CINXE.COM

Distribution (mathematics) - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Distribution (mathematics) - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"36e63e38-ca47-4565-a263-d16131a01809","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Distribution_(mathematics)","wgTitle":"Distribution (mathematics)","wgCurRevisionId":1256591953,"wgRevisionId":1256591953,"wgArticleId":51955,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: location missing publisher","CS1 maint: numeric names: authors list","Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from September 2020","Wikipedia articles needing clarification from September 2020","Articles with unsourced statements from July 2019","Pages displaying short descriptions of redirect targets via Module:Annotated link", "Pages displaying wikidata descriptions as a fallback via Module:Annotated link","Articles containing proofs","Functional analysis","Generalizations of the derivative","Generalized functions","Smooth functions","Schwartz distributions","Differential equations","Linear functionals"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Distribution_(mathematics)","wgRelevantArticleId":51955,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample": false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q865811","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles": "ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Distribution (mathematics) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Distribution_(mathematics)"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Distribution_(mathematics)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Distribution_mathematics rootpage-Distribution_mathematics skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Distribution+%28mathematics%29" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Distribution+%28mathematics%29" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Distribution+%28mathematics%29" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Distribution+%28mathematics%29" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Notation</span> </div> </a> <ul id="toc-Notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definitions_of_test_functions_and_distributions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definitions_of_test_functions_and_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Definitions of test functions and distributions</span> </div> </a> <button aria-controls="toc-Definitions_of_test_functions_and_distributions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definitions of test functions and distributions subsection</span> </button> <ul id="toc-Definitions_of_test_functions_and_distributions-sublist" class="vector-toc-list"> <li id="toc-Topology_on_Ck(U)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Topology_on_Ck(U)"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Topology on <i>C</i><sup><i>k</i></sup>(<i>U</i>)</span> </div> </a> <ul id="toc-Topology_on_Ck(U)-sublist" class="vector-toc-list"> <li id="toc-Topology_on_Ck(K)" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Topology_on_Ck(K)"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.1</span> <span>Topology on <i>C</i><sup><i>k</i></sup>(<i>K</i>)</span> </div> </a> <ul id="toc-Topology_on_Ck(K)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Trivial_extensions_and_independence_of_Ck(K)&#039;s_topology_from_U" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Trivial_extensions_and_independence_of_Ck(K)&#039;s_topology_from_U"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.2</span> <span>Trivial extensions and independence of <i>C</i><sup><i>k</i></sup>(<i>K</i>)'s topology from <i>U</i></span> </div> </a> <ul id="toc-Trivial_extensions_and_independence_of_Ck(K)&#039;s_topology_from_U-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Canonical_LF_topology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Canonical_LF_topology"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Canonical LF topology</span> </div> </a> <ul id="toc-Canonical_LF_topology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Distributions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Distributions</span> </div> </a> <ul id="toc-Distributions-sublist" class="vector-toc-list"> <li id="toc-Characterizations_of_distributions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Characterizations_of_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.1</span> <span>Characterizations of distributions</span> </div> </a> <ul id="toc-Characterizations_of_distributions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Topology_on_the_space_of_distributions_and_its_relation_to_the_weak-*_topology" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Topology_on_the_space_of_distributions_and_its_relation_to_the_weak-*_topology"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.2</span> <span>Topology on the space of distributions and its relation to the weak-* topology</span> </div> </a> <ul id="toc-Topology_on_the_space_of_distributions_and_its_relation_to_the_weak-*_topology-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Localization_of_distributions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Localization_of_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Localization of distributions</span> </div> </a> <button aria-controls="toc-Localization_of_distributions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Localization of distributions subsection</span> </button> <ul id="toc-Localization_of_distributions-sublist" class="vector-toc-list"> <li id="toc-Extensions_and_restrictions_to_an_open_subset" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Extensions_and_restrictions_to_an_open_subset"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Extensions and restrictions to an open subset</span> </div> </a> <ul id="toc-Extensions_and_restrictions_to_an_open_subset-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gluing_and_distributions_that_vanish_in_a_set" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gluing_and_distributions_that_vanish_in_a_set"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Gluing and distributions that vanish in a set</span> </div> </a> <ul id="toc-Gluing_and_distributions_that_vanish_in_a_set-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Support_of_a_distribution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Support_of_a_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Support of a distribution</span> </div> </a> <ul id="toc-Support_of_a_distribution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Distributions_with_compact_support" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Distributions_with_compact_support"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Distributions with compact support</span> </div> </a> <ul id="toc-Distributions_with_compact_support-sublist" class="vector-toc-list"> <li id="toc-Support_in_a_point_set_and_Dirac_measures" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Support_in_a_point_set_and_Dirac_measures"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4.1</span> <span>Support in a point set and Dirac measures</span> </div> </a> <ul id="toc-Support_in_a_point_set_and_Dirac_measures-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Distribution_with_compact_support" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Distribution_with_compact_support"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4.2</span> <span>Distribution with compact support</span> </div> </a> <ul id="toc-Distribution_with_compact_support-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Distributions_of_finite_order_with_support_in_an_open_subset" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Distributions_of_finite_order_with_support_in_an_open_subset"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4.3</span> <span>Distributions of finite order with support in an open subset</span> </div> </a> <ul id="toc-Distributions_of_finite_order_with_support_in_an_open_subset-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Global_structure_of_distributions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Global_structure_of_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Global structure of distributions</span> </div> </a> <ul id="toc-Global_structure_of_distributions-sublist" class="vector-toc-list"> <li id="toc-Distributions_as_sheaves" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Distributions_as_sheaves"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5.1</span> <span>Distributions as sheaves</span> </div> </a> <ul id="toc-Distributions_as_sheaves-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Decomposition_of_distributions_as_sums_of_derivatives_of_continuous_functions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Decomposition_of_distributions_as_sums_of_derivatives_of_continuous_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5.2</span> <span>Decomposition of distributions as sums of derivatives of continuous functions</span> </div> </a> <ul id="toc-Decomposition_of_distributions_as_sums_of_derivatives_of_continuous_functions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Operations_on_distributions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Operations_on_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Operations on distributions</span> </div> </a> <button aria-controls="toc-Operations_on_distributions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Operations on distributions subsection</span> </button> <ul id="toc-Operations_on_distributions-sublist" class="vector-toc-list"> <li id="toc-Preliminaries:_Transpose_of_a_linear_operator" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Preliminaries:_Transpose_of_a_linear_operator"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Preliminaries: Transpose of a linear operator</span> </div> </a> <ul id="toc-Preliminaries:_Transpose_of_a_linear_operator-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Differential_operators" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Differential_operators"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Differential operators</span> </div> </a> <ul id="toc-Differential_operators-sublist" class="vector-toc-list"> <li id="toc-Differentiation_of_distributions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Differentiation_of_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.1</span> <span>Differentiation of distributions</span> </div> </a> <ul id="toc-Differentiation_of_distributions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Differential_operators_acting_on_smooth_functions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Differential_operators_acting_on_smooth_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.2</span> <span>Differential operators acting on smooth functions</span> </div> </a> <ul id="toc-Differential_operators_acting_on_smooth_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multiplication_of_distributions_by_smooth_functions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Multiplication_of_distributions_by_smooth_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.3</span> <span>Multiplication of distributions by smooth functions</span> </div> </a> <ul id="toc-Multiplication_of_distributions_by_smooth_functions-sublist" class="vector-toc-list"> <li id="toc-Problem_of_multiplying_distributions" class="vector-toc-list-item vector-toc-level-4"> <a class="vector-toc-link" href="#Problem_of_multiplying_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.3.1</span> <span>Problem of multiplying distributions</span> </div> </a> <ul id="toc-Problem_of_multiplying_distributions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Composition_with_a_smooth_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Composition_with_a_smooth_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Composition with a smooth function</span> </div> </a> <ul id="toc-Composition_with_a_smooth_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Convolution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Convolution"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Convolution</span> </div> </a> <ul id="toc-Convolution-sublist" class="vector-toc-list"> <li id="toc-Translation_and_symmetry" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Translation_and_symmetry"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4.1</span> <span>Translation and symmetry</span> </div> </a> <ul id="toc-Translation_and_symmetry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Convolution_of_a_test_function_with_a_distribution" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Convolution_of_a_test_function_with_a_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4.2</span> <span>Convolution of a test function with a distribution</span> </div> </a> <ul id="toc-Convolution_of_a_test_function_with_a_distribution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Convolution_of_a_smooth_function_with_a_distribution" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Convolution_of_a_smooth_function_with_a_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4.3</span> <span>Convolution of a smooth function with a distribution</span> </div> </a> <ul id="toc-Convolution_of_a_smooth_function_with_a_distribution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Convolution_of_distributions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Convolution_of_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4.4</span> <span>Convolution of distributions</span> </div> </a> <ul id="toc-Convolution_of_distributions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Convolution_versus_multiplication" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Convolution_versus_multiplication"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4.5</span> <span>Convolution versus multiplication</span> </div> </a> <ul id="toc-Convolution_versus_multiplication-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Tensor_products_of_distributions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Tensor_products_of_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Tensor products of distributions</span> </div> </a> <ul id="toc-Tensor_products_of_distributions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Spaces_of_distributions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Spaces_of_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Spaces of distributions</span> </div> </a> <button aria-controls="toc-Spaces_of_distributions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Spaces of distributions subsection</span> </button> <ul id="toc-Spaces_of_distributions-sublist" class="vector-toc-list"> <li id="toc-Radon_measures" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Radon_measures"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Radon measures</span> </div> </a> <ul id="toc-Radon_measures-sublist" class="vector-toc-list"> <li