v_{4},t\}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{3}=\{s,v_{1},v_{2},v_{3},t\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>s</mi> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <mi>t</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{3}=\{s,v_{1},v_{2},v_{3},t\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202cf00de09dbb7692cff6580933c170f1892cda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:20.348ex; height:2.843ex;" alt="{\displaystyle p_{3}=\{s,v_{1},v_{2},v_{3},t\}}"></span>. </p> <table class="wikitable" style="text-align: center"> <tbody><tr> <th rowspan="2">Step</th> <th rowspan="2">Augmenting path</th> <th rowspan="2">Sent flow</th> <th colspan="3">Residual capacities </th></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e81caf3d4bcb929315801cbabc83543829484ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.138ex; height:2.009ex;" alt="{\displaystyle e_{1}}"></span></th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4045b5c7cee9bd0681153bbb077489b13269355e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.138ex; height:2.009ex;" alt="{\displaystyle e_{2}}"></span></th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1686693c185b6df4a5f57f34f7b61c4a0e057ad9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.138ex; height:2.009ex;" alt="{\displaystyle e_{3}}"></span> </th></tr> <tr> <td>0</td> <td></td> <td></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{0}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{0}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/068fa43a67e293de6bf1fc3a89f830934035d01b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.364ex; height:2.676ex;" alt="{\displaystyle r^{0}=1}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> </td></tr> <tr> <td>1</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{s,v_{2},v_{3},t\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>s</mi> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <mi>t</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{s,v_{2},v_{3},t\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df5dd1332ff506087d1b69d969d9be5fdc8107f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.721ex; height:2.843ex;" alt="{\displaystyle \{s,v_{2},v_{3},t\}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b456e6a88a9714881602ce35624d277292c6f1bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.103ex; height:2.676ex;" alt="{\displaystyle r^{0}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9c8ee534e26670b08b992331c2097d3bb7c1b06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.103ex; height:2.676ex;" alt="{\displaystyle r^{1}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> </td></tr> <tr> <td>2</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9b58f22283ca46dd5da309cc34303b06a797783" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.313ex; height:2.009ex;" alt="{\displaystyle p_{1}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9c8ee534e26670b08b992331c2097d3bb7c1b06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.103ex; height:2.676ex;" alt="{\displaystyle r^{1}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{0}-r^{1}=r^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{0}-r^{1}=r^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b5da9469ef5196d47c11a215247481df4720e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.248ex; height:2.843ex;" alt="{\displaystyle r^{0}-r^{1}=r^{2}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9c8ee534e26670b08b992331c2097d3bb7c1b06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.103ex; height:2.676ex;" alt="{\displaystyle r^{1}}"></span> </td></tr> <tr> <td>3</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43f1b08d7d69712872e051c2b33fdfa9f5d42319" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.313ex; height:2.009ex;" alt="{\displaystyle p_{2}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9c8ee534e26670b08b992331c2097d3bb7c1b06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.103ex; height:2.676ex;" alt="{\displaystyle r^{1}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a363a15442d031416d1eb62254a9c726e3f6c66c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.103ex; height:2.676ex;" alt="{\displaystyle r^{2}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9c8ee534e26670b08b992331c2097d3bb7c1b06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.103ex; height:2.676ex;" alt="{\displaystyle r^{1}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> </td></tr> <tr> <td>4</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9b58f22283ca46dd5da309cc34303b06a797783" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.313ex; height:2.009ex;" alt="{\displaystyle p_{1}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a363a15442d031416d1eb62254a9c726e3f6c66c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.103ex; height:2.676ex;" alt="{\displaystyle