CINXE.COM
Search results for: log-spiral failure surface
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: log-spiral failure surface</title> <meta name="description" content="Search results for: log-spiral failure surface"> <meta name="keywords" content="log-spiral failure surface"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="log-spiral failure surface" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="log-spiral failure surface"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8764</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: log-spiral failure surface</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8764</span> A Failure Investigations of High-Temperature Hydrogen Attack at Plat Forming Unit Furnace Elbow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Altoumi%20Alndalusi">Altoumi Alndalusi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-temperature hydrogen attack (HTHA) failure is the common phenomena at elevated temperature in hydrogen environment in oil and gas field. The failure occurred once after four years at the internal surface of Platforming elbow. Both visual and microscopic examinations revealed that the failure was initiated due to blistering forming followed by large cracking at the inner surface. Crack morphology showed that the crack depth was about 50% of material wall thickness and its behavior generally was intergranular. This study concluded that the main reason led to failure due to incorrect material selection comparing to the platforming conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decarburization" title="decarburization">decarburization</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20affected%20zone" title=" heat affected zone"> heat affected zone</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20pressure" title=" partial pressure"> partial pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20form" title=" plate form"> plate form</a> </p> <a href="https://publications.waset.org/abstracts/97396/a-failure-investigations-of-high-temperature-hydrogen-attack-at-plat-forming-unit-furnace-elbow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8763</span> Understanding Surface Failures in Thick Asphalt Pavement: A 3-D Finite Element Model Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hana%20Gebremariam%20Liliso">Hana Gebremariam Liliso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the factors contributing to the deterioration of thick asphalt pavements, such as rutting and cracking. We focus on the combined influence of traffic loads and pavement structure. This study uses a three-dimensional finite element model with a Mohr-Coulomb failure criterion to analyze the stress levels near the pavement's surface under realistic conditions. Our model considers various factors, including tire-pavement contact stresses, asphalt properties, moving loads, and dynamic analysis. This research suggests that cracking tends to occur between dual tires. Some key discoveries include the risk of cracking increases as temperatures rise; surface cracking at high temperatures is associated with distortional deformation; using a uniform contact stress distribution underestimates the risk of failure compared to realistic three-dimensional tire contact stress, particularly at high temperatures; the risk of failure is higher near the surface when there is a negative temperature gradient in the asphalt layer; and debonding beneath the surface layer leads to increased shear stress and premature failure around the interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20pavement" title="asphalt pavement">asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20failure" title=" surface failure"> surface failure</a>, <a href="https://publications.waset.org/abstracts/search?q=3d%20finite%20element%20model" title=" 3d finite element model"> 3d finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=multiaxial%20stress%20states" title=" multiaxial stress states"> multiaxial stress states</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohr-Coulomb%20failure%20criterion" title=" Mohr-Coulomb failure criterion"> Mohr-Coulomb failure criterion</a> </p> <a href="https://publications.waset.org/abstracts/182482/understanding-surface-failures-in-thick-asphalt-pavement-a-3-d-finite-element-model-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8762</span> Investigation of Soil Slopes Stability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nima%20Farshidfar">Nima Farshidfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Navid%20Daryasafar"> Navid Daryasafar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the seismic stability of reinforced soil slopes is studied using pseudo-dynamic analysis. Equilibrium equations that are applicable to the every kind of failure surface are written using Horizontal Slices Method. In written equations, the balance of the vertical and horizontal forces and moment equilibrium is fully satisfied. Failure surface is assumed to be log-spiral, and non-linear equilibrium equations obtained for the system are solved using Newton-Raphson Method. Earthquake effects are applied as horizontal and vertical pseudo-static coefficients to the problem. To solve this problem, a code was developed in MATLAB, and the critical failure surface is calculated using genetic algorithm. At the end, comparing the results obtained in this paper, effects of various parameters and the effect of using pseudo - dynamic analysis in seismic forces modeling is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20slopes" title="soil slopes">soil slopes</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-dynamic" title=" pseudo-dynamic"> pseudo-dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20equilibrium%20method" title=" limit equilibrium method"> limit equilibrium method</a>, <a href="https://publications.waset.org/abstracts/search?q=log-spiral%20failure%20surface" title=" log-spiral failure surface"> log-spiral failure surface</a> </p> <a href="https://publications.waset.org/abstracts/14189/investigation-of-soil-slopes-stability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8761</span> Experimental Investigation of the Failure Behavior of a Retaining Wall Constructed with Soil Bags</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kewei%20Fan">Kewei Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sihong%20Liu"> Sihong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Pik%20Cheng"> Yi Pik Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to analyse the failure behaviour of the retaining wall constructed with soil bags that are formed by filling river sand into woven bags (geosynthetics). Model tests were conducted to obtain the failure mode of the wall, and shear tests on two-layers and five-layers of soil bags were designed to investigate the mechanical characteristics of the interface of soil bags. The test results show that the slip surface in the soil bags-constructed retaining wall is ladder-like due to the inter-layer insertion of soil bags, and the wall above the ladder-like surface undergoes a rigid body translation. The insertion strengthens the shear strength of two-layer staggered-stacked soil bags. Meanwhile, it affects the shape of the slip surface of the five-layer staggered-stacked soil bags. Finally, the interlayer resisting friction of soil bags is found to be related to the shape of the slip surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geosynthetics" title="geosynthetics">geosynthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=retaining%20wall" title=" retaining wall"> retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20bag" title=" soil bag"> soil bag</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20mode" title=" failure mode"> failure mode</a>, <a href="https://publications.waset.org/abstracts/search?q=interface" title=" interface"> interface</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a> </p> <a