id="toc-Positive_Radon_measures" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Positive_Radon_measures"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.1</span> <span>Positive Radon measures</span> </div> </a> <ul id="toc-Positive_Radon_measures-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Locally_integrable_functions_as_distributions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Locally_integrable_functions_as_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.2</span> <span>Locally integrable functions as distributions</span> </div> </a> <ul id="toc-Locally_integrable_functions_as_distributions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Test_functions_as_distributions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Test_functions_as_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.3</span> <span>Test functions as distributions</span> </div> </a> <ul id="toc-Test_functions_as_distributions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Distributions_with_compact_support_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Distributions_with_compact_support_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Distributions with compact support</span> </div> </a> <ul id="toc-Distributions_with_compact_support_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Distributions_of_finite_order" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Distributions_of_finite_order"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Distributions of finite order</span> </div> </a> <ul id="toc-Distributions_of_finite_order-sublist" class="vector-toc-list"> <li id="toc-Structure_of_distributions_of_finite_order" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Structure_of_distributions_of_finite_order"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3.1</span> <span>Structure of distributions of finite order</span> </div> </a> <ul id="toc-Structure_of_distributions_of_finite_order-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Tempered_distributions_and_Fourier_transform" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Tempered_distributions_and_Fourier_transform"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Tempered distributions and Fourier transform</span> </div> </a> <ul id="toc-Tempered_distributions_and_Fourier_transform-sublist" class="vector-toc-list"> <li id="toc-Schwartz_space" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Schwartz_space"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4.1</span> <span>Schwartz space</span> </div> </a> <ul id="toc-Schwartz_space-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tempered_distributions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Tempered_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4.2</span> <span>Tempered distributions</span> </div> </a> <ul id="toc-Tempered_distributions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fourier_transform" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Fourier_transform"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4.3</span> <span>Fourier transform</span> </div> </a> <ul id="toc-Fourier_transform-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Expressing_tempered_distributions_as_sums_of_derivatives" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Expressing_tempered_distributions_as_sums_of_derivatives"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4.4</span> <span>Expressing tempered distributions as sums of derivatives</span> </div> </a> <ul id="toc-Expressing_tempered_distributions_as_sums_of_derivatives-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Restriction_of_distributions_to_compact_sets" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Restriction_of_distributions_to_compact_sets"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4.5</span> <span>Restriction of distributions to compact sets</span> </div> </a> <ul id="toc-Restriction_of_distributions_to_compact_sets-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Using_holomorphic_functions_as_test_functions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Using_holomorphic_functions_as_test_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Using holomorphic functions as test functions</span> </div> </a> <ul id="toc-Using_holomorphic_functions_as_test_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliography" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Bibliography"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Bibliography</span> </div> </a> <ul id="toc-Bibliography-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Distribution (mathematics)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 24 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-24" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">24 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D9%88%D8%B2%D9%8A%D8%B9_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)" title="توزيع (رياضيات) – Arabic" lang="ar" hreflang="ar" data-title="توزيع (رياضيات)" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Distribuci%C3%B3_(matem%C3%A0tiques)" title="Distribució (matemàtiques) – Catalan" lang="ca" hreflang="ca" data-title="Distribució (matemàtiques)" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9F%C4%95%D1%82%C4%95%D0%BC%C4%95%D1%88%D0%BB%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8" title="Пĕтĕмĕшле функци – Chuvash" lang="cv" hreflang="cv" data-title="Пĕтĕмĕшле функци" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Distribuce_(matematika)" title="Distribuce (matematika) – Czech" lang="cs" hreflang="cs" data-title="Distribuce (matematika)" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Distribution_(Mathematik)" title="Distribution (Mathematik) – German" lang="de" hreflang="de" data-title="Distribution (Mathematik)" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Teor%C3%ADa_de_distribuciones" title="Teoría de distribuciones – Spanish" lang="es" hreflang="es" data-title="Teoría de distribuciones" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Distribucio" title="Distribucio – Esperanto" lang="eo" hreflang="eo" data-title="Distribucio" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D9%88%D8%B2%DB%8C%D8%B9_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C%D8%A7%D8%AA)" title="توزیع (ریاضیات) – Persian" lang="fa" hreflang="fa" data-title="توزیع (ریاضیات)" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Distribution_(math%C3%A9matiques)" title="Distribution (mathématiques) – French" lang="fr" hreflang="fr" data-title="Distribution (mathématiques)" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B6%84%ED%8F%AC_(%ED%95%B4%EC%84%9D%ED%95%99)" title="분포 (해석학) – Korean" lang="ko" hreflang="ko" data-title="분포 (해석학)" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B8%D5%B6%D5%A4%D5%B0%D5%A1%D5%B6%D6%80%D5%A1%D6%81%D5%BE%D5%A1%D5%AE_%D6%86%D5%B8%D6%82%D5%B6%D5%AF%D6%81%D5%AB%D5%A1" title="Ընդհանրացված ֆունկցիա – Armenian" lang="hy" hreflang="hy" data-title="Ընդհանրացված ֆունկցիա" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Distribuzione_(matematica)" title="Distribuzione (matematica) – Italian" lang="it" hreflang="it" data-title="Distribuzione (matematica)" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%96%D0%B0%D0%BB%D0%BF%D1%8B%D0%BB%D0%B0%D0%BD%D2%93%D0%B0%D0%BD_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Жалпыланған функция – Kazakh" lang="kk" hreflang="kk" data-title="Жалпыланған функция" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Disztrib%C3%BAci%C3%B3_(matematika)" title="Disztribúció (matematika) – Hungarian" lang="hu" hreflang="hu" data-title="Disztribúció (matematika)" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Distributie_(wiskunde)" title="Distributie (wiskunde) – Dutch" lang="nl" hreflang="nl" data-title="Distributie (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%B7%E3%83%A5%E3%83%AF%E3%83%AB%E3%83%84%E8%B6%85%E5%87%BD%E6%95%B0" title="シュワルツ超函数 – Japanese" lang="ja" hreflang="ja" data-title="シュワルツ超函数" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Teoria_dystrybucji" title="Teoria dystrybucji – Polish" lang="pl" hreflang="pl" data-title="Teoria dystrybucji" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Teoria_das_distribui%C3%A7%C3%B5es" title="Teoria das distribuições – Portuguese" lang="pt" hreflang="pt" data-title="Teoria das distribuições" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9E%D0%B1%D0%BE%D0%B1%D1%89%D1%91%D0%BD%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Обобщённая функция – Russian" lang="ru" hreflang="ru" data-title="Обобщённая функция" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Distribution_(mathematics)" title="Distribution (mathematics) – Simple English" lang="en-simple" hreflang="en-simple" data-title="Distribution (mathematics)" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Distribution" title="Distribution – Swedish" lang="sv" hreflang="sv" data-title="Distribution" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Distribusyon_(matematika)" title="Distribusyon (matematika) – Tagalog" lang="tl" hreflang="tl" data-title="Distribusyon (matematika)" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A3%D0%B7%D0%B0%D0%B3%D0%B0%D0%BB%D1%8C%D0%BD%D0%B5%D0%BD%D0%B0_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%96%D1%8F" title="Узагальнена функція – Ukrainian" lang="uk" hreflang="uk" data-title="Узагальнена функція" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%88%86%E5%B8%83_(%E6%95%B0%E5%AD%A6%E5%88%86%E6%9E%90)" title="分布 (数学分析) – Chinese" lang="zh" hreflang="zh" data-title="分布 (数学分析)" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q865811#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Distribution_(mathematics)" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Distribution_(mathematics)" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Distribution_(mathematics)"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Distribution_(mathematics)"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Distribution_(mathematics)" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Distribution_(mathematics)" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Distribution_(mathematics)&amp;oldid=1256591953" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Distribution_%28mathematics%29&amp;id=1256591953&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDistribution_%28mathematics%29"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDistribution_%28mathematics%29"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Distribution_%28mathematics%29&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Distribution_(mathematics)&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://en.wikibooks.org/wiki/Distribution_Theory" hreflang="en"><span>Wikibooks</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q865811" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Mathematical analysis term similar to generalized function</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about generalized functions in mathematical analysis. For the concept of distributions in probability theory, see <a href="/wiki/Probability_distribution" title="Probability distribution">Probability distribution</a>. For artificial landscapes, see <a href="/wiki/Test_functions_for_optimization" title="Test functions for optimization">Test functions for optimization</a>. For other uses, see <a href="/wiki/Distribution_(disambiguation)#In_mathematics" class="mw-redirect mw-disambig" title="Distribution (disambiguation)">Distribution § Mathematics</a>.</div> <p><b>Distributions</b>, also known as <b>Schwartz distributions</b> or <b><a href="/wiki/Generalized_function" title="Generalized function">generalized functions</a></b>, are objects that generalize the classical notion of functions in <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a>. Distributions make it possible to <a href="/wiki/Derivative" title="Derivative">differentiate</a> functions whose derivatives do not exist in the classical sense. In particular, any <a href="/wiki/Locally_integrable" class="mw-redirect" title="Locally integrable">locally integrable</a> function has a <a href="/wiki/Distributional_derivative" class="mw-redirect" title="Distributional derivative">distributional derivative</a>. </p><p>Distributions are widely used in the theory of <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equations</a>, where it may be easier to establish the existence of distributional solutions (<a href="/wiki/Weak_solution" title="Weak solution">weak solutions</a>) than <a href="/wiki/Solution_of_a_differential_equation" class="mw-redirect" title="Solution of a differential equation">classical solutions</a>, or where appropriate classical solutions may not exist. Distributions are also important in <a href="/wiki/Physics" title="Physics">physics</a> and <a href="/wiki/Engineering" title="Engineering">engineering</a> where many problems naturally lead to differential equations whose solutions or initial conditions are singular, such as the <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta</a> function. </p><p>A <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is normally thought of as <em><a href="/wiki/Group_action" title="Group action">acting</a></em> on the <em>points</em> in the function <a href="/wiki/Domain_(function)" class="mw-redirect" title="Domain (function)">domain</a> by "sending" a point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> in the domain to the point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e889a7f3ee0216318cbf9f3478208fa1404cc51c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.064ex; height:2.843ex;" alt="{\displaystyle f(x).}"></span> Instead of acting on points, distribution theory reinterprets functions such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> as acting on <em>test functions</em> in a certain way. In applications to physics and engineering, <b><em>test functions</em></b> are usually <a href="/wiki/Smooth_function" class="mw-redirect" title="Smooth function">infinitely differentiable</a> <a href="/wiki/Complex_number" title="Complex number">complex</a>-valued (or <a href="/wiki/Real_number" title="Real number">real</a>-valued) functions with <a href="/wiki/Compact_space" title="Compact space">compact</a> <a href="/wiki/Support_(mathematics)" title="Support (mathematics)">support</a> that are defined on some given non-empty <a href="/wiki/Open_set" title="Open set">open subset</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U\subseteq \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U\subseteq \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a4ffabb41c43db92055a8fd5be74cd7633756a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.778ex; height:2.509ex;" alt="{\displaystyle U\subseteq \mathbb {R} ^{n}}"></span>. (<a href="/wiki/Bump_function" title="Bump function">Bump functions</a> are examples of test functions.) The set of all such test functions forms a <a href="/wiki/Vector_space" title="Vector space">vector space</a> that is denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86b89bbd40d06988c0bb0b6835645a761097f8d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.031ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(U).