r^{2}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{1}-r^{2}=r^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{1}-r^{2}=r^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f695206fb3e6c44ec4eec4fe5938a204e2d6d0a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.248ex; height:2.843ex;" alt="{\displaystyle r^{1}-r^{2}=r^{3}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a363a15442d031416d1eb62254a9c726e3f6c66c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.103ex; height:2.676ex;" alt="{\displaystyle r^{2}}"></span> </td></tr> <tr> <td>5</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a79626b787857474daa665c953bbc6725e7c345" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.313ex; height:2.009ex;" alt="{\displaystyle p_{3}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a363a15442d031416d1eb62254a9c726e3f6c66c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.103ex; height:2.676ex;" alt="{\displaystyle r^{2}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a363a15442d031416d1eb62254a9c726e3f6c66c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.103ex; height:2.676ex;" alt="{\displaystyle r^{2}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd69c630eae852a57d5b776d88626b7afe7bb8e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.103ex; height:2.676ex;" alt="{\displaystyle r^{3}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> </td></tr></tbody></table> <p>Note that after step 1 as well as after step 5, the residual capacities of edges <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e81caf3d4bcb929315801cbabc83543829484ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.138ex; height:2.009ex;" alt="{\displaystyle e_{1}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4045b5c7cee9bd0681153bbb077489b13269355e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.138ex; height:2.009ex;" alt="{\displaystyle e_{2}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1686693c185b6df4a5f57f34f7b61c4a0e057ad9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.138ex; height:2.009ex;" alt="{\displaystyle e_{3}}"></span> are in the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed76b0221f301ea11e131707b3851a74e6aa1f26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.267ex; height:2.343ex;" alt="{\displaystyle r^{n}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{n+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{n+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc3457a9422030009dceefe8c0c1e6bc48880107" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.368ex; height:2.676ex;" alt="{\displaystyle r^{n+1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>, respectively, for some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d059936e77a2d707e9ee0a1d9575a1d693ce5d0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.913ex; height:2.176ex;" alt="{\displaystyle n\in \mathbb {N} }"></span>. This means that we can use augmenting paths <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9b58f22283ca46dd5da309cc34303b06a797783" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.313ex; height:2.009ex;" alt="{\displaystyle p_{1}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43f1b08d7d69712872e051c2b33fdfa9f5d42319" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.313ex; height:2.009ex;" alt="{\displaystyle p_{2}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9b58f22283ca46dd5da309cc34303b06a797783" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.313ex; height:2.009ex;" alt="{\displaystyle p_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a79626b787857474daa665c953bbc6725e7c345" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.313ex; height:2.009ex;" alt="{\displaystyle p_{3}}"></span> infinitely many times and residual capacities of these edges will always be in the same form. Total flow in the network after step 5 is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+2(r^{1}+r^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo stretchy="false">(</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+2(r^{1}+r^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/710921328c893d74ec78a231dd954e8a499be1e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.021ex; height:3.176ex;" alt="{\displaystyle 1+2(r^{1}+r^{2})}"></span>. If we continue to use augmenting paths as above, the total flow converges to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle 1+2\sum _{i=1}^{\infty }r^{i}=3+2r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mn>2</mn> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>=</mo> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mi>r</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle 1+2\sum _{i=1}^{\infty }r^{i}=3+2r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa76c484cf862fb123ce141e56d170b99f32efbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.454ex; height:3.176ex;" alt="{\displaystyle \textstyle 1+2\sum _{i=1}^{\infty }r^{i}=3+2r}"></span>. However, note that there is a flow of value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2M+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2M+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbbfeb66c7f602d5729ac225f9a3357645425186" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.608ex; height:2.343ex;" alt="{\displaystyle 