CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 52 results for author: <span class="mathjax">Mohler, D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-ph" aria-role="search"> Searching in archive <strong>hep-ph</strong>. <a href="/search/?searchtype=author&amp;query=Mohler%2C+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Mohler, D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Mohler%2C+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Mohler, D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Mohler%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Mohler%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Mohler%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02769">arXiv:2404.02769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.02769">pdf</a>, <a href="https://arxiv.org/format/2404.02769">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Precise Omega baryons from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Hudspith%2C+R+J">Renwick J. Hudspith</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lutz%2C+M+F+M">Matthias F. M. Lutz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02769v1-abstract-short" style="display: inline;"> In this paper we determine the masses of $I(J^P)=0\left(3/2^+\right)$ and $0\left(3/2^-\right)$ $惟$-baryon ground states using lattice QCD. We utilise Wilson-clover ensembles with $2+1$ dynamical quark flavours generated by the CLS consortium along a trajectory with a constant trace of the quark-mass matrix. We show that N$^3$LO $\text{SU}(3)_f$ chiral perturbation theory expressions describe the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02769v1-abstract-full').style.display = 'inline'; document.getElementById('2404.02769v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02769v1-abstract-full" style="display: none;"> In this paper we determine the masses of $I(J^P)=0\left(3/2^+\right)$ and $0\left(3/2^-\right)$ $惟$-baryon ground states using lattice QCD. We utilise Wilson-clover ensembles with $2+1$ dynamical quark flavours generated by the CLS consortium along a trajectory with a constant trace of the quark-mass matrix. We show that N$^3$LO $\text{SU}(3)_f$ chiral perturbation theory expressions describe the ground-state masses with positive-parity well, and we use them to set the lattice scale. Methodologically, our combination of gauge-fixed wall sources and the generalized Pencil of Functions allows for high-precision determinations of the lattice spacing at a relative error of around $0.3\%$ with controlled excited-state contamination. The fit we perform allows for the continuum value of $t_0$ to vary, thereby determining this quantity with a comparable level of precision to that of the lattice scale. Using the resulting scales our measurement of the negative-parity $惟^{3/2^{-}}$ state is found to be consistent with the recently-discovered $惟(2012)^-$, which can therefore be assigned the quantum numbers $I(J^P)=0\left(3/2^-\right)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02769v1-abstract-full').style.display = 'none'; document.getElementById('2404.02769v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13471">arXiv:2307.13471</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.13471">pdf</a>, <a href="https://arxiv.org/format/2307.13471">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD study of $蟺危-\bar{K}N$ scattering and the $螞(1405)$ resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cid-Mora%2C+B">B谩rbara Cid-Mora</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hanlon%2C+A+D">Andrew D. Hanlon</a>, <a href="/search/hep-ph?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Moscoso%2C+J">Joseph Moscoso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nicholson%2C+A">Amy Nicholson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Skinner%2C+S">Sarah Skinner</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Walker-Loud%2C+A">Andr茅 Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13471v3-abstract-short" style="display: inline;"> A lattice QCD computation of the coupled channel $蟺危-\bar{K}N$ scattering amplitudes in the $螞(1405)$ region is detailed. Results are obtained using a single ensemble of gauge field configurations with $N_{\rm f} = 2+1$ dynamical quark flavors and $m_蟺 \approx 200$ MeV and $m_K\approx487$ MeV. Hermitian correlation matrices using both single baryon and meson-baryon interpolating operators for a va&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13471v3-abstract-full').style.display = 'inline'; document.getElementById('2307.13471v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13471v3-abstract-full" style="display: none;"> A lattice QCD computation of the coupled channel $蟺危-\bar{K}N$ scattering amplitudes in the $螞(1405)$ region is detailed. Results are obtained using a single ensemble of gauge field configurations with $N_{\rm f} = 2+1$ dynamical quark flavors and $m_蟺 \approx 200$ MeV and $m_K\approx487$ MeV. Hermitian correlation matrices using both single baryon and meson-baryon interpolating operators for a variety of different total momenta and irreducible representations are used. Several parametrizations of the two-channel scattering $K$-matrix are utilized to obtain the scattering amplitudes from the finite-volume spectrum. The amplitudes, continued to the complex energy plane, exhibit a virtual bound state below the $蟺危$ threshold and a resonance pole just below the $\bar{K}N$ threshold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13471v3-abstract-full').style.display = 'none'; document.getElementById('2307.13471v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures, 14 tables. Final version accepted for publication in PRD with post-publication corrections</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5580 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.10413">arXiv:2307.10413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.10413">pdf</a>, <a href="https://arxiv.org/format/2307.10413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Two-pole nature of the $螞(1405)$ from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cid-Mora%2C+B">B谩rbara Cid-Mora</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hanlon%2C+A+D">Andrew D. Hanlon</a>, <a href="/search/hep-ph?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Moscoso%2C+J">Joseph Moscoso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nicholson%2C+A">Amy Nicholson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Skinner%2C+S">Sarah Skinner</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Walker-Loud%2C+A">Andr茅 Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.10413v4-abstract-short" style="display: inline;"> This letter presents the first lattice QCD computation of the coupled channel $蟺危-\bar{K}N$ scattering amplitudes at energies near $1405\,{\rm MeV}$. These amplitudes contain the resonance $螞(1405)$ with strangeness $S=-1$ and isospin, spin, and parity quantum numbers $I(J^P)=0(1/2^-)$. However, whether there is a single resonance or two nearby resonance poles in this region is controversial theor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10413v4-abstract-full').style.display = 'inline'; document.getElementById('2307.10413v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.10413v4-abstract-full" style="display: none;"> This letter presents the first lattice QCD computation of the coupled channel $蟺危-\bar{K}N$ scattering amplitudes at energies near $1405\,{\rm MeV}$. These amplitudes contain the resonance $螞(1405)$ with strangeness $S=-1$ and isospin, spin, and parity quantum numbers $I(J^P)=0(1/2^-)$. However, whether there is a single resonance or two nearby resonance poles in this region is controversial theoretically and experimentally. Using single-baryon and meson-baryon operators to extract the finite-volume stationary-state energies to obtain the scattering amplitudes at slightly unphysical quark masses corresponding to $m_蟺\approx200$ MeV and $m_K\approx487$ MeV, this study finds the amplitudes exhibit a virtual bound state below the $蟺危$ threshold in addition to the established resonance pole just below the $\bar{K}N$ threshold. Several parametrizations of the two-channel $K$-matrix are employed to fit the lattice QCD results, all of which support the two-pole picture suggested by $SU(3)$ chiral symmetry and unitarity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10413v4-abstract-full').style.display = 'none'; document.getElementById('2307.10413v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, and 1 table. Includes various corrections made during the last stages before publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5579 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.17295">arXiv:2303.17295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.17295">pdf</a>, <a href="https://arxiv.org/format/2303.17295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.114510">10.1103/PhysRevD.107.114510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exotic Tetraquark states with two $\bar{b}$-quarks and $J^P=0^+$ and $1^+$ $B_s$ states in a nonperturbatively-tuned Lattice NRQCD setup </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Hudspith%2C+R+J">R. J. Hudspith</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">D. Mohler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.17295v1-abstract-short" style="display: inline;"> We use $n_f=2+1$ Wilson-clover gauge-field ensembles from the CLS consortium in a Lattice NRQCD setup to predict the binding energy of a $I(J^P)=0(1^+)$ $ud\bar{b}\bar{b}$ tetraquark and a $\frac{1}{2}(1^+)$ $\ell s\bar{b}\bar{b}$ tetraquark. We determine the binding energies with respect to the relevant $BB^*$ and $B_sB^*$ thresholds respectively to be $112.0(13.2)$ MeV for the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17295v1-abstract-full').style.display = 'inline'; document.getElementById('2303.17295v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.17295v1-abstract-full" style="display: none;"> We use $n_f=2+1$ Wilson-clover gauge-field ensembles from the CLS consortium in a Lattice NRQCD setup to predict the binding energy of a $I(J^P)=0(1^+)$ $ud\bar{b}\bar{b}$ tetraquark and a $\frac{1}{2}(1^+)$ $\ell s\bar{b}\bar{b}$ tetraquark. We determine the binding energies with respect to the relevant $BB^*$ and $B_sB^*$ thresholds respectively to be $112.0(13.2)$ MeV for the $ud\bar{b}\bar{b}$, and $46.4(12.3)$ MeV for the $\ell s\bar{b}\bar{b}$. We also determine the ground-state $J^P=0^+$ $B_{s0}^*$ and $1^+$ $B_{s1}$ mesons to lie $75.4(14.0)$ and $78.7(13.9)$ MeV below the $BK$ and $B^*K$ thresholds respectively. Our errors are entirely dominated by systematics due to discretisation effects. To achieve these measurements, we performed a neural network based nonperturbative tuning of the Lattice NRQCD Hamiltonian&#39;s parameters against the basic bottomonium spectrum. For all lattice spacings considered we can reproduce the continuum splittings of low-lying bottomonia. It is worth remarking that our nonperturbative tuning parameters deviate from 1 by significant amounts, particularly the term $c_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17295v1-abstract-full').style.display = 'none'; document.getElementById('2303.17295v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">48 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.17083">arXiv:2211.17083</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.17083">pdf</a>, <a href="https://arxiv.org/format/2211.17083">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Intermediate window observable for the hadronic vacuum polarization contribution to the muon $g-2$ from O$(a)$ improved Wilson quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-ph?searchtype=author&amp;query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hudspith%2C+R+J">Renwick J. Hudspith</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kuberski%2C+S">Simon Kuberski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Miura%2C+K">Kohtaroh Miura</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Paul%2C+S">Srijit Paul</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Jos%C3%A9%2C+T+S">Teseo San Jos茅</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.17083v1-abstract-short" style="display: inline;"> Following the publication of the new measurement of the anomalous magnetic moment of the muon, the discrepancy between experiment and the theory prediction from the $g-2$ theory initiative has increased to $4.2\,蟽$. Recent lattice QCD calculations predict values for the hadronic vacuum polarization contribution that are larger than the data-driven estimates, bringing the Standard Model prediction&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17083v1-abstract-full').style.display = 'inline'; document.getElementById('2211.17083v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.17083v1-abstract-full" style="display: none;"> Following the publication of the new measurement of the anomalous magnetic moment of the muon, the discrepancy between experiment and the theory prediction from the $g-2$ theory initiative has increased to $4.2\,蟽$. Recent lattice QCD calculations predict values for the hadronic vacuum polarization contribution that are larger than the data-driven estimates, bringing the Standard Model prediction closer to the experimental measurement. Euclidean time windows in the time-momentum representation of the hadronic vacuum polarization contribution to the muon $g-2$ can help clarify the discrepancy between the phenomenological and lattice predictions. We present our calculation of the intermediate distance window contribution using $N_\mathrm{f}=2+1$ flavors of O$(a)$ improved Wilson quarks. We employ ensembles at six lattice spacings below $0.1\,$fm and pion masses down to the physical value. We present a detailed study of the continuum limit, using two discretizations of the vector current and two independent sets of improvement coefficients. Our result at the physical point displays a tension of $3.9\,蟽$ with a recent evaluation of the intermediate window based on the data-driven method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17083v1-abstract-full').style.display = 'none'; document.getElementById('2211.17083v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, Proceedings of the 39th International Symposium on Lattice Field Theory, 8th-13th August 2022, Bonn, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-22-102, DESY-22-193 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.06582">arXiv:2206.06582</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.06582">pdf</a>, <a href="https://arxiv.org/format/2206.06582">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.114502">10.1103/PhysRevD.106.114502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Window observable for the hadronic vacuum polarization contribution to the muon $g-2$ from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-ph?searchtype=author&amp;query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hudspith%2C+R+J">Renwick J. Hudspith</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kuberski%2C+S">Simon Kuberski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Miura%2C+K">Kohtaroh Miura</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Paul%2C+S">Srijit Paul</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Jos%C3%A9%2C+T+S">Teseo San Jos茅</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.06582v2-abstract-short" style="display: inline;"> Euclidean time windows in the integral representation of the hadronic vacuum polarization contribution to the muon $g-2$ serve to test the consistency of lattice calculations and may help in tracing the origins of a potential tension between lattice and data-driven evaluations. In this paper, we present results for the intermediate time window observable computed using O($a$) improved Wilson fermi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06582v2-abstract-full').style.display = 'inline'; document.getElementById('2206.06582v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.06582v2-abstract-full" style="display: none;"> Euclidean time windows in the integral representation of the hadronic vacuum polarization contribution to the muon $g-2$ serve to test the consistency of lattice calculations and may help in tracing the origins of a potential tension between lattice and data-driven evaluations. In this paper, we present results for the intermediate time window observable computed using O($a$) improved Wilson fermions at six values of the lattice spacings below 0.1\,fm and pion masses down to the physical value. Using two different sets of improvement coefficients in the definitions of the local and conserved vector currents, we perform a detailed scaling study which results in a fully controlled extrapolation to the continuum limit without any additional treatment of the data, except for the inclusion of finite-volume corrections. To determine the latter, we use a combination of the method of Hansen and Patella and the Meyer-Lellouch-L眉scher procedure employing the Gounaris-Sakurai parameterization for the pion form factor. We correct our results for isospin-breaking effects via the perturbative expansion of QCD+QED around the isosymmetric theory. Our result at the physical point is $a_渭^{\mathrm{win}}=(237.30\pm0.79_{\rm stat}\pm1.22_{\rm syst})\times10^{-10}$, where the systematic error includes an estimate of the uncertainty due to the quenched charm quark in our calculation. Our result displays a tension of 3.9$蟽$ with a recent evaluation of $a_渭^{\mathrm{win}}$ based on the data-driven method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06582v2-abstract-full').style.display = 'none'; document.getElementById('2206.06582v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 9 figures, 10 tables; version accepted for publication: extended discussion of finite-volume corrections. Results and conclusions unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-22-038, CERN-TH-2022-098, DESY-22-105 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 106, 114502 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.02934">arXiv:2111.02934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.02934">pdf</a>, <a href="https://arxiv.org/format/2111.02934">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Charmonium-like resonances in coupled $D \bar D$-$D_s \bar D_s$ scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">S. Prelovsek</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Collins%2C+S">S. Collins</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">D. Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Piemonte%2C+S">S. Piemonte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.02934v2-abstract-short" style="display: inline;"> Charmonium-like resonances and bound states with isospin zero and $J^{PC}=0^{++},~1^{--},~2^{++},~3^{--}$ are extracted on the lattice. Coupled $D\bar D$ and $D_s\bar D_s$ scattering suggests three charmonium-like states with $J^{PC}=0^{++}$ in addition to $蠂_{c0}(1P)$: a so far unobserved $D\bar D$ bound state just below threshold, a conventional resonance likely related to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.02934v2-abstract-full').style.display = 'inline'; document.getElementById('2111.02934v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.02934v2-abstract-full" style="display: none;"> Charmonium-like resonances and bound states with isospin zero and $J^{PC}=0^{++},~1^{--},~2^{++},~3^{--}$ are extracted on the lattice. Coupled $D\bar D$ and $D_s\bar D_s$ scattering suggests three charmonium-like states with $J^{PC}=0^{++}$ in addition to $蠂_{c0}(1P)$: a so far unobserved $D\bar D$ bound state just below threshold, a conventional resonance likely related to $蠂_{c0}(3860)/蠂_{c0}(2P)$ and a narrow resonance just below the $D_s\bar D_s$ threshold with a large coupling to $D_s\bar D_s$ likely related to $X(3915)/蠂_{c0}(3930)$. One-channel $D\bar D$ scattering renders resonances and bound states with $J^{PC}= 1^{--},~2^{++},~3^{--}$ related to the observed conventional charmonia. Lattice QCD ensembles from the CLS consortium with $m_蟺\simeq 280$ MeV are utilized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.02934v2-abstract-full').style.display = 'none'; document.getElementById('2111.02934v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, talk presented at LATTICE2021, July 2021, v2: affiliations modified</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-21-055 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.07460">arXiv:2102.07460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.07460">pdf</a>, <a href="https://arxiv.org/format/2102.07460">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.094522">10.1103/PhysRevD.103.094522 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Isovector electromagnetic form factors of the nucleon from lattice QCD and the proton radius puzzle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Djukanovic%2C+D">D. Djukanovic</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Harris%2C+T">T. Harris</a>, <a href="/search/hep-ph?searchtype=author&amp;query=von+Hippel%2C+G">G. von Hippel</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Junnarkar%2C+P+M">P. M. Junnarkar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Meyer%2C+H+B">H. B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">D. Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ottnad%2C+K">K. Ottnad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Schulz%2C+T">T. Schulz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wilhelm%2C+J">J. Wilhelm</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wittig%2C+H">H. Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.07460v1-abstract-short" style="display: inline;"> We present results for the isovector electromagnetic form factors of the nucleon computed on the CLS ensembles with $N_f=2+1$ flavors of $\mathcal{O}(a)$-improved Wilson fermions and an $\mathcal{O}(a)$-improved vector current. The analysis includes ensembles with four lattice spacings and pion masses ranging from 130 MeV up to 350 MeV and mainly targets the low-$Q^2$ region. In order to remove an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07460v1-abstract-full').style.display = 'inline'; document.getElementById('2102.07460v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.07460v1-abstract-full" style="display: none;"> We present results for the isovector electromagnetic form factors of the nucleon computed on the CLS ensembles with $N_f=2+1$ flavors of $\mathcal{O}(a)$-improved Wilson fermions and an $\mathcal{O}(a)$-improved vector current. The analysis includes ensembles with four lattice spacings and pion masses ranging from 130 MeV up to 350 MeV and mainly targets the low-$Q^2$ region. In order to remove any bias from unsuppressed excited-state contributions, we investigate several source-sink separations between 1.0 fm and 1.5 fm and apply the summation method as well as explicit two-state fits. The chiral interpolation is performed by applying covariant chiral perturbation theory including vector mesons directly to our form factor data, thus avoiding an auxiliary parametrization of the $Q^2$ dependence. At the physical point, we obtain $渭=4.71(11)_{\mathrm{stat}}(13)_{\mathrm{sys}}$ for the nucleon isovector magnetic moment, in good agreement with the experimental value and $\langle r_\mathrm{M}^2\rangle~=~0.661(30)_{\mathrm{stat}}(11)_{\mathrm{sys}}\,~\mathrm{fm}^2$ for the corresponding square-radius, again in good agreement with the value inferred from the $ep$-scattering determination [Bernauer et~al., Phys. Rev. Lett., 105, 242001 (2010)] of the proton radius. Our estimate for the isovector electric charge radius, $\langle r_\mathrm{E}^2\rangle = 0.800(25)_{\mathrm{stat}}(22)_{\mathrm{sys}}\,~\mathrm{fm}^2$, however, is in slight tension with the larger value inferred from the aforementioned $ep$-scattering data, while being in agreement with the value derived from the 2018 CODATA average for the proton charge radius. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07460v1-abstract-full').style.display = 'none'; document.getElementById('2102.07460v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 094522 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.02542">arXiv:2011.02542</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.02542">pdf</a>, <a href="https://arxiv.org/format/2011.02542">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP06(2021)035">10.1007/JHEP06(2021)035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charmonium-like resonances with $J^{PC}=0^{++},2^{++}$ in coupled $D\bar D$, $D_s\bar D_s$ scattering on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">S. Prelovsek</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Collins%2C+S">S. Collins</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">D. Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Piemonte%2C+S">S. Piemonte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.02542v3-abstract-short" style="display: inline;"> We present the first lattice investigation of coupled-channel $D\bar D$ and $D_s\bar D_s$ scattering in the $J^{PC}=0^{++}$ and $2^{++}$ channels. The scattering matrix for partial waves $l=0,2$ and isospin zero is determined using multiple volumes and inertial frames via L眉scher&#39;s formalism. Lattice QCD ensembles from the CLS consortium with $m_蟺\simeq280$ MeV, $a \simeq 0.09 $ fm and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02542v3-abstract-full').style.display = 'inline'; document.getElementById('2011.02542v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.02542v3-abstract-full" style="display: none;"> We present the first lattice investigation of coupled-channel $D\bar D$ and $D_s\bar D_s$ scattering in the $J^{PC}=0^{++}$ and $2^{++}$ channels. The scattering matrix for partial waves $l=0,2$ and isospin zero is determined using multiple volumes and inertial frames via L眉scher&#39;s formalism. Lattice QCD ensembles from the CLS consortium with $m_蟺\simeq280$ MeV, $a \simeq 0.09 $ fm and $L/a=24,~32$ are utilized. The resulting scattering matrix suggests the existence of three charmonium-like states with $J^{PC}=0^{++}$ in the energy region ranging from slightly below $2m_D$ up to 4.13 GeV. We find a so far unobserved $D\bar D$ bound state just below threshold and a $D\bar D$ resonance likely related to $蠂_{c0}(3860)$, which is believed to be $蠂_{c0}(2P)$. In addition, there is an indication for a narrow $0^{++}$ resonance just below the $D_s\bar D_s$ threshold with a large coupling to $D_s\bar D_s$ and a very small coupling to $D\bar D$. This resonance is possibly related to the narrow $X(3915)$/$蠂_{c0}(3930)$ observed in experiment also just below $D_s\bar D_s$. The partial wave $l=2$ features a resonance likely related to $蠂_{c2}(3930)$. We work with several assumptions, such as the omission of $J/蠄蠅$, $畏_c畏$ and three-particle channels. Only statistical uncertainties are quantified, while the extrapolations to the physical quark-masses and the continuum limit are challenges for the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02542v3-abstract-full').style.display = 'none'; document.getElementById('2011.02542v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 16 figures; JHEP version, corrected typo concerning the uncertainty in Fig 5c</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/20-065 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.04822">arXiv:2006.04822</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.04822">pdf</a>, <a href="https://arxiv.org/format/2006.04822">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2020.07.006">10.1016/j.physrep.2020.07.006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The anomalous magnetic moment of the muon in the Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Aoyama%2C+T">T. Aoyama</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Asmussen%2C+N">N. Asmussen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Benayoun%2C+M">M. Benayoun</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bijnens%2C+J">J. Bijnens</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bruno%2C+M">M. Bruno</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Caprini%2C+I">I. Caprini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Calame%2C+C+M+C">C. M. Carloni Calame</a>, <a href="/search/hep-ph?searchtype=author&amp;query=C%C3%A8%2C+M">M. C猫</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Colangelo%2C+G">G. Colangelo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Curciarello%2C+F">F. Curciarello</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Czy%C5%BC%2C+H">H. Czy偶</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Danilkin%2C+I">I. Danilkin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Davier%2C+M">M. Davier</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Davies%2C+C+T+H">C. T. H. Davies</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Della+Morte%2C+M">M. Della Morte</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Eidelman%2C+S+I">S. I. Eidelman</a>, <a href="/search/hep-ph?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=G%C3%A9rardin%2C+A">A. G茅rardin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Giusti%2C+D">D. Giusti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Golterman%2C+M">M. Golterman</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-ph?searchtype=author&amp;query=G%C3%BClpers%2C+V">V. G眉lpers</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hagelstein%2C+F">F. Hagelstein</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hayakawa%2C+M">M. Hayakawa</a> , et al. (107 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.04822v2-abstract-short" style="display: inline;"> We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant $伪$ and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including $\mathcal{O}(伪^5)$ with negligible numerical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.04822v2-abstract-full').style.display = 'inline'; document.getElementById('2006.04822v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.04822v2-abstract-full" style="display: none;"> We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant $伪$ and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including $\mathcal{O}(伪^5)$ with negligible numerical uncertainty. The electroweak contribution is suppressed by $(m_渭/M_W)^2$ and only shows up at the level of the seventh significant digit. It has been evaluated up to two loops and is known to better than one percent. Hadronic contributions are the most difficult to calculate and are responsible for almost all of the theoretical uncertainty. The leading hadronic contribution appears at $\mathcal{O}(伪^2)$ and is due to hadronic vacuum polarization, whereas at $\mathcal{O}(伪^3)$ the hadronic light-by-light scattering contribution appears. Given the low characteristic scale of this observable, these contributions have to be calculated with nonperturbative methods, in particular, dispersion relations and the lattice approach to QCD. The largest part of this review is dedicated to a detailed account of recent efforts to improve the calculation of these two contributions with either a data-driven, dispersive approach, or a first-principle, lattice-QCD approach. The final result reads $a_渭^\text{SM}=116\,591\,810(43)\times 10^{-11}$ and is smaller than the Brookhaven measurement by 3.7$蟽$. The experimental uncertainty will soon be reduced by up to a factor four by the new experiment currently running at Fermilab, and also by the future J-PARC experiment. This and the prospects to further reduce the theoretical uncertainty in the near future-which are also discussed here-make this quantity one of the most promising places to look for evidence of new physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.04822v2-abstract-full').style.display = 'none'; document.getElementById('2006.04822v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">196 pages, 103 figures, version published in Phys. Rept., bib files for the citation references are available from: https://muon-gm2-theory.illinois.edu</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-207-T, INT-PUB-20-021, KEK Preprint 2020-5, MITP/20-028, CERN-TH-2020-075, IFT-UAM/CSIC-20-74, LMU-ASC 18/20, LTH 1234, LU TP 20-20, MAN/HEP/2020/003, PSI-PR-20-06, UWThPh 2020-14, ZU-TH 18/20 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rept. 887 (2020) 1-166 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.04733">arXiv:1911.04733</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.04733">pdf</a>, <a href="https://arxiv.org/format/1911.04733">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The leading hadronic vacuum polarization contribution to the muon anomalous magnetic moment using $N_f=2+1$ O($a$) improved Wilson quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-ph?searchtype=author&amp;query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Meyer%2C+H">Harvey Meyer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wilhelm%2C+J">Jonas Wilhelm</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.04733v1-abstract-short" style="display: inline;"> We present a lattice calculation of the leading hadronic contribution to the anomalous magnetic moment of the muon. This work is based on a subset of the CLS ensembles with $N_f = 2+1$ dynamical quarks and a quenched charm quark. Noise reduction techniques are used to improve significantly the statistical precision of the dominant light quark contribution. The main source of systematic error comes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04733v1-abstract-full').style.display = 'inline'; document.getElementById('1911.04733v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.04733v1-abstract-full" style="display: none;"> We present a lattice calculation of the leading hadronic contribution to the anomalous magnetic moment of the muon. This work is based on a subset of the CLS ensembles with $N_f = 2+1$ dynamical quarks and a quenched charm quark. Noise reduction techniques are used to improve significantly the statistical precision of the dominant light quark contribution. The main source of systematic error comes from finite size effects which are estimated using the formalism described in Ref. [7] and based on our knowledge of the timelike pion form factor. The strange and charm quark contributions are under control and an estimate of the quark-disconnected contribution is included. Isospin breaking effects will be studied in a future publication but are included in the systematic error using an estimate based on published lattice results. Our final result, $a_渭^{\rm hvp} = (720.0\pm 12.4 \pm 6.8)\times 10^{-10}$, has a precision of about 2%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04733v1-abstract-full').style.display = 'none'; document.getElementById('1911.04733v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages. Contribution to the 37th International Symposium on Lattice Field Theory (LATTICE2019), 16-22 June 2019, Wuhan, China</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/19-075,DESY 19-196 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.03506">arXiv:1905.03506</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.03506">pdf</a>, <a href="https://arxiv.org/format/1905.03506">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.074505">10.1103/PhysRevD.100.074505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charmonium resonances with $J^{PC}=1^{--}$ and $3^{--}$ from $\bar DD$ scattering on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Piemonte%2C+S">S. Piemonte</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Collins%2C+S">S. Collins</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">D. Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">S. Prelovsek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.03506v2-abstract-short" style="display: inline;"> We present a lattice QCD study of charmonium resonances and bound states with $J^{PC}=1^{--}$ and $3^{--}$ near the open-charm threshold, taking into account their strong transitions to $\bar DD$. Vector charmonia are the most abundant in the experimentally established charmonium spectrum, while recently LHCb reported also the first discovery of a charmonium with likely spin three. The $\bar DD$ s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03506v2-abstract-full').style.display = 'inline'; document.getElementById('1905.03506v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.03506v2-abstract-full" style="display: none;"> We present a lattice QCD study of charmonium resonances and bound states with $J^{PC}=1^{--}$ and $3^{--}$ near the open-charm threshold, taking into account their strong transitions to $\bar DD$. Vector charmonia are the most abundant in the experimentally established charmonium spectrum, while recently LHCb reported also the first discovery of a charmonium with likely spin three. The $\bar DD$ scattering amplitudes for partial waves $l=1$ and $l=3$ are extracted on the lattice by means of the L眉scher formalism, using multiple volumes and inertial frames. Parameterizations of the scattering amplitudes provide masses and widths of the resonances, as well as the masses of bound states. CLS ensembles with 2+1 dynamical flavors of non-perturbatively $O(a)$ improved Wilson quarks are employed with $m_蟺\simeq 280$ MeV, a single lattice spacing of $a\simeq0.086$ fm and two lattice spatial extents of $L=24$ and $32$. Two values of the charm quark mass are considered to examine the influence of the position of the $\bar{D}D$ threshold on the hadron masses. For the lighter charm quark mass we find the vector resonance $蠄(3770)$ with mass $m=3780(7)$ MeV and coupling $g=16.0(^{+2.1}_{-0.2})$ (related to the width), both consistent with their experimental values. The vector $蠄(2S)$ appears as a bound state with $m=3666(10)$ MeV. The charmonium resonance with $J^{PC}=3^{--}$ is found at $m=3831(^{+10}_{-16})$ MeV, consistent with the $X(3842)$ recently discovered by LHCb. At our heavier charm-quark mass the $蠄(2S)$ as well as the $蠄(3770)$ are bound states and the $X(3842)$ remains a resonance. We stress that all quoted uncertainties are only statistical, while lattice spacing effects and the approach to the physical point still need to be explored. This study of conventional charmonia sets the stage for more challenging future studies of unconventional charmonium-like states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03506v2-abstract-full').style.display = 'none'; document.getElementById('1905.03506v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 17 figures. Version 2: Added Appendix B and Figure 12, improved text and figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/19-029 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 074505 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.03120">arXiv:1904.03120</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.03120">pdf</a>, <a href="https://arxiv.org/format/1904.03120">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.014510">10.1103/PhysRevD.100.014510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The leading hadronic contribution to $(g-2)_渭$ from lattice QCD with $N_{\rm f}=2+1$ flavours of O($a$) improved Wilson quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-ph?searchtype=author&amp;query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wilhelm%2C+J">Jonas Wilhelm</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.03120v1-abstract-short" style="display: inline;"> The comparison of the theoretical and experimental determinations of the anomalous magnetic moment of the muon $(g-2)_渭$ constitutes one of the strongest tests of the Standard Model at low energies. In this article, we compute the leading hadronic contribution to $(g-2)_渭$ using lattice QCD simulations employing Wilson quarks. Gauge field ensembles at four different lattice spacings and several va&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.03120v1-abstract-full').style.display = 'inline'; document.getElementById('1904.03120v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.03120v1-abstract-full" style="display: none;"> The comparison of the theoretical and experimental determinations of the anomalous magnetic moment of the muon $(g-2)_渭$ constitutes one of the strongest tests of the Standard Model at low energies. In this article, we compute the leading hadronic contribution to $(g-2)_渭$ using lattice QCD simulations employing Wilson quarks. Gauge field ensembles at four different lattice spacings and several values of the pion mass down to its physical value are used. We apply the O($a$) improvement programme with two discretizations of the vector current to better constrain the approach to the continuum limit. The electromagnetic current correlators are computed in the time-momentum representation. In addition, we perform auxiliary calculations of the pion form factor at timelike momenta in order to better constrain the tail of the isovector correlator and to correct its dominant finite-size effect. For the numerically dominant light-quark contribution, we have rescaled the lepton mass by the pion decay constant computed on each lattice ensemble. We perform a combined chiral and continuum extrapolation to the physical point, and our final result is $ a_渭^{\rm hvp}=(720.0\pm12.4_{\rm stat}\,\pm9.9_{\rm syst})\cdot10^{-10}$. It contains the contributions of quark-disconnected diagrams, and the systematic error has been enlarged to account for the missing isospin-breaking effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.03120v1-abstract-full').style.display = 'none'; document.getElementById('1904.03120v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/19-021 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 014510 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.03553">arXiv:1812.03553</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.03553">pdf</a>, <a href="https://arxiv.org/format/1812.03553">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The hadronic vacuum polarization contribution to $(g-2)_渭$ from $2+1$ flavours of O($a$) improved Wilson quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-ph?searchtype=author&amp;query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Meyer%2C+H">Harvey Meyer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.03553v1-abstract-short" style="display: inline;"> We report on our ongoing project to determine the leading-order hadronic vacuum polarisation contribution to the muon $g-2$, using ensembles with $N_f=2+1$ flavours of O($a$) improved Wilson quarks generated by the CLS effort, with pion masses down to the physical value. We employ O($a$) improved versions of the local and conserved vector currents to compute the contributions of the light, strange&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.03553v1-abstract-full').style.display = 'inline'; document.getElementById('1812.03553v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.03553v1-abstract-full" style="display: none;"> We report on our ongoing project to determine the leading-order hadronic vacuum polarisation contribution to the muon $g-2$, using ensembles with $N_f=2+1$ flavours of O($a$) improved Wilson quarks generated by the CLS effort, with pion masses down to the physical value. We employ O($a$) improved versions of the local and conserved vector currents to compute the contributions of the light, strange and charm quarks to $(g-2)_渭$, using the time-momentum representation. We perform a detailed investigation of the systematic effects arising from constraining the long-distance regime of the vector correlator. To this end we make use of auxiliary calculations in the iso-vector channel using distillation and the L眉scher formalism. Our results are corrected for finite-volume effects by computing the timelike pion form factor in finite and infinite volume. For certain parameter choices, the corrections computed in this way can also be confronted with results determined on different volumes. Currently, the overall precision of our results is limited by the uncertainties in the lattice scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.03553v1-abstract-full').style.display = 'none'; document.getElementById('1812.03553v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in: Proceedings of the 36th International Symposium on Lattice Field Theory (Lattice 2018), Michigan State University, East Lansing, USA; 7 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/18-121 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.04116">arXiv:1811.04116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.04116">pdf</a>, <a href="https://arxiv.org/format/1811.04116">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.014513">10.1103/PhysRevD.99.014513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Identifying spin and parity of charmonia in flight with lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Collins%2C+S">Sara Collins</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Piemonte%2C+S">Stefano Piemonte</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">Sasa Prelovsek</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Schaefer%2C+A">Andreas Schaefer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Weishaeupl%2C+S">Simon Weishaeupl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.04116v2-abstract-short" style="display: inline;"> The spectrum of charmonium resonances contains a number of unanticipated states along with several conventional quark-model excitations. The hadrons of different quantum numbers $J^P$ appear in a fairly narrow energy band, where $J^P$ refers to the spin-parity of a hadron at rest. This poses a challenge for Lattice QCD studies of (coupled-channel) meson-meson scattering aimed at the determination&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.04116v2-abstract-full').style.display = 'inline'; document.getElementById('1811.04116v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.04116v2-abstract-full" style="display: none;"> The spectrum of charmonium resonances contains a number of unanticipated states along with several conventional quark-model excitations. The hadrons of different quantum numbers $J^P$ appear in a fairly narrow energy band, where $J^P$ refers to the spin-parity of a hadron at rest. This poses a challenge for Lattice QCD studies of (coupled-channel) meson-meson scattering aimed at the determination of scattering amplitudes and resonance pole positions. A wealth of information for this purpose can be obtained from the lattice spectra in frames with nonzero total momentum. These are particularly dense since hadrons with different $J^P$ contribute to any given lattice irreducible representation. This is because $J^P$ is not a good quantum number in flight, and also because the continuum symmetry is reduced on the lattice. In this paper we address the assignment of the underlying continuum $J^P$ quantum numbers to charmonia in flight using a $N_f = 2 + 1$ CLS ensemble. As a first step, we apply the single-hadron approach, where only interpolating fields of quark-antiquark type are used. The approach follows techniques previously applied to the light meson spectrum by the Hadron Spectrum Collaboration. The resulting spectra of charmonia with assigned $J^P$ will provide valuable information for the parameterization of (resonant) amplitudes in future determinations of resonance properties with lattice QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.04116v2-abstract-full').style.display = 'none'; document.getElementById('1811.04116v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 17 figures, Version published in Physical Review D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 014513 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.09983">arXiv:1810.09983</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.09983">pdf</a>, <a href="https://arxiv.org/format/1810.09983">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.034509">10.1103/PhysRevD.99.034509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Splittings of low-lying charmonium masses at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lee%2C+S">Song-haeng Lee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Simone%2C+J+N">James N. Simone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.09983v1-abstract-short" style="display: inline;"> We present high-precision results from lattice QCD for the mass splittings of the low-lying charmonium states. For the valence charm quark, the calculation uses Wilson-clover quarks in the Fermilab interpretation. The gauge-field ensembles are generated in the presence of up, down, and strange sea quarks, based on the improved staggered (asqtad) action, and gluon fields, based on the one-loop, tad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09983v1-abstract-full').style.display = 'inline'; document.getElementById('1810.09983v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.09983v1-abstract-full" style="display: none;"> We present high-precision results from lattice QCD for the mass splittings of the low-lying charmonium states. For the valence charm quark, the calculation uses Wilson-clover quarks in the Fermilab interpretation. The gauge-field ensembles are generated in the presence of up, down, and strange sea quarks, based on the improved staggered (asqtad) action, and gluon fields, based on the one-loop, tadpole-improved gauge action. We use five lattice spacings and two values of the light sea quark mass to extrapolate the results to the physical point. An enlarged set of interpolating operators is used for a variational analysis to improve the determination of the energies of the ground states in each channel. We present and implement a continuum extrapolation within the Fermilab interpretation, based on power-counting arguments, and thoroughly discuss all sources of systematic uncertainty. We compare our results for various mass splittings with their experimental values, namely, the 1S hyperfine splitting, the 1P-1S splitting and the P-wave spin-orbit and tensor splittings. Given the uncertainty related to the width of the resonances, we find excellent agreement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09983v1-abstract-full').style.display = 'none'; document.getElementById('1810.09983v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-18-440-T, MITP/18-097 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 034509 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.05015">arXiv:1701.05015</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.05015">pdf</a>, <a href="https://arxiv.org/format/1701.05015">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201713705018">10.1051/epjconf/201713705018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Recent results on the meson and baryon spectrum from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.05015v1-abstract-short" style="display: inline;"> Recent lattice results on the meson and baryon spectrum with a focus on the determination of hadronic resonance masses and widths using a combined basis of single-hadron and hadron-hadron interpolating fields are reviewed. These mostly exploratory calculations differ from traditional lattice QCD spectrum calculations for states stable under QCD, where calculations with a full uncertainty estimate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.05015v1-abstract-full').style.display = 'inline'; document.getElementById('1701.05015v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.05015v1-abstract-full" style="display: none;"> Recent lattice results on the meson and baryon spectrum with a focus on the determination of hadronic resonance masses and widths using a combined basis of single-hadron and hadron-hadron interpolating fields are reviewed. These mostly exploratory calculations differ from traditional lattice QCD spectrum calculations for states stable under QCD, where calculations with a full uncertainty estimate are already routinely performed. Progress and challenges in these calculations are highlighted. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.05015v1-abstract-full').style.display = 'none'; document.getElementById('1701.05015v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 18 figures. Contribution to the proceedings of XIIth Quark Confinement and the Hadron Spectrum (CONF12), Thessaloniki, Greece, 2016</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/16-140 , HIM-2016-04 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.02592">arXiv:1611.02592</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.02592">pdf</a>, <a href="https://arxiv.org/format/1611.02592">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Prediction of positive parity $B_s$ mesons and search for the $X(5568)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">Sasa Prelovsek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.02592v1-abstract-short" style="display: inline;"> We use a combination of quark-antiquark and $B^{(*)}K$ interpolating fields to predict the mass of two QCD bound states below the $B^*K$ threshold in the quantum channels $J^P=0^+$ and $1^+$. The mesons correspond to the b-quark cousins of the $D_{s0}^*(2317)$ and $D_{s1}(2460)$ and have not yet been observed in experiment, even though they are expected to be found by LHCb. In addition to these pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.02592v1-abstract-full').style.display = 'inline'; document.getElementById('1611.02592v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.02592v1-abstract-full" style="display: none;"> We use a combination of quark-antiquark and $B^{(*)}K$ interpolating fields to predict the mass of two QCD bound states below the $B^*K$ threshold in the quantum channels $J^P=0^+$ and $1^+$. The mesons correspond to the b-quark cousins of the $D_{s0}^*(2317)$ and $D_{s1}(2460)$ and have not yet been observed in experiment, even though they are expected to be found by LHCb. In addition to these predictions, we obtain excellent agreement of the remaining p-wave energy levels with the known $B_{s1}(5830)$ and $B_{s2}^*(5840)$ mesons. The results from our first principles calculation are compared to previous model-based estimates. More recently the D0 collaboration claimed the existence of an exotic resonance $X(5568)$ with exotic flavor content $\bar{b}s\bar{d}u$. If such a state with $J^P=0^+$ exists, only the decay into $B_s蟺$ is open which makes a lattice search for this state much cleaner and simpler than for other exotic candidates involving heavy quarks. We conclude, however, that we do not find such a candidate in agreement with a recent LHCb result. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.02592v1-abstract-full').style.display = 'none'; document.getElementById('1611.02592v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages; Proceedings for the 34th International Symposium on Lattice Field Theory, 24-30 July 2016, University of Southampton, UK</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.03185">arXiv:1607.03185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.03185">pdf</a>, <a href="https://arxiv.org/format/1607.03185">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.94.074509">10.1103/PhysRevD.94.074509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $B_s蟺^+$ scattering and search for X(5568) with lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">D. Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">S. Prelovsek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.03185v2-abstract-short" style="display: inline;"> We investigate $B_s蟺^+$ scattering in s-wave using lattice QCD in order to search for an exotic resonance X(5568) with flavor $\bar b s \bar d u$; such a state was recently reported by D0 but was not seen by LHCb. If X(5568) with $J^P=0^+$ exists, it can strongly decay only to $B_s蟺^+$ and lies significantly below all other thresholds, which makes a lattice search for X(5568) cleaner and simpler t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.03185v2-abstract-full').style.display = 'inline'; document.getElementById('1607.03185v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.03185v2-abstract-full" style="display: none;"> We investigate $B_s蟺^+$ scattering in s-wave using lattice QCD in order to search for an exotic resonance X(5568) with flavor $\bar b s \bar d u$; such a state was recently reported by D0 but was not seen by LHCb. If X(5568) with $J^P=0^+$ exists, it can strongly decay only to $B_s蟺^+$ and lies significantly below all other thresholds, which makes a lattice search for X(5568) cleaner and simpler than for other exotic candidates. Both an elastic resonance in $B_s蟺^+$ as well as a deeply bound $B^+\bar K^0$ would lead to distinct signatures in the energies of lattice eigenstates, which are not seen in our simulation. We therefore do not find a candidate for X(5568) with $J^P=0^+$ in agreement with the recent LHCb result. The extracted $B_s蟺^+$ scattering length is compatible with zero within the error. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.03185v2-abstract-full').style.display = 'none'; document.getElementById('1607.03185v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, version to appear in Phys. Rev. D, new Section III added which provides details of the calculation, results and conclusions unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/16-074, HIM-2016-03 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 94, 074509 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.05363">arXiv:1503.05363</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.05363">pdf</a>, <a href="https://arxiv.org/ps/1503.05363">ps</a>, <a href="https://arxiv.org/format/1503.05363">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP09(2015)089">10.1007/JHEP09(2015)089 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vector and scalar charmonium resonances with lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Leskovec%2C+L">Luka Leskovec</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">Sasa Prelovsek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.05363v2-abstract-short" style="display: inline;"> We perform an exploratory lattice QCD simulation of $D \bar D$ scattering, aimed at determining the masses as well as the decay widths of charmonium resonances above open charm threshold. Neglecting coupling to other channels, the resulting phase shift for $D \bar D$ scattering in p-wave yields the well-known vector resonance $蠄(3770)$. For $m_蟺= 156$ MeV, the extracted resonance mass and the deca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.05363v2-abstract-full').style.display = 'inline'; document.getElementById('1503.05363v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.05363v2-abstract-full" style="display: none;"> We perform an exploratory lattice QCD simulation of $D \bar D$ scattering, aimed at determining the masses as well as the decay widths of charmonium resonances above open charm threshold. Neglecting coupling to other channels, the resulting phase shift for $D \bar D$ scattering in p-wave yields the well-known vector resonance $蠄(3770)$. For $m_蟺= 156$ MeV, the extracted resonance mass and the decay width agree with experiment within large statistical uncertainty. The scalar charmonium resonances present a puzzle, since only the ground state $蠂_{c0}(1P)$ is well understood, while there is no commonly accepted candidate for its first excitation. We simulate $D \bar D$ scattering in s-wave in order to shed light on this puzzle. The resulting phase shift supports the existence of a yet-unobserved narrow resonance with a mass slightly below 4 GeV. A scenario with this narrow resonance and a pole at $蠂_{c0}(1P)$ agrees with the energy-dependence of our phase shift. Further lattice QCD simulations and experimental efforts are needed to resolve the puzzle of the excited scalar charmonia. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.05363v2-abstract-full').style.display = 'none'; document.getElementById('1503.05363v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 8 figures, updated to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-15-084-T, JLAB-THY-15-2022 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 09 (2015) 089 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.01646">arXiv:1501.01646</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.01646">pdf</a>, <a href="https://arxiv.org/ps/1501.01646">ps</a>, <a href="https://arxiv.org/format/1501.01646">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2015.08.038">10.1016/j.physletb.2015.08.038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Predicting positive parity $B_{s}$ mesons from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">Sasa Prelovsek</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Woloshyn%2C+R+M">R. M. Woloshyn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.01646v2-abstract-short" style="display: inline;"> We determine the spectrum of $B_s$ 1P states using lattice QCD. For the $B_{s1}(5830)$ and $B_{s2}^*(5840)$ mesons, the results are in good agreement with the experimental values. Two further mesons are expected in the quantum channels $J^P=0^+$ and $1^+$ near the $BK$ and $B^{*}K$ thresholds. A combination of quark-antiquark and $B^{(*)}$ meson-Kaon interpolating fields are used to determine the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.01646v2-abstract-full').style.display = 'inline'; document.getElementById('1501.01646v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.01646v2-abstract-full" style="display: none;"> We determine the spectrum of $B_s$ 1P states using lattice QCD. For the $B_{s1}(5830)$ and $B_{s2}^*(5840)$ mesons, the results are in good agreement with the experimental values. Two further mesons are expected in the quantum channels $J^P=0^+$ and $1^+$ near the $BK$ and $B^{*}K$ thresholds. A combination of quark-antiquark and $B^{(*)}$ meson-Kaon interpolating fields are used to determine the mass of two QCD bound states below the $B^{(*)}K$ threshold, with the assumption that mixing with $B_s^{(*)}畏$ and isospin-violating decays to $B_s^{(*)}蟺$ are negligible. We predict a $J^P=0^+$ bound state $B_{s0}$ with mass $m_{B_{s0}}=5.711(13)(19)$ GeV. With further assumptions motivated theoretically by the heavy quark limit, a bound state with $m_{B_{s1}}= 5.750(17)(19)$ GeV is predicted in the $J^P=1^+$ channel. The results from our first principles calculation are compared to previous model-based estimates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.01646v2-abstract-full').style.display = 'none'; document.getElementById('1501.01646v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures; Final version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B 750 (2015) 17-21 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.1057">arXiv:1412.1057</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.1057">pdf</a>, <a href="https://arxiv.org/format/1412.1057">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Low lying charmonium states at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lee%2C+S">Song-haeng Lee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Levkova%2C+L">Ludmila Levkova</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Simone%2C+J+N">J. N. Simone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.1057v1-abstract-short" style="display: inline;"> We present results for the mass splittings of low-lying charmonium states from a calculation with Wilson clover valence quarks with the Fermilab interpretation on an asqtad sea. We use five lattice spacings and two values of the light sea quark mass to extrapolate our results to the physical point. Sources of systematic uncertainty in our calculation are discussed and we compare our results for th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.1057v1-abstract-full').style.display = 'inline'; document.getElementById('1412.1057v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.1057v1-abstract-full" style="display: none;"> We present results for the mass splittings of low-lying charmonium states from a calculation with Wilson clover valence quarks with the Fermilab interpretation on an asqtad sea. We use five lattice spacings and two values of the light sea quark mass to extrapolate our results to the physical point. Sources of systematic uncertainty in our calculation are discussed and we compare our results for the 1S hyperfine splitting, the 1P-1S splitting and the P-wave spin orbit and tensor splittings to experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.1057v1-abstract-full').style.display = 'none'; document.getElementById('1412.1057v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">For the Fermilab Lattice and MILC Collaborations; 7 pages, 6 figures; Contribution to the 32nd International Symposium on Lattice Field Theory, 23-28 June, 2014, Columbia University New York, NY</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CONF-14-460-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.8828">arXiv:1410.8828</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.8828">pdf</a>, <a href="https://arxiv.org/ps/1410.8828">ps</a>, <a href="https://arxiv.org/format/1410.8828">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Study of the Zc+ channel in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Leskovec%2C+L">Luka Leskovec</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">Sasa Prelovsek</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.8828v2-abstract-short" style="display: inline;"> Several charged charmonium-like hadrons called $Z_c$ have been recently discovered by different experiments. In contrast to conventional hadrons these contain at least two valence quarks and antiquarks ($\bar{c}c\bar{d}u$). We perform a lattice QCD simulation of the $I^G(J^{PC})=1^+(1^{+-})$ channel including all relevant two-meson operators under 4.3 GeV: $J/蠄蟺$, $蠄_{2S}蟺$, $蠄_{1D}蟺$,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.8828v2-abstract-full').style.display = 'inline'; document.getElementById('1410.8828v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.8828v2-abstract-full" style="display: none;"> Several charged charmonium-like hadrons called $Z_c$ have been recently discovered by different experiments. In contrast to conventional hadrons these contain at least two valence quarks and antiquarks ($\bar{c}c\bar{d}u$). We perform a lattice QCD simulation of the $I^G(J^{PC})=1^+(1^{+-})$ channel including all relevant two-meson operators under 4.3 GeV: $J/蠄蟺$, $蠄_{2S}蟺$, $蠄_{1D}蟺$, $D \bar{D}^*$, $D^* \bar{D}^*$, $畏_c 蟻$ as well as additional diquark anti-diquark operators. In our $N_f = 2$ simulation with pion mass at 266 MeV we are able to identify all two-meson levels within the energy region of interest. However we find no additional level identifiable as a candidate for $Z_c$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.8828v2-abstract-full').style.display = 'none'; document.getElementById('1410.8828v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, Contribution to the 32nd International Symposium on Lattice Field Theory (Lattice 2014), 23-28 June 2014, Columbia University, New York, NY, USA; updated references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-14-448-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.7623">arXiv:1405.7623</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.7623">pdf</a>, <a href="https://arxiv.org/ps/1405.7623">ps</a>, <a