}"></span> </p><p>Most commonly encountered functions, including all <a href="/wiki/Continuous_function" title="Continuous function">continuous</a> maps <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {R} \to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {R} \to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e3a10a3ad05781f5cf9c2d875a02227e21a8448" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.186ex; height:2.509ex;" alt="{\displaystyle f:\mathbb {R} \to \mathbb {R} }"></span> if using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U:=\mathbb {R} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U:=\mathbb {R} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d785c8ca22edbcab7b3687b5805180ea4b585db9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.853ex; height:2.509ex;" alt="{\displaystyle U:=\mathbb {R} ,}"></span> can be canonically reinterpreted as acting via "<a href="/wiki/Integral" title="Integral">integration</a> against a test function." Explicitly, this means that such a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> "acts on" a test function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi \in {\mathcal {D}}(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi \in {\mathcal {D}}(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/042ce5d1d2027f51d6f26525fe911b3a3a8b4100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.633ex; height:2.843ex;" alt="{\displaystyle \psi \in {\mathcal {D}}(\mathbb {R} )}"></span> by "sending" it to the <a href="/wiki/Integral_(mathematics)" class="mw-redirect" title="Integral (mathematics)">number</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \int _{\mathbb {R} }f\,\psi \,dx,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>f</mi> <mspace width="thinmathspace" /> <mi>&#x03C8;<!-- ψ --></mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \int _{\mathbb {R} }f\,\psi \,dx,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/932b3413ced16cd317f19f598be8e91db82ea2f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.662ex; height:3.176ex;" alt="{\textstyle \int _{\mathbb {R} }f\,\psi \,dx,}"></span> which is often denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{f}(\psi ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{f}(\psi ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a0524ee75739f8ccde7e9da37b7ddf4e00e3f95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.03ex; height:3.009ex;" alt="{\displaystyle D_{f}(\psi ).}"></span> This new action <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \psi \mapsto D_{f}(\psi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \psi \mapsto D_{f}(\psi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1673db16f8a260e682c4303a3743b8b5a3ae17cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.51ex; height:3.009ex;" alt="{\textstyle \psi \mapsto D_{f}(\psi )}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> defines a <a href="/wiki/Functional_(mathematics)" title="Functional (mathematics)">scalar-valued map</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{f}:{\mathcal {D}}(\mathbb {R} )\to \mathbb {C} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{f}:{\mathcal {D}}(\mathbb {R} )\to \mathbb {C} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0e6a67bfbedc5b1f0e5323dd75c76c546b219bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.216ex; height:3.009ex;" alt="{\displaystyle D_{f}:{\mathcal {D}}(\mathbb {R} )\to \mathbb {C} ,}"></span> whose domain is the space of test functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(\mathbb {R} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(\mathbb {R} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96d08e7f91ee575d201edce784266496b6391465" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.926ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(\mathbb {R} ).}"></span> This <a href="/wiki/Functional_(mathematics)" title="Functional (mathematics)">functional</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13b8420d715315c8e8b57f178a1b3a8512bd0959" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.061ex; height:2.843ex;" alt="{\displaystyle D_{f}}"></span> turns out to have the two defining properties of what is known as a <em>distribution on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U=\mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U=\mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7144f67be80ffe9b4b8f4d09cde56282d86443f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.559ex; height:2.176ex;" alt="{\displaystyle U=\mathbb {R} }"></span></em>: it is <a href="/wiki/Linear_form" title="Linear form">linear</a>, and it is also <a href="/wiki/Continuous_function" title="Continuous function">continuous</a> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da0aa5f387631f63ca4af24146ba972fef2695b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.279ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(\mathbb {R} )}"></span> is given a certain <a href="/wiki/Topology" title="Topology">topology</a> called <em>the canonical LF topology</em>. The action (the integration <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \psi \mapsto \int _{\mathbb {R} }f\,\psi \,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>f</mi> <mspace width="thinmathspace" /> <mi>&#x03C8;<!-- ψ --></mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \psi \mapsto \int _{\mathbb {R} }f\,\psi \,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6e556260822813d587db37454d5f26b98f63dd1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.142ex; height:3.176ex;" alt="{\textstyle \psi \mapsto \int _{\mathbb {R} }f\,\psi \,dx}"></span>) of this distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13b8420d715315c8e8b57f178a1b3a8512bd0959" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.061ex; height:2.843ex;" alt="{\displaystyle D_{f}}"></span> on a test function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> can be interpreted as a weighted average of the distribution on the <a href="/wiki/Support_(mathematics)" title="Support (mathematics)">support</a> of the test function, even if the values of the distribution at a single point are not well-defined. Distributions like <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13b8420d715315c8e8b57f178a1b3a8512bd0959" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.061ex; height:2.843ex;" alt="{\displaystyle D_{f}}"></span> that arise from functions in this way are prototypical examples of distributions, but there exist many distributions that cannot be defined by integration against any function. Examples of the latter include the <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a> and distributions defined to act by integration of test functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \psi \mapsto \int _{U}\psi d\mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>&#x03C8;<!-- ψ --></mi> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \psi \mapsto \int _{U}\psi d\mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cebb380d40a4d391100d3636240f936a42e2db07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.235ex; height:3.176ex;" alt="{\textstyle \psi \mapsto \int _{U}\psi d\mu }"></span> against certain <a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">measures</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a305ef479ab152035f334467a2c314baa23eb36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.429ex; height:2.176ex;" alt="{\displaystyle U.}"></span> Nonetheless, it is still always possible to <a href="#Decomposition_of_distributions_as_sums_of_derivatives_of_continuous_functions">reduce any arbitrary distribution</a> down to a simpler <em>family</em> of related distributions that do arise via such actions of integration. </p><p>More generally, a <em><b>distribution</b> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span></em> is by definition a <a href="/wiki/Linear_form" title="Linear form">linear functional</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> that is <a href="/wiki/Continuous_linear_functional" class="mw-redirect" title="Continuous linear functional">continuous</a> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> is given a topology called the <b><em>canonical LF topology</em></b>. This leads to <em>the</em> space of (all) distributions on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span>, usually denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> (note the <a href="/wiki/Prime_(symbol)" title="Prime (symbol)">prime</a>), which by definition is the <a href="/wiki/Vector_space" title="Vector space">space</a> of all distributions on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> (that is, it is the <a href="/wiki/Continuous_dual_space" class="mw-redirect" title="Continuous dual space">continuous dual space</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span>); it is these distributions that are the main focus of this article. </p><p>Definitions of the appropriate topologies on <a href="/wiki/Spaces_of_test_functions_and_distributions" title="Spaces of test functions and distributions">spaces of test functions and distributions</a> are given in the article on <a href="/wiki/Spaces_of_test_functions_and_distributions" title="Spaces of test functions and distributions">spaces of test functions and distributions</a>. This article is primarily concerned with the definition of distributions, together with their properties and some important examples. </p> <style data-mw-deduplicate="TemplateStyles:r886046785">.mw-parser-output .toclimit-2 .toclevel-1 ul,.mw-parser-output .toclimit-3 .toclevel-2 ul,.mw-parser-output .toclimit-4 .toclevel-3 ul,.mw-parser-output .toclimit-5 .toclevel-4 ul,.mw-parser-output .toclimit-6 .toclevel-5 ul,.mw-parser-output .toclimit-7 .toclevel-6 ul{display:none}</style><div class="toclimit-3"><meta property="mw:PageProp/toc" /></div> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The practical use of distributions can be traced back to the use of <a href="/wiki/Green%27s_function" title="Green&#39;s function">Green's functions</a> in the 1830s to solve ordinary differential equations, but was not formalized until much later. According to <a href="#CITEREFKolmogorovFomin1957">Kolmogorov &amp; Fomin (1957)</a>, generalized functions originated in the work of <a href="/wiki/Sergei_Lvovich_Sobolev" class="mw-redirect" title="Sergei Lvovich Sobolev">Sergei&#32;Sobolev</a>&#160;(<a href="#CITEREFSobolev1936">1936</a>) on <a href="/wiki/Second-order_differential_equation" class="mw-redirect" title="Second-order differential equation">second-order</a> <a href="/wiki/Hyperbolic_partial_differential_equation" title="Hyperbolic partial differential equation">hyperbolic partial differential equations</a>, and the ideas were developed in somewhat extended form by <a href="/wiki/Laurent_Schwartz" title="Laurent Schwartz">Laurent Schwartz</a> in the late 1940s. According to his autobiography, Schwartz introduced the term "distribution" by analogy with a distribution of electrical charge, possibly including not only point charges but also dipoles and so on. <a href="#CITEREFGårding1997">Gårding (1997)</a> comments that although the ideas in the transformative book by <a href="#CITEREFSchwartz1951">Schwartz (1951)</a> were not entirely new, it was Schwartz's broad attack and conviction that distributions would be useful almost everywhere in analysis that made the difference. A detailed history of the theory of distributions was given by <a href="#CITEREFLützen1982">Lützen (1982)</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Notation">Notation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=2" title="Edit section: Notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following notation will be used throughout this article: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is a fixed positive integer and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> is a fixed non-empty <a href="/wiki/Open_set" title="Open set">open subset</a> of <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76ef548febfc9981762740107858be9e3a5576c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.543ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}.}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} _{0}=\{0,1,2,\ldots \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} _{0}=\{0,1,2,\ldots \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ace48acccb24cd7a55fe6367f5e016c4831bfd38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.468ex; height:2.843ex;" alt="{\displaystyle \mathbb {N} _{0}=\{0,1,2,\ldots \}}"></span> denotes the <a href="/wiki/Natural_number" title="Natural number">natural numbers</a>.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> will denote a non-negative integer or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f6ccaf28d90bcfce739aca4c5ff119a60e08031" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.971ex; height:1.676ex;" alt="{\displaystyle \infty .}"></span></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Dom} (f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Dom</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Dom} (f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99b5fc45eb63a9824da991ddfce08eff4ded06c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.962ex; height:2.843ex;" alt="{\displaystyle \operatorname {Dom} (f)}"></span> will denote its <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a> and the <b><em><a href="/wiki/Support_(mathematics)" title="Support (mathematics)"><style data-mw-deduplicate="TemplateStyles:r1238216509">'"`UNIQ--templatestyles-0000002F-QINU`"'</style><span class="vanchor"><span id="support_of_a_function"></span><span class="vanchor-text">support</span></span></a></em></b> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e9687ea22c0f310582e97ee5f6c6a5fca28203d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.925ex; height:2.509ex;" alt="{\displaystyle f,}"></span> denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {supp} (f),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {supp} (f),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6cd6a6b97dc6e68525a1cb829d7d0ff7c48a1ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.529ex; height:2.843ex;" alt="{\displaystyle \operatorname {supp} (f),}"></span> is defined to be the <a href="/wiki/Closure_(topology)" title="Closure (topology)">closure</a> of the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x\in \operatorname {Dom} (f):f(x)\neq 0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Dom</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x\in \operatorname {Dom} (f):f(x)\neq 0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f68a95bc2123dfe7d61ca4dc1b8e22b5a66d0657" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.073ex; height:2.843ex;" alt="{\displaystyle \{x\in \operatorname {Dom} (f):f(x)\neq 0\}}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Dom} (f).