2M+1}"></span>, by sending <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> units of flow along <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle sv_{1}t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle sv_{1}t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f96d3e23957b20a89ad2dd0224c32f02c5105163" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.112ex; height:2.343ex;" alt="{\displaystyle sv_{1}t}"></span>, 1 unit of flow along <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle sv_{2}v_{3}t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle sv_{2}v_{3}t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35e8afea28fba69eec2d52ced990ad7d4592e1af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.294ex; height:2.343ex;" alt="{\displaystyle sv_{2}v_{3}t}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> units of flow along <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle sv_{4}t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle sv_{4}t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c125c7dd5d8562b0471c4100c3d5d80d62e87e5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.112ex; height:2.343ex;" alt="{\displaystyle sv_{4}t}"></span>. Therefore, the algorithm never terminates and the flow does not even converge to the maximum flow.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>Another non-terminating example based on the <a href="/wiki/Euclidean_algorithm" title="Euclidean algorithm">Euclidean algorithm</a> is given by <a href="#CITEREFBackmanHuynh2018">Backman &amp; Huynh (2018)</a>, where they also show that the worst case running-time of the Ford-Fulkerson algorithm on a network <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(V,E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>V</mi> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(V,E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dc43221ee885a10b87c89373b12b8c1110e7ca5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.233ex; height:2.843ex;" alt="{\displaystyle G(V,E)}"></span> in <a href="/wiki/Ordinal_numbers" class="mw-redirect" title="Ordinal numbers">ordinal numbers</a> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega ^{\Theta (|E|)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x0398;<!-- Θ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega ^{\Theta (|E|)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9293b52d4f58f07253340d01fcc54bfd4e93cdbb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.406ex; height:2.843ex;" alt="{\displaystyle \omega ^{\Theta (|E|)}}"></span>. </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="Python_implementation_of_the_Edmonds–Karp_algorithm"><span id="Python_implementation_of_the_Edmonds.E2.80.93Karp_algorithm"></span>Python implementation of the Edmonds–Karp algorithm</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ford%E2%80%93Fulkerson_algorithm&amp;action=edit&amp;section=5" title="Edit section: Python implementation of the Edmonds–Karp algorithm"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-highlight mw-highlight-lang-python mw-content-ltr mw-highlight-lines" dir="ltr"><pre><span></span><span class="linenos" data-line="1"></span><span class="kn">import</span> <span class="nn">collections</span> <span class="linenos" data-line="2"></span> <span class="linenos" data-line="3"></span> <span class="linenos" data-line="4"></span><span class="k">class</span> <span class="nc">Graph</span><span class="p">:</span> <span class="linenos" data-line="5"></span><span class="w"> </span><span class="sd">&quot;&quot;&quot;</span> <span class="linenos" data-line="6"></span><span class="sd"> This class represents a directed graph using</span> <span class="linenos" data-line="7"></span><span class="sd"> adjacency matrix representation.</span> <span class="linenos" data-line="8"></span><span class="sd"> &quot;&quot;&quot;</span> <span class="linenos" data-line="9"></span> <span class="linenos" data-line="10"></span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">graph</span><span class="p">):</span> <span class="linenos" data-line="11"></span> <span class="bp">self</span><span class="o">.</span><span class="n">graph</span> <span class="o">=</span> <span class="n">graph</span> <span class="c1"># residual graph</span> <span class="linenos" data-line="12"></span> <span class="bp">self</span><span class="o">.</span><span class="n">row</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">graph</span><span class="p">)</span> <span class="linenos" data-line="13"></span> <span class="linenos" data-line="14"></span> <span class="k">def</span> <span class="nf">bfs</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">s</span><span class="p">,</span> <span class="n">t</span><span class="p">,</span> <span class="n">parent</span><span class="p">):</span> <span class="linenos" data-line="15"></span><span class="w"> </span><span class="sd">&quot;&quot;&quot;</span> <span class="linenos" data-line="16"></span><span class="sd"> Returns true if there is a path from</span> <span class="linenos" data-line="17"></span><span class="sd"> source &#39;s&#39; to sink &#39;t&#39; in residual graph.