href="https://publications.waset.org/abstracts/105967/experimental-investigation-of-the-failure-behavior-of-a-retaining-wall-constructed-with-soil-bags" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8760</span> Surface Erosion and Slope Stability Assessment of Cut and Fill Slope</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kongrat%20Nokkaew">Kongrat Nokkaew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article assessed the surface erosion and stability of cut and fill slope in the excavation of the detention basin, Kalasin Province, Thailand. The large excavation project was built to enlarge detention basin for relieving repeated flooding and drought which usually happen in this area. However, at the end of the 1st rainstorm season, severely erosions slope failures were widespread observed. After investigation, the severity of erosions and slope failure were classified into five level from sheet erosion (Level 1), rill erosion (Level 2, 3), gully erosion (Level 4), and slope failure (Level 5) for proposing slope remediation. The preliminary investigation showed that lack of runoff control were the major factors of the surface erosions while insufficient compacted of the fill slope leaded to slopes failures. The slope stability of four selected slope failure was back calculated by using Simplified Bishop with Seep-W. The result show that factor of safety of slope located on non-plasticity sand was less than one, representing instability of the embankment slope. Such analysis agreed well with the failures observed in the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20erosion" title="surface erosion">surface erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a>, <a href="https://publications.waset.org/abstracts/search?q=detention%20basin" title=" detention basin"> detention basin</a>, <a href="https://publications.waset.org/abstracts/search?q=cut%20and%20fill" title=" cut and fill"> cut and fill</a> </p> <a href="https://publications.waset.org/abstracts/49179/surface-erosion-and-slope-stability-assessment-of-cut-and-fill-slope" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8759</span> Rolling Contact Fatigue Failure Analysis of Ball Bearing in Gear Box</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piyas%20Palit">Piyas Palit</a>, <a href="https://publications.waset.org/abstracts/search?q=Urbi%20Pal"> Urbi Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Mathur"> Jitendra Mathur</a>, <a href="https://publications.waset.org/abstracts/search?q=Santanu%20Das"> Santanu Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bearing is an important machinery part in the industry. When bearings fail to meet their expected life the consequences are increased downtime, loss of revenue and missed the delivery. This article describes the failure of a gearbox bearing in rolling contact fatigue. The investigation consists of visual observation, chemical analysis, characterization of microstructures using optical microscopes and hardness test. The present study also considers bearing life as well as the operational condition of bearings. Surface-initiated rolling contact fatigue, leading to a surface failure known as pitting, is a life-limiting failure mode in many modern machine elements, particularly rolling element bearings. Metallography analysis of crack propagation, crack morphology was also described. Indication of fatigue spalling in the ferrography test was also discussed. The analysis suggested the probable reasons for such kind of failure in operation. This type of spalling occurred due to (1) heavier external loading condition or (2) exceeds its service life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing" title="bearing">bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20contact%20fatigue" title=" rolling contact fatigue"> rolling contact fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20life" title=" bearing life"> bearing life</a> </p> <a href="https://publications.waset.org/abstracts/108273/rolling-contact-fatigue-failure-analysis-of-ball-bearing-in-gear-box" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8758</span> Failure Analysis and Fatigue Life Estimation of a Shaft of a Rotary Draw Bending Machine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Engel">B. Engel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Salman%20Hassan%20Al-Maeeni"> Sara Salman Hassan Al-Maeeni </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human consumption of the Earth's resources increases the need for a sustainable development as an important ecological, social, and economic theme. Re-engineering of machine tools, in terms of design and failure analysis, is defined as steps performed on an obsolete machine to return it to a new machine with the warranty that matches the customer requirement. To understand the future fatigue behavior of the used machine components, it is important to investigate the possible causes of machine parts failure through design, surface, and material inspections. In this study, the failure modes of the shaft of the rotary draw bending machine are inspected. Furthermore, stress and deflection analysis of the shaft subjected to combined torsion and bending loads are carried out by an analytical method and compared with a finite element analysis method. The theoretical fatigue strength, correction factors, and fatigue life sustained by the shaft before damaged are estimated by creating a stress-cycle (S-N) diagram. In conclusion, it is seen that the shaft can work in the second life, but it needs some surface treatments to increase the reliability and fatigue life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure%20analysis" title="failure analysis">failure analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title=" fatigue life"> fatigue life</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20analysis" title=" FEM analysis"> FEM analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft" title=" shaft"> shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20analysis" title=" stress analysis"> stress analysis</a> </p> <a href="https://publications.waset.org/abstracts/79871/failure-analysis-and-fatigue-life-estimation-of-a-shaft-of-a-rotary-draw-bending-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8757</span> Failure Analysis of Windshield Glass of Automobiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhupinder%20Kaur">Bhupinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20P.%20Pandey"> O. P. Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An automobile industry is using variety of materials for better comfort and utility. The present work describes the details of failure analysis done for windshield glass of a four-wheeler class. The failure occurred in two different models of the heavy duty class of four wheelers, which analysed separately. The company reported that the failure has occurred only in their rear windshield when vehicles parked under shade for several days. These glasses were characterised by dilatometer, differential thermal analyzer, and X-ray diffraction. The glasses were further investigated under scanning electron microscope with energy dispersive X-ray spectroscopy and X-ray dot mapping. The microstructural analysis of the glasses done at the surface as well as at the fractured area indicates that carbon as an impurity got segregated as banded structure throughout the glass. Since carbon absorbs higher heat, it causes thermal mismatch to the entire glass system, and glass shattered down. In this work, the details of sequential analysis done to predict the cause of failure are present. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure" title="failure">failure</a>, <a href="https://publications.waset.org/abstracts/search?q=windshield" title=" windshield"> windshield</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20mismatch" title=" thermal mismatch"> thermal mismatch</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a> </p> <a href="https://publications.waset.org/abstracts/122092/failure-analysis-of-windshield-glass-of-automobiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8756</span> Statistical Analysis of Failure Cases in Aerospace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Lv">J. H. Lv</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Z.%20Wang"> W. Z. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.W.%20Liu"> S.W. Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major concern in the aviation industry is the flight safety. Although great effort has been put onto the development of material and system reliability, the failure cases of fatal accidents still occur nowadays. Due to the complexity of the aviation system, and the interaction among the failure components, the failure analysis of the related equipment is a little difficult. This study focuses on surveying the failure cases in aviation, which are extracted from failure analysis journals, including Engineering Failure Analysis and Case studies in Engineering Failure Analysis, in order to obtain the failure sensitive factors or failure sensitive parts. The analytical results show that, among the failure cases, fatigue failure is the largest in number of occurrence. The most failed components are the disk, blade, landing gear, bearing, and fastener. The frequently failed materials consist of steel, aluminum alloy, superalloy, and titanium alloy. Therefore, in order to assure the safety in aviation, more attention should be paid to the fatigue failures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerospace" title="aerospace">aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=disk" title=" disk"> disk</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20analysis" title=" failure analysis"> failure analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a> </p> <a href="https://publications.waset.org/abstracts/77819/statistical-analysis-of-failure-cases-in-aerospace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8755</span> A Finite Element Model to Study the Behaviour of Corroded Reinforced Concrete Beams Repaired with near Surface Mounted Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Almassri">B. Almassri</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Almahmoud"> F. Almahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Francois"> R. Francois</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Near surface mounted reinforcement (NSM) technique is one of the promising techniques used nowadays to strengthen reinforced concrete (RC) structures. In the NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. This paper studies the non-classical mode of failure ‘the separation of concrete cover’ according to experimental and numerical FE modelling results. Experimental results and numerical modelling results of a 3D finite element (FE) model using the commercial software Abaqus and 2D FE model FEMIX were obtained on two beams, one corroded (25 years of corrosion procedure) and one control (A1CL3-R and A1T-R) were each repaired in bending using NSM CFRP rod and were then tested up to failure. The results showed that the NSM technique increased the overall capacity of control and corroded beams despite a non-classical mode of failure with separation of the concrete cover occurring in the corroded beam due to damage induced by corrosion. Another FE model used external steel stirrups around the repaired corroded beam A1CL3-R which failed with the separation of concrete cover, this model showed a change in the mode of failure form a non-classical mode of failure by the separation of concrete cover to the same mode of failure of the repaired control beam by the crushing of compressed concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=repair" title=" repair"> repair</a>, <a href="https://publications.waset.org/abstracts/search?q=Reinforced%20Concrete" title=" Reinforced Concrete"> Reinforced Concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=CFRP" title=" CFRP"> CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=FEMIX" title=" FEMIX"> FEMIX</a> </p> <a href="https://publications.waset.org/abstracts/93771/a-finite-element-model-to-study-the-behaviour-of-corroded-reinforced-concrete-beams-repaired-with-near-surface-mounted-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8754</span> Failure Localization of Bipolar Integrated Circuits by Implementing Active Voltage Contrast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiqiang%20Ni">Yiqiang Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuanlong%20Chen"> Xuanlong Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Enliang%20Li"> Enliang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Linting%20Zheng"> Linting Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shizheng%20Yang"> Shizheng Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bipolar ICs are playing an important role in military applications, mainly used in logic gates, such as inverter and NAND gate. The defect of metal break located on the step is one of the main failure mechanisms of bipolar ICs, resulting in open-circuit or functional failure. In this situation, general failure localization methods like optical beam-induced resistance change (OBIRCH) and photon emission microscopy (PEM) might not be fully effective. However, active voltage contrast (AVC) can be used as a voltage probe, which may pinpoint the incorrect potential and thus locate the failure position. Two case studies will be present in this paper on how to implement AVC for failure localization, and the detailed failure mechanism will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bipolar%20IC" title="bipolar IC">bipolar IC</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20localization" title=" failure localization"> failure localization</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20break" title=" metal break"> metal break</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20failure" title=" open failure"> open failure</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20contrast" title=" voltage contrast"> voltage contrast</a> </p> <a href="https://publications.waset.org/abstracts/132527/failure-localization-of-bipolar-integrated-circuits-by-implementing-active-voltage-contrast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8753</span> Failure Analysis of a Medium Duty Vehicle Leaf Spring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCl%20%C3%87evik">Gül Çevik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper summarizes the work conducted to assess the root cause of the failure of a medium commercial vehicle leaf spring failed in service. Macro- and micro-fractographic analyses by scanning electron microscope as well as material verification tests were conducted in order to understand the failure mechanisms and root cause of the failure. Findings from the fractographic analyses indicated that failure mechanism is fatigue. Crack initiation was identified to have occurred from a point on the top surface near to the front face and to the left side. Two other crack initiation points were also observed, however, these cracks did not propagate. The propagation mode of the fatigue crack revealed that the cyclic loads resulting in crack initiation and propagation were unidirectional bending. Fractographic analyses have also showed that the root cause of the fatigue crack initiation and propagation was loading the part above design stress. Material properties of the part were also verified by chemical composition analysis, microstructural analysis by optical microscopy and hardness tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaf%20spring" title="leaf spring">leaf spring</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20analysis" title=" failure analysis"> failure analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=fractography" title=" fractography"> fractography</a> </p> <a href="https://publications.waset.org/abstracts/107640/failure-analysis-of-a-medium-duty-vehicle-leaf-spring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8752</span> Multichannel Analysis of the Surface Waves of Earth Materials in Some Parts of Lagos State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20B.