href="https://arxiv.org/format/1405.7623">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.91.014504">10.1103/PhysRevD.91.014504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of the $Z_c^+$ channel using lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">Sasa Prelovsek</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Leskovec%2C+L">Luka Leskovec</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.7623v3-abstract-short" style="display: inline;"> Recently experimentalists have discovered several charged charmonium-like hadrons $Z_c^+$ with unconventional quark content $\bar cc\bar d u$. We perform a search for $Z_c^+$ with mass below $4.2~$GeV in the channel $I^G(J^{PC})=1^+(1^{+-})$ using lattice QCD. The major challenge is presented by the two-meson states $J/蠄\, 蟺$, $蠄_{2S}蟺$, $蠄_{1D}蟺$, $D\bar D^*$, $D^*\bar D^*$, $畏_c蟻$ that are inevi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.7623v3-abstract-full').style.display = 'inline'; document.getElementById('1405.7623v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.7623v3-abstract-full" style="display: none;"> Recently experimentalists have discovered several charged charmonium-like hadrons $Z_c^+$ with unconventional quark content $\bar cc\bar d u$. We perform a search for $Z_c^+$ with mass below $4.2~$GeV in the channel $I^G(J^{PC})=1^+(1^{+-})$ using lattice QCD. The major challenge is presented by the two-meson states $J/蠄\, 蟺$, $蠄_{2S}蟺$, $蠄_{1D}蟺$, $D\bar D^*$, $D^*\bar D^*$, $畏_c蟻$ that are inevitably present in this channel. The spectrum of eigenstates is extracted using a number of meson-meson and diquark-antidiquark interpolating fields. For our pion mass of 266~MeV we find all the expected two-meson states but no additional candidate for $Z_c^+$ below $4.2~$GeV. Possible reasons for not seeing an additional eigenstate related to $Z_c^+$ are discussed. We also illustrate how a simulation incorporating interpolators with a structure resembling low-lying two-mesons states seems to render a $Z_c^+$ candidate, which is however not robust after further two-meson states around $4.2~$GeV are implemented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.7623v3-abstract-full').style.display = 'none'; document.getElementById('1405.7623v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version published in PRD. Minor changes with respect to v2. Changes with respect to v1: extended basis of interpolating fields; modified conclusions, text and figures; 11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-14-144-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev. D91 (2015) 014504 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.8103">arXiv:1403.8103</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1403.8103">pdf</a>, <a href="https://arxiv.org/ps/1403.8103">ps</a>, <a href="https://arxiv.org/format/1403.8103">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.90.034510">10.1103/PhysRevD.90.034510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $D_{s}$ mesons with $DK$ and $D^{*}K$ scattering near threshold </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Leskovec%2C+L">Luka Leskovec</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">Sasa Prelovsek</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Woloshyn%2C+R+M">R. M. Woloshyn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.8103v1-abstract-short" style="display: inline;"> $D_s$ mesons are studied in three quantum channels ($J^P=0^+$, $1^+$ and $2^+$), where experiments have identified the very narrow $D_{s0}^*(2317)$, $D_{s1}(2460)$ and narrow $D_{s1}(2536)$, $D_{s2}^*(2573)$. We explore the effect of nearby $DK$ and $D^*K&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.8103v1-abstract-full').style.display = 'inline'; document.getElementById('1403.8103v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.8103v1-abstract-full" style="display: none;"> $D_s$ mesons are studied in three quantum channels ($J^P=0^+$, $1^+$ and $2^+$), where experiments have identified the very narrow $D_{s0}^*(2317)$, $D_{s1}(2460)$ and narrow $D_{s1}(2536)$, $D_{s2}^*(2573)$. We explore the effect of nearby $DK$ and $D^*K$ thresholds on the subthreshold states using lattice QCD. Our simulation is done on two very different ensembles of gauge configurations (2 or 2+1 dynamical quarks, Pion mass of 266 or 156 MeV, lattice size $16^3\times 32$ or $32^3\times 64$). In addition to $\bar{q}q$ operators we also include meson-meson interpolators in the correlation functions. This clarifies the identification of the states above and below the scattering thresholds. The ensemble with $m_蟺\simeq 156~$MeV renders the $D_{s1}(2460)$ as a strong interaction bound state 44(10)MeV below $D^*K$ threshold, which is in agreement with the experiment. The $D_{s0}^*(2317)$ is found 37(17)MeV below $DK$ threshold, close to experiment value of 45MeV. The narrow resonances $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are also found close to the experimental masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.8103v1-abstract-full').style.display = 'none'; document.getElementById('1403.8103v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-14-063-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 90, 034510 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.2088">arXiv:1401.2088</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.2088">pdf</a>, <a href="https://arxiv.org/ps/1401.2088">ps</a>, <a href="https://arxiv.org/format/1401.2088">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP04(2014)162">10.1007/JHEP04(2014)162 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Axial resonances a1(1260), b1(1235) and their decays from the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Leskovec%2C+L">Luka Leskovec</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">Sasa Prelovsek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.2088v2-abstract-short" style="display: inline;"> The light axial-vector resonances $a_1(1260)$ and $b_1(1235)$ are explored in Nf=2 lattice QCD by simulating the corresponding scattering channels $蟻蟺$ and $蠅蟺$. Interpolating fields $\bar{q} q$ and $蟻蟺$ or $蠅蟺$ are used to extract the s-wave phase shifts for the first time. The $蟻$ and $蠅$ are treated as stable and we argue that this is justified in the considered energy range and for our paramet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.2088v2-abstract-full').style.display = 'inline'; document.getElementById('1401.2088v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.2088v2-abstract-full" style="display: none;"> The light axial-vector resonances $a_1(1260)$ and $b_1(1235)$ are explored in Nf=2 lattice QCD by simulating the corresponding scattering channels $蟻蟺$ and $蠅蟺$. Interpolating fields $\bar{q} q$ and $蟻蟺$ or $蠅蟺$ are used to extract the s-wave phase shifts for the first time. The $蟻$ and $蠅$ are treated as stable and we argue that this is justified in the considered energy range and for our parameters $m_蟺\simeq 266~$MeV and $L\simeq 2~$fm. We neglect other channels that would be open when using physical masses in continuum. Assuming a resonance interpretation a Breit-Wigner fit to the phase shift gives the $a_1(1260)$ resonance mass $m_{a1}^{res}=1.435(53)(^{+0}_{-109})$ GeV compared to $m_{a1}^{exp}=1.230(40)$ GeV. The $a_1$ width $螕_{a1}(s)=g^2 p/s$ is parametrized in terms of the coupling and we obtain $g_{a_1蟻蟺}=1.71(39)$ GeV compared to $g_{a_1蟻蟺}^{exp}=1.35(30)$ GeV derived from $螕_{a1}^{exp}=425(175)$ MeV. In the $b_1$ channel, we find energy levels related to $蟺(0)蠅(0)$ and $b_1(1235)$, and the lowest level is found at $E_1 \gtrsim m_蠅+m_蟺$ but is within uncertainty also compatible with an attractive interaction. Assuming the coupling $g_{b_1蠅蟺}$ extracted from the experimental width we estimate $m_{b_1}^{res}=1.414(36)(^{+0}_{-83})$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.2088v2-abstract-full').style.display = 'none'; document.getElementById('1401.2088v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures, updated to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-14-002-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 04 (2014) 162 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.3197">arXiv:1312.3197</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.3197">pdf</a>, <a href="https://arxiv.org/format/1312.3197">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Heavy-meson semileptonic decays for the Standard Model and beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+Y">Yuzhi Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhou%2C+R">Ran Zhou</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bailey%2C+J+A">Jon A. Bailey</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bazavov%2C+A">A. Bazavov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bernard%2C+C">C. Bernard</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bouchard%2C+C+M">C. M. Bouchard</a>, <a href="/search/hep-ph?searchtype=author&amp;query=DeTar%2C+C">C. DeTar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Du%2C+D">Daping Du</a>, <a href="/search/hep-ph?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Foley%2C+J">J. Foley</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Freeland%2C+E+D">E. D. Freeland</a>, <a href="/search/hep-ph?searchtype=author&amp;query=G%C3%A1miz%2C+E">E. G谩miz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Heller%2C+U+M">U. M. Heller</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Jain%2C+R+D">R. D. Jain</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+J">Jongjeong Kim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Levkova%2C+J+L+L">J. Laiho L. Levkova</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mackenzie%2C+P+B">P. B. Mackenzie</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Meurice%2C+Y">Y. Meurice</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">D. Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Oktay%2C+M+B">M. B. Oktay</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Qiu%2C+S">Si-Wei Qiu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Simone%2C+J+N">J. N. Simone</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.3197v1-abstract-short" style="display: inline;"> We calculate the form factors for the semileptonic decays $B_s\to K\ell谓$ and $B\to K\ell\ell$ with lattice QCD. We work at several lattice spacings and a range of light quark masses, using the MILC 2+1-flavor asqtad ensembles. We use the Fermilab method for the $b$ quark. We obtain chiral-continuum extrapolations for $E_K$ up to $\sim1.2$ GeV and then extend to the entire kinematic range with the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.3197v1-abstract-full').style.display = 'inline'; document.getElementById('1312.3197v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.3197v1-abstract-full" style="display: none;"> We calculate the form factors for the semileptonic decays $B_s\to K\ell谓$ and $B\to K\ell\ell$ with lattice QCD. We work at several lattice spacings and a range of light quark masses, using the MILC 2+1-flavor asqtad ensembles. We use the Fermilab method for the $b$ quark. We obtain chiral-continuum extrapolations for $E_K$ up to $\sim1.2$ GeV and then extend to the entire kinematic range with the model-independent $z$ expansion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.3197v1-abstract-full').style.display = 'none'; document.getElementById('1312.3197v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7. pp, 6 figs. Presented at the 31st International Symposium on Lattice Field Theory - LATTICE 2013, July 29 - August 3, 2013, Mainz, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-13-564-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS (LATTICE 2013) 386 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.6579">arXiv:1311.6579</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.6579">pdf</a>, <a href="https://arxiv.org/format/1311.6579">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Excited light and strange hadrons from the lattice with two Chirally Improved quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Engel%2C+G+P">Georg P. Engel</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.6579v1-abstract-short" style="display: inline;"> Results for excited light and strange hadrons from the lattice with two flavors of Chirally Improved sea quarks are presented. We perform simulations at several values of the pion mass ranging from 250 to 600 MeV and extrapolate to the physical pion mass. The variational method is applied to extract excited energy levels but also to discuss the content of the states. Among others, we explore the f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.6579v1-abstract-full').style.display = 'inline'; document.getElementById('1311.6579v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.6579v1-abstract-full" style="display: none;"> Results for excited light and strange hadrons from the lattice with two flavors of Chirally Improved sea quarks are presented. We perform simulations at several values of the pion mass ranging from 250 to 600 MeV and extrapolate to the physical pion mass. The variational method is applied to extract excited energy levels but also to discuss the content of the states. Among others, we explore the flavor singlet/octet content of Lambda states. In general, our results agree well with experiment, in particular we confirm the Lambda(1405) and its dominant flavor singlet structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.6579v1-abstract-full').style.display = 'none'; document.getElementById('1311.6579v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the XV International Conference on Hadron Spectroscopy &#34;Hadron 2013&#34;, 4-8 November 2013, Nara, Japan</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-13-524-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS Hadron 2013 (2013) 118 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.8127">arXiv:1310.8127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1310.8127">pdf</a>, <a href="https://arxiv.org/ps/1310.8127">ps</a>, <a href="https://arxiv.org/format/1310.8127">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Charmonium-like states from scattering on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">Sasa Prelovsek</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Leskovec%2C+L">Luka Leskovec</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.8127v2-abstract-short" style="display: inline;"> Three charmonium-like states were studied using lattice QCD. The candidate for X(3872) was found slightly below DD* threshold in the channel with J^PC=1^++ and I=0, where cc as well as DD* and $J/蠄蠅$ interpolating operators were used. A charmonium-like channel with J^PC=1^+- and I=1 was also studied, as the recently discovered Z_c^+(3900) might reside there. Here $J/蠄蟺$ and DD* scattering states w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.8127v2-abstract-full').style.display = 'inline'; document.getElementById('1310.8127v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.8127v2-abstract-full" style="display: none;"> Three charmonium-like states were studied using lattice QCD. The candidate for X(3872) was found slightly below DD* threshold in the channel with J^PC=1^++ and I=0, where cc as well as DD* and $J/蠄蠅$ interpolating operators were used. A charmonium-like channel with J^PC=1^+- and I=1 was also studied, as the recently discovered Z_c^+(3900) might reside there. Here $J/蠄蟺$ and DD* scattering states were found, but no candidate for the Z_c^+(3900). We present also preliminary results for the J^PC=0^++ charmonium channel, where cc, DD and $J/蠄蠅$ interpolating operators were used. A candidate for a resonance, chi_c0^&#39;, that couples to DD in J^PC=0^++ was found. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.8127v2-abstract-full').style.display = 'none'; document.getElementById('1310.8127v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, talk presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, Germany, corrected reference</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-13-523-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.3175">arXiv:1308.3175</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1308.3175">pdf</a>, <a href="https://arxiv.org/ps/1308.3175">ps</a>, <a href="https://arxiv.org/format/1308.3175">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.111.222001">10.1103/PhysRevLett.111.222001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $D_{s0}^*(2317)$ Meson and $D$-Meson-Kaon Scattering from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Leskovec%2C+L">Luka Leskovec</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">Sasa Prelovsek</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Woloshyn%2C+R+M">R. M. Woloshyn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.3175v3-abstract-short" style="display: inline;"> The scalar meson $D_{s0}^*(2317)$ is found 37(17)MeV below DK threshold in a lattice simulation of the $J^P=0^+$ channel using, for the first time, both DK as well as $\bar sc$ interpolating fields. The simulation is done on $N_f=2+1$ gauge configurations with $m_蟺\simeq 156 $MeV, and the resulting $M_{D_{s0}^*}-\tfrac{1}{4}(M_{D_s}+3M_{D_s^*})=266(16)$ MeV is close to the experimental value 241.5&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.3175v3-abstract-full').style.display = 'inline'; document.getElementById('1308.3175v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.3175v3-abstract-full" style="display: none;"> The scalar meson $D_{s0}^*(2317)$ is found 37(17)MeV below DK threshold in a lattice simulation of the $J^P=0^+$ channel using, for the first time, both DK as well as $\bar sc$ interpolating fields. The simulation is done on $N_f=2+1$ gauge configurations with $m_蟺\simeq 156 $MeV, and the resulting $M_{D_{s0}^*}-\tfrac{1}{4}(M_{D_s}+3M_{D_s^*})=266(16)$ MeV is close to the experimental value 241.5(0.8)MeV. The energy level related to the scalar meson is accompanied by additional discrete levels due to DK scattering states. The levels near threshold lead to the negative DK scattering length $a_0=-1.33(20)$ fm that indicates the presence of a state below threshold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.3175v3-abstract-full').style.display = 'none'; document.getElementById('1308.3175v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures; version accepted for publication by PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-13-318-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 111, 222001 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.0736">arXiv:1307.0736</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1307.0736">pdf</a>, <a href="https://arxiv.org/ps/1307.0736">ps</a>, <a href="https://arxiv.org/format/1307.0736">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.88.054508">10.1103/PhysRevD.88.054508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> K pi scattering and the K* decay width from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">Sasa Prelovsek</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Leskovec%2C+L">Luka Leskovec</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.0736v4-abstract-short" style="display: inline;"> K* mesons and in particular the K*(892) were frequently addressed in lattice simulations, but always while ignoring that the K*(892) decays strongly. We present an exploratory extraction of the masses and widths for the K* resonances by simulating K pi scattering in p-wave with I = 1/2 on the lattice. The K pi system with total momenta P = 2*pi/L e_z, 2*pi/L (e_x + e_y) and 0, that allows the extr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.0736v4-abstract-full').style.display = 'inline'; document.getElementById('1307.0736v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.0736v4-abstract-full" style="display: none;"> K* mesons and in particular the K*(892) were frequently addressed in lattice simulations, but always while ignoring that the K*(892) decays strongly. We present an exploratory extraction of the masses and widths for the K* resonances by simulating K pi scattering in p-wave with I = 1/2 on the lattice. The K pi system with total momenta P = 2*pi/L e_z, 2*pi/L (e_x + e_y) and 0, that allows the extraction of phase shifts at several values of K pi relative momenta, is studied. A Breit-Wigner fit of the phase renders a K*(892) resonance mass m^{lat} = 891 +/- 14 MeV and the K*(892) -&gt; K pi coupling g^{lat} = 5.7 +/- 1.6 compared to the experimental values m^{exp} = 892 MeV and g^{exp} = 5.72 +/- 0.06, where g parametrizes the K* -&gt; K pi width. When extracting the phase shift around the K*(1410) and K2*(1430) resonances we take into account the mixing of p-wave with d-wave and assume that the scattering is elastic in our simulation. This gives us an estimate of the K*(1410) resonance mass m^{lat} = 1.33 +/- 0.02 GeV compared to m^{exp} = 1.414 +/- 0.0015 GeV assuming the experimental K*(1410) -&gt; K pi coupling. We contrast the resonant I = 1/2 channel with the repulsive non-resonant I = 3/2 channel, where the phase is found to be negative and small, in agreement with experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.0736v4-abstract-full').style.display = 'none'; document.getElementById('1307.0736v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures: corrected typo in Fig. 3</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-13-251-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 88, 054508 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1304.2143">arXiv:1304.2143</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1304.2143">pdf</a>, <a href="https://arxiv.org/ps/1304.2143">ps</a>, <a href="https://arxiv.org/format/1304.2143">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Hadronic Resonances in Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">S. Prelovsek</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Leskovec%2C+L">L. Leskovec</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">D. Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Woloshyn%2C+R+M">R. M. Woloshyn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1304.2143v1-abstract-short" style="display: inline;"> I discuss how masses and widths of hadron resonances are extracted from lattice QCD. Recent lattice results on the light, strange and charm meson resonances are reviewed. Their properties are revealed by simulating the corresponding scattering channels pi-pi, K-pi and D-pi on the lattice and extracting the scattering phase shifts. In particular we address the resonances rho, D0*(2400), D1(2430), K&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.2143v1-abstract-full').style.display = 'inline'; document.getElementById('1304.2143v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1304.2143v1-abstract-full" style="display: none;"> I discuss how masses and widths of hadron resonances are extracted from lattice QCD. Recent lattice results on the light, strange and charm meson resonances are reviewed. Their properties are revealed by simulating the corresponding scattering channels pi-pi, K-pi and D-pi on the lattice and extracting the scattering phase shifts. In particular we address the resonances rho, D0*(2400), D1(2430), K*, kappa and K0*(1430). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.2143v1-abstract-full').style.display = 'none'; document.getElementById('1304.2143v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, proceedings for invited talk at Exited QCD 2013, 3-9 February 2013, Bjelasnica, Sarajevo</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-13-089-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.4198">arXiv:1303.4198</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1303.4198">pdf</a>, <a href="https://arxiv.org/ps/1303.4198">ps</a>, <a href="https://arxiv.org/format/1303.4198">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> QCD with Two Light Dynamical Chirally Improved Quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Engel%2C+G+P">Georg P. Engel</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Schafer%2C+A">Andreas Schafer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.4198v1-abstract-short" style="display: inline;"> Results for the excited meson and baryon spectrum with two flavors of Chirally Improved sea quarks are presented. We simulate several ensembles with pion masses ranging from 250 to 600 MeV and extrapolate to the physical pion mass. Strange quarks are treated within the partially quenched approximation. Using the variational method, we investigate the content of the states. Among others, we discuss&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.4198v1-abstract-full').style.display = 'inline'; document.getElementById('1303.4198v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.4198v1-abstract-full" style="display: none;"> Results for the excited meson and baryon spectrum with two flavors of Chirally Improved sea quarks are presented. We simulate several ensembles with pion masses ranging from 250 to 600 MeV and extrapolate to the physical pion mass. Strange quarks are treated within the partially quenched approximation. Using the variational method, we investigate the content of the states. Among others, we discuss the flavor singlet/octet content of Lambda states. In general, our results compare well with experiment, in particular we get very good agreement with the Lambda(1405) and confirm its flavor singlet nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.4198v1-abstract-full').style.display = 'none'; document.getElementById('1303.4198v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures, talk presented at Excited QCD 2013, Bjelasnica Mountain, Sarajevo</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-13-069-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Acta Phys. Polon. B Proc. Suppl. 6 (2013) 879 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.4318">arXiv:1301.4318</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.4318">pdf</a>, <a href="https://arxiv.org/ps/1301.4318">ps</a>, <a href="https://arxiv.org/format/1301.4318">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.87.074504">10.1103/PhysRevD.87.074504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QCD with Two Light Dynamical Chirally Improved Quarks: Baryons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Engel%2C+G+P">Georg P. Engel</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Schaefer%2C+A">Andreas Schaefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.4318v2-abstract-short" style="display: inline;"> We present a study of baryon ground states and low lying excitations of non-strange and strange baryons. The results are based on seven gauge field ensembles with two dynamical light Chirally Improved (CI) quarks corresponding to pion masses between 255 and 596 MeV and a strange valence quark with mass fixed by the Omega baryon. The lattice spacing varies between 0.1324 and 0.1398 fm. Given in lat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.4318v2-abstract-full').style.display = 'inline'; document.getElementById('1301.4318v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.4318v2-abstract-full" style="display: none;"> We present a study of baryon ground states and low lying excitations of non-strange and strange baryons. The results are based on seven gauge field ensembles with two dynamical light Chirally Improved (CI) quarks corresponding to pion masses between 255 and 596 MeV and a strange valence quark with mass fixed by the Omega baryon. The lattice spacing varies between 0.1324 and 0.1398 fm. Given in lattice units, the bulk of our results are for size 16^3\times 32, for two ensembles with light pion masses (255 and 330 MeV) we also use 24^3\times 48 lattices and perform an infinite volume extrapolation. We derive energy levels for the spin 1/2 and 3/2 channels for both parities. In general, our results in the infinite volume limit compare well with experiment. We analyze the flavor symmetry content by identifying the singlet/octet/decuplet contributions of the resulting eigenstates. The ground states compositions agree with quark model expectations. In some cases the excited states, however, disagree and we discuss possible reasons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.4318v2-abstract-full').style.display = 'none'; document.getElementById('1301.4318v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 27 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-13-028-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D. 87, 074504 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.5790">arXiv:1209.5790</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1209.5790">pdf</a>, <a href="https://arxiv.org/ps/1209.5790">ps</a>, <a href="https://arxiv.org/format/1209.5790">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice results on charmonium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.5790v1-abstract-short" style="display: inline;"> Recent lattice QCD results on charmonium spectroscopy are reviewed. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.5790v1-abstract-full" style="display: none;"> Recent lattice QCD results on charmonium spectroscopy are reviewed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.5790v1-abstract-full').style.display = 'none'; document.getElementById('1209.5790v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures, to appear in the proceedings of The 5th International Workshop on Charm Physics (Charm 2012)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1208.4059">arXiv:1208.4059</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1208.4059">pdf</a>, <a href="https://arxiv.org/ps/1208.4059">ps</a>, <a href="https://arxiv.org/format/1208.4059">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.87.034501">10.1103/PhysRevD.87.034501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> D Pi scattering and D meson resonances from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">Sasa Prelovsek</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Woloshyn%2C+R+M">R. M. Woloshyn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1208.4059v3-abstract-short" style="display: inline;"> The masses and widths of the broad scalar D_0^*(2400) and the axial D_1(2430) charmed-light resonances are extracted by simulating the corresponding D Pi and D* Pi scattering on the lattice. The resonance parameters are obtained using a Breit-Wigner fit of the elastic phase shifts. The resulting D_0^*(2400) mass is 351+/-21 MeV above the spin-average 1/4(m_D+3m_{D*}), in agreement with the experim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.4059v3-abstract-full').style.display = 'inline'; document.getElementById('1208.4059v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1208.4059v3-abstract-full" style="display: none;"> The masses and widths of the broad scalar D_0^*(2400) and the axial D_1(2430) charmed-light resonances are extracted by simulating the corresponding D Pi and D* Pi scattering on the lattice. The resonance parameters are obtained using a Breit-Wigner fit of the elastic phase shifts. The resulting D_0^*(2400) mass is 351+/-21 MeV above the spin-average 1/4(m_D+3m_{D*}), in agreement with the experimental value of 347+/-29 MeV above. The resulting D_0^* to D Pi coupling g^{lat}=2.55+/-0.21 GeV is close to the experimental value g^{exp}&lt;=1.92+/-0.14 GeV, where g parametrizes the width $螕\equiv g^2p^*/s$. The resonance parameters for the broad D_1(2430) are also found close to the experimental values; these are obtained by appealing to the heavy quark limit, where the neighboring resonance D_1(2420) is narrow. The calculated I=1/2 scattering lengths are a_0=0.81+/-0.14 fm for D Pi and a_0=0.81+/-0.17 fm for D* Pi scattering. The simulation of the scattering in these channels incorporates quark-antiquark as well as multi-hadron interpolators, and the distillation method is used for contractions. In addition, the ground and several excited charm-light and charmonium states with various J^P are calculated using standard quark-antiquark interpolators. Our simulations are done in lattice QCD with two-dynamical light quarks at a mass corresponding to m_蟺\approx 266 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.4059v3-abstract-full').style.display = 'none'; document.getElementById('1208.4059v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures; published version; pole positions for the scalar and axial D-meson resnances are given in &#34;Note added&#34; (after the Summary section)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.3204">arXiv:1207.3204</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1207.3204">pdf</a>, <a href="https://arxiv.org/ps/1207.3204">ps</a>, <a href="https://arxiv.org/format/1207.3204">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.86.054508">10.1103/PhysRevD.86.054508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> K pi scattering for isospin 1/2 and 3/2 in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Leskovec%2C+L">Luka Leskovec</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">Sasa Prelovsek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.3204v2-abstract-short" style="display: inline;"> We simulate K pi scattering in s-wave and p-wave for both isospins I=1/2, 3/2 using quark-antiquark and meson-meson interpolating fields. We extract the elastic phase shifts delta at several values of the K-pi relative momenta. The resulting phases exhibit qualitative agreement with the experimental phases in all four channels. We express the s-wave phase shifts near threshold in terms of the scat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.3204v2-abstract-full').style.display = 'inline'; document.getElementById('1207.3204v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.3204v2-abstract-full" style="display: none;"> We simulate K pi scattering in s-wave and p-wave for both isospins I=1/2, 3/2 using quark-antiquark and meson-meson interpolating fields. We extract the elastic phase shifts delta at several values of the K-pi relative momenta. The resulting phases exhibit qualitative agreement with the experimental phases in all four channels. We express the s-wave phase shifts near threshold in terms of the scattering length and the effective range. Our K pi system has zero total momentum and is simulated on a single ensemble with two dynamical quarks, so results apply for mpi=266 MeV and mK=552 MeV in our simulation. The backtracking contractions in both I=1/2 channels are handled by the use of Laplacian-Heavyside smeared quarks within the distillation method. Elastic phases are extracted from the energy levels using Luscher&#39;s relations. In all four channels we observe the expected K(n)pi(-n) scattering states, which are shifted due to the interaction. In both attractive I=1/2 channels we observe additional states that are related to resonances; we attribute them to K_0^*(1430) in s-wave and K*(892), K*(1410) and K*(1680) in p-wave. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.3204v2-abstract-full').style.display = 'none'; document.getElementById('1207.3204v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures, version published in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D86 (2012) 054508 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1202.2834">arXiv:1202.2834</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1202.2834">pdf</a>, <a href="https://arxiv.org/format/1202.2834">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Axial charges of excited nucleons from CI-fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Maurer%2C+T">T. Maurer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Burch%2C+T">T. Burch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Glozman%2C+L+Y">L. Ya. Glozman</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">D. Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sch%C3%A4fer%2C+A">A. Sch盲fer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1202.2834v1-abstract-short" style="display: inline;"> We report lattice QCD results on the axial charges of ground and excited nucleon states of both parities. This is the first study of these quantities with approximately chiral (CI) fermions. Two energy levels in the range of the negative parity resonances N*(1535) and N*(1650) are observed and we determine the axial charge for both. We obtain a small axial charge for one of them, which is consiste&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.2834v1-abstract-full').style.display = 'inline'; document.getElementById('1202.2834v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1202.2834v1-abstract-full" style="display: none;"> We report lattice QCD results on the axial charges of ground and excited nucleon states of both parities. This is the first study of these quantities with approximately chiral (CI) fermions. Two energy levels in the range of the negative parity resonances N*(1535) and N*(1650) are observed and we determine the axial charge for both. We obtain a small axial charge for one of them, which is consistent with the chiral symmetry restoration in this state as well as with the small axial charge of the N*(1535) predicted within the quark model. This result agrees with the findings of Takahashi et al. obtained with Wilson quarks which violate chiral symmetry for finite lattice spacing. At the same time for the other observed negative parity state we obtain a large axial charge, that is close to the axial charge of the nucleon. This is in disagreement both with the quark model prediction as well as with the chiral restoration but allows for an interpretation as an s-wave 蟺 N state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.2834v1-abstract-full').style.display = 'none'; document.getElementById('1202.2834v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.1601">arXiv:1112.1601</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1112.1601">pdf</a>, <a href="https://arxiv.org/ps/1112.1601">ps</a>, <a href="https://arxiv.org/format/1112.1601">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.85.034508">10.1103/PhysRevD.85.034508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QCD with two light dynamical chirally improved quarks: Mesons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Engel%2C+G+P">Georg P. Engel</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Limmer%2C+M">Markus Limmer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Schaefer%2C+A">Andreas Schaefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.1601v3-abstract-short" style="display: inline;"> We present results for the spectrum of light and strange mesons on configurations with two flavors of mass-degenerate Chirally Improved sea quarks. The calculations are performed on seven ensembles of lattice size 16^3x32 at three different gauge couplings and with pion masses ranging from 250 to 600 MeV. To reliably extract excited states, we use the variational method with an interpolator basis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.1601v3-abstract-full').style.display = 'inline'; document.getElementById('1112.1601v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.1601v3-abstract-full" style="display: none;"> We present results for the spectrum of light and strange mesons on configurations with two flavors of mass-degenerate Chirally Improved sea quarks. The calculations are performed on seven ensembles of lattice size 16^3x32 at three different gauge couplings and with pion masses ranging from 250 to 600 MeV. To reliably extract excited states, we use the variational method with an interpolator basis containing both gaussian and derivative quark sources. Both conventional and exotic channels up to spin 2 are considered. Strange quarks are treated within the partially quenched approximation. For kaons we investigate the mixing of interpolating fields corresponding to definite C-parity in the SU(3) limit. This enlarged basis allows for an improved determination of the low-lying kaon spectrum. In addition to masses we also extract the ratio of the pseudoscalar decay constants of the kaon and pion and obtain F_K/F_蟺=1.215(41). The results presented here include some ensembles from previous publications and the corresponding results supersede the previously published values. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.1601v3-abstract-full').style.display = 'none'; document.getElementById('1112.1601v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 16 figures, table referencing corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev. D85 (2012) 034508 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.1198">arXiv:1112.1198</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1112.1198">pdf</a>, <a href="https://arxiv.org/ps/1112.1198">ps</a>, <a href="https://arxiv.org/format/1112.1198">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Excited meson spectroscopy with two chirally improved quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Engel%2C+G+P">Georg P. Engel</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Limmer%2C+M">Markus Limmer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Schaefer%2C+A">Andreas Schaefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.1198v1-abstract-short" style="display: inline;"> The excited isovector meson spectrum is explored using two chirally improved dynamical quarks. Seven ensembles, with pion masses down to \approx 250 MeV are discussed and used for extrapolations to the physical point. Strange mesons are investigated using partially quenched s-quarks. Using the variational method, we extract excited states in several channels and most of the results are in good agr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.1198v1-abstract-full').style.display = 'inline'; document.getElementById('1112.1198v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.1198v1-abstract-full" style="display: none;"> The excited isovector meson spectrum is explored using two chirally improved dynamical quarks. Seven ensembles, with pion masses down to \approx 250 MeV are discussed and used for extrapolations to the physical point. Strange mesons are investigated using partially quenched s-quarks. Using the variational method, we extract excited states in several channels and most of the results are in good agreement with experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.1198v1-abstract-full').style.display = 'none'; document.getElementById('1112.1198v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 11 figures, talk given at the XXIX International Symposium on Lattice Field Theory - Lattice 2011, July 10-16 2011, Squaw Valley, Lake Tahoe, California</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(Lattice 2011)119 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1110.6457">arXiv:1110.6457</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1110.6457">pdf</a>, <a href="https://arxiv.org/ps/1110.6457">ps</a>, <a href="https://arxiv.org/format/1110.6457">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Charmed meson spectroscopy on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Woloshyn%2C+R+M">R. M. Woloshyn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1110.6457v1-abstract-short" style="display: inline;"> We present a calculation of the spectrum of low-lying D and D_s mesons calculated on 2+1 flavor configurations with Clover-Wilson quarks generated by the PACS-CS collaboration. S- and P-wave states are explored for pion masses down to 156MeV, including some excited states. As a benchmark, a calculation of the low-lying charmonium spectrum is performed. While the charmonium results agree favorably&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.6457v1-abstract-full').style.display = 'inline'; document.getElementById('1110.6457v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1110.6457v1-abstract-full" style="display: none;"> We present a calculation of the spectrum of low-lying D and D_s mesons calculated on 2+1 flavor configurations with Clover-Wilson quarks generated by the PACS-CS collaboration. S- and P-wave states are explored for pion masses down to 156MeV, including some excited states. As a benchmark, a calculation of the low-lying charmonium spectrum is performed. While the charmonium results agree favorably with experiment, noticeable differences remain for charmed mesons in channels where resonances close to multi-particle thresholds exist. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.6457v1-abstract-full').style.display = 'none'; document.getElementById('1110.6457v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, presented at The XXIX International Symposium on Lattice Field Theory - Lattice 2011, July 10-16, 2011, Squaw Valley, Lake Tahoe, California</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1110.4520">arXiv:1110.4520</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1110.4520">pdf</a>, <a href="https://arxiv.org/ps/1110.4520">ps</a>, <a href="https://arxiv.org/format/1110.4520">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Scattering phase shift and resonance properties on the lattice: an introduction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">S. Prelovsek</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">D. Mohler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1110.4520v1-abstract-short" style="display: inline;"> We describe the method for extracting the elastic scattering phase shift from a lattice simulation at an introductory level, for non-lattice practitioners. We consider the scattering in a resonant channel, where the resulting phase shift delta(s) allows the lattice determination of the mass and the width of the resonance from a Breit-Wigner type fit. We present the method for the example of P-wave&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.4520v1-abstract-full').style.display = 'inline'; document.getElementById('1110.4520v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1110.4520v1-abstract-full" style="display: none;"> We describe the method for extracting the elastic scattering phase shift from a lattice simulation at an introductory level, for non-lattice practitioners. We consider the scattering in a resonant channel, where the resulting phase shift delta(s) allows the lattice determination of the mass and the width of the resonance from a Breit-Wigner type fit. We present the method for the example of P-wave pi-pi scattering in the rho meson channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.4520v1-abstract-full').style.display = 'none'; document.getElementById('1110.4520v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, presented at Bled Mini-Workshop 2011, 3-10 July, Bled, Slovenia</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.5636">arXiv:1105.5636</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1105.5636">pdf</a>, <a href="https://arxiv.org/ps/1105.5636">ps</a>, <a href="https://arxiv.org/format/1105.5636">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.84.054503">10.1103/PhysRevD.84.054503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coupled channel analysis of the rho meson decay in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">Sasa Prelovsek</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Vidmar%2C+M">Matija Vidmar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.5636v3-abstract-short" style="display: inline;"> We employ a variational basis with a number of $\bar{q}q$ and $蟺蟺$ lattice interpolating fields with quantum numbers of the $蟻$ resonance to extract the discrete energy spectrum in a finite volume. In the elastic region, this spectrum is related to the phase shift of the continuum scattering amplitude by L眉scher&#39;s formula and the relation allows the extraction of resonance parameters from the spec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.5636v3-abstract-full').style.display = 'inline'; document.getElementById('1105.5636v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.5636v3-abstract-full" style="display: none;"> We employ a variational basis with a number of $\bar{q}q$ and $蟺蟺$ lattice interpolating fields with quantum numbers of the $蟻$ resonance to extract the discrete energy spectrum in a finite volume. In the elastic region, this spectrum is related to the phase shift of the continuum scattering amplitude by L眉scher&#39;s formula and the relation allows the extraction of resonance parameters from the spectrum calculation. The simulations are performed at three different total momenta of the coupled $\bar q q-蟺蟺$ system, which allows us to extract the p-wave scattering phase at five values of pion relative momenta near the resonance region. The effective range formula describes the phase-shift dependence nicely and we extract the resonance mass $m_蟻=792(7)(8)$ MeV and the coupling $g_{蟻蟺蟺}=5.13(20)$ at our $m_蟺\simeq 266 $MeV. The coupling $g_{蟻蟺蟺}$ is directly related to the width of the $蟻$ meson and our value is close to the value derived from the experimental width. The simulations are performed using dynamical gauge configurations with two mass-degenerate flavors of tree-level improved clover-Wilson fermions. Correlation functions are calculated using the recently proposed distillation method with Laplacian Heaviside (LapH) smearing of quarks, which enables flexible calculations, in many cases with unprecedented accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.5636v3-abstract-full').style.display = 'none'; document.getElementById('1105.5636v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures. This version contains an erratum at the end. The preferred choice of dispersion relation is affected. The main text is identical to arXiv:1105.5636v2</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 84, 054503 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1103.5506">arXiv:1103.5506</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1103.5506">pdf</a>, <a href="https://arxiv.org/ps/1103.5506">ps</a>, <a href="https://arxiv.org/format/1103.5506">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.84.054505">10.1103/PhysRevD.84.054505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> D and D_s meson spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Woloshyn%2C+R+M">R. M. Woloshyn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1103.5506v2-abstract-short" style="display: inline;"> Results are presented for the low-lying spectrum of D and D_s mesons calculated in lattice QCD using 2+1 flavor Clover-Wilson configurations made available by the PACS-CS collaboration. For the heavy quark, the Fermilab method is employed. The main focus is S- and P-wave states of charmed and charmed-strange mesons, where