</span> <span class="linenos" data-line="18"></span><span class="sd"> Also fills parent[] to store the path.</span> <span class="linenos" data-line="19"></span><span class="sd"> &quot;&quot;&quot;</span> <span class="linenos" data-line="20"></span> <span class="linenos" data-line="21"></span> <span class="c1"># Mark all the vertices as not visited</span> <span class="linenos" data-line="22"></span> <span class="n">visited</span> <span class="o">=</span> <span class="p">[</span><span class="kc">False</span><span class="p">]</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">row</span> <span class="linenos" data-line="23"></span> <span class="linenos" data-line="24"></span> <span class="c1"># Create a queue for BFS</span> <span class="linenos" data-line="25"></span> <span class="n">queue</span> <span class="o">=</span> <span class="n">collections</span><span class="o">.</span><span class="n">deque</span><span class="p">()</span> <span class="linenos" data-line="26"></span> <span class="linenos" data-line="27"></span> <span class="c1"># Mark the source node as visited and enqueue it</span> <span class="linenos" data-line="28"></span> <span class="n">queue</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">s</span><span class="p">)</span> <span class="linenos" data-line="29"></span> <span class="n">visited</span><span class="p">[</span><span class="n">s</span><span class="p">]</span> <span class="o">=</span> <span class="kc">True</span> <span class="linenos" data-line="30"></span> <span class="linenos" data-line="31"></span> <span class="c1"># Standard BFS loop</span> <span class="linenos" data-line="32"></span> <span class="k">while</span> <span class="n">queue</span><span class="p">:</span> <span class="linenos" data-line="33"></span> <span class="n">u</span> <span class="o">=</span> <span class="n">queue</span><span class="o">.</span><span class="n">popleft</span><span class="p">()</span> <span class="linenos" data-line="34"></span> <span class="linenos" data-line="35"></span> <span class="c1"># Get all adjacent vertices of the dequeued vertex u</span> <span class="linenos" data-line="36"></span> <span class="c1"># If an adjacent has not been visited, then mark it</span> <span class="linenos" data-line="37"></span> <span class="c1"># visited and enqueue it</span> <span class="linenos" data-line="38"></span> <span class="k">for</span> <span class="n">ind</span><span class="p">,</span> <span class="n">val</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">graph</span><span class="p">[</span><span class="n">u</span><span class="p">]):</span> <span class="linenos" data-line="39"></span> <span class="k">if</span> <span class="p">(</span><span class="n">visited</span><span class="p">[</span><span class="n">ind</span><span class="p">]</span> <span class="o">==</span> <span class="kc">False</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span><span class="n">val</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">):</span> <span class="linenos" data-line="40"></span> <span class="n">queue</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">ind</span><span class="p">)</span> <span class="linenos" data-line="41"></span> <span class="n">visited</span><span class="p">[</span><span class="n">ind</span><span class="p">]</span> <span class="o">=</span> <span class="kc">True</span> <span class="linenos" data-line="42"></span> <span class="n">parent</span><span class="p">[</span><span class="n">ind</span><span class="p">]</span> <span class="o">=</span> <span class="n">u</span> <span class="linenos" data-line="43"></span> <span class="linenos" data-line="44"></span> <span class="c1"># If we reached sink in BFS starting from source, then return</span> <span class="linenos" data-line="45"></span> <span class="c1"># true, else false</span> <span class="linenos" data-line="46"></span> <span class="k">return</span> <span class="n">visited</span><span class="p">[</span><span class="n">t</span><span class="p">]</span> <span class="linenos" data-line="47"></span> <span class="linenos" data-line="48"></span> <span class="c1"># Returns the maximum flow from s to t in the given graph</span> <span class="linenos" data-line="49"></span> <span class="k">def</span> <span class="nf">edmonds_karp</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">sink</span><span class="p">):</span> <span class="linenos" data-line="50"></span> <span class="c1"># This array is filled by BFS and to store path</span> <span class="linenos" data-line="51"></span> <span class="n">parent</span> <span class="o">=</span> <span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">row</span> <span class="linenos" data-line="52"></span> <span class="linenos" data-line="53"></span> <span class="n">max_flow</span> <span class="o">=</span> <span class="mi">0</span> <span class="c1"># There is no flow initially</span> <span class="linenos" data-line="54"></span> <span class="linenos" data-line="55"></span> <span class="c1"># Augment the flow while there is path from source to sink</span> <span class="linenos" data-line="56"></span> <span class="k">while</span> <span class="bp">self</span><span class="o">.