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Dom</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Dom} (f).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69f7a48f0042a52966cdea63b7da873762a66b69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.609ex; height:2.843ex;" alt="{\displaystyle \operatorname {Dom} (f).}"></span></li> <li>For two functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f,g:U\to \mathbb {C} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo>:</mo> <mi>U</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f,g:U\to \mathbb {C} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66fd807d3ef947a1cba60dd593d8dcf76558b030" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.087ex; height:2.509ex;" alt="{\displaystyle f,g:U\to \mathbb {C} ,}"></span> the following notation defines a canonical <a href="/wiki/Dual_system" title="Dual system">pairing</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f,g\rangle :=\int _{U}f(x)g(x)\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>:=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle f,g\rangle :=\int _{U}f(x)g(x)\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/179f0d9b95d236fc93bceebce0f222a1e7046cca" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:24.408ex; height:5.676ex;" alt="{\displaystyle \langle f,g\rangle :=\int _{U}f(x)g(x)\,dx.}"></span></li> <li>A <b><em><a href="/wiki/Multi-index_notation" title="Multi-index notation">multi-index</a></em> of size</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is an element in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6de4673cd92dd1c8e3a19aeda306b77ad113ebd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {N} ^{n}}"></span> (given that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is fixed, if the size of multi-indices is omitted then the size should be assumed to be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>). The <b><em>length</em></b> of a multi-index <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =(\alpha _{1},\ldots ,\alpha _{n})\in \mathbb {N} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =(\alpha _{1},\ldots ,\alpha _{n})\in \mathbb {N} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a439aa4b81746930183370170548812c420e47e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.559ex; height:2.843ex;" alt="{\displaystyle \alpha =(\alpha _{1},\ldots ,\alpha _{n})\in \mathbb {N} ^{n}}"></span> is defined as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha _{1}+\cdots +\alpha _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha _{1}+\cdots +\alpha _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f6acb2658812f5ea5ca4a0242de598c759f622f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.652ex; height:2.343ex;" alt="{\displaystyle \alpha _{1}+\cdots +\alpha _{n}}"></span> and denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\alpha |.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\alpha |.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a6dffca92c8c3928e18b61373b36a4489d03529" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.428ex; height:2.843ex;" alt="{\displaystyle |\alpha |.}"></span> Multi-indices are particularly useful when dealing with functions of several variables, in particular, we introduce the following notations for a given multi-index <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =(\alpha _{1},\ldots ,\alpha _{n})\in \mathbb {N} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =(\alpha _{1},\ldots ,\alpha _{n})\in \mathbb {N} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a439aa4b81746930183370170548812c420e47e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.559ex; height:2.843ex;" alt="{\displaystyle \alpha =(\alpha _{1},\ldots ,\alpha _{n})\in \mathbb {N} ^{n}}"></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}x^{\alpha }&amp;=x_{1}^{\alpha _{1}}\cdots x_{n}^{\alpha _{n}}\\\partial ^{\alpha }&amp;={\frac {\partial ^{|\alpha |}}{\partial x_{1}^{\alpha _{1}}\cdots \partial x_{n}^{\alpha _{n}}}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msubsup> <mo>&#x22EF;<!-- ⋯ --></mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msubsup> </mtd> </mtr> <mtr> <mtd> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msubsup> <mo>&#x22EF;<!-- ⋯ --></mo> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msubsup> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}x^{\alpha }&amp;=x_{1}^{\alpha _{1}}\cdots x_{n}^{\alpha _{n}}\\\partial ^{\alpha }&amp;={\frac {\partial ^{|\alpha |}}{\partial x_{1}^{\alpha _{1}}\cdots \partial x_{n}^{\alpha _{n}}}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/133a5c0e7de56b18131369d1659a348003557c81" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:20.471ex; height:10.176ex;" alt="{\displaystyle {\begin{aligned}x^{\alpha }&amp;=x_{1}^{\alpha _{1}}\cdots x_{n}^{\alpha _{n}}\\\partial ^{\alpha }&amp;={\frac {\partial ^{|\alpha |}}{\partial x_{1}^{\alpha _{1}}\cdots \partial x_{n}^{\alpha _{n}}}}\end{aligned}}}"></span> We also introduce a partial order of all multi-indices by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta \geq \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta \geq \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3771d7502f0980093daf08cb0e5627420de81430" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.918ex; height:2.509ex;" alt="{\displaystyle \beta \geq \alpha }"></span> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta _{i}\geq \alpha _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2265;<!-- ≥ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta _{i}\geq \alpha _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ca7a01cf75b902d0a4d05813c0c688f0467d4b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.501ex; height:2.509ex;" alt="{\displaystyle \beta _{i}\geq \alpha _{i}}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\leq i\leq n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\leq i\leq n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4e7f3cfcc75d64b89ecf7b8998713090bd9225e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.203ex; height:2.343ex;" alt="{\displaystyle 1\leq i\leq n.}"></span> When <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta \geq \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta \geq \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3771d7502f0980093daf08cb0e5627420de81430" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.918ex; height:2.509ex;" alt="{\displaystyle \beta \geq \alpha }"></span> we define their multi-index binomial coefficient as: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\binom {\beta }{\alpha }}:={\binom {\beta _{1}}{\alpha _{1}}}\cdots {\binom {\beta _{n}}{\alpha _{n}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B1;<!-- α --></mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\binom {\beta }{\alpha }}:={\binom {\beta _{1}}{\alpha _{1}}}\cdots {\binom {\beta _{n}}{\alpha _{n}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d26908a4365e1459456d5222df97848192ddb9b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.889ex; height:6.176ex;" alt="{\displaystyle {\binom {\beta }{\alpha }}:={\binom {\beta _{1}}{\alpha _{1}}}\cdots {\binom {\beta _{n}}{\alpha _{n}}}.}"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Definitions_of_test_functions_and_distributions">Definitions of test functions and distributions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=3" title="Edit section: Definitions of test functions and distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In this section, some basic notions and definitions needed to define real-valued distributions on <span class="texhtml mvar" style="font-style:italic;">U</span> are introduced. Further discussion of the topologies on the spaces of test functions and distributions is given in the article on <a href="/wiki/Spaces_of_test_functions_and_distributions" title="Spaces of test functions and distributions">spaces of test functions and distributions</a>. </p> <style data-mw-deduplicate="TemplateStyles:r996643573">.mw-parser-output .block-indent{padding-left:3em;padding-right:0;overflow:hidden}</style><div class="block-indent" style="padding-left: 1.5em;"><b>Notation</b>: <ol><li>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\in \{0,1,2,\ldots ,\infty \}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\in \{0,1,2,\ldots ,\infty \}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8975254866407c9aa9b4b2d0c921a79569df46d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.081ex; height:2.843ex;" alt="{\displaystyle k\in \{0,1,2,\ldots ,\infty \}.}"></span></li> <li>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/073d4c8080827cd63cadcb5f0521b856f702b4e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.478ex; height:3.176ex;" alt="{\displaystyle C^{k}(U)}"></span> denote the <a href="/wiki/Vector_space" title="Vector space">vector space</a> of all <span class="texhtml mvar" style="font-style:italic;">k</span>-times <a href="/wiki/Continuously_differentiable" class="mw-redirect" title="Continuously differentiable">continuously differentiable</a> real or complex-valued functions on <span class="texhtml mvar" style="font-style:italic;">U</span>.</li> <li>For any compact subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subseteq U,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>U</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subseteq U,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acad9323d553e656a5bed25a8c851bad4851eb47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.594ex; height:2.509ex;" alt="{\displaystyle K\subseteq U,}"></span> let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9fe0dd2512b5d08340b89e2ed6c2349a10098bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.762ex; height:3.176ex;" alt="{\displaystyle C^{k}(K)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fa9cf456e8f257acdfe71cfb721cb6b3804989b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.578ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;U)}"></span> both denote the vector space of all those functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29afe85921d11dce3f30d935c1d7dc1d9ba6e0cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.598ex; height:3.176ex;" alt="{\displaystyle f\in C^{k}(U)}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {supp} (f)\subseteq K.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <mi>K</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {supp} (f)\subseteq K.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a99333b1e2a77279d2731b9e1cb9a623cab7a08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.693ex; height:2.843ex;" alt="{\displaystyle \operatorname {supp} (f)\subseteq K.}"></span> <ul><li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C^{k}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C^{k}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bb59643f05e78941fcaa9cf056f480e9048d3fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.881ex; height:3.176ex;" alt="{\displaystyle f\in C^{k}(K)}"></span> then the domain of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is <span class="texhtml mvar" style="font-style:italic;">U</span> and not <span class="texhtml mvar" style="font-style:italic;">K</span>. So although <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9fe0dd2512b5d08340b89e2ed6c2349a10098bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.762ex; height:3.176ex;" alt="{\displaystyle C^{k}(K)}"></span> depends on both <span class="texhtml mvar" style="font-style:italic;">K</span> and <span class="texhtml mvar" style="font-style:italic;">U</span>, only <span class="texhtml mvar" style="font-style:italic;">K</span> is typically indicated. The justification for this common practice is <a href="#Omitting_the_open_set_from_notation">detailed below</a>. The notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fa9cf456e8f257acdfe71cfb721cb6b3804989b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.578ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;U)}"></span> will only be used when the notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9fe0dd2512b5d08340b89e2ed6c2349a10098bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.762ex; height:3.176ex;" alt="{\displaystyle C^{k}(K)}"></span> risks being ambiguous.</li> <li>Every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9fe0dd2512b5d08340b89e2ed6c2349a10098bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.762ex; height:3.176ex;" alt="{\displaystyle C^{k}(K)}"></span> contains the constant <span class="texhtml">0</span> map, even if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=\varnothing .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mi class="MJX-variant">&#x2205;<!-- ∅ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=\varnothing .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbfeb3731e6fd90ce00fc48b18abcd280c70c8fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.619ex; height:2.176ex;" alt="{\displaystyle K=\varnothing .}"></span></li></ul></li> <li>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7debf9e12995a3b3061090f012ade1cff8570c17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.478ex; height:3.009ex;" alt="{\displaystyle C_{c}^{k}(U)}"></span> denote the set of all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29afe85921d11dce3f30d935c1d7dc1d9ba6e0cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.598ex; height:3.176ex;" alt="{\displaystyle f\in C^{k}(U)}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C^{k}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C^{k}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bb59643f05e78941fcaa9cf056f480e9048d3fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.881ex; height:3.176ex;" alt="{\displaystyle f\in C^{k}(K)}"></span> for some compact subset <span class="texhtml mvar" style="font-style:italic;">K</span> of <span class="texhtml mvar" style="font-style:italic;">U</span>. <ul><li>Equivalently, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7debf9e12995a3b3061090f012ade1cff8570c17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.478ex; height:3.009ex;" alt="{\displaystyle C_{c}^{k}(U)}"></span> is the set of all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29afe85921d11dce3f30d935c1d7dc1d9ba6e0cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.598ex; height:3.176ex;" alt="{\displaystyle f\in C^{k}(U)}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> has compact <a href="#support_of_a_function">support</a>.