CINXE.COM
Power MOSFET - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Power MOSFET - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"197b7a03-0459-45e8-b432-14387d88a11b","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Power_MOSFET","wgTitle":"Power MOSFET","wgCurRevisionId":1254928618,"wgRevisionId":1254928618,"wgArticleId":2659918,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Articles containing potentially dated statements from 2010","All articles containing potentially dated statements","Articles containing potentially dated statements from 2018","Articles containing potentially dated statements from 2019","All articles with unsourced statements","Articles with unsourced statements from July 2017","Solid state switches","Power electronics","MOSFETs","Japanese inventions"], "wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Power_MOSFET","wgRelevantArticleId":2659918,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId": "Q570553","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible", "mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/4/4f/D2PAK.JPG"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="876"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/4f/D2PAK.JPG/800px-D2PAK.JPG"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="584"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/4f/D2PAK.JPG/640px-D2PAK.JPG"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="467"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Power MOSFET - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Power_MOSFET"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Power_MOSFET&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Power_MOSFET"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Power_MOSFET rootpage-Power_MOSFET skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Power+MOSFET" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Power+MOSFET" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Power+MOSFET" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Power+MOSFET" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Applications</span> </div> </a> <ul id="toc-Applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Basic_structure" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Basic_structure"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Basic structure</span> </div> </a> <button aria-controls="toc-Basic_structure-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Basic structure subsection</span> </button> <ul id="toc-Basic_structure-sublist" class="vector-toc-list"> <li id="toc-On-state_resistance" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#On-state_resistance"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>On-state resistance</span> </div> </a> <ul id="toc-On-state_resistance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Breakdown_voltage/on-state_resistance_trade-off" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Breakdown_voltage/on-state_resistance_trade-off"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Breakdown voltage/on-state resistance trade-off</span> </div> </a> <ul id="toc-Breakdown_voltage/on-state_resistance_trade-off-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Body_diode" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Body_diode"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Body diode</span> </div> </a> <ul id="toc-Body_diode-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Switching_operation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Switching_operation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Switching operation</span> </div> </a> <button aria-controls="toc-Switching_operation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Switching operation subsection</span> </button> <ul id="toc-Switching_operation-sublist" class="vector-toc-list"> <li id="toc-Capacitances" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Capacitances"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Capacitances</span> </div> </a> <ul id="toc-Capacitances-sublist" class="vector-toc-list"> <li id="toc-Gate_to_source_capacitance" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Gate_to_source_capacitance"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.1</span> <span>Gate to source capacitance</span> </div> </a> <ul id="toc-Gate_to_source_capacitance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gate_to_drain_capacitance" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Gate_to_drain_capacitance"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.2</span> <span>Gate to drain capacitance</span> </div> </a> <ul id="toc-Gate_to_drain_capacitance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Drain_to_source_capacitance" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Drain_to_source_capacitance"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.3</span> <span>Drain to source capacitance</span> </div> </a> <ul id="toc-Drain_to_source_capacitance-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Other_dynamic_elements" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_dynamic_elements"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Other dynamic elements</span> </div> </a> <ul id="toc-Other_dynamic_elements-sublist" class="vector-toc-list"> <li id="toc-Packaging_inductances" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Packaging_inductances"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2.1</span> <span>Packaging inductances</span> </div> </a> <ul id="toc-Packaging_inductances-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Limits_of_operation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Limits_of_operation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Limits of operation</span> </div> </a> <button aria-controls="toc-Limits_of_operation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Limits of operation subsection</span> </button> <ul id="toc-Limits_of_operation-sublist" class="vector-toc-list"> <li id="toc-Gate_oxide_breakdown" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gate_oxide_breakdown"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Gate oxide breakdown</span> </div> </a> <ul id="toc-Gate_oxide_breakdown-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Maximum_drain_to_source_voltage" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Maximum_drain_to_source_voltage"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Maximum drain to source voltage</span> </div> </a> <ul id="toc-Maximum_drain_to_source_voltage-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Maximum_drain_current" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Maximum_drain_current"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Maximum drain current</span> </div> </a> <ul id="toc-Maximum_drain_current-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Maximum_temperature" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Maximum_temperature"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Maximum temperature</span> </div> </a> <ul id="toc-Maximum_temperature-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Safe_operating_area" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Safe_operating_area"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Safe operating area</span> </div> </a> <ul id="toc-Safe_operating_area-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Latch-up" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Latch-up"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Latch-up</span> </div> </a> <ul id="toc-Latch-up-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Technology" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Technology"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Technology</span> </div> </a> <button aria-controls="toc-Technology-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Technology subsection</span> </button> <ul id="toc-Technology-sublist" class="vector-toc-list"> <li id="toc-Layout" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Layout"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Layout</span> </div> </a> <ul id="toc-Layout-sublist" class="vector-toc-list"> <li id="toc-Cellular_structure" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Cellular_structure"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1.1</span> <span>Cellular structure</span> </div> </a> <ul id="toc-Cellular_structure-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Structures" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Structures"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Structures</span> </div> </a> <ul id="toc-Structures-sublist" class="vector-toc-list"> <li id="toc-P-substrate_power_MOSFET" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#P-substrate_power_MOSFET"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2.1</span> <span>P-substrate power MOSFET</span> </div> </a> <ul id="toc-P-substrate_power_MOSFET-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-VMOS" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#VMOS"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2.2</span> <span>VMOS</span> </div> </a> <ul id="toc-VMOS-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-UMOS" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#UMOS"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2.3</span> <span>UMOS</span> </div> </a> <ul id="toc-UMOS-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Super-junction_deep-trench_technology" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Super-junction_deep-trench_technology"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2.4</span> <span>Super-junction deep-trench technology</span> </div> </a> <ul id="toc-Super-junction_deep-trench_technology-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Power MOSFET</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 11 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-11" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">11 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D9%88%D8%B3%D9%81%D8%AA_%D8%B9%D8%A7%D9%84%D9%8A_%D8%A7%D9%84%D8%A7%D8%B3%D8%AA%D8%B7%D8%A7%D8%B9%D8%A9" title="موسفت عالي الاستطاعة – Arabic" lang="ar" hreflang="ar" data-title="موسفت عالي الاستطاعة" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/MOSFET_de_pot%C3%A8ncia" title="MOSFET de potència – Catalan" lang="ca" hreflang="ca" data-title="MOSFET de potència" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Effekt_MOSFET" title="Effekt MOSFET – Danish" lang="da" hreflang="da" data-title="Effekt MOSFET" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Leistungs-MOSFET" title="Leistungs-MOSFET – German" lang="de" hreflang="de" data-title="Leistungs-MOSFET" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%A7%D8%B3%D9%81%D8%AA_%D9%82%D8%AF%D8%B1%D8%AA" title="ماسفت قدرت – Persian" lang="fa" hreflang="fa" data-title="ماسفت قدرت" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%A0%84%EB%A0%A5_MOSFET" title="전력 MOSFET – Korean" lang="ko" hreflang="ko" data-title="전력 MOSFET" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B6%E0%A4%95%E0%A5%8D%E0%A4%A4%E0%A4%BF_%E0%A4%AE%E0%A5%89%E0%A4%B8%E0%A4%AB%E0%A5%87%E0%A4%9F" title="शक्ति मॉसफेट – Hindi" lang="hi" hreflang="hi" data-title="शक्ति मॉसफेट" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/MOSFET_daya" title="MOSFET daya – Indonesian" lang="id" hreflang="id" data-title="MOSFET daya" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/MOSFET_di_potenza" title="MOSFET di potenza – Italian" lang="it" hreflang="it" data-title="MOSFET di potenza" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%91%E3%83%AF%E3%83%BCMOSFET" title="パワーMOSFET – Japanese" lang="ja" hreflang="ja" data-title="パワーMOSFET" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%8A%9F%E7%8E%87MOSFET" title="功率MOSFET – Chinese" lang="zh" hreflang="zh" data-title="功率MOSFET" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q570553#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Power_MOSFET" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Power_MOSFET" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Power_MOSFET"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Power_MOSFET&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Power_MOSFET&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Power_MOSFET"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Power_MOSFET&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Power_MOSFET&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Power_MOSFET" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Power_MOSFET" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Power_MOSFET&oldid=1254928618" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Power_MOSFET&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Power_MOSFET&id=1254928618&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPower_MOSFET"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPower_MOSFET"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Power_MOSFET&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Power_MOSFET&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Power_MOSFET" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q570553" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">MOSFET that can handle significant power levels</div> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><table class="infobox"><caption class="infobox-title">Power MOSFET</caption><tbody><tr><td colspan="2" class="infobox-image"><span class="mw-default-size" typeof="mw:File/Frameless"><a href="/wiki/File:D2PAK.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/D2PAK.JPG/220px-D2PAK.JPG" decoding="async" width="220" height="161" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/D2PAK.JPG/330px-D2PAK.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4f/D2PAK.JPG/440px-D2PAK.JPG 2x" data-file-width="1110" data-file-height="810" /></a></span><div class="infobox-caption">Two power MOSFETs in the <a href="/wiki/Surface-mount_technology" title="Surface-mount technology">surface-mount</a> package <a href="/wiki/TO-263" title="TO-263">D2PAK</a>. Each of these components can sustain a blocking voltage of 120 <a href="/wiki/Volt" title="Volt">volts</a> and a continuous current of 30 <a href="/wiki/Ampere" title="Ampere">amperes</a> with appropriate heatsinking.</div></td></tr><tr><th scope="row" class="infobox-label"><span class="nowrap">Working principle<span style="visibility:hidden; color:transparent; padding-left:2px">‍</span></span></th><td class="infobox-data"><a href="/wiki/Semiconductor" title="Semiconductor">Semiconductor</a></td></tr></tbody></table> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Nedap_ESD1_-_power_supply_board_2_-_International_Rectifier_IRLZ24N-91538.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Nedap_ESD1_-_power_supply_board_2_-_International_Rectifier_IRLZ24N-91538.jpg/220px-Nedap_ESD1_-_power_supply_board_2_-_International_Rectifier_IRLZ24N-91538.jpg" decoding="async" width="220" height="391" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Nedap_ESD1_-_power_supply_board_2_-_International_Rectifier_IRLZ24N-91538.jpg/330px-Nedap_ESD1_-_power_supply_board_2_-_International_Rectifier_IRLZ24N-91538.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Nedap_ESD1_-_power_supply_board_2_-_International_Rectifier_IRLZ24N-91538.jpg/440px-Nedap_ESD1_-_power_supply_board_2_-_International_Rectifier_IRLZ24N-91538.jpg 2x" data-file-width="2119" data-file-height="3767" /></a><figcaption>IRLZ24N Power MOSFET in a <a href="/wiki/TO-220" title="TO-220">TO-220</a>AB <a href="/wiki/Through-hole_technology" title="Through-hole technology">through-hole</a> package. Pins from left to right are: gate (logic-level), drain, source. The top metal tab is the drain, same as pin 2.