</span><span class="n">bfs</span><span class="p">(</span><span class="n">source</span><span class="p">,</span> <span class="n">sink</span><span class="p">,</span> <span class="n">parent</span><span class="p">):</span> <span class="linenos" data-line="57"></span> <span class="c1"># Find minimum residual capacity of the edges along the</span> <span class="linenos" data-line="58"></span> <span class="c1"># path filled by BFS. Or we can say find the maximum flow</span> <span class="linenos" data-line="59"></span> <span class="c1"># through the path found.</span> <span class="linenos" data-line="60"></span> <span class="n">path_flow</span> <span class="o">=</span> <span class="nb">float</span><span class="p">(</span><span class="s2">&quot;Inf&quot;</span><span class="p">)</span> <span class="linenos" data-line="61"></span> <span class="n">s</span> <span class="o">=</span> <span class="n">sink</span> <span class="linenos" data-line="62"></span> <span class="k">while</span> <span class="n">s</span> <span class="o">!=</span> <span class="n">source</span><span class="p">:</span> <span class="linenos" data-line="63"></span> <span class="n">path_flow</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">path_flow</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">graph</span><span class="p">[</span><span class="n">parent</span><span class="p">[</span><span class="n">s</span><span class="p">]][</span><span class="n">s</span><span class="p">])</span> <span class="linenos" data-line="64"></span> <span class="n">s</span> <span class="o">=</span> <span class="n">parent</span><span class="p">[</span><span class="n">s</span><span class="p">]</span> <span class="linenos" data-line="65"></span> <span class="linenos" data-line="66"></span> <span class="c1"># Add path flow to overall flow</span> <span class="linenos" data-line="67"></span> <span class="n">max_flow</span> <span class="o">+=</span> <span class="n">path_flow</span> <span class="linenos" data-line="68"></span> <span class="linenos" data-line="69"></span> <span class="c1"># update residual capacities of the edges and reverse edges</span> <span class="linenos" data-line="70"></span> <span class="c1"># along the path</span> <span class="linenos" data-line="71"></span> <span class="n">v</span> <span class="o">=</span> <span class="n">sink</span> <span class="linenos" data-line="72"></span> <span class="k">while</span> <span class="n">v</span> <span class="o">!=</span> <span class="n">source</span><span class="p">:</span> <span class="linenos" data-line="73"></span> <span class="n">u</span> <span class="o">=</span> <span class="n">parent</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="linenos" data-line="74"></span> <span class="bp">self</span><span class="o">.</span><span class="n">graph</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">]</span> <span class="o">-=</span> <span class="n">path_flow</span> <span class="linenos" data-line="75"></span> <span class="bp">self</span><span class="o">.</span><span class="n">graph</span><span class="p">[</span><span class="n">v</span><span class="p">][</span><span class="n">u</span><span class="p">]</span> <span class="o">+=</span> <span class="n">path_flow</span> <span class="linenos" data-line="76"></span> <span class="n">v</span> <span class="o">=</span> <span class="n">parent</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="linenos" data-line="77"></span> <span class="linenos" data-line="78"></span> <span class="k">return</span> <span class="n">max_flow</span> </pre></div> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ford%E2%80%93Fulkerson_algorithm&amp;action=edit&amp;section=6" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Berge%27s_theorem" title="Berge&#39;s theorem">Berge's theorem</a></li> <li><a href="/wiki/Approximate_max-flow_min-cut_theorem" title="Approximate max-flow min-cut theorem">Approximate max-flow min-cut theorem</a></li> <li><a href="/wiki/Turn_restriction_routing" title="Turn restriction routing">Turn restriction routing</a></li> <li><a href="/wiki/Dinic%27s_algorithm" title="Dinic&#39;s algorithm">Dinic's algorithm</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ford%E2%80%93Fulkerson_algorithm&amp;action=edit&amp;section=7" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFLaung-Terng_Wang,_Yao-Wen_Chang,_Kwang-Ting_(Tim)_Cheng2009" class="citation book cs1">Laung-Terng Wang, Yao-Wen Chang, Kwang-Ting (Tim) Cheng (2009). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/electronicdesign00wang"><i>Electronic Design Automation: Synthesis, Verification, and Test</i></a></span>. Morgan Kaufmann. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/electronicdesign00wang/page/n240">204</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0080922003" title="Special:BookSources/978-0080922003"><bdi>978-0080922003</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Electronic+Design+Automation%3A+Synthesis%2C+Verification%2C+and+Test&amp;rft.pages=204&amp;rft.pub=Morgan+Kaufmann&amp;rft.date=2009&amp;rft.isbn=978-0080922003&amp;rft.au=Laung-Terng+Wang%2C+Yao-Wen+Chang%2C+Kwang-Ting+%28Tim%29+Cheng&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Felectronicdesign00wang&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFord%E2%80%93Fulkerson+algorithm" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomas_H._CormenCharles_E._LeisersonRonald_L._RivestClifford_Stein2009" class="citation book cs1">Thomas H. Cormen; Charles E. Leiserson; Ronald L. Rivest; Clifford Stein (2009). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoal00corm_805"><i>Introduction to Algorithms</i></a></span>. MIT Press. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoal00corm_805/page/n734">714</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0262258104" title="Special:BookSources/978-0262258104"><bdi>978-0262258104</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Algorithms&amp;rft.pages=714&amp;rft.pub=MIT+Press&amp;rft.date=2009&amp;rft.isbn=978-0262258104&amp;rft.au=Thomas+H.+Cormen&amp;rft.au=Charles+E.+Leiserson&amp;rft.au=Ronald+L.+Rivest&amp;rft.au=Clifford+Stein&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontoal00corm_805&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFord%E2%80%93Fulkerson+algorithm" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFordFulkerson1956" class="citation journal cs1"><a href="/wiki/L._R._Ford_Jr." title="L. R. Ford Jr.">Ford, L. R.</a>; <a href="/wiki/D._R._Fulkerson" title="D. R. Fulkerson">Fulkerson, D. R.</a> (1956). <a rel="nofollow" class="external text" href="http://www.cs.yale.edu/homes/lans/readings/routing/ford-max_flow-1956.pdf">"Maximal flow through a network"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Canadian_Journal_of_Mathematics" title="Canadian Journal of Mathematics">Canadian Journal of Mathematics</a></i>. <b>8</b>: 399–404. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4153%2FCJM-1956-045-5">10.4153/CJM-1956-045-5</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16109790">16109790</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Canadian+Journal+of+Mathematics&amp;rft.atitle=Maximal+flow+through+a+network&amp;rft.volume=8&amp;rft.pages=399-404&amp;rft.date=1956&amp;rft_id=info%3Adoi%2F10.4153%2FCJM-1956-045-5&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16109790%23id-name%3DS2CID&amp;rft.aulast=Ford&amp;rft.aufirst=L.+R.&amp;rft.au=Fulkerson%2C+D.+R.&amp;rft_id=http%3A%2F%2Fwww.cs.yale.edu%2Fhomes%2Flans%2Freadings%2Frouting%2Fford-max_flow-1956.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFord%E2%80%93Fulkerson+algorithm" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation citeseerx cs1">"Ford-Fulkerson Max Flow Labeling Algorithm". 1998. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.295.9049">10.1.1.295.9049</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=CiteSeerX&amp;rft.atitle=Ford-Fulkerson+Max+Flow+Labeling+Algorithm&amp;rft.date=1998&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.295.9049%23id-name%3DCiteSeerX&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFord%E2%80%93Fulkerson+algorithm" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZwick1995" class="citation journal cs1"><a href="/wiki/Uri_Zwick" title="Uri Zwick">Zwick, Uri</a> (21 August 1995). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0304-3975%2895%2900022-O">"The smallest networks on which the Ford–Fulkerson maximum flow procedure may fail to terminate"</a>. <i><a href="/wiki/Theoretical_Computer_Science_(journal)" title="Theoretical Computer Science (journal)">Theoretical Computer Science</a></i>. <b>148</b> (1): 165–170. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0304-3975%2895%2900022-O">10.1016/0304-3975(95)00022-O</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Theoretical+Computer+Science&amp;rft.atitle=The+smallest+networks+on+which+the+Ford%E2%80%93Fulkerson+maximum+flow+procedure+may+fail+to+terminate&amp;rft.volume=148&amp;rft.issue=1&amp;rft.pages=165-170&amp;rft.date=1995-08-21&amp;rft_id=info%3Adoi%2F10.1016%2F0304-3975%2895%2900022-O&amp;rft.aulast=Zwick&amp;rft.aufirst=Uri&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252F0304-3975%252895%252900022-O&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFord%E2%80%93Fulkerson+algorithm" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ford%E2%80%93Fulkerson_algorithm&amp;action=edit&amp;section=8" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCormenLeisersonRivestStein2001" class="citation book cs1"><a href="/wiki/Thomas_H._Cormen" title="Thomas H. Cormen">Cormen, Thomas H.</a>; <a href="/wiki/Charles_E._Leiserson" title="Charles E. Leiserson">Leiserson, Charles E.</a>; <a href="/wiki/Ronald_L._Rivest" class="mw-redirect" title="Ronald L. Rivest">Rivest, Ronald L.