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7debf9e12995a3b3061090f012ade1cff8570c17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.478ex; height:3.009ex;" alt="{\displaystyle C_{c}^{k}(U)}"></span> is equal to the union of all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9fe0dd2512b5d08340b89e2ed6c2349a10098bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.762ex; height:3.176ex;" alt="{\displaystyle C^{k}(K)}"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subseteq U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subseteq U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03e72a341c3ea869b7cd9a149f349b972a854a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.947ex; height:2.343ex;" alt="{\displaystyle K\subseteq U}"></span> ranges over all compact subsets of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a305ef479ab152035f334467a2c314baa23eb36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.429ex; height:2.176ex;" alt="{\displaystyle U.}"></span></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is a real-valued function on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is an element of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7debf9e12995a3b3061090f012ade1cff8570c17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.478ex; height:3.009ex;" alt="{\displaystyle C_{c}^{k}(U)}"></span> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/167fdb0cfb5644c4623b5842e1a9141acd83b534" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.887ex; height:2.676ex;" alt="{\displaystyle C^{k}}"></span> <a href="/wiki/Bump_function" title="Bump function">bump function</a>. Every real-valued test function on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> is also a complex-valued test function on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a305ef479ab152035f334467a2c314baa23eb36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.429ex; height:2.176ex;" alt="{\displaystyle U.}"></span></li></ul></li></ol></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Bump.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Bump.png/350px-Bump.png" decoding="async" width="350" height="177" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Bump.png/525px-Bump.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Bump.png/700px-Bump.png 2x" data-file-width="2560" data-file-height="1292" /></a><figcaption>The graph of the <a href="/wiki/Bump_function" title="Bump function">bump function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)\in \mathbb {R} ^{2}\mapsto \Psi (r),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)\in \mathbb {R} ^{2}\mapsto \Psi (r),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27745554db8c3aa1debb1d9948aa75c462524559" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.828ex; height:3.176ex;" alt="{\displaystyle (x,y)\in \mathbb {R} ^{2}\mapsto \Psi (r),}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=\left(x^{2}+y^{2}\right)^{\frac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=\left(x^{2}+y^{2}\right)^{\frac {1}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a818bc6800e330f42dc71505400802bbd6488777" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.452ex; height:4.509ex;" alt="{\displaystyle r=\left(x^{2}+y^{2}\right)^{\frac {1}{2}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi (r)=e^{-{\frac {1}{1-r^{2}}}}\cdot \mathbf {1} _{\{|r|&lt;1\}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&lt;</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi (r)=e^{-{\frac {1}{1-r^{2}}}}\cdot \mathbf {1} _{\{|r|&lt;1\}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/682a38cd566c016bbf39eea850a4a05b3999fd4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:23.599ex; height:4.843ex;" alt="{\displaystyle \Psi (r)=e^{-{\frac {1}{1-r^{2}}}}\cdot \mathbf {1} _{\{|r|&lt;1\}}.}"></span> This function is a test function on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span> and is an element of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }\left(\mathbb {R} ^{2}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow> <mo>(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }\left(\mathbb {R} ^{2}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0efc9a62f2507751df8811d83bea4151d32ef48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.956ex; height:3.343ex;" alt="{\displaystyle C_{c}^{\infty }\left(\mathbb {R} ^{2}\right).}"></span> The <a href="#support_of_a_function">support</a> of this function is the closed <a href="/wiki/Unit_disk" title="Unit disk">unit disk</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/066b155c535a38739cc0c4b288324cbb7a4a227a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.379ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}.}"></span> It is non-zero on the open unit disk and it is equal to <span class="texhtml">0</span> everywhere outside of it.</figcaption></figure> <p>For all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j,k\in \{0,1,2,\ldots ,\infty \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <mo>,</mo> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j,k\in \{0,1,2,\ldots ,\infty \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce31e1dde6530f86d72d5c45e57686c9bca18227" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.027ex; width:21.453ex; height:2.843ex;" alt="{\displaystyle j,k\in \{0,1,2,\ldots ,\infty \}}"></span> and any compact subsets <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span>, we have: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}C^{k}(K)&amp;\subseteq C_{c}^{k}(U)\subseteq C^{k}(U)\\C^{k}(K)&amp;\subseteq C^{k}(L)&amp;&amp;{\text{if }}K\subseteq L\\C^{k}(K)&amp;\subseteq C^{j}(K)&amp;&amp;{\text{if }}j\leq k\\C_{c}^{k}(U)&amp;\subseteq C_{c}^{j}(U)&amp;&amp;{\text{if }}j\leq k\\C^{k}(U)&amp;\subseteq C^{j}(U)&amp;&amp;{\text{if }}j\leq k\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x2286;<!-- ⊆ --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>L</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>j</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x2286;<!-- ⊆ --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>j</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>j</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}C^{k}(K)&amp;\subseteq C_{c}^{k}(U)\subseteq C^{k}(U)\\C^{k}(K)&amp;\subseteq C^{k}(L)&amp;&amp;{\text{if }}K\subseteq L\\C^{k}(K)&amp;\subseteq C^{j}(K)&amp;&amp;{\text{if }}j\leq k\\C_{c}^{k}(U)&amp;\subseteq C_{c}^{j}(U)&amp;&amp;{\text{if }}j\leq k\\C^{k}(U)&amp;\subseteq C^{j}(U)&amp;&amp;{\text{if }}j\leq k\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2356cdbb2dc3a19dc28d802b09c9770c0eeb06ec" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.838ex; width:39.999ex; height:16.843ex;" alt="{\displaystyle {\begin{aligned}C^{k}(K)&amp;\subseteq C_{c}^{k}(U)\subseteq C^{k}(U)\\C^{k}(K)&amp;\subseteq C^{k}(L)&amp;&amp;{\text{if }}K\subseteq L\\C^{k}(K)&amp;\subseteq C^{j}(K)&amp;&amp;{\text{if }}j\leq k\\C_{c}^{k}(U)&amp;\subseteq C_{c}^{j}(U)&amp;&amp;{\text{if }}j\leq k\\C^{k}(U)&amp;\subseteq C^{j}(U)&amp;&amp;{\text{if }}j\leq k\\\end{aligned}}}"></span> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent" style="padding-left: 1.5em;"><b>Definition</b>: Elements of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> are called <b><em>test functions</em></b> on <span class="texhtml mvar" style="font-style:italic;">U</span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> is called the <b><em>space of test functions</em></b> on <span class="texhtml mvar" style="font-style:italic;">U</span>. We will use both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e72f5fe5656e7492d45267d817eb4d996dbe8f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.384ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(U)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> to denote this space.</div> <p>Distributions on <span class="texhtml mvar" style="font-style:italic;">U</span> are <a href="/wiki/Continuous_linear_functional" class="mw-redirect" title="Continuous linear functional">continuous linear functionals</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> when this vector space is endowed with a particular topology called the <b><em>canonical LF-topology</em></b>. The following proposition states two necessary and sufficient conditions for the continuity of a linear function on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> that are often straightforward to verify. </p><p><b>Proposition</b>: A <a href="/wiki/Linear_form" title="Linear form">linear functional</a> <span class="texhtml mvar" style="font-style:italic;">T</span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> is continuous, and therefore a <b><em>distribution</em></b>, if and only if any of the following equivalent conditions is satisfied: </p> <ol><li>For every compact subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subseteq U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subseteq U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03e72a341c3ea869b7cd9a149f349b972a854a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.947ex; height:2.343ex;" alt="{\displaystyle K\subseteq U}"></span> there exist constants <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c84d4126c6df243734f9355927c026df6b0d3859" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.027ex; height:2.176ex;" alt="{\displaystyle C&gt;0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b985ba501f78cb9890f3ecda3e2e315cbd5cb26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.582ex; height:2.176ex;" alt="{\displaystyle N\in \mathbb {N} }"></span> (dependent on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>) such that for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c8a9daa4a9b59dc5a913672797e80ddbfc5c642" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.384ex; height:2.843ex;" alt="{\displaystyle f\in C_{c}^{\infty }(U)}"></span> with <a href="#support_of_a_function">support</a> contained in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>,<sup id="cite_ref-FOOTNOTETrèves2006222–223_1-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006222–223-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |T(f)|\leq C\sup\{|\partial ^{\alpha }f(x)|:x\in U,|\alpha |\leq N\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>T</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>C</mi> <mo movablelimits="true" form="prefix">sup</mo> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>:</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>U</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>N</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |T(f)|\leq C\sup\{|\partial ^{\alpha }f(x)|:x\in U,|\alpha |\leq N\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/243ed31846f7d0c48aa604e45610ef3e45fe4b46" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.949ex; height:2.843ex;" alt="{\displaystyle |T(f)|\leq C\sup\{|\partial ^{\alpha }f(x)|:x\in U,|\alpha |\leq N\}.}"></span></li> <li>For every compact subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subseteq U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subseteq U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03e72a341c3ea869b7cd9a149f349b972a854a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.947ex; height:2.343ex;" alt="{\displaystyle K\subseteq U}"></span> and every sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{f_{i}\}_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{f_{i}\}_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/207eb1a2c812e85436d2dd5c38649a5477894d7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.164ex; height:3.009ex;" alt="{\displaystyle \{f_{i}\}_{i=1}^{\infty }}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> whose supports are contained in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\partial ^{\alpha }f_{i}\}_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\partial ^{\alpha }f_{i}\}_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34ed70d69c6f93c259b1b8dbdfa9469f4da639d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.791ex; height:3.009ex;" alt="{\displaystyle \{\partial ^{\alpha }f_{i}\}_{i=1}^{\infty }}"></span> converges uniformly to zero on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> for every <a href="/wiki/Multi-index" class="mw-redirect" title="Multi-index">multi-index</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(f_{i})\to 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(f_{i})\to 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da6b48c4309556b9c083dade085057e28430cc77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.808ex; height:2.843ex;" alt="{\displaystyle T(f_{i})\to 0.}"></span></li></ol> <div class="mw-heading mw-heading3"><h3 id="Topology_on_Ck(U)"><span id="Topology_on_Ck.28U.29"></span>Topology on <i>C</i><sup><i>k</i></sup>(<i>U</i>)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=4" title="Edit section: Topology on Ck(U)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>We now introduce the <a href="/wiki/Seminorm" title="Seminorm">seminorms</a> that will define the topology on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5543c6ec214913fbde2803cebef471b72764d44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.125ex; height:3.176ex;" alt="{\displaystyle C^{k}(U).}"></span> Different authors sometimes use different families of seminorms so we list the most common families below. However, the resulting topology is the same no matter which family is used. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent" style="padding-left: 1.5em;">Suppose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\in \{0,1,2,\ldots ,\infty \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\in \{0,1,2,\ldots ,\infty \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9cd1b7e42920db2dd0ec291afa1e2a7cf710e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.434ex; height:2.843ex;" alt="{\displaystyle k\in \{0,1,2,\ldots ,\infty \}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> is an arbitrary compact subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a305ef479ab152035f334467a2c314baa23eb36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.429ex; height:2.176ex;" alt="{\displaystyle U.}"></span> Suppose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> is an integer such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq i\leq k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq i\leq k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53ae260b8f6e15dad1e5baa75c90bb4ded573924" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.373ex; height:2.343ex;" alt="{\displaystyle 0\leq i\leq k}"></span><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>note 1<span class="cite-bracket">&#93;</span></a></sup> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> is a multi-index with length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |p|\leq k.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |p|\leq k.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f61d36943eb20e1372a74f764a55eb127bcfa94a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.42ex; height:2.843ex;" alt="{\displaystyle |p|\leq k.