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>A <b>power MOSFET</b> is a specific type of <a href="/wiki/Metal%E2%80%93oxide%E2%80%93semiconductor_field-effect_transistor" class="mw-redirect" title="Metal–oxide–semiconductor field-effect transistor">metal–oxide–semiconductor field-effect transistor</a> (MOSFET) designed to handle significant power levels. Compared to the other <a href="/wiki/Power_semiconductor_device" title="Power semiconductor device">power semiconductor devices</a>, such as an <a href="/wiki/Insulated-gate_bipolar_transistor" title="Insulated-gate bipolar transistor">insulated-gate bipolar transistor</a> (IGBT) or a <a href="/wiki/Thyristor" title="Thyristor">thyristor</a>, its main advantages are high <a href="/wiki/Switch#Electronic_switches" title="Switch">switching</a> speed and good efficiency at low voltages. It shares with the IGBT an isolated gate that makes it easy to drive. They can be subject to low gain, sometimes to a degree that the gate voltage needs to be higher than the voltage under control. </p><p>The design of power MOSFETs was made possible by the evolution of MOSFET and <a href="/wiki/CMOS" title="CMOS">CMOS</a> technology, used for manufacturing <a href="/wiki/Integrated_circuit" title="Integrated circuit">integrated circuits</a> since the 1960s. The power MOSFET shares its operating principle with its low-power counterpart, the lateral MOSFET. The power MOSFET, which is commonly used in <a href="/wiki/Power_electronics" title="Power electronics">power electronics</a>, was adapted from the standard MOSFET and commercially introduced in the 1970s.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>The power MOSFET is the most common <a href="/wiki/Power_semiconductor_device" title="Power semiconductor device">power semiconductor device</a> in the world, due to its low gate drive power, fast switching speed,<sup id="cite_ref-aosmd_3-0" class="reference"><a href="#cite_note-aosmd-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> easy advanced paralleling capability,<sup id="cite_ref-aosmd_3-1" class="reference"><a href="#cite_note-aosmd-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Duncan178_4-0" class="reference"><a href="#cite_note-Duncan178-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> wide bandwidth, ruggedness, easy drive, simple biasing, ease of application, and ease of repair.<sup id="cite_ref-Duncan178_4-1" class="reference"><a href="#cite_note-Duncan178-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> In particular, it is the most widely used low-voltage (less than 200 V) switch. It can be found in a wide range of applications, such as most <a href="/wiki/Power_supply" title="Power supply">power supplies</a>, <a href="/wiki/DC-to-DC_converter" title="DC-to-DC converter">DC-to-DC converters</a>, low-voltage <a href="/wiki/Motor_controller" title="Motor controller">motor controllers</a>, and <a href="#Applications">many other applications</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/MOSFET" title="MOSFET">MOSFET</a>, <a href="/wiki/VMOS" title="VMOS">VMOS</a>, <a href="/wiki/LDMOS" title="LDMOS">LDMOS</a>, and <a href="/wiki/Insulated-gate_bipolar_transistor" title="Insulated-gate bipolar transistor">Insulated-gate bipolar transistor</a></div> <p>The MOSFET was invented at Bell Labs between 1955 and 1960.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Lojek1202_10-0" class="reference"><a href="#cite_note-Lojek1202-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> It was a breakthrough in <a href="/wiki/Power_electronics" title="Power electronics">power electronics</a>. Generations of MOSFETs enabled power designers to achieve performance and density levels not possible with bipolar transistors.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> </p><p>In 1969, <a href="/wiki/Hitachi" title="Hitachi">Hitachi</a> introduced the first vertical power MOSFET,<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> which would later be known as the <a href="/wiki/VMOS" title="VMOS">VMOS</a> (V-groove MOSFET).<sup id="cite_ref-powerelectronics_13-0" class="reference"><a href="#cite_note-powerelectronics-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> The same year, the <a href="/wiki/MOSFET#DMOS" title="MOSFET">DMOS</a> (double-diffused MOSFET) with <a href="/wiki/Self-aligned_gate" title="Self-aligned gate">self-aligned gate</a> was first reported by Y. Tarui, Y. Hayashi and Toshihiro Sekigawa of the <a href="/wiki/National_Institute_of_Advanced_Industrial_Science_and_Technology" title="National Institute of Advanced Industrial Science and Technology">Electrotechnical Laboratory</a> (ETL).<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> In 1974, <a href="/wiki/Jun-ichi_Nishizawa" title="Jun-ichi Nishizawa">Jun-ichi Nishizawa</a> at <a href="/wiki/Tohoku_University" title="Tohoku University">Tohoku University</a> invented a power MOSFET for audio, which was soon manufactured by <a href="/wiki/Yamaha_Corporation" title="Yamaha Corporation">Yamaha Corporation</a> for their <a href="/wiki/High_fidelity" title="High fidelity">high fidelity</a> <a href="/wiki/Audio_power_amplifier" title="Audio power amplifier">audio amplifiers</a>. <a href="/wiki/JVC" title="JVC">JVC</a>, <a href="/wiki/Pioneer_Corporation" title="Pioneer Corporation">Pioneer Corporation</a>, <a href="/wiki/Sony" title="Sony">Sony</a> and <a href="/wiki/Toshiba" title="Toshiba">Toshiba</a> also began manufacturing <a href="/wiki/Amplifier" title="Amplifier">amplifiers</a> with power MOSFETs in 1974.<sup id="cite_ref-Duncan177_16-0" class="reference"><a href="#cite_note-Duncan177-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Siliconix" title="Siliconix">Siliconix</a> commercially introduced a VMOS in 1975.<sup id="cite_ref-powerelectronics_13-1" class="reference"><a href="#cite_note-powerelectronics-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p>The VMOS and DMOS developed into what has become known as VDMOS (vertical DMOS).<sup id="cite_ref-Duncan177_16-1" class="reference"><a href="#cite_note-Duncan177-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> <a href="/wiki/John_L._Moll" title="John L. Moll">John Moll</a>'s research team at <a href="/wiki/HP_Labs" title="HP Labs">HP Labs</a> fabricated DMOS prototypes in 1977, and demonstrated advantages over the VMOS, including lower on-resistance and higher breakdown voltage.<sup id="cite_ref-powerelectronics_13-2" class="reference"><a href="#cite_note-powerelectronics-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> The same year, Hitachi introduced the <a href="/wiki/LDMOS" title="LDMOS">LDMOS</a> (lateral DMOS), a planar type of DMOS. Hitachi was the only LDMOS manufacturer between 1977 and 1983, during which time LDMOS was used in <a href="/wiki/Audio_power_amplifier" title="Audio power amplifier">audio power amplifiers</a> from manufacturers such as <a href="/wiki/HH_Electronics" title="HH Electronics">HH Electronics</a> (V-series) and <a href="/wiki/Ashly_Audio" title="Ashly Audio">Ashly Audio</a>, and were used for music and <a href="/wiki/Public_address_system" title="Public address system">public address systems</a>.<sup id="cite_ref-Duncan177_16-2" class="reference"><a href="#cite_note-Duncan177-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> With the introduction of the <a href="/wiki/2G" title="2G">2G</a> digital <a href="/wiki/Cellular_network" title="Cellular network">mobile network</a> in 1995, the LDMOS became the most widely used <a href="/wiki/RF_power_amplifier" title="RF power amplifier">RF power amplifier</a> in mobile networks such as 2G, <a href="/wiki/3G" title="3G">3G</a>,<sup id="cite_ref-Baliga2005_17-0" class="reference"><a href="#cite_note-Baliga2005-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/4G" title="4G">4G</a>.<sup id="cite_ref-Asif_18-0" class="reference"><a href="#cite_note-Asif-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Alex_Lidow" title="Alex Lidow">Alex Lidow</a> co-invented the HexFET, a hexagonal type of Power MOSFET, at <a href="/wiki/Stanford_University" title="Stanford University">Stanford University</a> in 1977,<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> along with Tom Herman.<sup id="cite_ref-businesswire_20-0" class="reference"><a href="#cite_note-businesswire-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> The HexFET was commercialized by <a href="/wiki/International_Rectifier" title="International Rectifier">International Rectifier</a> in 1978.<sup id="cite_ref-powerelectronics_13-3" class="reference"><a href="#cite_note-powerelectronics-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-businesswire_20-1" class="reference"><a href="#cite_note-businesswire-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/Insulated-gate_bipolar_transistor" title="Insulated-gate bipolar transistor">insulated-gate bipolar transistor</a> (IGBT), which combines elements of both the power MOSFET and the <a href="/wiki/Bipolar_junction_transistor" title="Bipolar junction transistor">bipolar junction transistor</a> (BJT), was developed by <a href="/wiki/B._Jayant_Baliga" title="B. Jayant Baliga">Jayant Baliga</a> at <a href="/wiki/General_Electric" title="General Electric">General Electric</a> between 1977 and 1979.<sup id="cite_ref-Baliga2015_21-0" class="reference"><a href="#cite_note-Baliga2015-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p><p>The superjunction MOSFET is a type of power MOSFET that uses P+ columns that penetrate the N− <a href="/wiki/Epitaxy" title="Epitaxy">epitaxial</a> layer. The idea of stacking P and N layers was first proposed by Shozo Shirota and Shigeo Kaneda at <a href="/wiki/Osaka_University" title="Osaka University">Osaka University</a> in 1978.<sup id="cite_ref-st_22-0" class="reference"><a href="#cite_note-st-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> David J. Coe at Philips invented the superjunction MOSFET with alternating p-type and n-type layers by filing a US patent in 1984 which was awarded in 1988.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=2" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/List_of_MOSFET_applications#Power_MOSFET" title="List of MOSFET applications">List of MOSFET applications § Power MOSFET</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/LDMOS#Applications" title="LDMOS">LDMOS § Applications</a>, <a href="/wiki/MOSFET" title="MOSFET">MOSFET</a>, <a href="/wiki/Insulated-gate_bipolar_transistor" title="Insulated-gate bipolar transistor">Insulated-gate bipolar transistor</a>, and <a href="/wiki/RF_CMOS#Applications" title="RF CMOS">RF CMOS § Applications</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Asus_Zenbook_UX32V_-_motherboard_-_NXP_7030AL-0152.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Asus_Zenbook_UX32V_-_motherboard_-_NXP_7030AL-0152.jpg/220px-Asus_Zenbook_UX32V_-_motherboard_-_NXP_7030AL-0152.jpg" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Asus_Zenbook_UX32V_-_motherboard_-_NXP_7030AL-0152.jpg/330px-Asus_Zenbook_UX32V_-_motherboard_-_NXP_7030AL-0152.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Asus_Zenbook_UX32V_-_motherboard_-_NXP_7030AL-0152.jpg/440px-Asus_Zenbook_UX32V_-_motherboard_-_NXP_7030AL-0152.jpg 2x" data-file-width="1600" data-file-height="1600" /></a><figcaption><a href="/wiki/NXP_Semiconductors" title="NXP Semiconductors">NXP</a> 7030AL - N-channel TrenchMOS logic level FET</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:IRF640.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/IRF640.jpg/220px-IRF640.jpg" decoding="async" width="220" height="285" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/IRF640.jpg/330px-IRF640.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ae/IRF640.jpg/440px-IRF640.jpg 2x" data-file-width="1881" data-file-height="2436" /></a><figcaption>IRF640 Power Mosfet die</figcaption></figure> <p>The power MOSFET is the most widely used power semiconductor device in the world.<sup id="cite_ref-aosmd_3-2" class="reference"><a href="#cite_note-aosmd-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> As of 2010<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Power_MOSFET&action=edit">[update]</a></sup>, the power MOSFET accounts for 53% of the <a href="/wiki/Power_semiconductor_device" title="Power semiconductor device">power transistor</a> market, ahead of the <a href="/wiki/Insulated-gate_bipolar_transistor" title="Insulated-gate bipolar transistor">insulated-gate bipolar transistor</a> (27%), <a href="/wiki/RF_power_amplifier" title="RF power amplifier">RF power amplifier</a> (11%) and bipolar junction transistor (9%).<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> As of 2018<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Power_MOSFET&action=edit">[update]</a></sup>, over 50 billion power MOSFETs are shipped annually.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> These include the trench power MOSFET, which sold over 100 billion units up until February 2017,<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/STMicroelectronics" title="STMicroelectronics">STMicroelectronics</a>' MDmesh (superjunction MOSFET) which has sold 5 billion units as of 2019<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Power_MOSFET&action=edit">[update]</a></sup>.<sup id="cite_ref-st_22-1" class="reference"><a href="#cite_note-st-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p><p>Power MOSFETs are commonly used for a wide range of <a href="/wiki/Consumer_electronics" title="Consumer electronics">consumer electronics</a>.<sup id="cite_ref-Infineon-MOSFET_27-0" class="reference"><a href="#cite_note-Infineon-MOSFET-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-EiceDRIVER_28-0" class="reference"><a href="#cite_note-EiceDRIVER-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> </p><p>RF DMOS, also known as RF power MOSFET, is a type of <a href="/wiki/DMOS" class="mw-redirect" title="DMOS">DMOS</a> power transistor designed for <a href="/wiki/Radio-frequency" class="mw-redirect" title="Radio-frequency">radio-frequency</a> (RF) applications. It is used in various <a href="/wiki/Radio" title="Radio">radio</a> and RF applications.<sup id="cite_ref-RF-DMOS_29-0" class="reference"><a href="#cite_note-RF-DMOS-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-AN1256_30-0" class="reference"><a href="#cite_note-AN1256-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> </p><p>Power MOSFETs are widely used in <a href="/wiki/Transportation" class="mw-redirect" title="Transportation">transportation</a> technology,<sup id="cite_ref-Emadi2017_31-0" class="reference"><a href="#cite_note-Emadi2017-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Infineon_32-0" class="reference"><a href="#cite_note-Infineon-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-HITFET_33-0" class="reference"><a href="#cite_note-HITFET-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> which include a wide range of <a href="/wiki/Vehicles" class="mw-redirect" title="Vehicles">vehicles</a>. </p><p>In the <a href="/wiki/Automotive_industry" title="Automotive industry">automotive industry</a>,<sup id="cite_ref-spinoff_34-0" class="reference"><a href="#cite_note-spinoff-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Veendrick245_35-0" class="reference"><a href="#cite_note-Veendrick245-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Korec9_36-0" class="reference"><a href="#cite_note-Korec9-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> power MOSFETs are widely used in <a href="/wiki/Automotive_electronics" title="Automotive electronics">automotive electronics</a>.