%20Adegbola">R. B. Adegbola</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20F.%20Oyedele"> K. F. Oyedele</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Adeoti"> L. Adeoti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a method that utilizes Multi-channel Analysis of Surface Waves, which was used to measure shear wave velocities with a view to establishing the probable causes of road failure, subsidence and weakening of structures in some Local Government Area, Lagos, Nigeria. Multi channel Analysis of Surface waves (MASW) data were acquired using 24-channel seismograph. The acquired data were processed and transformed into two-dimensional (2-D) structure reflective of depth and surface wave velocity distribution within a depth of 0–15m beneath the surface using SURFSEIS software. The shear wave velocity data were compared with other geophysical/borehole data that were acquired along the same profile. The comparison and correlation illustrates the accuracy and consistency of MASW derived-shear wave velocity profiles. Rigidity modulus and N-value were also generated. The study showed that the low velocity/very low velocity are reflective of organic clay/peat materials and thus likely responsible for the failed, subsidence/weakening of structures within the study areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismograph" title="seismograph">seismograph</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20failure" title=" road failure"> road failure</a>, <a href="https://publications.waset.org/abstracts/search?q=rigidity%20modulus" title=" rigidity modulus"> rigidity modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=N-value" title=" N-value"> N-value</a>, <a href="https://publications.waset.org/abstracts/search?q=subsidence" title=" subsidence"> subsidence</a> </p> <a href="https://publications.waset.org/abstracts/16808/multichannel-analysis-of-the-surface-waves-of-earth-materials-in-some-parts-of-lagos-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8751</span> Constitutive Modeling of Different Types of Concrete under Uniaxial Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Jafarian%20Abyaneh">Mostafa Jafarian Abyaneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Khashayar%20Jafari"> Khashayar Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=Vahab%20Toufigh"> Vahab Toufigh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cost of experiments on different types of concrete has raised the demand for prediction of their behavior with numerical analysis. In this research, an advanced numerical model has been presented to predict the complete elastic-plastic behavior of polymer concrete (PC), high-strength concrete (HSC), high performance concrete (HPC) along with different steel fiber contents under uniaxial compression. The accuracy of the numerical response was satisfactory as compared to other conventional simple models such as Mohr-Coulomb and Drucker-Prager. In order to predict the complete elastic-plastic behavior of specimens including softening behavior, disturbed state concept (DSC) was implemented by nonlinear finite element analysis (NFEA) and hierarchical single surface (HISS) failure criterion, which is a failure surface without any singularity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disturbed%20state%20concept%20%28DSC%29" title="disturbed state concept (DSC)">disturbed state concept (DSC)</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20single%20surface%20%28HISS%29%20failure%20criterion" title=" hierarchical single surface (HISS) failure criterion"> hierarchical single surface (HISS) failure criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20concrete%20%28HPC%29" title=" high performance concrete (HPC)"> high performance concrete (HPC)</a>, <a href="https://publications.waset.org/abstracts/search?q=high-strength%20concrete%20%28HSC%29" title=" high-strength concrete (HSC)"> high-strength concrete (HSC)</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20finite%20element%20analysis%20%28NFEA%29" title=" nonlinear finite element analysis (NFEA)"> nonlinear finite element analysis (NFEA)</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20concrete%20%28PC%29" title=" polymer concrete (PC)"> polymer concrete (PC)</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fibers" title=" steel fibers"> steel fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial%20compression%20test" title=" uniaxial compression test"> uniaxial compression test</a> </p> <a href="https://publications.waset.org/abstracts/54649/constitutive-modeling-of-different-types-of-concrete-under-uniaxial-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8750</span> A Discrete Element Method-Based Simulation of Toppling Failure Considering Block Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hooman%20Dabirmanesh">Hooman Dabirmanesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Attila%20M.%20Zsaki"> Attila M. Zsaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The toppling failure mode in a rock mass is considerably different from the most common sliding failure type along an existing or an induced slip plane. Block toppling is observed in a rock mass which consists of both a widely-spaced basal cross-joint set and a closely-spaced discontinuity set dipping into the slope. For this case, failure occurs when the structure cannot bear the tensile portion of bending stress, and the columns or blocks overturn by their own weight. This paper presents a particle-based discrete element model of rock blocks subjected to a toppling failure where geometric conditions and interaction among blocks are investigated. A series of parametric studies have been conducted on particles’ size, arrangement and bond contact among of particles which are made the blocks. Firstly, a numerical investigation on a one-block system was verified. Afterward, a slope consisting of multi-blocks was developed to study toppling failure and interaction forces between blocks. The results show that the formation of blocks, especially between the block and basal plane surface, can change the process of failure. The results also demonstrate that the initial configuration of particles used to form the blocks has a significant role in achieving accurate simulation results. The size of particles and bond contacts have a considerable influence to change the progress of toppling failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20toppling%20failure" title="block toppling failure">block toppling failure</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20interaction" title=" contact interaction"> contact interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element" title=" discrete element"> discrete element</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20generation" title=" random generation"> random generation</a> </p> <a href="https://publications.waset.org/abstracts/92612/a-discrete-element-method-based-simulation-of-toppling-failure-considering-block-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8749</span> Influence of Hydrophobic Surface on Flow Past Square Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ajith%20Kumar">S. Ajith Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaisakh%20S.