}"></span> For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\neq \varnothing }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi class="MJX-variant">&#x2205;<!-- ∅ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\neq \varnothing }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcc437e34c01ada736334ffa43df98c0bcc3872c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.973ex; height:2.676ex;" alt="{\displaystyle K\neq \varnothing }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C^{k}(U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C^{k}(U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b940fb1d0711f9d3e652666f7b347c0365e3c47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.244ex; height:3.176ex;" alt="{\displaystyle f\in C^{k}(U),}"></span> define: <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{4}{\text{ (1) }}\ &amp;s_{p,K}(f)&amp;&amp;:=\sup _{x_{0}\in K}\left|\partial ^{p}f(x_{0})\right|\\[4pt]{\text{ (2) }}\ &amp;q_{i,K}(f)&amp;&amp;:=\sup _{|p|\leq i}\left(\sup _{x_{0}\in K}\left|\partial ^{p}f(x_{0})\right|\right)=\sup _{|p|\leq i}\left(s_{p,K}(f)\right)\\[4pt]{\text{ (3) }}\ &amp;r_{i,K}(f)&amp;&amp;:=\sup _{\stackrel {|p|\leq i}{x_{0}\in K}}\left|\partial ^{p}f(x_{0})\right|\\[4pt]{\text{ (4) }}\ &amp;t_{i,K}(f)&amp;&amp;:=\sup _{x_{0}\in K}\left(\sum _{|p|\leq i}\left|\partial ^{p}f(x_{0})\right|\right)\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.3em" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;(1)&#xA0;</mtext> </mrow> <mtext>&#xA0;</mtext> </mtd> <mtd> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>,</mo> <mi>K</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mo>:=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>K</mi> </mrow> </munder> <mrow> <mo>|</mo> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;(2)&#xA0;</mtext> </mrow> <mtext>&#xA0;</mtext> </mtd> <mtd> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>K</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mo>:=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>K</mi> </mrow> </munder> <mrow> <mo>|</mo> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>,</mo> <mi>K</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;(3)&#xA0;</mtext> </mrow> <mtext>&#xA0;</mtext> </mtd> <mtd> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>K</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mo>:=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>K</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> </mrow> </mover> </mrow> </mrow> </munder> <mrow> <mo>|</mo> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;(4)&#xA0;</mtext> </mrow> <mtext>&#xA0;</mtext> </mtd> <mtd> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>K</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mo>:=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>K</mi> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> </mrow> </munder> <mrow> <mo>|</mo> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{4}{\text{ (1) }}\ &amp;s_{p,K}(f)&amp;&amp;:=\sup _{x_{0}\in K}\left|\partial ^{p}f(x_{0})\right|\\[4pt]{\text{ (2) }}\ &amp;q_{i,K}(f)&amp;&amp;:=\sup _{|p|\leq i}\left(\sup _{x_{0}\in K}\left|\partial ^{p}f(x_{0})\right|\right)=\sup _{|p|\leq i}\left(s_{p,K}(f)\right)\\[4pt]{\text{ (3) }}\ &amp;r_{i,K}(f)&amp;&amp;:=\sup _{\stackrel {|p|\leq i}{x_{0}\in K}}\left|\partial ^{p}f(x_{0})\right|\\[4pt]{\text{ (4) }}\ &amp;t_{i,K}(f)&amp;&amp;:=\sup _{x_{0}\in K}\left(\sum _{|p|\leq i}\left|\partial ^{p}f(x_{0})\right|\right)\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16800aaa9841403fb8f037301ad153ada7b671cd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -14.838ex; width:53.944ex; height:30.843ex;" alt="{\displaystyle {\begin{alignedat}{4}{\text{ (1) }}\ &amp;s_{p,K}(f)&amp;&amp;:=\sup _{x_{0}\in K}\left|\partial ^{p}f(x_{0})\right|\\[4pt]{\text{ (2) }}\ &amp;q_{i,K}(f)&amp;&amp;:=\sup _{|p|\leq i}\left(\sup _{x_{0}\in K}\left|\partial ^{p}f(x_{0})\right|\right)=\sup _{|p|\leq i}\left(s_{p,K}(f)\right)\\[4pt]{\text{ (3) }}\ &amp;r_{i,K}(f)&amp;&amp;:=\sup _{\stackrel {|p|\leq i}{x_{0}\in K}}\left|\partial ^{p}f(x_{0})\right|\\[4pt]{\text{ (4) }}\ &amp;t_{i,K}(f)&amp;&amp;:=\sup _{x_{0}\in K}\left(\sum _{|p|\leq i}\left|\partial ^{p}f(x_{0})\right|\right)\end{alignedat}}}"></span> </p> while for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=\varnothing ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mi class="MJX-variant">&#x2205;<!-- ∅ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=\varnothing ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95b1966be6a41752ad0b22ff43c731ea7fbdf1dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.619ex; height:2.509ex;" alt="{\displaystyle K=\varnothing ,}"></span> define all the functions above to be the constant <span class="texhtml">0</span> map.</div> <p>All of the functions above are non-negative <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>-valued<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>note 2<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Seminorm" title="Seminorm">seminorms</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5543c6ec214913fbde2803cebef471b72764d44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.125ex; height:3.176ex;" alt="{\displaystyle C^{k}(U).}"></span> As explained in <a href="/wiki/Locally_convex_topological_vector_space#Definition_via_seminorms" title="Locally convex topological vector space">this article</a>, every set of seminorms on a vector space induces a <a href="/wiki/Locally_convex_topological_vector_space" title="Locally convex topological vector space">locally convex</a> <a href="/wiki/Topological_vector_space" title="Topological vector space">vector topology</a>. </p><p>Each of the following sets of seminorms <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{4}A~:=\quad &amp;\{q_{i,K}&amp;&amp;:\;K{\text{ compact and }}\;&amp;&amp;i\in \mathbb {N} {\text{ satisfies }}\;&amp;&amp;0\leq i\leq k\}\\B~:=\quad &amp;\{r_{i,K}&amp;&amp;:\;K{\text{ compact and }}\;&amp;&amp;i\in \mathbb {N} {\text{ satisfies }}\;&amp;&amp;0\leq i\leq k\}\\C~:=\quad &amp;\{t_{i,K}&amp;&amp;:\;K{\text{ compact and }}\;&amp;&amp;i\in \mathbb {N} {\text{ satisfies }}\;&amp;&amp;0\leq i\leq k\}\\D~:=\quad &amp;\{s_{p,K}&amp;&amp;:\;K{\text{ compact and }}\;&amp;&amp;p\in \mathbb {N} ^{n}{\text{ satisfies }}\;&amp;&amp;|p|\leq k\}\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mi>A</mi> <mtext>&#xA0;</mtext> <mo>:=</mo> <mspace width="1em" /> </mtd> <mtd> <mi></mi> <mo fence="false" stretchy="false">{</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>K</mi> </mrow> </msub> </mtd> <mtd /> <mtd> <mi></mi> <mo>:</mo> <mspace width="thickmathspace" /> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;compact and&#xA0;</mtext> </mrow> <mspace width="thickmathspace" /> </mtd> <mtd /> <mtd> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;satisfies&#xA0;</mtext> </mrow> <mspace width="thickmathspace" /> </mtd> <mtd /> <mtd> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mo fence="false" stretchy="false">}</mo> </mtd> </mtr> <mtr> <mtd> <mi>B</mi> <mtext>&#xA0;</mtext> <mo>:=</mo> <mspace width="1em" /> </mtd> <mtd> <mi></mi> <mo fence="false" stretchy="false">{</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>K</mi> </mrow> </msub> </mtd> <mtd /> <mtd> <mi></mi> <mo>:</mo> <mspace width="thickmathspace" /> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;compact and&#xA0;</mtext> </mrow> <mspace width="thickmathspace" /> </mtd> <mtd /> <mtd> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;satisfies&#xA0;</mtext> </mrow> <mspace width="thickmathspace" /> </mtd> <mtd /> <mtd> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mo fence="false" stretchy="false">}</mo> </mtd> </mtr> <mtr> <mtd> <mi>C</mi> <mtext>&#xA0;</mtext> <mo>:=</mo> <mspace width="1em" /> </mtd> <mtd> <mi></mi> <mo fence="false" stretchy="false">{</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>K</mi> </mrow> </msub> </mtd> <mtd /> <mtd> <mi></mi> <mo>:</mo> <mspace width="thickmathspace" /> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;compact and&#xA0;</mtext> </mrow> <mspace width="thickmathspace" /> </mtd> <mtd /> <mtd> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;satisfies&#xA0;</mtext> </mrow> <mspace width="thickmathspace" /> </mtd> <mtd /> <mtd> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mo fence="false" stretchy="false">}</mo> </mtd> </mtr> <mtr> <mtd> <mi>D</mi> <mtext>&#xA0;</mtext> <mo>:=</mo> <mspace width="1em" /> </mtd> <mtd> <mi></mi> <mo fence="false" stretchy="false">{</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>,</mo> <mi>K</mi> </mrow> </msub> </mtd> <mtd /> <mtd> <mi></mi> <mo>:</mo> <mspace width="thickmathspace" /> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;compact and&#xA0;</mtext> </mrow> <mspace width="thickmathspace" /> </mtd> <mtd /> <mtd> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;satisfies&#xA0;</mtext> </mrow> <mspace width="thickmathspace" /> </mtd> <mtd /> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mo fence="false" stretchy="false">}</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{4}A~:=\quad &amp;\{q_{i,K}&amp;&amp;:\;K{\text{ compact and }}\;&amp;&amp;i\in \mathbb {N} {\text{ satisfies }}\;&amp;&amp;0\leq i\leq k\}\\B~:=\quad &amp;\{r_{i,K}&amp;&amp;:\;K{\text{ compact and }}\;&amp;&amp;i\in \mathbb {N} {\text{ satisfies }}\;&amp;&amp;0\leq i\leq k\}\\C~:=\quad &amp;\{t_{i,K}&amp;&amp;:\;K{\text{ compact and }}\;&amp;&amp;i\in \mathbb {N} {\text{ satisfies }}\;&amp;&amp;0\leq i\leq k\}\\D~:=\quad &amp;\{s_{p,K}&amp;&amp;:\;K{\text{ compact and }}\;&amp;&amp;p\in \mathbb {N} ^{n}{\text{ satisfies }}\;&amp;&amp;|p|\leq k\}\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/481641c96eb811fec25881cc75d32c941e9b61e9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:60.317ex; height:12.843ex;" alt="{\displaystyle {\begin{alignedat}{4}A~:=\quad &amp;\{q_{i,K}&amp;&amp;:\;K{\text{ compact and }}\;&amp;&amp;i\in \mathbb {N} {\text{ satisfies }}\;&amp;&amp;0\leq i\leq k\}\\B~:=\quad &amp;\{r_{i,K}&amp;&amp;:\;K{\text{ compact and }}\;&amp;&amp;i\in \mathbb {N} {\text{ satisfies }}\;&amp;&amp;0\leq i\leq k\}\\C~:=\quad &amp;\{t_{i,K}&amp;&amp;:\;K{\text{ compact and }}\;&amp;&amp;i\in \mathbb {N} {\text{ satisfies }}\;&amp;&amp;0\leq i\leq k\}\\D~:=\quad &amp;\{s_{p,K}&amp;&amp;:\;K{\text{ compact and }}\;&amp;&amp;p\in \mathbb {N} ^{n}{\text{ satisfies }}\;&amp;&amp;|p|\leq k\}\end{alignedat}}}"></span> generate the same <a href="/wiki/Locally_convex_topological_vector_space" title="Locally convex topological vector space">locally convex</a> <a href="/wiki/Topological_vector_space" title="Topological vector space">vector topology</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/073d4c8080827cd63cadcb5f0521b856f702b4e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.478ex; height:3.176ex;" alt="{\displaystyle C^{k}(U)}"></span> (so for example, the topology generated by the seminorms in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> is equal to the topology generated by those in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span>). </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent" style="padding-left: 1.5em;">The vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/073d4c8080827cd63cadcb5f0521b856f702b4e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.478ex; height:3.176ex;" alt="{\displaystyle C^{k}(U)}"></span> is endowed with the <a href="/wiki/Locally_convex_topological_vector_space" title="Locally convex topological vector space">locally convex</a> topology induced by any one of the four families <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B,C,D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo>,</mo> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B,C,D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/684d01c09b12e5a28987c6127567daef29ee3b44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.3ex; height:2.509ex;" alt="{\displaystyle A,B,C,D}"></span> of seminorms described above. This topology is also equal to the vector topology induced by <em>all</em> of the seminorms in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cup B\cup C\cup D.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>B</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>C</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>D</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cup B\cup C\cup D.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d19cc77ed955fee92a270ac0d88edbb255f80a5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.592ex; height:2.176ex;" alt="{\displaystyle A\cup B\cup C\cup D.}"></span></div> <p>With this topology, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/073d4c8080827cd63cadcb5f0521b856f702b4e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.478ex; height:3.176ex;" alt="{\displaystyle C^{k}(U)}"></span> becomes a locally convex <a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet space</a> that is <em>not</em> <a href="/wiki/Normable_space" class="mw-redirect" title="Normable space">normable</a>. Every element of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cup B\cup C\cup D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>B</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>C</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cup B\cup C\cup D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c952ef87d3c86d8ad8a14dd8c63af27a211ad654" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:14.945ex; height:2.176ex;" alt="{\displaystyle A\cup B\cup C\cup D}"></span> is a continuous seminorm on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5543c6ec214913fbde2803cebef471b72764d44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.125ex; height:3.176ex;" alt="{\displaystyle C^{k}(U).