<sup id="cite_ref-Fuji_37-0" class="reference"><a href="#cite_note-Fuji-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Williams2017_38-0" class="reference"><a href="#cite_note-Williams2017-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Infineon-MOSFET_27-1" class="reference"><a href="#cite_note-Infineon-MOSFET-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> </p><p>Power MOSFETs (including DMOS, <a href="/wiki/LDMOS" title="LDMOS">LDMOS</a> and <a href="/wiki/VMOS" title="VMOS">VMOS</a>) are commonly used for a wide range of other applications. </p> <div class="mw-heading mw-heading2"><h2 id="Basic_structure">Basic structure</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=3" title="Edit section: Basic structure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Vdmos_cross_section_en.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Vdmos_cross_section_en.svg/220px-Vdmos_cross_section_en.svg.png" decoding="async" width="220" height="156" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Vdmos_cross_section_en.svg/330px-Vdmos_cross_section_en.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Vdmos_cross_section_en.svg/440px-Vdmos_cross_section_en.svg.png 2x" data-file-width="1052" data-file-height="744" /></a><figcaption>Fig. 1: Cross section of a VDMOS, showing an elementary cell. Note that a cell is very small (some micrometres to some tens of micrometres wide), and that a power MOSFET is composed of several thousand of them.</figcaption></figure> <p>Several structures had been explored in the 1970s, when the first commercial power MOSFETs were introduced. However, most of them have been abandoned (at least until recently) in favour of the <b>Vertical Diffused MOS</b> (<b>VDMOS</b>) structure (also called Double-Diffused MOS or simply <b>DMOS</b>) and the <a href="/wiki/LDMOS" title="LDMOS">LDMOS</a> (laterally diffused MOS) structure. </p><p>The cross section of a VDMOS (see figure 1) shows the "verticality" of the device: it can be seen that the source electrode is placed over the drain, resulting in a current mainly vertical when the transistor is in the on-state. The "<a href="/wiki/Diffusion" title="Diffusion">diffusion</a>" in VDMOS refers to the manufacturing process: the P wells (see figure 1) are obtained by a diffusion process (actually a double diffusion process to get the P and N<sup>+</sup> regions, hence the name double diffused). </p><p>Power MOSFETs have a different structure from the lateral MOSFET: as with most power devices, their structure is vertical and not planar. In a planar structure, the current and <a href="/wiki/Breakdown_voltage" title="Breakdown voltage">breakdown voltage</a> ratings are both functions of the channel dimensions (respectively width and length of the channel), resulting in inefficient use of the "silicon real estate". With a vertical structure, the voltage rating of the transistor is a function of the <a href="/wiki/Doping_(semiconductor)" title="Doping (semiconductor)">doping</a> and thickness of the N epitaxial layer (see cross section), while the current rating is a function of the channel width. This makes it possible for the transistor to sustain both high blocking voltage and high current within a compact piece of silicon. </p><p>LDMOS are power MOSFETs with a lateral structure. They are mainly used in high-end <a href="/wiki/Audio_power_amplifier" title="Audio power amplifier">audio power amplifiers</a>,<sup id="cite_ref-Duncan177_16-3" class="reference"><a href="#cite_note-Duncan177-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/RF_power_amplifier" title="RF power amplifier">RF power amplifiers</a> in wireless <a href="/wiki/Cellular_network" title="Cellular network">cellular networks</a>, such as <a href="/wiki/2G" title="2G">2G</a>, <a href="/wiki/3G" title="3G">3G</a>,<sup id="cite_ref-Baliga2005_17-1" class="reference"><a href="#cite_note-Baliga2005-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/4G" title="4G">4G</a>.<sup id="cite_ref-Asif_18-1" class="reference"><a href="#cite_note-Asif-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> Their advantage is a better behaviour in the saturated region (corresponding to the linear region of a bipolar junction transistor) than the vertical MOSFETs. Vertical MOSFETs are designed for switching applications, so they are only used in On or Off states. </p> <div class="mw-heading mw-heading3"><h3 id="On-state_resistance">On-state resistance</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=4" title="Edit section: On-state resistance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Mosfet_resistances.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b6/Mosfet_resistances.svg/220px-Mosfet_resistances.svg.png" decoding="async" width="220" height="187" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b6/Mosfet_resistances.svg/330px-Mosfet_resistances.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b6/Mosfet_resistances.svg/440px-Mosfet_resistances.svg.png 2x" data-file-width="876" data-file-height="744" /></a><figcaption>Fig.2: Contribution of the different parts of the MOSFET to the on-state resistance.</figcaption></figure> <p>When the power MOSFET is in the on-state (see <a href="/wiki/MOSFET" title="MOSFET">MOSFET</a> for a discussion on operation modes), it exhibits a resistive behaviour between the drain and source terminals. It can be seen in figure 2 that this resistance (called R<sub>DSon</sub> for "drain to source resistance in on-state") is the sum of many elementary contributions: </p> <ul><li>R<sub>S</sub> is the source resistance. It represents all resistances between the source terminal of the package to the channel of the MOSFET: resistance of the <a href="/wiki/Wire_bonding" title="Wire bonding">wire bonds</a>, of the source metallisation, and of the N<sup>+</sup> wells;</li> <li>R<sub>ch</sub>. This is the channel resistance. It is inversely proportional to the channel width, and for a given die size, to the channel density. The channel resistance is one of the main contributors to the R<sub>DSon</sub> of low-voltage MOSFETs, and intensive work has been carried out to reduce their cell size in order to increase the channel density;</li> <li>R<sub>a</sub> is the <i>access</i> resistance. It represents the resistance of the epitaxial zone directly under the gate electrode, where the direction of the current changes from horizontal (in the channel) to vertical (to the drain contact);</li> <li>R<sub>JFET</sub> is the detrimental effect of the cell size reduction mentioned above: the P implantations (see figure 1) form the gates of a parasitic <a href="/wiki/JFET" title="JFET">JFET</a> transistor that tend to reduce the width of the current flow;</li> <li>R<sub>n</sub> is the resistance of the epitaxial layer. As the role of this layer is to sustain the blocking voltage, R<sub>n</sub> is directly related to the voltage rating of the device. A high voltage MOSFET requires a thick, low-doped layer, <i>i.e.</i>, highly resistive, whereas a low-voltage transistor only requires a thin layer with a higher doping level, <i>i.e.</i>, less resistive. As a result, R<sub>n</sub> is the main factor responsible for the resistance of high-voltage MOSFETs;</li> <li>R<sub>D</sub> is the equivalent of R<sub>S</sub> for the drain. It represents the resistance of the transistor substrate (the cross section in figure 1 is not at scale, the bottom N<sup>+</sup> layer is actually the thickest) and of the package connections.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Breakdown_voltage/on-state_resistance_trade-off"><span id="Breakdown_voltage.2Fon-state_resistance_trade-off"></span>Breakdown voltage/on-state resistance trade-off</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=5" title="Edit section: Breakdown voltage/on-state resistance trade-off"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Bv_rdson.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/Bv_rdson.png/220px-Bv_rdson.png" decoding="async" width="220" height="154" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/Bv_rdson.png/330px-Bv_rdson.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/67/Bv_rdson.png/440px-Bv_rdson.png 2x" data-file-width="1500" data-file-height="1050" /></a><figcaption>Fig. 3: The R<sub>DSon</sub> of the MOSFETs increase with their voltage rating.</figcaption></figure> <p>When in the OFF-state, the power MOSFET is equivalent to a PIN diode (constituted by the P<sup>+</sup> diffusion, the N<sup>−</sup> epitaxial layer and the N<sup>+</sup> substrate). When this highly non-symmetrical structure is reverse-biased, the space-charge region extends principally on the light-doped side, <i>i.e.</i>, over the N<sup>−</sup> layer. This means that this layer has to withstand most of the MOSFET's OFF-state drain-to-source voltage. </p><p>However, when the MOSFET is in the ON-state, this N<sup>−</sup> layer has no function. Furthermore, as it is a lightly doped region, its intrinsic resistivity is non-negligible and adds to the MOSFET's ON-state Drain-to-Source Resistance (R<sub>DSon</sub>) (this is the R<sub>n</sub> resistance in figure 2). </p><p>Two main parameters govern both the breakdown voltage and the R<sub>DSon</sub> of the transistor: the doping level and the thickness of the N<sup>−</sup> epitaxial layer. The thicker the layer and the lower its doping level, the higher the breakdown voltage. On the contrary, the thinner the layer and the higher the doping level, the lower the R<sub>DSon</sub> (and therefore the lower the conduction losses of the MOSFET). Therefore, it can be seen that there is a trade-off in the design of a MOSFET, between its voltage rating and its ON-state resistance.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (July 2017)">citation needed</span></a></i>]</sup> This is demonstrated by the plot in figure 3. </p> <div class="mw-heading mw-heading3"><h3 id="Body_diode">Body diode</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=6" title="Edit section: Body diode"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It can be seen in figure 1 that the source metallization connects both the N<sup>+</sup> and P<sup>+</sup> implantations, although the operating principle of the MOSFET only requires the source to be connected to the N<sup>+</sup> zone. However, if it were, this would result in a floating P zone between the N-doped source and drain, which is equivalent to a <a href="/wiki/Bipolar_junction_transistor#NPN" title="Bipolar junction transistor">NPN transistor</a> with a non-connected base. Under certain conditions (under high drain current, when the on-state drain to source voltage is in the order of some volts), this parasitic NPN transistor would be triggered, making the MOSFET uncontrollable. The connection of the P implantation to the source metallization shorts the base of the parasitic transistor to its emitter (the source of the MOSFET) and thus prevents spurious latching. This solution, however, creates a <a href="/wiki/Diode" title="Diode">diode</a> between the drain (cathode) and the source (anode) of the MOSFET, making it able to block current in only one direction. </p><p>Body diodes may be utilized as <a href="/wiki/Flyback_diode" title="Flyback diode">freewheeling diodes</a> for inductive loads in configurations such as <a href="/wiki/H_bridge" class="mw-redirect" title="H bridge">H bridge</a> or half bridge. While these diodes usually have rather high forward voltage drop, they can handle large currents and are sufficient in many applications, reducing part count, and thus, device cost and board space. To increase efficiency, <a href="/wiki/Synchronous_rectification" class="mw-redirect" title="Synchronous rectification">synchronous rectification</a> is often used to minimize the amount of time that the body diode conducts current. </p> <div class="mw-heading mw-heading2"><h2 id="Switching_operation">Switching operation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=7" title="Edit section: Switching operation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Mosfet_capacitances.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Mosfet_capacitances.svg/220px-Mosfet_capacitances.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Mosfet_capacitances.svg/330px-Mosfet_capacitances.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Mosfet_capacitances.svg/440px-Mosfet_capacitances.svg.png 2x" data-file-width="626" data-file-height="625" /></a><figcaption>Fig. 4: Location of the intrinsic capacitances of a power MOSFET.</figcaption></figure> <p>Because of their unipolar nature, the power MOSFET can switch at very high speed. Indeed, there is no need to remove minority carriers as with bipolar devices. The only intrinsic limitation in commutation speed is due to the internal capacitances of the MOSFET (see figure 4). These capacitances must be charged or discharged when the transistor switches. This can be a relatively slow process because the current that flows through the gate capacitances is limited by the external driver circuit. This circuit will actually dictate the commutation speed of the transistor (assuming the power circuit has sufficiently low inductance). </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/MOSFET_Gate_Driver" title="MOSFET Gate Driver">MOSFET Gate Driver</a></div> <div class="mw-heading mw-heading3"><h3 id="Capacitances">Capacitances</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=8" title="Edit section: Capacitances"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the MOSFET <a href="/wiki/Datasheet" title="Datasheet">datasheets</a>, the capacitances are often named C<sub>iss</sub> (input capacitance, drain and source terminal shorted), C<sub>oss</sub> (output capacitance, gate and source shorted), and C<sub>rss</sub> (reverse transfer capacitance, source connected to ground). The relationship between these capacitances and those described below is: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}C_{iss}&=&C_{GS}+C_{GD}\\C_{oss}&=&C_{GD}+C_{DS}\\C_{rss}&=&C_{GD}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>s</mi> <mi>s</mi> </mrow> </msub> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>S</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>D</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> <mi>s</mi> <mi>s</mi> </mrow> </msub> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>D</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> <mi>S</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mi>s</mi> <mi>s</mi> </mrow> </msub> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>D</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}C_{iss}&=&C_{GS}+C_{GD}\\C_{oss}&=&C_{GD}+C_{DS}\\C_{rss}&=&C_{GD}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd531db8356811940232e2ceaead7395e497b389" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:23.14ex; height:9.176ex;" alt="{\displaystyle {\begin{matrix}C_{iss}&=&C_{GS}+C_{GD}\\C_{oss}&=&C_{GD}+C_{DS}\\C_{rss}&=&C_{GD}\end{matrix}}}"></span> </p><p>Where C<sub>GS</sub>, C<sub>GD</sub> and C<sub>DS</sub> are respectively the gate-to-source, gate-to-drain and drain-to-source capacitances (see below). Manufacturers prefer to quote C<sub>iss</sub>, C<sub>oss</sub> and C<sub>rss</sub> because they can be directly measured on the transistor. However, as C<sub>GS</sub>, C<sub>GD</sub> and C<sub>DS</sub> are closer to the physical meaning, they will be used in the remaining of this article. </p> <div class="mw-heading mw-heading4"><h4 id="Gate_to_source_capacitance">Gate to source capacitance</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=9" title="Edit section: Gate to source capacitance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The C<sub>GS</sub> capacitance is constituted by the parallel connection of C<sub>oxN+</sub>, C<sub>oxP</sub> and C<sub>oxm</sub> (see figure 4). As the N<sup>+</sup> and P regions are highly doped, the two former capacitances can be considered as constant. C<sub>oxm</sub> is the capacitance between the (polysilicon) gate