</a>; <a href="/wiki/Clifford_Stein" title="Clifford Stein">Stein, Clifford</a> (2001). "Section 26.2: The Ford&#8211;Fulkerson method". <i><a href="/wiki/Introduction_to_Algorithms" title="Introduction to Algorithms">Introduction to Algorithms</a></i> (Second&#160;ed.). MIT Press and McGraw&#8211;Hill. pp.&#160;651–664. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-262-03293-7" title="Special:BookSources/0-262-03293-7"><bdi>0-262-03293-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Section+26.2%3A+The+Ford%26ndash%3BFulkerson+method&amp;rft.btitle=Introduction+to+Algorithms&amp;rft.pages=651-664&amp;rft.edition=Second&amp;rft.pub=MIT+Press+and+McGraw%26ndash%3BHill&amp;rft.date=2001&amp;rft.isbn=0-262-03293-7&amp;rft.aulast=Cormen&amp;rft.aufirst=Thomas+H.&amp;rft.au=Leiserson%2C+Charles+E.&amp;rft.au=Rivest%2C+Ronald+L.&amp;rft.au=Stein%2C+Clifford&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFord%E2%80%93Fulkerson+algorithm" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGeorge_T._HeinemanGary_PolliceStanley_Selkow2008" class="citation book cs1">George T. Heineman; Gary Pollice; Stanley Selkow (2008). "Chapter 8:Network Flow Algorithms". <i>Algorithms in a Nutshell</i>. <a href="/wiki/Oreilly_Media" class="mw-redirect" title="Oreilly Media">Oreilly Media</a>. pp.&#160;226–250. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-596-51624-6" title="Special:BookSources/978-0-596-51624-6"><bdi>978-0-596-51624-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+8%3ANetwork+Flow+Algorithms&amp;rft.btitle=Algorithms+in+a+Nutshell&amp;rft.pages=226-250&amp;rft.pub=Oreilly+Media&amp;rft.date=2008&amp;rft.isbn=978-0-596-51624-6&amp;rft.au=George+T.+Heineman&amp;rft.au=Gary+Pollice&amp;rft.au=Stanley+Selkow&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFord%E2%80%93Fulkerson+algorithm" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJon_KleinbergÉva_Tardos2006" class="citation book cs1"><a href="/wiki/Jon_Kleinberg" title="Jon Kleinberg">Jon Kleinberg</a>; <a href="/wiki/%C3%89va_Tardos" title="Éva Tardos">Éva Tardos</a> (2006). <a rel="nofollow" class="external text" href="https://archive.org/details/algorithmdesign0000klei/page/378">"Chapter 7:Extensions to the Maximum-Flow Problem"</a>. <i>Algorithm Design</i>. Pearson Education. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/algorithmdesign0000klei/page/378">378–384</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-321-29535-8" title="Special:BookSources/0-321-29535-8"><bdi>0-321-29535-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+7%3AExtensions+to+the+Maximum-Flow+Problem&amp;rft.btitle=Algorithm+Design&amp;rft.pages=378-384&amp;rft.pub=Pearson+Education&amp;rft.date=2006&amp;rft.isbn=0-321-29535-8&amp;rft.au=Jon+Kleinberg&amp;rft.au=%C3%89va+Tardos&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Falgorithmdesign0000klei%2Fpage%2F378&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFord%E2%80%93Fulkerson+algorithm" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSamuel_Gutekunst2019" class="citation book cs1">Samuel Gutekunst (2019). <i>ENGRI 1101</i>. Cornell University.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=ENGRI+1101&amp;rft.pub=Cornell+University&amp;rft.date=2019&amp;rft.au=Samuel+Gutekunst&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFord%E2%80%93Fulkerson+algorithm" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBackmanHuynh2018" class="citation journal cs1">Backman, Spencer; Huynh, Tony (2018). "Transfinite Ford–Fulkerson on a finite network". <i>Computability</i>. <b>7</b> (4): 341–347. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1504.04363">1504.04363</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.3233%2FCOM-180082">10.3233/COM-180082</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15497138">15497138</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Computability&amp;rft.atitle=Transfinite+Ford%E2%80%93Fulkerson+on+a+finite+network&amp;rft.volume=7&amp;rft.issue=4&amp;rft.pages=341-347&amp;rft.date=2018&amp;rft_id=info%3Aarxiv%2F1504.04363&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15497138%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.3233%2FCOM-180082&amp;rft.aulast=Backman&amp;rft.aufirst=Spencer&amp;rft.au=Huynh%2C+Tony&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFord%E2%80%93Fulkerson+algorithm" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ford%E2%80%93Fulkerson_algorithm&amp;action=edit&amp;section=9" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://community.topcoder.com/tc?module=Static&amp;d1=tutorials&amp;d2=maxFlow">A tutorial explaining the Ford–Fulkerson method to solve the max-flow problem</a></li> <li><a rel="nofollow" class="external text" href="http://www.cs.pitt.edu/~kirk/cs1501/animations/Network.html">Another Java animation</a></li> <li><a rel="nofollow" class="external text" href="http://rrusin.blogspot.com/2011/03/implementing-graph-editor-in-javafx.html">Java Web Start application</a></li></ul> <p><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Media related to <a