}"></span> Under this topology, a <a href="/wiki/Net_(mathematics)" title="Net (mathematics)">net</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f_{i})_{i\in I}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f_{i})_{i\in I}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f3dd9718b5e3460904d390a0d092237aec266ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.473ex; height:2.843ex;" alt="{\displaystyle (f_{i})_{i\in I}}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/073d4c8080827cd63cadcb5f0521b856f702b4e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.478ex; height:3.176ex;" alt="{\displaystyle C^{k}(U)}"></span> converges to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29afe85921d11dce3f30d935c1d7dc1d9ba6e0cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.598ex; height:3.176ex;" alt="{\displaystyle f\in C^{k}(U)}"></span> if and only if for every multi-index <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |p|&lt;k+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&lt;</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |p|&lt;k+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc7c1c2d98a9abc2e48e776047e216341bb931e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.776ex; height:2.843ex;" alt="{\displaystyle |p|&lt;k+1}"></span> and every compact <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fea4b5006afa0eb81c21b577efe304ab545d571" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.713ex; height:2.509ex;" alt="{\displaystyle K,}"></span> the net of partial derivatives <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\partial ^{p}f_{i}\right)_{i\in I}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>(</mo> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\partial ^{p}f_{i}\right)_{i\in I}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9cf56101fc6dfba92acd4b737ee240e695ed13d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.875ex; height:3.009ex;" alt="{\displaystyle \left(\partial ^{p}f_{i}\right)_{i\in I}}"></span> <a href="/wiki/Uniform_convergence" title="Uniform convergence">converges uniformly</a> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial ^{p}f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial ^{p}f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1401a66ae93b3d362de4841670199b51328f48b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.681ex; height:2.676ex;" alt="{\displaystyle \partial ^{p}f}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bb0e178e42abf16ef4e4c0b0f22aa235ad6e6e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.713ex; height:2.176ex;" alt="{\displaystyle K.}"></span><sup id="cite_ref-FOOTNOTETrèves200685–89_5-0" class="reference"><a href="#cite_note-FOOTNOTETrèves200685–89-5"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> For any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\in \{0,1,2,\ldots ,\infty \},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\in \{0,1,2,\ldots ,\infty \},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4706672fe8be21cfc62142c20f671131a451c0d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.081ex; height:2.843ex;" alt="{\displaystyle k\in \{0,1,2,\ldots ,\infty \},}"></span> any <a href="/wiki/Bounded_set_(topological_vector_space)" title="Bounded set (topological vector space)">(von Neumann) bounded subset</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k+1}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k+1}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04ba542963b7fd8388180228c179ccc89768e565" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.579ex; height:3.176ex;" alt="{\displaystyle C^{k+1}(U)}"></span> is a <a href="/wiki/Relatively_compact" class="mw-redirect" title="Relatively compact">relatively compact</a> subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5543c6ec214913fbde2803cebef471b72764d44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.125ex; height:3.176ex;" alt="{\displaystyle C^{k}(U).}"></span><sup id="cite_ref-FOOTNOTETrèves2006142–149_6-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006142–149-6"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> In particular, a subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4551e29a7341d79592ff93adc25a23fb2744b0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(U)}"></span> is bounded if and only if it is bounded in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{i}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{i}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4d02c21bae944d43680757ccd88e0ab4615d993" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.189ex; height:3.176ex;" alt="{\displaystyle C^{i}(U)}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\in \mathbb {N} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\in \mathbb {N} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbd85387f5ee7c9efbaced07edbe9feb9af82d50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.968ex; height:2.176ex;" alt="{\displaystyle i\in \mathbb {N} .}"></span><sup id="cite_ref-FOOTNOTETrèves2006142–149_6-1" class="reference"><a href="#cite_note-FOOTNOTETrèves2006142–149-6"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> The space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/073d4c8080827cd63cadcb5f0521b856f702b4e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.478ex; height:3.176ex;" alt="{\displaystyle C^{k}(U)}"></span> is a <a href="/wiki/Montel_space" title="Montel space">Montel space</a> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=\infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=\infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17f0332d9b223887ab07b7e5dfd61d78e63a24ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.28ex; height:2.176ex;" alt="{\displaystyle k=\infty .}"></span><sup id="cite_ref-FOOTNOTETrèves2006356–358_7-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006356–358-7"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>A subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4551e29a7341d79592ff93adc25a23fb2744b0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(U)}"></span> is open in this topology if and only if there exists <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e64c8c5906eb3eb9d7a8b1ed1e31de4e5fc6c632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.321ex; height:2.176ex;" alt="{\displaystyle i\in \mathbb {N} }"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span> is open when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4551e29a7341d79592ff93adc25a23fb2744b0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(U)}"></span> is endowed with the <a href="/wiki/Subspace_topology" title="Subspace topology">subspace topology</a> induced on it by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{i}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{i}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/530e33c85ecbbd023fadc3dd82e774d8c93ce1f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.836ex; height:3.176ex;" alt="{\displaystyle C^{i}(U).}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Topology_on_Ck(K)"><span id="Topology_on_Ck.28K.29"></span>Topology on <i>C</i><sup><i>k</i></sup>(<i>K</i>)</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=5" title="Edit section: Topology on Ck(K)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As before, fix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\in \{0,1,2,\ldots ,\infty \}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\in \{0,1,2,\ldots ,\infty \}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8975254866407c9aa9b4b2d0c921a79569df46d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.081ex; height:2.843ex;" alt="{\displaystyle k\in \{0,1,2,\ldots ,\infty \}.}"></span> Recall that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> is any compact subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K)\subseteq C^{k}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K)\subseteq C^{k}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05ce6c93763f1873a3ab64569ed2881d55e3912c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.985ex; height:3.176ex;" alt="{\displaystyle C^{k}(K)\subseteq C^{k}(U).}"></span> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent" style="padding-left: 1.5em;"><b>Assumption</b>: For any compact subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subseteq U,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>U</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subseteq U,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acad9323d553e656a5bed25a8c851bad4851eb47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.594ex; height:2.509ex;" alt="{\displaystyle K\subseteq U,}"></span> we will henceforth assume that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9fe0dd2512b5d08340b89e2ed6c2349a10098bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.762ex; height:3.176ex;" alt="{\displaystyle C^{k}(K)}"></span> is endowed with the <a href="/wiki/Subspace_topology" title="Subspace topology">subspace topology</a> it inherits from the <a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5543c6ec214913fbde2803cebef471b72764d44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.125ex; height:3.176ex;" alt="{\displaystyle C^{k}(U).}"></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> is finite then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9fe0dd2512b5d08340b89e2ed6c2349a10098bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.762ex; height:3.176ex;" alt="{\displaystyle C^{k}(K)}"></span> is a <a href="/wiki/Banach_space" title="Banach space">Banach space</a><sup id="cite_ref-FOOTNOTETrèves2006131–134_8-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006131–134-8"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> with a topology that can be defined by the <a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norm</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{K}(f):=\sup _{|p|&lt;k}\left(\sup _{x_{0}\in K}\left|\partial ^{p}f(x_{0})\right|\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&lt;</mo> <mi>k</mi> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>K</mi> </mrow> </munder> <mrow> <mo>|</mo> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{K}(f):=\sup _{|p|&lt;k}\left(\sup _{x_{0}\in K}\left|\partial ^{p}f(x_{0})\right|\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e38bb42d36083b075df7953aa17b7ac7989e6405" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:32.438ex; height:7.509ex;" alt="{\displaystyle r_{K}(f):=\sup _{|p|&lt;k}\left(\sup _{x_{0}\in K}\left|\partial ^{p}f(x_{0})\right|\right).}"></span> And when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=2,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=2,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c62da2ce9248eaf6420c0b7b830669decbf88360" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.119ex; height:2.509ex;" alt="{\displaystyle k=2,}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9fe0dd2512b5d08340b89e2ed6c2349a10098bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.762ex; height:3.176ex;" alt="{\displaystyle C^{k}(K)}"></span> is even a <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a>.<sup id="cite_ref-FOOTNOTETrèves2006131–134_8-1" class="reference"><a href="#cite_note-FOOTNOTETrèves2006131–134-8"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Trivial_extensions_and_independence_of_Ck(K)'s_topology_from_U"><span id="Trivial_extensions_and_independence_of_Ck.28K.29.27s_topology_from_U"></span>Trivial extensions and independence of <i>C</i><sup><i>k</i></sup>(<i>K</i>)'s topology from <i>U</i></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=6" title="Edit section: Trivial extensions and independence of Ck(K)&#039;s topology from U"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="Omitting_the_open_set_from_notation"></span> </p><p>Suppose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> is an open subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subseteq U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subseteq U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03e72a341c3ea869b7cd9a149f349b972a854a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.947ex; height:2.343ex;" alt="{\displaystyle K\subseteq U}"></span> is a compact subset. By definition, elements of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9fe0dd2512b5d08340b89e2ed6c2349a10098bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.762ex; height:3.176ex;" alt="{\displaystyle C^{k}(K)}"></span> are functions with domain <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> (in symbols, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K)\subseteq C^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K)\subseteq C^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da38dd593551c7c4de73f55d213f778b90e94567" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.339ex; height:3.176ex;" alt="{\displaystyle C^{k}(K)\subseteq C^{k}(U)}"></span>), so the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9fe0dd2512b5d08340b89e2ed6c2349a10098bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.762ex; height:3.176ex;" alt="{\displaystyle C^{k}(K)}"></span> and its topology depend on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e6cb664175067eedff7aed897cc764fb937f537" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.429ex; height:2.509ex;" alt="{\displaystyle U;}"></span> to make this dependence on the open set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> clear, temporarily denote <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9fe0dd2512b5d08340b89e2ed6c2349a10098bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.762ex; height:3.176ex;" alt="{\displaystyle C^{k}(K)}"></span> by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1309841ff10cbdbeb85fe735f826ddf5a4822a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.225ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;U).}"></span> Importantly, changing the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> to a different open subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecaad8b1d7c1c60a880b7221d6bb70337b83b5aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.526ex; height:2.509ex;" alt="{\displaystyle U&#039;}"></span> (with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subseteq U'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mi>U</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subseteq U'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6c8b6def27bee61d9dd47931190c809763739ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.69ex; height:2.676ex;" alt="{\displaystyle K\subseteq U&#039;}"></span>) will change the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9fe0dd2512b5d08340b89e2ed6c2349a10098bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.762ex; height:3.176ex;" alt="{\displaystyle C^{k}(K)}"></span> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fa9cf456e8f257acdfe71cfb721cb6b3804989b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.578ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;U)}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;U'),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <msup> <mi>U</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;U'),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fa2478238d7e078817b8d0f70ae414484db4aba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.968ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;U&#039;),}"></span><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>note 3<span class="cite-bracket">&#93;</span></a></sup> so that elements of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9fe0dd2512b5d08340b89e2ed6c2349a10098bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.762ex; height:3.176ex;" alt="{\displaystyle C^{k}(K)}"></span> will be functions with domain <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecaad8b1d7c1c60a880b7221d6bb70337b83b5aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.526ex; height:2.509ex;" alt="{\displaystyle U&#039;}"></span> instead of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a305ef479ab152035f334467a2c314baa23eb36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.429ex; height:2.176ex;" alt="{\displaystyle U.