and the (metal) source electrode, so it is also constant. Therefore, it is common practice to consider C<sub>GS</sub> as a constant capacitance, i.e. its value does not depend on the transistor state. </p> <div class="mw-heading mw-heading4"><h4 id="Gate_to_drain_capacitance">Gate to drain capacitance</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=10" title="Edit section: Gate to drain capacitance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The C<sub>GD</sub> capacitance can be seen as the connection in series of two elementary capacitances. The first one is the oxide capacitance (C<sub>oxD</sub>), constituted by the gate electrode, the silicon dioxide and the top of the N epitaxial layer. It has a constant value. The second capacitance (C<sub>GDj</sub>) is caused by the extension of the <a href="/wiki/Depletion_region" title="Depletion region">space-charge zone</a> when the MOSFET is in off-state. Therefore, it is dependent upon the drain to gate voltage. From this, the value of C<sub>GD</sub> is: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{GD}={\frac {C_{oxD}\times C_{GDj}\left(V_{GD}\right)}{C_{oxD}+C_{GDj}\left(V_{GD}\right)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>D</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> <mi>x</mi> <mi>D</mi> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>D</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>D</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> <mi>x</mi> <mi>D</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>D</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>D</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{GD}={\frac {C_{oxD}\times C_{GDj}\left(V_{GD}\right)}{C_{oxD}+C_{GDj}\left(V_{GD}\right)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55dee7b49f5306638219f6e972d820cf06975b2a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:27.974ex; height:6.509ex;" alt="{\displaystyle C_{GD}={\frac {C_{oxD}\times C_{GDj}\left(V_{GD}\right)}{C_{oxD}+C_{GDj}\left(V_{GD}\right)}}}"></span> </p><p>The width of the space-charge region is given by<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w_{GDj}={\sqrt {\frac {2\epsilon _{Si}V_{GD}}{qN}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>D</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mn>2</mn> <msub> <mi>ϵ<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>D</mi> </mrow> </msub> </mrow> <mrow> <mi>q</mi> <mi>N</mi> </mrow> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w_{GDj}={\sqrt {\frac {2\epsilon _{Si}V_{GD}}{qN}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4576148fbcb7763efda671597c4efc494a960a63" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:19.691ex; height:7.509ex;" alt="{\displaystyle w_{GDj}={\sqrt {\frac {2\epsilon _{Si}V_{GD}}{qN}}}}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \epsilon _{Si}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ϵ<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \epsilon _{Si}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71cdf288ff8de796b6ddafa7a65093cc19ca617e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.804ex; height:2.009ex;" alt="{\displaystyle \epsilon _{Si}}"></span> is the <a href="/wiki/Permittivity" title="Permittivity">permittivity</a> of the Silicon, q is the <a href="/wiki/Electron" title="Electron">electron</a> charge, and N is the <a href="/wiki/Doping_(semiconductor)" title="Doping (semiconductor)">doping</a> level. The value of C<sub>GDj</sub> can be approximated using the expression of the <a href="/wiki/Capacitor#Parallel-plate_capacitor" title="Capacitor">plane capacitor</a>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{GDj}=A_{GD}{\frac {\epsilon _{Si}}{w_{GDj}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>D</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>D</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>ϵ<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>D</mi> <mi>j</mi> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{GDj}=A_{GD}{\frac {\epsilon _{Si}}{w_{GDj}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/766b02cd74b2a31396c2200aa123dc5a61ab142b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:19.012ex; height:5.343ex;" alt="{\displaystyle C_{GDj}=A_{GD}{\frac {\epsilon _{Si}}{w_{GDj}}}}"></span> </p><p>Where A<sub>GD</sub> is the surface area of the gate-drain overlap. Therefore, it comes: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{GDj}\left(V_{GD}\right)=A_{GD}{\sqrt {\frac {q\epsilon _{Si}N}{2V_{GD}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>D</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>D</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>D</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mi>q</mi> <msub> <mi>ϵ<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> <mi>i</mi> </mrow> </msub> <mi>N</mi> </mrow> <mrow> <mn>2</mn> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>D</mi> </mrow> </msub> </mrow> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{GDj}\left(V_{GD}\right)=A_{GD}{\sqrt {\frac {q\epsilon _{Si}N}{2V_{GD}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/590f6659f6014316638a122a6a163ece321fc3b0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:28.483ex; height:7.676ex;" alt="{\displaystyle C_{GDj}\left(V_{GD}\right)=A_{GD}{\sqrt {\frac {q\epsilon _{Si}N}{2V_{GD}}}}}"></span> </p><p>It can be seen that C<sub>GDj</sub> (and thus C<sub>GD</sub>) is a capacitance whose value is dependent upon the gate to drain voltage. As this voltage increases, the capacitance decreases. When the MOSFET is in on-state, C<sub>GDj</sub> is shunted, so the gate to drain capacitance remains equal to C<sub>oxD</sub>, a constant value. </p> <div class="mw-heading mw-heading4"><h4 id="Drain_to_source_capacitance">Drain to source capacitance</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=11" title="Edit section: Drain to source capacitance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As the source metallization overlaps the P-wells (see figure 1), the drain and source terminals are separated by a <a href="/wiki/P-N_junction" class="mw-redirect" title="P-N junction">P-N junction</a>. Therefore, C<sub>DS</sub> is the junction capacitance. This is a non-linear capacitance, and its value can be calculated using the same equation as for C<sub>GDj</sub>. </p> <div class="mw-heading mw-heading3"><h3 id="Other_dynamic_elements">Other dynamic elements</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=12" title="Edit section: Other dynamic elements"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Mosfet_equivalent_circuit.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Mosfet_equivalent_circuit.svg/220px-Mosfet_equivalent_circuit.svg.png" decoding="async" width="220" height="237" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Mosfet_equivalent_circuit.svg/330px-Mosfet_equivalent_circuit.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Mosfet_equivalent_circuit.svg/440px-Mosfet_equivalent_circuit.svg.png 2x" data-file-width="744" data-file-height="802" /></a><figcaption>Equivalent circuit of a power MOSFET, including the dynamic elements (capacitors, inductors), the parasitic resistors, the body diode.</figcaption></figure> <div class="mw-heading mw-heading4"><h4 id="Packaging_inductances">Packaging inductances</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=13" title="Edit section: Packaging inductances"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>To operate, the MOSFET must be connected to the external circuit, most of the time using <a href="/wiki/Wire_bonding" title="Wire bonding">wire bonding</a> (although alternative techniques are investigated). These connections exhibit a parasitic inductance, which is in no way specific to the MOSFET technology, but has important effects because of the high commutation speeds. Parasitic inductances tend to maintain their current constant and generate overvoltage during the transistor turn off, resulting in increasing commutation losses. </p><p>A parasitic inductance can be associated with each terminal of the MOSFET. They have different effects: </p> <ul><li>the gate inductance has little influence (assuming it is lower than some hundreds of nanohenries), because the current gradients on the gate are relatively slow. In some cases, however, the gate inductance and the input capacitance of the transistor can constitute an <a href="/wiki/Electronic_oscillator" title="Electronic oscillator">oscillator</a>. This must be avoided, as it results in very high commutation losses (up to the destruction of the device). On a typical design, parasitic inductances are kept low enough to prevent this phenomenon;</li> <li>the drain inductance tends to reduce the drain voltage when the MOSFET turns on, so it reduces turn on losses. However, as it creates an overvoltage during turn-off, it increases turn-off losses;</li> <li>the source parasitic inductance has the same behaviour as the drain inductance, plus a <a href="/wiki/Feedback" title="Feedback">feedback</a> effect that makes commutation last longer, thus increasing commutation losses. <ul><li>at the beginning of a fast turn-on, due to the source inductance, the voltage at the source (on the die) will be able to jump up as well as the gate voltage; the internal V<sub>GS</sub> voltage will remain low for a longer time, therefore delaying turn-on.</li> <li>at the beginning of a fast turn-off, as current through the source inductance decreases sharply, the resulting voltage across it goes negative (with respect to the lead outside the package) raising the internal V<sub>GS</sub> voltage, keeping the MOSFET on, and therefore delaying turn-off.</li></ul></li></ul> <div class="mw-heading mw-heading2"><h2 id="Limits_of_operation">Limits of operation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=14" title="Edit section: Limits of operation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Gate_oxide_breakdown">Gate oxide breakdown</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=15" title="Edit section: Gate oxide breakdown"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The gate oxide is very thin (100 nm or less), so it can only sustain a limited voltage. In the datasheets, manufacturers often state a maximum gate to source voltage, around 20 V, and exceeding this limit can result in destruction of the component. Furthermore, a high gate to source voltage reduces significantly the lifetime of the MOSFET, with little to no advantage on R<sub>DSon</sub> reduction. </p><p>To deal with this issue, a <a href="/wiki/Gate_driver" title="Gate driver">gate driver</a> circuit is often used. </p> <div class="mw-heading mw-heading3"><h3 id="Maximum_drain_to_source_voltage">Maximum drain to source voltage</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=16" title="Edit section: Maximum drain to source voltage"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Power MOSFETs have a maximum specified drain to source voltage (when turned off), beyond which <a href="/wiki/Avalanche_breakdown" title="Avalanche breakdown">breakdown</a> may occur. Exceeding the breakdown voltage causes the device to conduct, potentially damaging it and other circuit elements due to excessive power dissipation. </p> <div class="mw-heading mw-heading3"><h3 id="Maximum_drain_current">Maximum drain current</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=17" title="Edit section: Maximum drain current"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The drain current must generally stay below a certain specified value (maximum continuous drain current). It can reach higher values for very short durations of time (maximum pulsed drain current, sometimes specified for various pulse durations). The drain current is limited by heating due to <a href="/wiki/Joule_heating" title="Joule heating">resistive losses</a> in internal components such as <a href="/wiki/Wire_bonding" title="Wire bonding">bond wires</a>, and other phenomena such as <a href="/wiki/Electromigration" title="Electromigration">electromigration</a> in the metal layer. </p> <div class="mw-heading mw-heading3"><h3 id="Maximum_temperature">Maximum temperature</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=18" title="Edit section: Maximum temperature"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Junction_temperature" title="Junction temperature">junction temperature</a> (T<sub>J</sub>) of the MOSFET must stay under a specified maximum value for the device to function reliably, determined by MOSFET die layout and packaging materials. The packaging often limits the maximum junction temperature, due to the molding compound and (where used) epoxy characteristics. </p><p>The maximum operating ambient temperature is determined by the power dissipation and <a href="/wiki/Thermal_resistance" class="mw-redirect" title="Thermal resistance">thermal resistance</a>. The junction-to-case thermal resistance is intrinsic to the device and package; the case-to-ambient thermal resistance is largely dependent on the board/mounting layout, heatsinking area and air/fluid flow. </p><p>The type of power dissipation, whether continuous or pulsed, affects the maximum <a href="/wiki/Operating_temperature" title="Operating temperature">operating temperature</a>, due to <a href="/wiki/Thermal_mass" title="Thermal mass">thermal mass</a> characteristics; in general, the lower the frequency of pulses for a given power dissipation, the higher maximum operating ambient temperature, due to allowing a longer interval for the device to cool down. Models, such as a <a href="/wiki/Foster%27s_reactance_theorem" title="Foster's reactance theorem">Foster network</a>, can be used to analyze temperature dynamics from power transients. </p> <div class="mw-heading mw-heading3"><h3 id="Safe_operating_area">Safe operating area</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=19" title="Edit section: Safe operating area"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Safe_operating_area" title="Safe operating area">safe operating area</a> defines the combined ranges of drain current and drain to source voltage the power MOSFET is able to handle without damage. It is represented graphically as an area in the plane defined by these two parameters. Both drain current and drain-to-source voltage must stay below their respective maximum values, but their product must also stay below the maximum power dissipation the device is able to handle. Thus, the device cannot be operated at its maximum current and maximum voltage simultaneously.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Latch-up">Latch-up</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=20" title="Edit section: Latch-up"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The equivalent circuit for a power MOSFET consists of one MOSFET in parallel with a parasitic BJT. If the BJT turns ON, it cannot be turned off, since the gate has no control over it. This phenomenon is known as "<a href="/wiki/Latch-up" title="Latch-up">latch-up</a>", which can lead to device destruction. The BJT can be turned on due to a voltage drop across the p-type body region. To avoid latch-up, the body and the source are typically short-circuited within the device package. </p> <div class="mw-heading mw-heading2"><h2 id="Technology">Technology</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=21" title="Edit section: Technology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Power_mos_cell_layout.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Power_mos_cell_layout.svg/220px-Power_mos_cell_layout.svg.png" decoding="async" width="220" height="156" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Power_mos_cell_layout.svg/330px-Power_mos_cell_layout.