%20Rajan"> Vaisakh S. Rajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In external flows, vortex shedding behind the bluff bodies causes to experience unsteady loads on a large number of engineering structures, resulting in structural failure. Vortex shedding can even turn out to be disastrous like the Tacoma Bridge failure incident. We need to have control over vortex shedding to get rid of this untoward condition by reducing the unsteady forces acting on the bluff body. In circular cylinders, hydrophobic surface in an otherwise no-slip surface is found to be delaying separation and minimizes the effects of vortex shedding drastically. Flow over square cylinder stands different from this behavior as separation can takes place from either of the two corner separation points (front or rear). An attempt is made in this study to numerically elucidate the effect of hydrophobic surface in flow over a square cylinder. A 2D numerical simulation has been done to understand the effects of the slip surface on the flow past square cylinder. The details of the numerical algorithm will be presented at the time of the conference. A non-dimensional parameter, Knudsen number is defined to quantify the slip on the cylinder surface based on Maxwell’s equation. The slip surface condition of the wall affects the vorticity distribution around the cylinder and the flow separation. In the numerical analysis, we observed that the hydrophobic surface enhances the shedding frequency and damps down the amplitude of oscillations of the square cylinder. We also found that the slip has a negative effect on aerodynamic force coefficients such as the coefficient of lift (CL), coefficient of drag (CD) etc. and hence replacing the no slip surface by a hydrophobic surface can be treated as an effective drag reduction strategy and the introduction of hydrophobic surface could be utilized for reducing the vortex induced vibrations (VIV) and is found as an effective method in controlling VIV thereby controlling the structural failures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drag%20reduction" title="drag reduction">drag reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20past%20square%20cylinder" title=" flow past square cylinder"> flow past square cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control" title=" flow control"> flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20surfaces" title=" hydrophobic surfaces"> hydrophobic surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding" title=" vortex shedding "> vortex shedding </a> </p> <a href="https://publications.waset.org/abstracts/27450/influence-of-hydrophobic-surface-on-flow-past-square-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8748</span> A Universal Approach to Categorize Failures in Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Konja%20Kn%C3%BCppel">Konja Knüppel</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerrit%20Meyer"> Gerrit Meyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Nyhuis"> Peter Nyhuis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing interconnectedness and complexity of production processes raise the susceptibility of production systems to failure. Therefore, the ability to respond quickly to failures is increasingly becoming a competitive factor. The research project "Sustainable failure management in manufacturing SMEs" is developing a methodology to identify failures in the production and select preventive and reactive measures in order to correct failures and to establish sustainable failure management systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure%20categorization" title="failure categorization">failure categorization</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20management" title=" failure management"> failure management</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20performance" title=" logistic performance"> logistic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20optimization" title=" production optimization"> production optimization</a> </p> <a href="https://publications.waset.org/abstracts/2637/a-universal-approach-to-categorize-failures-in-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8747</span> Wear Diagnosis of Diesel Engine Helical Gear</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surjit%20Angra">Surjit Angra</a>, <a href="https://publications.waset.org/abstracts/search?q=Gajanan%20Rane"> Gajanan Rane</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar"> Vinod Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushma%20Rani"> Sushma Rani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents metallurgical investigation of failed helical gear of diesel engine gear box used in a car. The failure had occurred near the bottomland of the tooth spacing. The failed surface was studied under Scanning Electron Microscope (SEM) and also visually investigated. The images produced through SEM at various magnifications were studied. Detailed metallurgical study indicates that failure was due to foreign material inclusion which is a casting defect. Further study also revealed pitting, spalling and inter-granular fracture as the causes of gear failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helical%20gear" title="helical gear">helical gear</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=casting%20defect" title=" casting defect"> casting defect</a>, <a href="https://publications.waset.org/abstracts/search?q=pitting" title=" pitting"> pitting</a> </p> <a href="https://publications.waset.org/abstracts/49719/wear-diagnosis-of-diesel-engine-helical-gear" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8746</span> Failure Analysis of a 304 Stainless Steel Flange Crack at Pipeline Transportation of Ethylene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Hasanpour">Parisa Hasanpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Borooghani"> Bahram Borooghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Asadi"> Vahid Asadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current research, a catastrophic failure of a 304 stainless steel flange at pipeline transportation of ethylene in a petrochemical refinery was studied. Cracking was found in the flange after about 78840h service. Through the chemical analysis, tensile tests in addition to microstructural analysis such as optical microscopy and Scanning Electron Microscopy (SEM) on the failed part, it found that the fatigue was responsible for the fracture of the flange, which originated from bumps and depressions on the outer surface and propagated by vibration caused by the working condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure%20analysis" title="failure analysis">failure analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=304%20stainless%20steel" title=" 304 stainless steel"> 304 stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=flange" title=" flange"> flange</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemical%20refinery" title=" petrochemical refinery"> petrochemical refinery</a> </p> <a href="https://publications.waset.org/abstracts/153854/failure-analysis-of-a-304-stainless-steel-flange-crack-at-pipeline-transportation-of-ethylene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8745</span> Effect of the Soil-Foundation Interface Condition in the Determination of the Resistance Domain of Rigid Shallow Foundations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nivine%20Abbas">Nivine Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Lagomarsino"> Sergio Lagomarsino</a>, <a href="https://publications.waset.org/abstracts/search?q=Serena%20Cattari"> Serena Cattari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The resistance domain of a generally loaded rigid shallow foundation is normally represented as an interaction diagram limited by a failure surface in the three dimensional (3D) load space (N, V, M), where N is the vertical centric load component, V is the horizontal load component and M is the bending moment component. Usually, this resistance domain is constructed neglecting the foundation sliding mechanism that take place at the level of soil-foundation