previous lattice QCD results have been mostly from quenched calculations. In&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.5506v2-abstract-full').style.display = 'inline'; document.getElementById('1103.5506v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1103.5506v2-abstract-full" style="display: none;"> Results are presented for the low-lying spectrum of D and D_s mesons calculated in lattice QCD using 2+1 flavor Clover-Wilson configurations made available by the PACS-CS collaboration. For the heavy quark, the Fermilab method is employed. The main focus is S- and P-wave states of charmed and charmed-strange mesons, where previous lattice QCD results have been mostly from quenched calculations. In addition to the ground states, some excited states are extracted. To check the method, calculations of the charmonium spectrum are also carried out. For charmonium, the low-lying spectrum agrees favorably with experiment. For heavy-strange and heavy-light systems substantial differences in comparison to experiment values remain for some states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.5506v2-abstract-full').style.display = 'none'; document.getElementById('1103.5506v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages; updated version reflecting changes during the publishing process</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 84, 054505 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1010.2786">arXiv:1010.2786</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1010.2786">pdf</a>, <a href="https://arxiv.org/ps/1010.2786">ps</a>, <a href="https://arxiv.org/format/1010.2786">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> D_s meson spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Woloshyn%2C+R+M">R. M. Woloshyn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1010.2786v1-abstract-short" style="display: inline;"> Preliminary results are presented for the spectrum of D_s mesons using the 2+1 flavor Clover-Wilson configurations made available by the PACS-CS collaboration. For the heavy quark, the Fermilab method is employed and we report on the tuning of the charm-quark hopping parameter. As our main focus, we present initial results for the spectrum of P-wave states, where previous results have been mostly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.2786v1-abstract-full').style.display = 'inline'; document.getElementById('1010.2786v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1010.2786v1-abstract-full" style="display: none;"> Preliminary results are presented for the spectrum of D_s mesons using the 2+1 flavor Clover-Wilson configurations made available by the PACS-CS collaboration. For the heavy quark, the Fermilab method is employed and we report on the tuning of the charm-quark hopping parameter. As our main focus, we present initial results for the spectrum of P-wave states, where previous results have been mostly from quenched calculations. As a cross-check, some calculations of the charmonium spectrum are also carried out. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.2786v1-abstract-full').style.display = 'none'; document.getElementById('1010.2786v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, presented at 28th International Symposium on Lattice Field Theory, Lattice2010, June 14-19, 2010, Villasimius, Italy</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS Lattice2010:116,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1010.2366">arXiv:1010.2366</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1010.2366">pdf</a>, <a href="https://arxiv.org/ps/1010.2366">ps</a>, <a href="https://arxiv.org/format/1010.2366">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Some results on excited hadrons in 2-flavor QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Engel%2C+G+P">Georg P. Engel</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Limmer%2C+M">Markus Limmer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1010.2366v2-abstract-short" style="display: inline;"> Results of hadron spectroscopy with two dynamical mass-degenerate chirally improved quarks are presented. Three ensembles with pion masses of 322(5), 470(4) and 525(7) MeV, lattices of size 16^3 \times 32, and lattice spacings close to 0.15 fm are investigated. We discuss the possible appearance of scattering states, considering masses and eigenvectors. Partially quenched results in the scalar cha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.2366v2-abstract-full').style.display = 'inline'; document.getElementById('1010.2366v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1010.2366v2-abstract-full" style="display: none;"> Results of hadron spectroscopy with two dynamical mass-degenerate chirally improved quarks are presented. Three ensembles with pion masses of 322(5), 470(4) and 525(7) MeV, lattices of size 16^3 \times 32, and lattice spacings close to 0.15 fm are investigated. We discuss the possible appearance of scattering states, considering masses and eigenvectors. Partially quenched results in the scalar channel suggest the presence of a 2-particle state, however, in most channels we cannot identify them. Where available, we compare to results from quenched simulations using the same action. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.2366v2-abstract-full').style.display = 'none'; document.getElementById('1010.2366v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 9 figures, 1 table, talk given at the XXVIII International Symposium on Lattice Field Theory (Lattice 2010), June 14-19,2010, Villasimius, Sardinia, Italy</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS Lattice2010:103,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1005.1748">arXiv:1005.1748</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1005.1748">pdf</a>, <a href="https://arxiv.org/ps/1005.1748">ps</a>, <a href="https://arxiv.org/format/1005.1748">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.82.034505">10.1103/PhysRevD.82.034505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Meson and baryon spectrum for QCD with two light dynamical quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Engel%2C+G+P">Georg P. Engel</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Limmer%2C+M">Markus Limmer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1005.1748v2-abstract-short" style="display: inline;"> We present results of meson and baryon spectroscopy using the Chirally Improved Dirac operator on lattices of size 16**3 x 32 with two mass-degenerate light sea quarks. Three ensembles with pion masses of 322(5), 470(4) and 525(7) MeV and lattice spacings close to 0.15 fm are investigated. Results on ground and excited states for several channels are given, including spin two mesons and hadrons wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.1748v2-abstract-full').style.display = 'inline'; document.getElementById('1005.1748v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1005.1748v2-abstract-full" style="display: none;"> We present results of meson and baryon spectroscopy using the Chirally Improved Dirac operator on lattices of size 16**3 x 32 with two mass-degenerate light sea quarks. Three ensembles with pion masses of 322(5), 470(4) and 525(7) MeV and lattice spacings close to 0.15 fm are investigated. Results on ground and excited states for several channels are given, including spin two mesons and hadrons with strange valence quarks. The analysis of the states is done with the variational method, including two kinds of Gaussian sources and derivative sources. We obtain several ground states fairly precisely and find radial excitations in various channels. Excited baryon results seem to suffer from finite size effects, in particular at small pion masses. We discuss the possible appearance of scattering states in various channels, considering masses and eigenvectors. Partially quenched results in the scalar channel suggest the presence of a 2-particle state, however, in most channels we cannot identify them. Where available, we compare our results to results of quenched simulations using the same action. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.1748v2-abstract-full').style.display = 'none'; document.getElementById('1005.1748v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 29 figures, 11 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev. D82 (2010) 034505 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1005.0948">arXiv:1005.0948</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1005.0948">pdf</a>, <a href="https://arxiv.org/ps/1005.0948">ps</a>, <a href="https://arxiv.org/format/1005.0948">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.82.094507">10.1103/PhysRevD.82.094507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice study of light scalar tetraquarks with I=0,2,1/2,3/2: are sigma and kappa tetraquarks? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">S. Prelovsek</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Draper%2C+T">T. Draper</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Limmer%2C+M">M. Limmer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+K+-">K. -F. Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mathur%2C+N">N. Mathur</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">D. Mohler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1005.0948v2-abstract-short" style="display: inline;"> We investigate whether the lightest scalar mesons sigma and kappa have a large tetraquark component, as is strongly supported by many phenomenological studies. A search for possible light tetraquark states with J^PC=0^++ and I=0, 2, 1/2, 3/2 on the lattice is presented. We perform the two-flavor dynamical simulation with Chirally Improved quarks and the quenched simulation with overlap quarks, fin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.0948v2-abstract-full').style.display = 'inline'; document.getElementById('1005.0948v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1005.0948v2-abstract-full" style="display: none;"> We investigate whether the lightest scalar mesons sigma and kappa have a large tetraquark component, as is strongly supported by many phenomenological studies. A search for possible light tetraquark states with J^PC=0^++ and I=0, 2, 1/2, 3/2 on the lattice is presented. We perform the two-flavor dynamical simulation with Chirally Improved quarks and the quenched simulation with overlap quarks, finding qualitative agreement between both results. The spectrum is determined using the generalized eigenvalue method with a number of tetraquark interpolators at the source and the sink, and we omit the disconnected contractions. The time-dependence of the eigenvalues at finite temporal extent of the lattice is explored also analytically. In all the channels, we unavoidably find lowest scattering states pi(k)pi(-k) or K(k)pi(-k) with back-to-back momentum k=0, 2*pi/L,... However, we find an additional light state in the I=0 and I=1/2 channels, which may be interpreted as the observed resonances sigma and kappa with a sizable tetraquark component. In the exotic repulsive channels I=2 and I=3/2, where no resonance is observed, we find no light state in addition to the scattering states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.0948v2-abstract-full').style.display = 'none'; document.getElementById('1005.0948v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 12 figures, version to appear in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D82:094507,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1002.0193">arXiv:1002.0193</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1002.0193">pdf</a>, <a href="https://arxiv.org/ps/1002.0193">ps</a>, <a href="https://arxiv.org/format/1002.0193">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Searching for tetraquarks on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">S. Prelovsek</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Draper%2C+T">T. Draper</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Limmer%2C+M">M. Limmer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+K+-">K. -F. Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mathur%2C+N">N. Mathur</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">D. Mohler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1002.0193v1-abstract-short" style="display: inline;"> We address the question whether the lightest scalar mesons sigma and kappa are tetraquarks. We present a search for possible light tetraquark states with J^PC=0^++ and I=0, 1/2, 3/2, 2 in the dynamical and the quenched lattice simulations using tetraquark interpolators. In all the channels, we unavoidably find lowest scattering states pi(k)pi(-k) or K(k)pi(-k) with back-to-back momentum k=0,2*pi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1002.0193v1-abstract-full').style.display = 'inline'; document.getElementById('1002.0193v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1002.0193v1-abstract-full" style="display: none;"> We address the question whether the lightest scalar mesons sigma and kappa are tetraquarks. We present a search for possible light tetraquark states with J^PC=0^++ and I=0, 1/2, 3/2, 2 in the dynamical and the quenched lattice simulations using tetraquark interpolators. In all the channels, we unavoidably find lowest scattering states pi(k)pi(-k) or K(k)pi(-k) with back-to-back momentum k=0,2*pi/L,.. . However, we find an additional light state in the I=0 and I=1/2 channels, which may be related to the observed resonances sigma and kappa with a strong tetraquark component. In the exotic repulsive channels I=2 and I=3/2, where no resonance is observed, we find no light state in addition to the scattering states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1002.0193v1-abstract-full').style.display = 'none'; document.getElementById('1002.0193v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 1 figure, proceedings of Lepton-Photon 2009, Hamburg</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0910.2749">arXiv:0910.2749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0910.2749">pdf</a>, <a href="https://arxiv.org/format/0910.2749">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Spectroscopy of light tetraquark states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Prelovsek%2C+S">S. Prelovsek</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Draper%2C+T">T. Draper</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Limmer%2C+M">M. Limmer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+K+-">K. -F. Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mathur%2C+N">N. Mathur</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohler%2C+D">D. Mohler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0910.2749v1-abstract-short" style="display: inline;"> We address the question whether the lightest scalar mesons sigma and kappa are tetraquarks, as is strongly supported by many phenomenological studies. We present a search for possible light tetraquark states with J^PC=0^++ and I=0, 1/2, 3/2, 2 on the lattice. The spectrum is determined using the generalized eigenvalue method with a number of tetraquark interpolators at the source and the sink. I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.2749v1-abstract-full').style.display = 'inline'; document.getElementById('0910.2749v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0910.2749v1-abstract-full" style="display: none;"> We address the question whether the lightest scalar mesons sigma and kappa are tetraquarks, as is strongly supported by many phenomenological studies. We present a search for possible light tetraquark states with J^PC=0^++ and I=0, 1/2, 3/2, 2 on the lattice. The spectrum is determined using the generalized eigenvalue method with a number of tetraquark interpolators at the source and the sink. In all the channels, we unavoidably find lowest scattering states pi(k)pi(-k) or K(k)pi(-k) with back-to-back momentum k=0,2*pi/L,.. . However, we find an additional light state in the I=0 and I=1/2 channels, which may be related to the observed resonances sigma and kappa with a strong tetraquark component. In the exotic repulsive channels I=2 and I=3/2, where no resonance is observed, we find no light state in addition to the scattering states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.2749v1-abstract-full').style.display = 'none'; document.getElementById('0910.2749v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, talk presented at The XXVII International Symposium on Lattice Field Theory, July 26-31, 2009, Peking University, Beijing, China</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LAT2009:103,2009 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Mohler%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Mohler%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Mohler%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10