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Power_mos_cell_layout.svg/440px-Power_mos_cell_layout.svg.png 2x" data-file-width="1052" data-file-height="744" /></a><figcaption>This power MOSFET has a meshed gate, with square cells</figcaption></figure> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Power_mos_strip_layout.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7b/Power_mos_strip_layout.svg/220px-Power_mos_strip_layout.svg.png" decoding="async" width="220" height="156" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7b/Power_mos_strip_layout.svg/330px-Power_mos_strip_layout.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7b/Power_mos_strip_layout.svg/440px-Power_mos_strip_layout.svg.png 2x" data-file-width="1052" data-file-height="744" /></a><figcaption>The gate layout of this MOSFET is constituted of parallel stripes.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Layout">Layout</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=22" title="Edit section: Layout"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Cellular_structure">Cellular structure</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=23" title="Edit section: Cellular structure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As described above, the current handling capability of a power MOSFET is determined by its gate channel width. The gate channel width is the third (Z-axis) dimension of the cross-sections pictured. </p><p>To minimize cost and size, it is valuable to keep the transistor's die area size as small as possible. Therefore, optimizations have been developed to increase the width of the channel surface area, <i>i.e.</i>, increase the "channel density". They mainly consist of creating cellular structures repeated over the whole area of the MOSFET die. Several shapes have been proposed for these cells, the most famous being the hexagonal shape used in International Rectifier's HEXFET devices. </p><p>Another way to increase the channel density is to reduce the size of the elementary structure. This allows for more cells in a given surface area, and therefore more channel width. However, as the cell size shrinks, it becomes more difficult to ensure proper contact of every cell. To overcome this, a "strip" structure is often used (see figure). It is less efficient than a cellular structure of equivalent resolution in terms of channel density, but can cope with smaller pitch. Another advantage of the planar stripe structure is that it is less susceptible to failure during avalanche breakdown events in which the parasitic bipolar transistor turns on from sufficient forward bias. In the cellular structure, if the source terminal of any one cell is poorly contacted, then it becomes much more likely that the parasitic bipolar transistor latches on during an avalanche breakdown event. Because of this, MOSFETs utilizing a planar stripe structure can only fail during avalanche breakdown due to extreme thermal stress.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Structures">Structures</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=24" title="Edit section: Structures"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:VMOS_cross_section_en.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/VMOS_cross_section_en.png/220px-VMOS_cross_section_en.png" decoding="async" width="220" height="202" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/VMOS_cross_section_en.png/330px-VMOS_cross_section_en.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f0/VMOS_cross_section_en.png/440px-VMOS_cross_section_en.png 2x" data-file-width="600" data-file-height="550" /></a><figcaption>The VMOS structure has a V-groove at the gate region</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Umos_cross_section_en.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Umos_cross_section_en.svg/220px-Umos_cross_section_en.svg.png" decoding="async" width="220" height="156" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Umos_cross_section_en.svg/330px-Umos_cross_section_en.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Umos_cross_section_en.svg/440px-Umos_cross_section_en.svg.png 2x" data-file-width="1052" data-file-height="744" /></a><figcaption>The UMOS has a trench gate. It is intended to increase the channel density by making the channel vertical</figcaption></figure> <div class="mw-heading mw-heading4"><h4 id="P-substrate_power_MOSFET">P-substrate power MOSFET</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=25" title="Edit section: P-substrate power MOSFET"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A P-substrate MOSFET (often called PMOS) is a MOSFET with opposite doping types (N instead of P and P instead of N in the cross-section in figure 1). This MOSFET is made using a P-type substrate, with a P<sup>−</sup> epitaxy. As the channel sits in a N-region, this transistor is turned on by a negative gate to source voltage. This makes it desirable in a <a href="/wiki/Buck_converter" title="Buck converter">buck converter</a>, where one of the terminals of the switch is connected to the high side of the input voltage: with a N-MOSFET, this configuration requires to apply to the gate a voltage equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{in}+V_{GS}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>S</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{in}+V_{GS}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbb21faeaa7db8cb26d3886a24c782e564411adf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.921ex; height:2.509ex;" alt="{\displaystyle V_{in}+V_{GS}}"></span>, whereas no voltage over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{in}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{in}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c6060c97f17cc6b2d539c313fd50a1b637b151f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.141ex; height:2.509ex;" alt="{\displaystyle V_{in}}"></span> is required with a P-MOSFET. </p><p>The main disadvantage of this type of MOSFET is the poor on-state performance, as it uses holes as <a href="/wiki/Charge_carrier" title="Charge carrier">charge carriers</a>, which have a much lower <a href="/wiki/Electron_mobility" title="Electron mobility">mobility</a> than electrons. As <a href="/wiki/Electrical_resistivity_and_conductivity" title="Electrical resistivity and conductivity">resistivity</a> is directly related to mobility, a given PMOS device will have a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{DSon}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> <mi>S</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{DSon}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4014049d807a65583fe731f5fda3a4075f87679e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.201ex; height:2.509ex;" alt="{\displaystyle R_{DSon}}"></span> three times higher than a N-MOSFET with the same dimensions. </p> <div class="mw-heading mw-heading4"><h4 id="VMOS">VMOS</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=26" title="Edit section: VMOS"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/VMOS" title="VMOS">VMOS</a> structure has a V-groove at the gate region and was used for the first commercial devices.<sup id="cite_ref-grant_42-0" class="reference"><a href="#cite_note-grant-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="UMOS">UMOS</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=27" title="Edit section: UMOS"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In this power MOSFET structure, also called trench-MOS, the gate electrode is buried in a trench etched in the silicon. This results in a vertical channel. The main interest of the structure is the absence of the JFET effect. The name of the structure comes from the U-shape of the trench. </p> <div class="mw-heading mw-heading4"><h4 id="Super-junction_deep-trench_technology">Super-junction deep-trench technology</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=28" title="Edit section: Super-junction deep-trench technology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Especially for voltages beyond 500 V, some manufacturers, including <a href="/wiki/Infineon_Technologies" title="Infineon Technologies">Infineon Technologies</a> with its CoolMOS products, have begun to use a charge compensation principle. With this technology, the resistance of the epitaxial layer, which is the biggest contributor (more than 95%) to the device resistance of high-voltage MOSFETs, can be reduced by a factor of greater than 5. </p><p>Seeking to improve the manufacturing efficiency and reliability of super-junction MOSFETs, <a href="/wiki/Renesas_Electronics" title="Renesas Electronics">Renesas Electronics</a> developed a super-junction structure with a deep-trench process technique. This technology entails etching trenches in the low-impurity N-type material to form P-type regions. This process overcomes problems inherent to the multi-level epitaxial growth approach and results in extremely low on-resistance and reduced internal capacitance. </p><p>Due to the increased p-n junction area, a super-junction structure has a smaller reverse recovery time but larger reverse recovery current compared to a conventional planar power MOSFET. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=29" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Insulated-gate_bipolar_transistor" title="Insulated-gate bipolar transistor">Insulated-gate bipolar transistor</a></li> <li><a href="/wiki/MOSFET" title="MOSFET">MOSFET</a></li> <li><a href="/wiki/Power_electronics" title="Power electronics">Power electronics</a></li> <li><a href="/wiki/Power_semiconductor_device" title="Power semiconductor device">Power semiconductor device</a><div style="clear:both;" class=""></div></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=30" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.infineon.com/cms/en/product/power/mosfet/20v-300v-n-channel-power-mosfet/40v-75v-n-channel-power-mosfet/irlz24n/">IRLZ24N, 55V N-Channel Power MOSFET, TO-220AB package; Infineon.</a></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFIrwin1997" class="citation book cs1">Irwin, J. David (1997). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=s0k9kGs5bHYC&pg=PA218"><i>The Industrial Electronics Handbook</i></a>. <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>. p. 218. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780849383434" title="Special:BookSources/9780849383434"><bdi>9780849383434</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Industrial+Electronics+Handbook&rft.pages=218&rft.pub=CRC+Press&rft.date=1997&rft.isbn=9780849383434&rft.aulast=Irwin&rft.aufirst=J.+David&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Ds0k9kGs5bHYC%26pg%3DPA218&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-aosmd-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-aosmd_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-aosmd_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-aosmd_3-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.aosmd.com/res/application_notes/mosfets/Power_MOSFET_Basics.pdf">"Power MOSFET Basics"</a> <span class="cs1-format">(PDF)</span>. <i>Alpha & Omega Semiconductor</i><span class="reference-accessdate">. Retrieved <span class="nowrap">29 July</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Alpha+%26+Omega+Semiconductor&rft.atitle=Power+MOSFET+Basics&rft_id=http%3A%2F%2Fwww.aosmd.com%2Fres%2Fapplication_notes%2Fmosfets%2FPower_MOSFET_Basics.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Duncan178-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-Duncan178_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Duncan178_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDuncan1996" class="citation book cs1">Duncan, Ben (1996). <a rel="nofollow" class="external text" href="https://archive.org/details/highperfomanceau0000dunc/page/178"><i>High Performance Audio Power Amplifiers</i></a>. <a href="/wiki/Elsevier" title="Elsevier">Elsevier</a>. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/highperfomanceau0000dunc/page/178">178–81</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780080508047" title="Special:BookSources/9780080508047"><bdi>9780080508047</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=High+Performance+Audio+Power+Amplifiers&rft.pages=178-81&rft.pub=Elsevier&rft.date=1996&rft.isbn=9780080508047&rft.aulast=Duncan&rft.aufirst=Ben&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhighperfomanceau0000dunc%2Fpage%2F178&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1041539562">.mw-parser-output .citation{word-wrap:break-word}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}</style><span class="citation patent" id="CITEREFLincolnFrosch1957"><a rel="nofollow" class="external text" href="https://patents.google.com/patent/US2802760A">US2802760A</a>, Lincoln, Derick & Frosch, Carl J., "Oxidation of semiconductive surfaces for controlled diffusion", issued 1957-08-13</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.number=US2802760A&rft.cc=&rft.title=Oxidation+of+semiconductive+surfaces+for+controlled+diffusion&rft.inventor=Lincoln&rft.date=1957-08-13"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFroschDerick1957" class="citation journal cs1">Frosch, C. J.; Derick, L (1957). <a rel="nofollow" class="external text" href="https://iopscience.iop.org/article/10.1149/1.2428650">"Surface Protection and Selective Masking during Diffusion in Silicon"</a>. <i>Journal of the Electrochemical Society</i>. <b>104</b> (9): 547. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1.2428650">10.1149/1.2428650</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Electrochemical+Society&rft.atitle=Surface+Protection+and+Selective+Masking+during+Diffusion+in+Silicon&rft.volume=104&rft.issue=9&rft.pages=547&rft.date=1957&rft_id=info%3Adoi%2F10.1149%2F1.2428650&rft.aulast=Frosch&rft.aufirst=C.+J.&rft.au=Derick%2C+L&rft_id=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1149%2F1.2428650&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKAHNG1961" class="citation journal cs1">KAHNG, D. (1961). <a rel="nofollow" class="external text" href="https://doi.org/10.1142/9789814503464_0076">"Silicon-Silicon Dioxide Surface Device"</a>. <i>Technical Memorandum of Bell Laboratories</i>: 583–596. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F9789814503464_0076">10.1142/9789814503464_0076</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-02-0209-5" title="Special:BookSources/978-981-02-0209-5"><bdi>978-981-02-0209-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Technical+Memorandum+of+Bell+Laboratories&rft.atitle=Silicon-Silicon+Dioxide+Surface+Device&rft.pages=583-596&rft.date=1961&rft_id=info%3Adoi%2F10.1142%2F9789814503464_0076&rft.isbn=978-981-02-0209-5&rft.aulast=KAHNG&rft.aufirst=D.&rft_id=https%3A%2F%2Fdoi.org%2F10.1142%2F9789814503464_0076&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLojek2007" class="citation book cs1">Lojek, Bo (2007). <i>History of Semiconductor Engineering</i>. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. p. 321. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-34258-8" title="Special:BookSources/978-3-540-34258-8"><bdi>978-3-540-34258-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=History+of+Semiconductor+Engineering&rft.place=Berlin%2C+Heidelberg&rft.pages=321&rft.pub=Springer-Verlag+Berlin+Heidelberg&rft.date=2007&rft.isbn=978-3-540-34258-8&rft.aulast=Lojek&rft.aufirst=Bo&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLigenzaSpitzer1960" class="citation journal cs1">Ligenza, J.R.; Spitzer, W.G. (1960). <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/0022369760902195">"The mechanisms for silicon oxidation in steam and oxygen"</a>. <i>Journal of Physics and Chemistry of Solids</i>. <b>14</b>: 131–136. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1960JPCS...14..131L">1960JPCS...14..131L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0022-3697%2860%2990219-5">10.1016/0022-3697(60)90219-5</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics+and+Chemistry+of+Solids&rft.atitle=The+mechanisms+for+silicon+oxidation+in+steam+and+oxygen&rft.volume=14&rft.pages=131-136&rft.date=1960&rft_id=info%3Adoi%2F10.1016%2F0022-3697%2860%2990219-5&rft_id=info%3Abibcode%2F1960JPCS...14..131L&rft.aulast=Ligenza&rft.aufirst=J.R.&rft.au=Spitzer%2C+W.G.&rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2F0022369760902195&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Lojek1202-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lojek1202_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLojek2007" class="citation book cs1">Lojek, Bo (2007). <i>History of Semiconductor Engineering</i>. <a href="/wiki/Springer_Science_%26_Business_Media" class="mw-redirect" title="Springer Science & Business Media">Springer Science & Business Media</a>. p. 120. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9783540342588" title="Special:BookSources/9783540342588"><bdi>9783540342588</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=History+of+Semiconductor+Engineering&rft.pages=120&rft.pub=Springer+Science+%26+Business+Media&rft.date=2007&rft.isbn=9783540342588&rft.aulast=Lojek&rft.aufirst=Bo&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.electronicdesign.com/power/rethink-power-density-gan">"Rethink Power Density with GaN"</a>. <i><a href="/wiki/Electronic_Design_(magazine)" title="Electronic Design (magazine)">Electronic Design</a></i>. 21 April 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">23 July</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Electronic+Design&rft.atitle=Rethink+Power+Density+with+GaN&rft.date=2017-04-21&rft_id=https%3A%2F%2Fwww.electronicdesign.com%2Fpower%2Frethink-power-density-gan&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOxner1988" class="citation book cs1">Oxner, E. S. (1988). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=0AE-0e-sAnsC&pg=PA18"><i>Fet Technology and Application</i></a>. <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>. p. 18. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780824780500" title="Special:BookSources/9780824780500"><bdi>9780824780500</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fet+Technology+and+Application&rft.pages=18&rft.pub=CRC+Press&rft.date=1988&rft.isbn=9780824780500&rft.aulast=Oxner&rft.aufirst=E.+S.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0AE-0e-sAnsC%26pg%3DPA18&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-powerelectronics-13"><span class="mw-cite-backlink">^ <a href="#cite_ref-powerelectronics_13-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-powerelectronics_13-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-powerelectronics_13-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-powerelectronics_13-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1"><a rel="nofollow" class="external text" href="https://www.powerelectronics.com/content/advances-discrete-semiconductors-march">"Advances in Discrete Semiconductors March On"</a>. <i>Power Electronics Technology</i>. <a href="/wiki/Informa" title="Informa">Informa</a>: 52–6. September 2005. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060322222716/http://powerelectronics.com/mag/509PET26.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 22 March 2006<span class="reference-accessdate">. Retrieved <span class="nowrap">31 July</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Power+Electronics+Technology&rft.atitle=Advances+in+Discrete+Semiconductors+March+On&rft.pages=52-6&rft.date=2005-09&rft_id=https%3A%2F%2Fwww.powerelectronics.com%2Fcontent%2Fadvances-discrete-semiconductors-march&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaruiHayashiSekigawa1969" class="citation conference cs1">Tarui, Y.; Hayashi, Y.; Sekigawa, Toshihiro (September 1969). "Diffusion Selfaligned MOST; A New Approach for High Speed Device". <i>Extended Abstracts of the 1969 Conference on Solid State Devices</i>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.7567%2FSSDM.1969.4-1">10.7567/SSDM.1969.4-1</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:184290914">184290914</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.atitle=Diffusion+Selfaligned+MOST%3B+A+New+Approach+for+High+Speed+Device&rft.btitle=Extended+Abstracts+of+the+1969+Conference+on+Solid+State+Devices&rft.date=1969-09&rft_id=info%3Adoi%2F10.7567%2FSSDM.1969.4-1&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A184290914%23id-name%3DS2CID&rft.aulast=Tarui&rft.aufirst=Y.&rft.au=Hayashi%2C+Y.&rft.au=Sekigawa%2C+Toshihiro&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcLintockThomas1972" class="citation conference cs1">McLintock, G. A.; Thomas, R. E. (December 1972). <i>Modelling of the double-diffused MOST's with self-aligned gates</i>. 1972 International Electron Devices Meeting. pp. 24–26. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FIEDM.1972.249241">10.1109/IEDM.1972.249241</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.btitle=Modelling+of+the+double-diffused+MOST%27s+with+self-aligned+gates&rft.pages=24-26&rft.date=1972-12&rft_id=info%3Adoi%2F10.1109%2FIEDM.1972.249241&rft.aulast=McLintock&rft.aufirst=G.+A.&rft.au=Thomas%2C+R.+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Duncan177-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-Duncan177_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Duncan177_16-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Duncan177_16-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Duncan177_16-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDuncan1996" class="citation book cs1">Duncan, Ben (1996). <a rel="nofollow" class="external text" href="https://archive.org/details/highperfomanceau0000dunc/page/177"><i>High Performance Audio Power Amplifiers</i></a>. <a href="/wiki/Elsevier" title="Elsevier">Elsevier</a>. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/highperfomanceau0000dunc/page/177">177–8, 406</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780080508047" title="Special:BookSources/9780080508047"><bdi>9780080508047</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=High+Performance+Audio+Power+Amplifiers&rft.pages=177-8%2C+406&rft.pub=Elsevier&rft.date=1996&rft.isbn=9780080508047&rft.aulast=Duncan&rft.aufirst=Ben&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhighperfomanceau0000dunc%2Fpage%2F177&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Baliga2005-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-Baliga2005_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Baliga2005_17-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaliga2005" class="citation book cs1"><a href="/wiki/B._Jayant_Baliga" title="B. Jayant Baliga">Baliga, B. Jayant</a> (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=StJpDQAAQBAJ"><i>Silicon RF Power MOSFETS</i></a>. <a href="/wiki/World_Scientific" title="World Scientific">World Scientific</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9789812561213" title="Special:BookSources/9789812561213"><bdi>9789812561213</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Silicon+RF+Power+MOSFETS&rft.pub=World+Scientific&rft.date=2005&rft.isbn=9789812561213&rft.aulast=Baliga&rft.aufirst=B.+Jayant&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DStJpDQAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Asif-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-Asif_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Asif_18-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAsif2018" class="citation book cs1">Asif, Saad (2018). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=yg1mDwAAQBAJ&pg=PT134"><i>5G Mobile Communications: Concepts and Technologies</i></a>. <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>. p. 134. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780429881343" title="Special:BookSources/9780429881343"><bdi>9780429881343</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=5G+Mobile+Communications%3A+Concepts+and+Technologies&rft.pages=134&rft.pub=CRC+Press&rft.date=2018&rft.isbn=9780429881343&rft.aulast=Asif&rft.aufirst=Saad&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dyg1mDwAAQBAJ%26pg%3DPT134&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160805003338/http://www.semi.org/en/semi-award-north-america-1">"SEMI Award for North America"</a>. <a href="/wiki/SEMI" title="SEMI">SEMI</a>. Archived from <a rel="nofollow" class="external text" href="http://www.semi.org/en/semi-award-north-america-1">the original</a> on 5 August 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">5 August</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=SEMI+Award+for+North+America&rft.pub=SEMI&rft_id=http%3A%2F%2Fwww.semi.org%2Fen%2Fsemi-award-north-america-1&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-businesswire-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-businesswire_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-businesswire_20-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.businesswire.com/news/home/20040914005158/en/International-Rectifiers-Alex-Lidow-Tom-Herman-Inducted">"International Rectifier's Alex Lidow and Tom Herman Inducted Into Engineering Hall of Fame"</a>. <i><a href="/wiki/Business_Wire" title="Business Wire">Business Wire</a></i>. 14 September 2004<span class="reference-accessdate">. Retrieved <span class="nowrap">31 July</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Business+Wire&rft.atitle=International+Rectifier%27s+Alex+Lidow+and+Tom+Herman+Inducted+Into+Engineering+Hall+of+Fame&rft.date=2004-09-14&rft_id=https%3A%2F%2Fwww.businesswire.com%2Fnews%2Fhome%2F20040914005158%2Fen%2FInternational-Rectifiers-Alex-Lidow-Tom-Herman-Inducted&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Baliga2015-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-Baliga2015_21-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaliga2015" class="citation book cs1">Baliga, B. Jayant (2015). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=f091AgAAQBAJ"><i>The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor</i></a>. <a href="/wiki/William_Andrew_(publisher)" title="William Andrew (publisher)">William Andrew</a>. pp. xxviii, 5–11. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781455731534" title="Special:BookSources/9781455731534"><bdi>9781455731534</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+IGBT+Device%3A+Physics%2C+Design+and+Applications+of+the+Insulated+Gate+Bipolar+Transistor&rft.pages=xxviii%2C+5-11&rft.pub=William+Andrew&rft.date=2015&rft.isbn=9781455731534&rft.aulast=Baliga&rft.aufirst=B.+Jayant&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Df091AgAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-st-22"><span class="mw-cite-backlink">^ <a href="#cite_ref-st_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-st_22-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://blog.st.com/mdmesh-anniversary/">"MDmesh: 20 Years of Superjunction STPOWER MOSFETs, A Story About Innovation"</a>. <i><a href="/wiki/STMicroelectronics" title="STMicroelectronics">STMicroelectronics</a></i>. 11 September 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">2 November</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=STMicroelectronics&rft.atitle=MDmesh%3A+20+Years+of+Superjunction+STPOWER+MOSFETs%2C+A+Story+About+Innovation&rft.date=2019-09-11&rft_id=https%3A%2F%2Fblog.st.com%2Fmdmesh-anniversary%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://patents.google.com/patent/US4754310A/en">US Patent 4,754,310</a></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="http://www.icinsights.com/news/bulletins/Power-Transistor-Market-Will-Cross-130-Billion-In-2011/">"Power Transistor Market Will Cross $13.0 Billion in 2011"</a>. <i>IC Insights</i>. June 21, 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">15 October</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IC+Insights&rft.atitle=Power+Transistor+Market+Will+Cross+%2413.0+Billion+in+2011&rft.date=2011-06-21&rft_id=http%3A%2F%2Fwww.icinsights.com%2Fnews%2Fbulletins%2FPower-Transistor-Market-Will-Cross-130-Billion-In-2011%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarbone2018" class="citation journal cs1">Carbone, James (September–October 2018). <a rel="nofollow" class="external text" href="http://www.electronics-sourcing.com/wp-content/uploads/2018/08/ESE-SepOct18.pdf">"Buyers can expect 30-week lead times and higher tags to continue for MOSFETs"</a> <span class="cs1-format">(PDF)</span>. <i>Electronics Sourcing</i>: 18–19.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Electronics+Sourcing&rft.atitle=Buyers+can+expect+30-week+lead+times+and+higher+tags+to+continue+for+MOSFETs&rft.pages=18-19&rft.date=2018-09%2F2018-10&rft.aulast=Carbone&rft.aufirst=James&rft_id=http%3A%2F%2Fwww.electronics-sourcing.com%2Fwp-content%2Fuploads%2F2018%2F08%2FESE-SepOct18.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliamsDarwishBlanchardSiemieniec2017" class="citation journal cs1">Williams, Richard K.; Darwish, Mohamed N.; Blanchard, Richard A.; Siemieniec, Ralf; Rutter, Phil; Kawaguchi, Yusuke (23 February 2017). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/314143170">"The Trench Power MOSFET: Part I—History, Technology, and Prospects"</a>. <i>IEEE Transactions on Electron Devices</i>. <b>64</b> (3): 674–691. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017ITED...64..674W">2017ITED...64..674W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTED.2017.2653239">10.1109/TED.2017.2653239</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:20730536">20730536</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Electron+Devices&rft.atitle=The+Trench+Power+MOSFET%3A+Part+I%E2%80%94History%2C+Technology%2C+and+Prospects&rft.volume=64&rft.issue=3&rft.pages=674-691&rft.date=2017-02-23&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A20730536%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1109%2FTED.2017.2653239&rft_id=info%3Abibcode%2F2017ITED...64..674W&rft.aulast=Williams&rft.aufirst=Richard+K.&rft.au=Darwish%2C+Mohamed+N.&rft.au=Blanchard%2C+Richard+A.&rft.au=Siemieniec%2C+Ralf&rft.au=Rutter%2C+Phil&rft.au=Kawaguchi%2C+Yusuke&rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F314143170&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Infineon-MOSFET-27"><span class="mw-cite-backlink">^ <a href="#cite_ref-Infineon-MOSFET_27-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Infineon-MOSFET_27-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.infineon.com/cms/en/product/power/mosfet/">"MOSFET"</a>. <i><a href="/wiki/Infineon_Technologies" title="Infineon Technologies">Infineon Technologies</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">24 December</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Infineon+Technologies&rft.atitle=MOSFET&rft_id=https%3A%2F%2Fwww.infineon.com%2Fcms%2Fen%2Fproduct%2Fpower%2Fmosfet%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-EiceDRIVER-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-EiceDRIVER_28-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49">"Infineon EiceDRIVER gate driver ICs"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Infineon" class="mw-redirect" title="Infineon">Infineon</a></i>. August 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">26 December</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Infineon&rft.atitle=Infineon+EiceDRIVER+gate+driver+ICs&rft.date=2019-08&rft_id=https%3A%2F%2Fwww.infineon.com%2Fdgdl%2FInfineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf%3FfileId%3D5546d46250cc1fdf015110069cb90f49&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-RF-DMOS-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-RF-DMOS_29-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.st.com/en/radio-frequency-transistors/rf-dmos-transistors.html">"RF DMOS Transistors"</a>. <i><a href="/wiki/STMicroelectronics" title="STMicroelectronics">STMicroelectronics</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">22 December</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=STMicroelectronics&rft.atitle=RF+DMOS+Transistors&rft_id=https%3A%2F%2Fwww.st.com%2Fen%2Fradio-frequency-transistors%2Frf-dmos-transistors.