interface once the applied horizontal load exceeds the interface frictional resistance of the foundation. This issue is translated in the literature by the fact that the failure limit in the (2D) load space (N, V) is constructed as a parabola having an initial slope, at the center of the coordinate system, that depends, in some works, only of the soil friction angle, and in other works, has an empirical value. However, considering a given geometry of the foundation lying on a given soil type, the initial slope of the failure limit must change, for instance, when varying the roughness of the foundation surface at its interface with the soil. The present study discusses the effect of the soil-foundation interface condition on the construction of the resistance domain, and proposes a correction to be applied to the failure limit in order to overcome this effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil-foundation%20interface" title="soil-foundation interface">soil-foundation interface</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mechanism" title=" sliding mechanism"> sliding mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20shearing" title=" soil shearing"> soil shearing</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20domain" title=" resistance domain"> resistance domain</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid%20shallow%20foundation" title=" rigid shallow foundation"> rigid shallow foundation</a> </p> <a href="https://publications.waset.org/abstracts/28877/effect-of-the-soil-foundation-interface-condition-in-the-determination-of-the-resistance-domain-of-rigid-shallow-foundations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8744</span> Mechanical Behaviours of Ti/GFRP/Ti Laminates with Different Surface Treatments of Titanium Sheets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kumar%20Haldar">Amit Kumar Haldar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Simms"> Mark Simms</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20McDevitt"> Ian McDevitt</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Comer"> Anthony Comer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interface properties of fiber metal laminates (FML) affects the integrity and deformation failure modes. In this paper, the mechanical behaviours of Ti/GFRP/Ti laminates were experimentally investigated through low-velocity impact tests. Two different surface treatments of Titanium (Ti-6Al-4V) alloy sheets were prepared to obtain the composite interface properties based on annealing and sandblast surface treatment processes. The deformation failure modes, impact load sustaining ability and energy absorption capacity of FMLs were analysed. The impact load and modulus were shown to be dependent on the surface treatments of Titanium (Ti-6Al-4V) alloy sheets. It was demonstrated that the impact load performance was enhanced when titanium surfaces were annealed and sandblasted. It has also been shown that the values of the strength and energy absorption were slightly higher when the tests conducted at relatively higher loading rate, as a result of the rate-sensitive effects on the damage resistance of the FML. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20metal%20laminates" title="fiber metal laminates">fiber metal laminates</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20composite%20interface" title=" metal composite interface"> metal composite interface</a>, <a href="https://publications.waset.org/abstracts/search?q=indentation" title=" indentation"> indentation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20velocity%20impact" title=" low velocity impact"> low velocity impact</a> </p> <a href="https://publications.waset.org/abstracts/140171/mechanical-behaviours-of-tigfrpti-laminates-with-different-surface-treatments-of-titanium-sheets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8743</span> The Influence of Winding Angle on Functional Failure of FRP Pipes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roham%20Rafiee">Roham Rafiee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Hesamsadat"> Hadi Hesamsadat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a parametric finite element modeling is developed to analyze failure modes of FRP pipes subjected to internal pressure. First-ply failure pressure and functional failure pressure was determined by a progressive damage modeling and then it is validated using experimental observations. The influence of both winding angle and fiber volume fraction is studied on the functional failure of FRP pipes and it corresponding pressure. It is observed that despite the fact that increasing fiber volume fraction will enhance the mechanical properties, it will be resulted in lower values for functional failure pressure. This shortcoming can be compensated by modifying the winding angle in angle plies of pipe wall structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20pipe" title="composite pipe">composite pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20failure" title=" functional failure"> functional failure</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20modeling" title=" progressive modeling"> progressive modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=winding%20angle" title=" winding angle"> winding angle</a> </p> <a href="https://publications.waset.org/abstracts/1399/the-influence-of-winding-angle-on-functional-failure-of-frp-pipes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8742</span> Experimental Verification of Different Types of Shear Connectors on Composite Slab</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Siva">A. Siva</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Senthil"> R. Senthil</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Banupriya"> R. Banupriya</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Saravanakumar"> R. Saravanakumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold-formed steel sheets are widely used as primary tension reinforcement in composite slabs. It also performs as formwork for concreting and better ceiling surface. The major type of failure occurring in composite slab is shear failure. When the composite slab is flexurally loaded, the longitudinal shear is generated and transferred to the steel sheet concrete interface. When the load increases, the interface slip occurs. The slip failure can be resisted by mechanical interface interlock by shear studs. In this paper, the slip failure has been resisted by shear connectors and geometry of the steel sheet alone. The geometry of the sheet is kept constant for all the specimens and the type of shear connectors has been varied. Totally, three types of shear connectors (viz., straight headed, U and J) are bolted to the trapezoidal profile sheet and the concrete is casted over it. After curing, the composite slab is subjected to flexure load and the test results are compared with the numerical results analysed by ABAQUS software. The test result shows that the U-shaped bolted stud has higher flexure strength than the other two types of shear connectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20formed%20steel%20sheet" title="cold formed steel sheet">cold formed steel sheet</a>, <a href="https://publications.waset.org/abstracts/search?q=headed%20studs" title=" headed studs"> headed studs</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20interlock" title=" mechanical interlock"> mechanical interlock</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20connectors" title=" shear connectors"> shear connectors</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20failure" title=" shear failure"> shear failure</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20failure" title=" slip failure "> slip failure </a> </p> <a href="https://publications.waset.org/abstracts/24077/experimental-verification-of-different-types-of-shear-connectors-on-composite-slab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8741</span> Failure Cases Analysis in Petrochemical Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Liu">S. W. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Lv"> J. H. Lv</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Z.%20Wang"> W. Z. Wang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the failure accidents in petrochemical industry have been frequent, and have posed great security problems in personnel and property. The improvement of petrochemical safety is highly requested in order to prevent re-occurrence of severe accident. This study focuses on surveying the failure cases occurred in petrochemical field, which were extracted from journals of engineering failure, including engineering failure analysis and case studies in engineering failure analysis. The relation of failure mode, failure mechanism, type of components, and type of materials was analyzed in this study. And the analytical results showed that failures occurred more frequently in vessels and piping among the petrochemical equipment. Moreover, equipment made of carbon steel and stainless steel accounts for the majority of failures compared to other materials. This may be related to the application of the equipment and the performance of the material. In addition, corrosion failures were the largest in number of occurrence in the failure of petrochemical equipment, in which stress corrosion cracking accounts for a large proportion. This may have a lot to do with the service environment of the petrochemical equipment. Therefore, it can be concluded that the corrosion prevention of petrochemical equipment is particularly important. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cases%20analysis" title="cases analysis">cases analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemical%20industry" title=" petrochemical industry"> petrochemical industry</a> </p> <a href="https://publications.waset.org/abstracts/77797/failure-cases-analysis-in-petrochemical-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8740</span> Experimental and Numerical Evaluation of a Shaft Failure Behaviour Using Three-Point Bending Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernd%20Engel">Bernd Engel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Salman%20Hassan%20Al-Maeeni"> Sara Salman Hassan Al-Maeeni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A substantial amount of natural resources are nowadays consumed at a growing rate, as humans all over the world used materials obtained from the Earth. Machinery manufacturing industry is one of the major resource consumers on a global scale. Even though the incessant finding out of the new material, metals, and resources, it is urgent for the industry to develop methods to use the Earth's resources intelligently and more sustainable than before. Re-engineering of machine tools regarding design and failure analysis is an approach whereby out-of-date machines are upgraded and returned to useful life. To ensure the reliable future performance of the used machine components, it is essential to investigate the machine component failure through the material, design, and surface examinations. This paper presents an experimental approach aimed at inspecting the shaft of the rotary draw bending machine as a case to study. The testing methodology, which is based on the principle of the three-point bending test, allows assessing the shaft elastic behavior under loading. Furthermore, the shaft elastic characteristics include the maximum linear deflection, and maximum bending stress was determined by using an analytical approach and finite element (FE) analysis approach. In the end, the results were compared with the ones obtained by the experimental approach. In conclusion, it is seen that the measured bending deflection and bending stress were well close to the permissible design value. Therefore, the shaft can work in the second life cycle. However, based on previous surface tests conducted, the shaft needs surface treatments include re-carburizing and refining processes to ensure the reliable surface performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deflection" title="deflection">deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=FE%20analysis" title=" FE analysis"> FE analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft" title=" shaft"> shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=three-point%20bending" title=" three-point bending"> three-point bending</a> </p> <a href="https://publications.waset.org/abstracts/92854/experimental-and-numerical-evaluation-of-a-shaft-failure-behaviour-using-three-point-bending-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8739</span> Performance Assessment of Three Unit Redundant System with Environmental and Human Failure Using Copula Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Singh">V. V. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have studied the reliability measures of a system, which consists of two subsystems i.e. subsystem-1 and subsystem-2 in series configuration under different types of failure. The subsystem-1 has three identical units in parallel configuration and operating under 2-out-of-3: G policy and connected to subsystem-2 in series configuration. Each subsystem has different types of failure and repair rates. An important cause for failure of system is unsuitability of the environmental conditions, like overheating, weather conditions, heavy rainfall, storm etc. The environmental failure is taken into account in the proposed repairable system. Supplementary variable technique is used to study of system and some traditional measures such as; availability, reliability, MTTF and profit function are obtained for different values of parameters. In the proposed model, some particular cases of failure rates are explicitly studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20failure" title="environmental failure">environmental failure</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20failure" title=" human failure"> human failure</a>, <a href="https://publications.waset.org/abstracts/search?q=availability" title=" availability"> availability</a>, <a href="https://publications.waset.org/abstracts/search?q=MTTF" title=" MTTF"> MTTF</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=profit%20analysis" title=" profit analysis"> profit analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumbel-Hougaard%20family%20copula" title=" Gumbel-Hougaard family copula"> Gumbel-Hougaard family copula</a> </p> <a href="https://publications.waset.org/abstracts/46343/performance-assessment-of-three-unit-redundant-system-with-environmental-and-human-failure-using-copula-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8738</span> Overview on the Failure in the Multiphase Mechanical Seal in Centrifugal Pumps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Azizi">Aydin Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al.%20Azizi"> Ahmed Al. Azizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mechanical seals are essential components in centrifugal pumps since they help in controlling leaking out of the liquid that is pumped under pressure. Unlike the common types of packaging, mechanical seals are highly efficient and they reduce leakage by a great extent. However, all multiphase mechanical seals leak and they are subject to failure. Some of the factors that have been recognized to their failure include excessive heating, open seal faces, as well as environment related factors that trigger failure of the materials used to manufacture seals. The proposed research study will explore the failure of multiphase mechanical seal in centrifugal pumps. The objective of the study includes how to reduce the failure in multiphase mechanical seals and to make them more efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20seals" title="mechanical seals">mechanical seals</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20pumps" title=" centrifugal pumps"> centrifugal pumps</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20phase%20failure" title=" multi phase failure"> multi phase failure</a>, <a href="https://publications.waset.org/abstracts/search?q=excessive%20heating" title=" excessive heating"> excessive heating</a> </p> <a href="https://publications.waset.org/abstracts/44065/overview-on-the-failure-in-the-multiphase-mechanical-seal-in-centrifugal-pumps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8737</span> A Bathtub Curve from Nonparametric Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20C.