href="https://commons.wikimedia.org/wiki/Category:Ford-Fulkerson%27s_algorithm" class="extiw" title="commons:Category:Ford-Fulkerson&#39;s algorithm">Ford-Fulkerson's algorithm</a> at Wikimedia Commons </p> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐565d46677b‐4kb2v Cached time: 20241128125843 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.344 seconds Real time usage: 0.586 seconds Preprocessor visited node count: 1733/1000000 Post‐expand include size: 26549/2097152 bytes Template argument size: 1115/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 47499/5000000 bytes Lua time usage: 0.148/10.000 seconds Lua memory usage: 5817408/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 335.774 1 -total 34.20% 114.838 1 Template:Reflist 29.18% 97.970 6 Template:Cite_book 20.00% 67.161 1 Template:Short_description 11.32% 38.018 2 Template:Pagetype 9.67% 32.465 1 Template:Use_American_English 8.83% 29.665 1 Template:Harvtxt 7.20% 24.190 30 Template:Mvar 6.94% 23.295 1 Template:Commons_category-inline 6.49% 21.799 1 Template:Sister-inline --> <!-- Saved in parser cache with key enwiki:pcache:53777:|#|:idhash:canonical and timestamp 20241128125843 and revision id 1252560419. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Ford–Fulkerson_algorithm&amp;oldid=1252560419">https://en.wikipedia.org/w/index.php?title=Ford–Fulkerson_algorithm&amp;oldid=1252560419</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Network_flow_problem" title="Category:Network flow problem">Network flow problem</a></li><li><a href="/wiki/Category:Graph_algorithms" title="Category:Graph algorithms">Graph algorithms</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">CS1 maint: multiple names: authors list</a></li><li><a href="/wiki/Category:Use_American_English_from_April_2019" title="Category:Use American English from April 2019">Use American English from April 2019</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_written_in_American_English" title="Category:All Wikipedia articles written in American English">All Wikipedia articles written in American English</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li><li><a href="/wiki/Category:Articles_with_example_pseudocode" title="Category:Articles with example pseudocode">Articles with example pseudocode</a></li><li><a href="/wiki/Category:Articles_with_example_Python_(programming_language)_code" title="Category:Articles with example Python (programming language) code">Articles with example Python (programming language) code</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 21 October 2024, at 22:15<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Ford%E2%80%93Fulkerson_algorithm&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-cvdrd","wgBackendResponseTime":213,"wgPageParseReport":{"limitreport":{"cputime":"0.344","walltime":"0.586","ppvisitednodes":{"value":1733,"limit":1000000},"postexpandincludesize":{"value":26549,"limit":2097152},"templateargumentsize":{"value":1115,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":47499,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 335.774 1 -total"," 34.20% 114.838 1 Template:Reflist"," 29.18% 97.970 6 Template:Cite_book"," 20.00% 67.161 1 Template:Short_description"," 11.32% 38.018 2 Template:Pagetype"," 9.67% 32.465 1 Template:Use_American_English"," 8.83% 29.665 1 Template:Harvtxt"," 7.20% 24.190 30 Template:Mvar"," 6.94% 23.295 1 Template:Commons_category-inline"," 6.49% 21.799 1 Template:Sister-inline"]},"scribunto":{"limitreport-timeusage":{"value":"0.148","limit":"10.000"},"limitreport-memusage":{"value":5817408,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBackmanHuynh2018\"] = 1,\n [\"CITEREFCormenLeisersonRivestStein2001\"] = 1,\n [\"CITEREFFordFulkerson1956\"] = 1,\n [\"CITEREFGeorge_T._HeinemanGary_PolliceStanley_Selkow2008\"] = 1,\n [\"CITEREFJon_KleinbergÉva_Tardos2006\"] = 1,\n [\"CITEREFLaung-Terng_Wang,_Yao-Wen_Chang,_Kwang-Ting_(Tim)_Cheng2009\"] = 1,\n [\"CITEREFSamuel_Gutekunst2019\"] = 1,\n [\"CITEREFThomas_H._CormenCharles_E._LeisersonRonald_L._RivestClifford_Stein2009\"] = 1,\n [\"CITEREFZwick1995\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Algorithm-begin\"] = 1,\n [\"Algorithm-end\"] = 1,\n [\"Cite CiteSeerX\"] = 1,\n [\"Cite book\"] = 6,\n [\"Cite journal\"] = 3,\n [\"Clear\"] = 1,\n [\"Commons category-inline\"] = 1,\n [\"DEFAULTSORT:Ford-Fulkerson Algorithm\"] = 1,\n [\"Harvtxt\"] = 1,\n [\"Mvar\"] = 30,\n [\"Reflist\"] = 1,\n [\"Rh\"] = 4,\n [\"Short description\"] = 1,\n [\"Use American English\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.eqiad.main-565d46677b-4kb2v","timestamp":"20241128125843","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Ford\u2013Fulkerson algorithm","url":"https:\/\/en.wikipedia.org\/wiki\/Ford%E2%80%93Fulkerson_algorithm","sameAs":"http:\/\/www.wikidata.org\/entity\/Q284695","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q284695","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-05-27T16:25:43Z","dateModified":"2024-10-21T22:15:38Z","headline":"algorithm"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10