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-AN1256-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-AN1256_30-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.st.com/content/ccc/resource/technical/document/application_note/07/e8/f6/20/61/db/43/d2/CD00004135.pdf/files/CD00004135.pdf/jcr:content/translations/en.CD00004135.pdf">"AN1256: Application note – High-power RF MOSFET targets VHF applications"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/ST_Microelectronics" class="mw-redirect" title="ST Microelectronics">ST Microelectronics</a></i>. July 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">22 December</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ST+Microelectronics&rft.atitle=AN1256%3A+Application+note+%E2%80%93+High-power+RF+MOSFET+targets+VHF+applications&rft.date=2007-07&rft_id=https%3A%2F%2Fwww.st.com%2Fcontent%2Fccc%2Fresource%2Ftechnical%2Fdocument%2Fapplication_note%2F07%2Fe8%2Ff6%2F20%2F61%2Fdb%2F43%2Fd2%2FCD00004135.pdf%2Ffiles%2FCD00004135.pdf%2Fjcr%3Acontent%2Ftranslations%2Fen.CD00004135.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Emadi2017-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-Emadi2017_31-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEmadi2017" class="citation book cs1">Emadi, Ali (2017). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=40duBwAAQBAJ&pg=PA117"><i>Handbook of Automotive Power Electronics and Motor Drives</i></a>. <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>. p. 117. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781420028157" title="Special:BookSources/9781420028157"><bdi>9781420028157</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Handbook+of+Automotive+Power+Electronics+and+Motor+Drives&rft.pages=117&rft.pub=CRC+Press&rft.date=2017&rft.isbn=9781420028157&rft.aulast=Emadi&rft.aufirst=Ali&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D40duBwAAQBAJ%26pg%3DPA117&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Infineon-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-Infineon_32-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.infineon.com/dgdl/Infineon-Solutions_for_Transportation_24V-60V-ABR-v00_00-EN.pdf?fileId=5546d462602a9dc80160dfb145ba3f70">"Infineon Solutions for Transportation"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Infineon" class="mw-redirect" title="Infineon">Infineon</a></i>. June 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">23 December</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Infineon&rft.atitle=Infineon+Solutions+for+Transportation&rft.date=2013-06&rft_id=https%3A%2F%2Fwww.infineon.com%2Fdgdl%2FInfineon-Solutions_for_Transportation_24V-60V-ABR-v00_00-EN.pdf%3FfileId%3D5546d462602a9dc80160dfb145ba3f70&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-HITFET-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-HITFET_33-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.infineon.com/dgdl/Infineon-ApplicationNote_v12-AN-v01_00-EN.pdf?fileId=5546d4625b62cd8a015bc8c8e5ae31d1">"HITFETs: Smart, Protected MOSFETs"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Infineon" class="mw-redirect" title="Infineon">Infineon</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">23 December</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Infineon&rft.atitle=HITFETs%3A+Smart%2C+Protected+MOSFETs&rft_id=https%3A%2F%2Fwww.infineon.com%2Fdgdl%2FInfineon-ApplicationNote_v12-AN-v01_00-EN.pdf%3FfileId%3D5546d4625b62cd8a015bc8c8e5ae31d1&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-spinoff-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-spinoff_34-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://spinoff.nasa.gov/Spinoff2017/cg_1.html">"CMOS Sensors Enable Phone Cameras, HD Video"</a>. <i>NASA Spinoff</i>. <a href="/wiki/NASA" title="NASA">NASA</a><span class="reference-accessdate">. Retrieved <span class="nowrap">6 November</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=NASA+Spinoff&rft.atitle=CMOS+Sensors+Enable+Phone+Cameras%2C+HD+Video&rft_id=https%3A%2F%2Fspinoff.nasa.gov%2FSpinoff2017%2Fcg_1.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Veendrick245-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-Veendrick245_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVeendrick2017" class="citation book cs1">Veendrick, Harry J. M. (2017). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Lv_EDgAAQBAJ&pg=PA245"><i>Nanometer CMOS ICs: From Basics to ASICs</i></a>. Springer. p. 245. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9783319475974" title="Special:BookSources/9783319475974"><bdi>9783319475974</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Nanometer+CMOS+ICs%3A+From+Basics+to+ASICs&rft.pages=245&rft.pub=Springer&rft.date=2017&rft.isbn=9783319475974&rft.aulast=Veendrick&rft.aufirst=Harry+J.+M.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DLv_EDgAAQBAJ%26pg%3DPA245&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Korec9-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-Korec9_36-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKorec2011" class="citation book cs1">Korec, Jacek (2011). <a rel="nofollow" class="external text" href="https://archive.org/details/Jacek_Korec_Low_Voltage_Power_MOSFETs"><i>Low Voltage Power MOSFETs: Design, Performance and Applications</i></a>. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer Science+Business Media</a>. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/Jacek_Korec_Low_Voltage_Power_MOSFETs/page/n17">9</a>–14. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4419-9320-5" title="Special:BookSources/978-1-4419-9320-5"><bdi>978-1-4419-9320-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Low+Voltage+Power+MOSFETs%3A+Design%2C+Performance+and+Applications&rft.pages=9-14&rft.pub=Springer+Science%2BBusiness+Media&rft.date=2011&rft.isbn=978-1-4419-9320-5&rft.aulast=Korec&rft.aufirst=Jacek&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2FJacek_Korec_Low_Voltage_Power_MOSFETs&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Fuji-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-Fuji_37-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.fujielectric.com/company/tech/pdf/r50-2/03.pdf">"Automotive Power MOSFETs"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Fuji_Electric" title="Fuji Electric">Fuji Electric</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">10 August</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Fuji+Electric&rft.atitle=Automotive+Power+MOSFETs&rft_id=https%3A%2F%2Fwww.fujielectric.com%2Fcompany%2Ftech%2Fpdf%2Fr50-2%2F03.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Williams2017-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-Williams2017_38-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliamsDarwishBlanchardSiemieniec2017" class="citation journal cs1">Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". <i>IEEE Transactions on Electron Devices</i>. <b>64</b> (3): 692–712. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017ITED...64..692W">2017ITED...64..692W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTED.2017.2655149">10.1109/TED.2017.2655149</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0018-9383">0018-9383</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:38550249">38550249</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Electron+Devices&rft.atitle=The+Trench+Power+MOSFET%E2%80%94Part+II%3A+Application+Specific+VDMOS%2C+LDMOS%2C+Packaging%2C+Reliability&rft.volume=64&rft.issue=3&rft.pages=692-712&rft.date=2017&rft_id=info%3Adoi%2F10.1109%2FTED.2017.2655149&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A38550249%23id-name%3DS2CID&rft.issn=0018-9383&rft_id=info%3Abibcode%2F2017ITED...64..692W&rft.aulast=Williams&rft.aufirst=R.+K.&rft.au=Darwish%2C+M.+N.&rft.au=Blanchard%2C+R.+A.&rft.au=Siemieniec%2C+R.&rft.au=Rutter%2C+P.&rft.au=Kawaguchi%2C+Y.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><a href="/wiki/Simon_Sze" title="Simon Sze">Simon M. Sze</a>, <i>Modern semiconductor device physics</i>, John Wiley and Sons, Inc 1998 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-15237-4" title="Special:BookSources/0-471-15237-4">0-471-15237-4</a></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text">Pierre Aloïsi, <i>Les transistors MOS de puissance</i> in <i> Interrupteurs électroniques de puissance, traite EGEM</i>, under the direction of Robert Perret, Lavoisier, Paris, 2003 [in French] <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/2-7462-0671-4" title="Special:BookSources/2-7462-0671-4">2-7462-0671-4</a></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMurrayMcDonaldDavisCao" class="citation web cs1">Murray, Anthony F. J.; McDonald, Tim; Davis, Harold; Cao, Joe; Spring, Kyle. <a rel="nofollow" class="external text" href="http://www.irf.com/technical-info/whitepaper/pcim2000.pdf">"Extremely Rugged MOSFET Technology with Ultra-low R<sub>DS(on)</sub> Specified for A Broad Range of E<sub>AR</sub> Conditions"</a> <span class="cs1-format">(PDF)</span>. <i>International Rectifier</i><span class="reference-accessdate">. Retrieved <span class="nowrap">26 April</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=International+Rectifier&rft.atitle=Extremely+Rugged+MOSFET+Technology+with+Ultra-low+R%3Csub%3EDS%28on%29%3C%2Fsub%3E+Specified+for+A+Broad+Range+of+E%3Csub%3EAR%3C%2Fsub%3E+Conditions&rft.aulast=Murray&rft.aufirst=Anthony+F.+J.&rft.au=McDonald%2C+Tim&rft.au=Davis%2C+Harold&rft.au=Cao%2C+Joe&rft.au=Spring%2C+Kyle&rft_id=http%3A%2F%2Fwww.irf.com%2Ftechnical-info%2Fwhitepaper%2Fpcim2000.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></span> </li> <li id="cite_note-grant-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-grant_42-0">^</a></b></span> <span class="reference-text">Duncan A. Grant, John Gowar <i>POWER MOSFETS: Theory and Applications</i> John Wiley and Sons, Inc <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-82867-X" title="Special:BookSources/0-471-82867-X">0-471-82867-X</a> , 1989</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Power_MOSFET&action=edit&section=31" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <wbr /><i><b><a href="https://commons.wikimedia.org/wiki/Category:Power_MOSFET" class="extiw" title="commons:Category:Power MOSFET">Power MOSFET</a></b></i>.</div></div> </div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaliga1996" class="citation book cs1">Baliga, B. Jayant (1996). <i>Power Semiconductor Devices</i>. PWS Publishing. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780534940980" title="Special:BookSources/9780534940980"><bdi>9780534940980</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Power+Semiconductor+Devices&rft.pub=PWS+Publishing&rft.date=1996&rft.isbn=9780534940980&rft.aulast=Baliga&rft.aufirst=B.+Jayant&rfr_id=info%3Asid%2Fen.wikipedia.org%3APower+MOSFET" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Electronic_components" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Electronic_components" title="Template:Electronic components"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Electronic_components" title="Template talk:Electronic components"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Electronic_components" title="Special:EditPage/Template:Electronic components"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Electronic_components" style="font-size:114%;margin:0 4em"><a href="/wiki/Electronic_component" title="Electronic component">Electronic components</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Semiconductor_device" title="Semiconductor device">Semiconductor<br />devices</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/MOSFET" title="MOSFET">MOS <br />transistors</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Transistor" title="Transistor">Transistor</a></li> <li><a href="/wiki/NMOS_logic" title="NMOS logic">NMOS</a></li> <li><a href="/wiki/PMOS_logic" title="PMOS logic">PMOS</a></li> <li><a href="/wiki/BiCMOS" title="BiCMOS">BiCMOS</a></li> <li><a href="/wiki/Bio-FET" title="Bio-FET">BioFET</a></li> <li><a href="/wiki/Chemical_field-effect_transistor" title="Chemical field-effect transistor">Chemical field-effect transistor</a> (ChemFET)</li> <li><a href="/wiki/CMOS" title="CMOS">Complementary MOS</a> (CMOS)</li> <li><a href="/wiki/Depletion-load_NMOS_logic" title="Depletion-load NMOS logic">Depletion-load NMOS</a></li> <li><a href="/wiki/FinFET" class="mw-redirect" title="FinFET">Fin field-effect transistor</a> (FinFET)</li> <li><a href="/wiki/Floating-gate_MOSFET" title="Floating-gate MOSFET">Floating-gate MOSFET</a> (FGMOS)</li> <li><a href="/wiki/Insulated-gate_bipolar_transistor" title="Insulated-gate bipolar transistor">Insulated-gate bipolar transistor</a> (IGBT)</li> <li><a href="/wiki/ISFET" title="ISFET">ISFET</a></li> <li><a href="/wiki/LDMOS" title="LDMOS">LDMOS</a></li> <li><a href="/wiki/MOSFET" title="MOSFET">MOS field-effect transistor</a> (MOSFET)</li> <li><a href="/wiki/Multigate_device" title="Multigate device">Multi-gate field-effect transistor</a> (MuGFET)</li> <li><a class="mw-selflink selflink">Power MOSFET</a></li> <li><a href="/wiki/Thin-film_transistor" title="Thin-film transistor">Thin-film transistor</a> (TFT)</li> <li><a href="/wiki/VMOS" title="VMOS">VMOS</a></li> <li><a class="mw-selflink-fragment" href="#UMOS">UMOS</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Transistor" title="Transistor">Other <br />transistors</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bipolar_junction_transistor" title="Bipolar junction transistor">Bipolar junction transistor</a> (BJT)</li> <li><a href="/wiki/Darlington_transistor" title="Darlington transistor">Darlington transistor</a></li> <li><a href="/wiki/Diffused_junction_transistor" title="Diffused junction transistor">Diffused junction transistor</a></li> <li><a href="/wiki/Field-effect_transistor" title="Field-effect transistor">Field-effect transistor</a> (FET) <ul><li><a href="/wiki/JFET" title="JFET">Junction Gate FET (JFET)</a></li> <li><a href="/wiki/Organic_field-effect_transistor" title="Organic field-effect transistor">Organic FET (OFET)</a></li></ul></li> <li><a href="/wiki/Light-emitting_transistor" title="Light-emitting transistor">Light-emitting transistor</a> (LET) <ul><li><a href="/wiki/Organic_light-emitting_transistor" title="Organic light-emitting transistor">Organic LET (OLET)</a></li></ul></li> <li><a href="/wiki/Pentode_transistor" title="Pentode transistor">Pentode transistor</a></li> <li><a href="/wiki/Point-contact_transistor" title="Point-contact transistor">Point-contact transistor</a></li> <li><a href="/wiki/Programmable_unijunction_transistor" title="Programmable unijunction transistor">Programmable unijunction transistor</a> (PUT)</li> <li><a href="/wiki/Static_induction_transistor" title="Static induction transistor">Static induction transistor</a> (SIT)</li> <li><a href="/wiki/Tetrode_transistor" title="Tetrode transistor">Tetrode transistor</a></li> <li><a href="/wiki/Unijunction_transistor" title="Unijunction transistor">Unijunction transistor</a> (UJT)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Diode" title="Diode">Diodes</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Avalanche_diode" title="Avalanche diode">Avalanche diode</a></li> <li><a