%20Guardia">Eduardo C. Guardia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20W.%20M.%20Lima"> Jose W. M. Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Afonso%20H.%20M.%20Santos"> Afonso H. M. Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a nonparametric method to obtain the hazard rate “Bathtub curve” for power system components. The model is a mixture of the three known phases of a component life, the decreasing failure rate (DFR), the constant failure rate (CFR) and the increasing failure rate (IFR) represented by three parametric Weibull models. The parameters are obtained from a simultaneous fitting process of the model to the Kernel nonparametric hazard rate curve. From the Weibull parameters and failure rate curves the useful lifetime and the characteristic lifetime were defined. To demonstrate the model the historic time-to-failure of distribution transformers were used as an example. The resulted “Bathtub curve” shows the failure rate for the equipment lifetime which can be applied in economic and replacement decision models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bathtub%20curve" title="bathtub curve">bathtub curve</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20analysis" title=" failure analysis"> failure analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime%20estimation" title=" lifetime estimation"> lifetime estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20estimation" title=" parameter estimation"> parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=Weibull%20distribution" title=" Weibull distribution"> Weibull distribution</a> </p> <a href="https://publications.waset.org/abstracts/10780/a-bathtub-curve-from-nonparametric-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8736</span> Performance Analysis of LINUX Operating System Connected in LAN Using Gumbel-Hougaard Family Copula Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Singh">V. V. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we have focused on the study of a Linux operating system connected in a LAN (local area network). We have considered two different topologies STAR topology (subsystem-1) and BUS topology (subsystem-2) which are placed at two different places and connected to a server through a hub. In both topologies BUS topology and STAR topology, we have assumed 'n' clients. The system has two types of failure partial failure and complete failure. Further the partial failure has been categorized as minor partial failure and major partial failure. It is assumed that minor partial failure degrades the subsystem and the major partial failure brings the subsystem to break down mode. The system can completely failed due to failure of server hacking and blocking etc. The system is studied by supplementary variable technique and Laplace transform by taking different types of failure and two types of repairs. The various measures of reliability like availability of system, MTTF, profit function for different parametric values has been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=star%20topology" title="star topology">star topology</a>, <a href="https://publications.waset.org/abstracts/search?q=bus%20topology" title=" bus topology"> bus topology</a>, <a href="https://publications.waset.org/abstracts/search?q=hacking" title=" hacking"> hacking</a>, <a href="https://publications.waset.org/abstracts/search?q=blocking" title=" blocking"> blocking</a>, <a href="https://publications.waset.org/abstracts/search?q=linux%20operating%20system" title=" linux operating system"> linux operating system</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumbel-Hougaard%20family%20copula" title=" Gumbel-Hougaard family copula"> Gumbel-Hougaard family copula</a>, <a href="https://publications.waset.org/abstracts/search?q=supplementary%20variable" title=" supplementary variable "> supplementary variable </a> </p> <a href="https://publications.waset.org/abstracts/33606/performance-analysis-of-linux-operating-system-connected-in-lan-using-gumbel-hougaard-family-copula-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">577</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8735</span> Ion Thruster Grid Lifetime Assessment Based on Its Structural Failure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Li">Juan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiawen%20Qiu"> Jiawen Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuchuan%20Chu"> Yuchuan Chu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianping%20Zhang"> Tianping Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Meng"> Wei Meng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanhui%20Jia"> Yanhui Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohui%20Liu"> Xiaohui Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article developed an ion thruster optic system sputter erosion depth numerical 3D model by IFE-PIC (Immersed Finite Element-Particle-in-Cell) and Mont Carlo method, and calculated the downstream surface sputter erosion rate of accelerator grid; Compared with LIPS-200 life test data, the results of the numerical model are in reasonable agreement with the measured data. Finally, we predict the lifetime of the 20cm diameter ion thruster via the erosion data obtained with the model. The ultimate result demonstrates that under normal operating condition, the erosion rate of the grooves wears on the downstream surface of the accelerator grid is 34.6μm⁄1000h, which means the conservative lifetime until structural failure occurring on the accelerator grid is 11500 hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ion%20thruster" title="ion thruster">ion thruster</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerator%20gird" title=" accelerator gird"> accelerator gird</a>, <a href="https://publications.waset.org/abstracts/search?q=sputter%20erosion" title=" sputter erosion"> sputter erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime%20assessment" title=" lifetime assessment"> lifetime assessment</a> </p> <a href="https://publications.waset.org/abstracts/33020/ion-thruster-grid-lifetime-assessment-based-on-its-structural-failure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=log-spiral%20failure%20surface&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=log-spiral%20failure%20surface&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=log-spiral%20failure%20surface&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=log-spiral%20failure%20surface&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=log-spiral%20failure%20surface&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=log-spiral%20failure%20surface&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=log-spiral%20failure%20surface&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=log-spiral%20failure%20surface&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=log-spiral%20failure%20surface&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=log-spiral%20failure%20surface&page=292">292</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=log-spiral%20failure%20surface&page=293">293</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=log-spiral%20failure%20surface&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>