href="/wiki/Constant-current_diode" title="Constant-current diode">Constant-current diode</a> (CLD, CRD)</li> <li><a href="/wiki/Gunn_diode" title="Gunn diode">Gunn diode</a></li> <li><a href="/wiki/Laser_diode" title="Laser diode">Laser diode</a> (LD)</li> <li><a href="/wiki/Light-emitting_diode" title="Light-emitting diode">Light-emitting diode</a> (LED)</li> <li><a href="/wiki/OLED" title="OLED">Organic light-emitting diode</a> (OLED)</li> <li><a href="/wiki/Photodiode" title="Photodiode">Photodiode</a></li> <li><a href="/wiki/PIN_diode" title="PIN diode">PIN diode</a></li> <li><a href="/wiki/Schottky_diode" title="Schottky diode">Schottky diode</a></li> <li><a href="/wiki/Step_recovery_diode" title="Step recovery diode">Step recovery diode</a></li> <li><a href="/wiki/Zener_diode" title="Zener diode">Zener diode</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other <br />devices</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Printed_electronics" title="Printed electronics">Printed electronics</a></li> <li><a href="/wiki/Printed_circuit_board" title="Printed circuit board">Printed circuit board</a></li> <li><a href="/wiki/DIAC" title="DIAC">DIAC</a></li> <li><a href="/wiki/Heterostructure_barrier_varactor" title="Heterostructure barrier varactor">Heterostructure barrier varactor</a></li> <li><a href="/wiki/Integrated_circuit" title="Integrated circuit">Integrated circuit</a> (IC)</li> <li><a href="/wiki/Hybrid_integrated_circuit" title="Hybrid integrated circuit">Hybrid integrated circuit</a></li> <li><a href="/wiki/Light_emitting_capacitor" class="mw-redirect" title="Light emitting capacitor">Light emitting capacitor</a> (LEC)</li> <li><a href="/wiki/Memistor" title="Memistor">Memistor</a></li> <li><a href="/wiki/Memristor" title="Memristor">Memristor</a></li> <li><a href="/wiki/Memtransistor" title="Memtransistor">Memtransistor</a></li> <li><a href="/wiki/Memory_cell_(computing)" title="Memory cell (computing)">Memory cell</a></li> <li><a href="/wiki/Metal-oxide_varistor" class="mw-redirect" title="Metal-oxide varistor">Metal-oxide varistor</a> (MOV)</li> <li><a href="/wiki/Mixed-signal_integrated_circuit" title="Mixed-signal integrated circuit">Mixed-signal integrated circuit</a></li> <li><a href="/wiki/MOS_integrated_circuit" class="mw-redirect" title="MOS integrated circuit">MOS integrated circuit</a> (MOS IC)</li> <li><a href="/wiki/Organic_semiconductor" title="Organic semiconductor">Organic semiconductor</a></li> <li><a href="/wiki/Photodetector" title="Photodetector">Photodetector</a></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">Quantum circuit</a></li> <li><a href="/wiki/RF_CMOS" title="RF CMOS">RF CMOS</a></li> <li><a href="/wiki/Silicon_controlled_rectifier" title="Silicon controlled rectifier">Silicon controlled rectifier</a> (SCR)</li> <li><a href="/wiki/Solaristor" title="Solaristor">Solaristor</a></li> <li><a href="/wiki/Static_induction_thyristor" title="Static induction thyristor">Static induction thyristor</a> (SITh)</li> <li><a href="/wiki/Three-dimensional_integrated_circuit" title="Three-dimensional integrated circuit">Three-dimensional integrated circuit</a> (3D IC)</li> <li><a href="/wiki/Thyristor" title="Thyristor">Thyristor</a></li> <li><a href="/wiki/Trancitor" title="Trancitor">Trancitor</a></li> <li><a href="/wiki/TRIAC" title="TRIAC">TRIAC</a></li> <li><a href="/wiki/Varicap" title="Varicap">Varicap</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Voltage_regulator" title="Voltage regulator">Voltage regulators</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Linear_regulator" title="Linear regulator">Linear regulator</a></li> <li><a href="/wiki/Low-dropout_regulator" title="Low-dropout regulator">Low-dropout regulator</a></li> <li><a href="/wiki/Switching_regulator" class="mw-redirect" title="Switching regulator">Switching regulator</a></li> <li><a href="/wiki/Buck_converter" title="Buck converter">Buck</a></li> <li><a href="/wiki/Boost_converter" title="Boost converter">Boost</a></li> <li><a href="/wiki/Buck%E2%80%93boost_converter" title="Buck–boost converter">Buck–boost</a></li> <li><a href="/wiki/Split-pi_topology" title="Split-pi topology">Split-pi</a></li> <li><a href="/wiki/%C4%86uk_converter" title="Ćuk converter">Ćuk</a></li> <li><a href="/wiki/Single-ended_primary-inductor_converter" title="Single-ended primary-inductor converter">SEPIC</a></li> <li><a href="/wiki/Charge_pump" title="Charge pump">Charge pump</a></li> <li><a href="/wiki/Switched_capacitor" title="Switched capacitor">Switched capacitor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Vacuum_tube" title="Vacuum tube">Vacuum tubes</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Acorn_tube" title="Acorn tube">Acorn tube</a></li> <li><a href="/wiki/Audion" title="Audion">Audion</a></li> <li><a href="/wiki/Beam_tetrode" title="Beam tetrode">Beam tetrode</a></li> <li><a href="/wiki/Hot-wire_barretter" title="Hot-wire barretter">Barretter</a></li> <li><a href="/wiki/Compactron" title="Compactron">Compactron</a></li> <li><a href="/wiki/Vacuum_diode" class="mw-redirect" title="Vacuum diode">Diode</a></li> <li><a href="/wiki/Fleming_valve" title="Fleming valve">Fleming valve</a></li> <li><a href="/wiki/Neutron_generator" title="Neutron generator">Neutron tube</a></li> <li><a href="/wiki/Nonode" title="Nonode">Nonode</a></li> <li><a href="/wiki/Nuvistor" title="Nuvistor">Nuvistor</a></li> <li><a href="/wiki/Pentagrid_converter" title="Pentagrid converter">Pentagrid</a> (Hexode, Heptode, Octode)</li> <li><a href="/wiki/Pentode" title="Pentode">Pentode</a></li> <li><a href="/wiki/Photomultiplier_tube" title="Photomultiplier tube">Photomultiplier</a></li> <li><a href="/wiki/Phototube" title="Phototube">Phototube</a></li> <li><a href="/wiki/Tetrode" title="Tetrode">Tetrode</a></li> <li><a href="/wiki/Triode" title="Triode">Triode</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Vacuum_tube" title="Vacuum tube">Vacuum tubes</a> (<a href="/wiki/Electromagnetic_radiation" title="Electromagnetic radiation">RF</a>)</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Backward-wave_oscillator" title="Backward-wave oscillator">Backward-wave oscillator</a> (BWO)</li> <li><a href="/wiki/Cavity_magnetron" title="Cavity magnetron">Cavity magnetron</a></li> <li><a href="/wiki/Crossed-field_amplifier" title="Crossed-field amplifier">Crossed-field amplifier</a> (CFA)</li> <li><a href="/wiki/Gyrotron" title="Gyrotron">Gyrotron</a></li> <li><a href="/wiki/Inductive_output_tube" title="Inductive output tube">Inductive output tube</a> (IOT)</li> <li><a href="/wiki/Klystron" title="Klystron">Klystron</a></li> <li><a href="/wiki/Maser" title="Maser">Maser</a></li> <li><a href="/wiki/Sutton_tube" title="Sutton tube">Sutton tube</a></li> <li><a href="/wiki/Traveling-wave_tube" title="Traveling-wave tube">Traveling-wave tube</a> (TWT)</li> <li><a href="/wiki/X-ray_tube" title="X-ray tube">X-ray tube</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Cathode-ray_tube" title="Cathode-ray tube">Cathode-ray tubes</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Beam_deflection_tube" title="Beam deflection tube">Beam deflection tube</a></li> <li><a href="/wiki/Charactron" title="Charactron">Charactron</a></li> <li><a href="/wiki/Iconoscope" title="Iconoscope">Iconoscope</a></li> <li><a href="/wiki/Magic_eye_tube" title="Magic eye tube">Magic eye tube</a></li> <li><a href="/wiki/Monoscope" title="Monoscope">Monoscope</a></li> <li><a href="/wiki/Selectron_tube" title="Selectron tube">Selectron tube</a></li> <li><a href="/wiki/Storage_tube" title="Storage tube">Storage tube</a></li> <li><a href="/wiki/Trochotron" class="mw-redirect" title="Trochotron">Trochotron</a></li> <li><a href="/wiki/Video_camera_tube" title="Video camera tube">Video camera tube</a></li> <li><a href="/wiki/Williams_tube" title="Williams tube">Williams tube</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Gas-filled_tube" title="Gas-filled tube">Gas-filled tubes</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cold_cathode" title="Cold cathode">Cold cathode</a></li> <li><a href="/wiki/Crossatron" title="Crossatron">Crossatron</a></li> <li><a href="/wiki/Dekatron" title="Dekatron">Dekatron</a></li> <li><a href="/wiki/Ignitron" title="Ignitron">Ignitron</a></li> <li><a href="/wiki/Krytron" title="Krytron">Krytron</a></li> <li><a href="/wiki/Mercury-arc_valve" title="Mercury-arc valve">Mercury-arc valve</a></li> <li><a href="/wiki/Neon_lamp" title="Neon lamp">Neon lamp</a></li> <li><a href="/wiki/Nixie_tube" title="Nixie tube">Nixie tube</a></li> <li><a href="/wiki/Thyratron" title="Thyratron">Thyratron</a></li> <li><a href="/wiki/Trigatron" title="Trigatron">Trigatron</a></li> <li><a href="/wiki/Voltage-regulator_tube" title="Voltage-regulator tube">Voltage-regulator tube</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;">Adjustable</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Potentiometer" title="Potentiometer">Potentiometer</a> <ul><li><a href="/wiki/Digital_potentiometer" title="Digital potentiometer">digital</a></li></ul></li> <li><a href="/wiki/Variable_capacitor" title="Variable capacitor">Variable capacitor</a></li> <li><a href="/wiki/Varicap" title="Varicap">Varicap</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;">Passive</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Connector <ul><li><a href="/wiki/Audio_and_video_interfaces_and_connectors" title="Audio and video interfaces and connectors">audio and video</a></li> <li><a href="/wiki/AC_power_plugs_and_sockets" title="AC power plugs and sockets">electrical power</a></li> <li><a href="/wiki/RF_connector" title="RF connector">RF</a></li></ul></li> <li><a href="/wiki/Electrolytic_detector" title="Electrolytic detector">Electrolytic detector</a></li> <li><a href="/wiki/Ferrite_core" title="Ferrite core">Ferrite</a></li> <li><a href="/wiki/Antifuse" title="Antifuse">Antifuse</a></li> <li><a href="/wiki/Fuse_(electrical)" title="Fuse (electrical)">Fuse</a> <ul><li><a href="/wiki/Resettable_fuse" title="Resettable fuse">resettable</a></li> <li><a href="/wiki/EFUSE" class="mw-redirect" title="EFUSE">eFUSE</a></li></ul></li> <li><a href="/wiki/Resistor" title="Resistor">Resistor</a></li> <li><a href="/wiki/Switch" title="Switch">Switch</a></li> <li><a href="/wiki/Thermistor" title="Thermistor">Thermistor</a></li> <li><a href="/wiki/Transformer" title="Transformer">Transformer</a></li> <li><a href="/wiki/Varistor" title="Varistor">Varistor</a></li> <li><a href="/wiki/Wire" title="Wire">Wire</a> <ul><li><a href="/wiki/Wollaston_wire" title="Wollaston wire">Wollaston wire</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Electrical_reactance" title="Electrical reactance">Reactive</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Capacitor" title="Capacitor">Capacitor</a> <ul><li><a href="/wiki/Capacitor_types" title="Capacitor types">types</a></li></ul></li> <li><a href="/wiki/Ceramic_resonator" title="Ceramic resonator">Ceramic resonator</a></li> <li><a href="/wiki/Crystal_oscillator" title="Crystal oscillator">Crystal oscillator</a></li> <li><a href="/wiki/Inductor" title="Inductor">Inductor</a></li> <li><a href="/wiki/Parametron" title="Parametron">Parametron</a></li> <li><a href="/wiki/Relay" title="Relay">Relay</a> <ul><li><a href="/wiki/Reed_relay" title="Reed relay">reed relay</a></li> <li><a href="/wiki/Mercury_relay" title="Mercury relay">mercury relay</a></li></ul></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q570553#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4200169-9">Germany</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐rmdbt Cached time: 20241122141511 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.892 seconds Real time usage: 1.149 seconds Preprocessor visited node count: 4413/1000000 Post‐expand include size: 114027/2097152 bytes Template argument size: 4179/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 12/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 161093/5000000 bytes Lua time usage: 0.514/10.000 seconds Lua memory usage: 6539876/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 873.751 1 -total 49.26% 430.424 1 Template:Reflist 20.38% 178.045 13 Template:Cite_book 11.39% 99.512 1 Template:Electronic_components 11.31% 98.788 2 Template:Navbox 9.72% 84.888 1 Template:Short_description 8.37% 73.165 11 Template:Cite_web 6.17% 53.927 7 Template:Cite_journal 5.67% 49.512 2 Template:Pagetype 5.47% 47.766 1 Template:Citation_needed --> <!-- Saved in parser cache with key enwiki:pcache:idhash:2659918-0!canonical and timestamp 20241122141511 and revision id 1254928618. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Power_MOSFET&oldid=1254928618">https://en.wikipedia.org/w/index.php?title=Power_MOSFET&oldid=1254928618</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Solid_state_switches" title="Category:Solid state switches">Solid state switches</a></li><li><a href="/wiki/Category:Power_electronics" title="Category:Power electronics">Power electronics</a></li><li><a href="/wiki/Category:MOSFETs" title="Category:MOSFETs">MOSFETs</a></li><li><a href="/wiki/Category:Japanese_inventions" title="Category:Japanese inventions">Japanese inventions</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_2010" title="Category:Articles containing potentially dated statements from 2010">Articles containing potentially dated statements from 2010</a></li><li><a href="/wiki/Category:All_articles_containing_potentially_dated_statements" title="Category:All articles containing potentially dated statements">All articles containing potentially dated statements</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_2018" title="Category:Articles containing potentially dated statements from 2018">Articles containing potentially dated statements from 2018</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_2019" title="Category:Articles containing potentially dated statements from 2019">Articles containing potentially dated statements from 2019</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_July_2017" title="Category:Articles with unsourced statements from July 2017">Articles with unsourced statements from July 2017</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 2 November 2024, at 10:30<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Power_MOSFET&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-b2n64","wgBackendResponseTime":177,"wgPageParseReport":{"limitreport":{"cputime":"0.892","walltime":"1.149","ppvisitednodes":{"value":4413,"limit":1000000},"postexpandincludesize":{"value":114027,"limit":2097152},"templateargumentsize":{"value":4179,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":12,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":161093,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 873.751 1 -total"," 49.26% 430.424 1 Template:Reflist"," 20.38% 178.045 13 Template:Cite_book"," 11.39% 99.512 1 Template:Electronic_components"," 11.31% 98.788 2 Template:Navbox"," 9.72% 84.888 1 Template:Short_description"," 8.37% 73.165 11 Template:Cite_web"," 6.17% 53.927 7 Template:Cite_journal"," 5.67% 49.512 2 Template:Pagetype"," 5.47% 47.766 1 Template:Citation_needed"]},"scribunto":{"limitreport-timeusage":{"value":"0.514","limit":"10.000"},"limitreport-memusage":{"value":6539876,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-rmdbt","timestamp":"20241122141511","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Power MOSFET","url":"https:\/\/en.wikipedia.org\/wiki\/Power_MOSFET","sameAs":"http:\/\/www.wikidata.org\/entity\/Q570553","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q570553","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-09-11T11:18:09Z","dateModified":"2024-11-02T10:30:02Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/4\/4f\/D2PAK.JPG","headline":"power MOS field-effect transistor"}</script> </body> </html>