}"></span> Despite <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9fe0dd2512b5d08340b89e2ed6c2349a10098bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.762ex; height:3.176ex;" alt="{\displaystyle C^{k}(K)}"></span> depending on the open set (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U{\text{ or }}U'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;or&#xA0;</mtext> </mrow> <msup> <mi>U</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U{\text{ or }}U'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16f7444effb4d80ae832d5e0dd60c2d4fbe95aba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.544ex; height:2.509ex;" alt="{\displaystyle U{\text{ or }}U&#039;}"></span>), the standard notation for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9fe0dd2512b5d08340b89e2ed6c2349a10098bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.762ex; height:3.176ex;" alt="{\displaystyle C^{k}(K)}"></span> makes no mention of it. This is justified because, as this subsection will now explain, the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fa9cf456e8f257acdfe71cfb721cb6b3804989b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.578ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;U)}"></span> is canonically identified as a subspace of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;U')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <msup> <mi>U</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;U')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44763280da389a8617241c1d0449c07f9526dc77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.322ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;U&#039;)}"></span> (both algebraically and topologically). </p><p>It is enough to explain how to canonically identify <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fa9cf456e8f257acdfe71cfb721cb6b3804989b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.578ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;U)}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;U')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <msup> <mi>U</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;U')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44763280da389a8617241c1d0449c07f9526dc77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.322ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;U&#039;)}"></span> when one of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecaad8b1d7c1c60a880b7221d6bb70337b83b5aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.526ex; height:2.509ex;" alt="{\displaystyle U&#039;}"></span> is a subset of the other. The reason is that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span> are arbitrary open subsets of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> containing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> then the open set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U:=V\cap W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>:=</mo> <mi>V</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U:=V\cap W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f962df22de28362fa6ff454179a3ab1f0e34fbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.333ex; height:2.176ex;" alt="{\displaystyle U:=V\cap W}"></span> also contains <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fea4b5006afa0eb81c21b577efe304ab545d571" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.713ex; height:2.509ex;" alt="{\displaystyle K,}"></span> so that each of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0deb469e1bd49343c2bee2fb8bd1a0be531b4e7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.583ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;V)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;W)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>W</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;W)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a7fe187a9321ca7338c24fe617a26e9916aa01e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.231ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;W)}"></span> is canonically identified with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;V\cap W)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>V</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>W</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;V\cap W)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/409d618b4cd107d4b189523c4233560d96f56292" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.601ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;V\cap W)}"></span> and now by transitivity, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0deb469e1bd49343c2bee2fb8bd1a0be531b4e7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.583ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;V)}"></span> is thus identified with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;W).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>W</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;W).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c4504dc5d8d3da83580bf5929764d4aacc87039" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.878ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;W).}"></span> So assume <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U\subseteq V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U\subseteq V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7720f1387a2e51d58daf1fb9e9b1b730430b8466" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.668ex; height:2.343ex;" alt="{\displaystyle U\subseteq V}"></span> are open subsets of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> containing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bb0e178e42abf16ef4e4c0b0f22aa235ad6e6e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.713ex; height:2.176ex;" alt="{\displaystyle K.}"></span> </p><p>Given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C_{c}^{k}(U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C_{c}^{k}(U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd6792b7b5d4fd5bc8658d444fdb57124e964ba6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.244ex; height:3.009ex;" alt="{\displaystyle f\in C_{c}^{k}(U),}"></span> its <em><b>trivial extension</b> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span></em> is the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F:V\to \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>:</mo> <mi>V</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F:V\to \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6091785b871e1978e826f4c8e45d34eee7605af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.757ex; height:2.176ex;" alt="{\displaystyle F:V\to \mathbb {C} }"></span> defined by: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x)={\begin{cases}f(x)&amp;x\in U,\\0&amp;{\text{otherwise}}.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>U</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>otherwise</mtext> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x)={\begin{cases}f(x)&amp;x\in U,\\0&amp;{\text{otherwise}}.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22dc30ed4950c4b5e57899d51623231d570b58b2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.437ex; height:6.176ex;" alt="{\displaystyle F(x)={\begin{cases}f(x)&amp;x\in U,\\0&amp;{\text{otherwise}}.\end{cases}}}"></span> This trivial extension belongs to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab545b9ccf5307a407a44501412e64aa7a73fb8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.483ex; height:3.176ex;" alt="{\displaystyle C^{k}(V)}"></span> (because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C_{c}^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C_{c}^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4f49418f9545f08544083427bdc03bdde9a5c79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.598ex; height:3.009ex;" alt="{\displaystyle f\in C_{c}^{k}(U)}"></span> has compact support) and it will be denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0bddfdca6273db376b724f34eb07874ea51c723" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.26ex; height:2.843ex;" alt="{\displaystyle I(f)}"></span> (that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(f):=F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(f):=F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7a25c1b9f82ed4aaba23f90ce150ca81b9f3195" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.746ex; height:2.843ex;" alt="{\displaystyle I(f):=F}"></span>). The assignment <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\mapsto I(f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>I</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\mapsto I(f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e5b85582a160f269dad96c3358f349fa698071f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.152ex; height:2.843ex;" alt="{\displaystyle f\mapsto I(f)}"></span> thus induces a map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I:C_{c}^{k}(U)\to C^{k}(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>:</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I:C_{c}^{k}(U)\to C^{k}(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99c05e179661e5726dd17202e6b2ad3033a07d09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.684ex; height:3.176ex;" alt="{\displaystyle I:C_{c}^{k}(U)\to C^{k}(V)}"></span> that sends a function in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7debf9e12995a3b3061090f012ade1cff8570c17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.478ex; height:3.009ex;" alt="{\displaystyle C_{c}^{k}(U)}"></span> to its trivial extension on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b2661a49b86bd1a5548e527bbfb068aa9f59978" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.434ex; height:2.176ex;" alt="{\displaystyle V.}"></span> This map is a linear <a href="/wiki/Injective_function" title="Injective function">injection</a> and for every compact subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subseteq U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subseteq U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03e72a341c3ea869b7cd9a149f349b972a854a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.947ex; height:2.343ex;" alt="{\displaystyle K\subseteq U}"></span> (where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> is also a compact subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subseteq U\subseteq V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>U</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subseteq U\subseteq V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43cfa7559cfafb25c8a482a4fa29dcef0410d715" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.833ex; height:2.343ex;" alt="{\displaystyle K\subseteq U\subseteq V}"></span>), <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{4}I\left(C^{k}(K;U)\right)&amp;~=~C^{k}(K;V)\qquad {\text{ and thus }}\\I\left(C_{c}^{k}(U)\right)&amp;~\subseteq ~C_{c}^{k}(V).\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mi>I</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and thus&#xA0;</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>I</mi> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mtext>&#xA0;</mtext> <mo>&#x2286;<!-- ⊆ --></mo> <mtext>&#xA0;</mtext> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{4}I\left(C^{k}(K;U)\right)&amp;~=~C^{k}(K;V)\qquad {\text{ and thus }}\\I\left(C_{c}^{k}(U)\right)&amp;~\subseteq ~C_{c}^{k}(V).\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58e752e8e5f33b484ec1897e21603c88b91fcd2c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:42.402ex; height:6.843ex;" alt="{\displaystyle {\begin{alignedat}{4}I\left(C^{k}(K;U)\right)&amp;~=~C^{k}(K;V)\qquad {\text{ and thus }}\\I\left(C_{c}^{k}(U)\right)&amp;~\subseteq ~C_{c}^{k}(V).\end{alignedat}}}"></span> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> is restricted to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fa9cf456e8f257acdfe71cfb721cb6b3804989b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.578ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;U)}"></span> then the following induced linear map is a <a href="/wiki/Homeomorphism" title="Homeomorphism">homeomorphism</a> (linear homeomorphisms are called <em><a href="/wiki/TVS-isomorphism" class="mw-redirect" title="TVS-isomorphism">TVS-isomorphisms</a></em>): <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{4}\,&amp;C^{k}(K;U)&amp;&amp;\to \,&amp;&amp;C^{k}(K;V)\\&amp;f&amp;&amp;\mapsto \,&amp;&amp;I(f)\\\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mspace width="thinmathspace" /> </mtd> <mtd> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi>f</mi> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mi>I</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{4}\,&amp;C^{k}(K;U)&amp;&amp;\to \,&amp;&amp;C^{k}(K;V)\\&amp;f&amp;&amp;\mapsto \,&amp;&amp;I(f)\\\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/562242f5f0060338b234d03bea0cbbd62d373734" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:23.656ex; height:6.176ex;" alt="{\displaystyle {\begin{alignedat}{4}\,&amp;C^{k}(K;U)&amp;&amp;\to \,&amp;&amp;C^{k}(K;V)\\&amp;f&amp;&amp;\mapsto \,&amp;&amp;I(f)\\\end{alignedat}}}"></span> and thus the next map is a <a href="/wiki/Topological_embedding" class="mw-redirect" title="Topological embedding">topological embedding</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{4}\,&amp;C^{k}(K;U)&amp;&amp;\to \,&amp;&amp;C^{k}(V)\\&amp;f&amp;&amp;\mapsto \,&amp;&amp;I(f).\\\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mspace width="thinmathspace" /> </mtd> <mtd> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi>f</mi> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mi>I</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{4}\,&amp;C^{k}(K;U)&amp;&amp;\to \,&amp;&amp;C^{k}(V)\\&amp;f&amp;&amp;\mapsto \,&amp;&amp;I(f).\\\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40337e7c2da968ed7e84992565fa09307fcae594" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.556ex; height:6.176ex;" alt="{\displaystyle {\begin{alignedat}{4}\,&amp;C^{k}(K;U)&amp;&amp;\to \,&amp;&amp;C^{k}(V)\\&amp;f&amp;&amp;\mapsto \,&amp;&amp;I(f).\\\end{alignedat}}}"></span> Using the injection <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I:C_{c}^{k}(U)\to C^{k}(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>:</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I:C_{c}^{k}(U)\to C^{k}(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99c05e179661e5726dd17202e6b2ad3033a07d09" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.684ex; height:3.176ex;" alt="{\displaystyle I:C_{c}^{k}(U)\to C^{k}(V)}"></span> the vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7debf9e12995a3b3061090f012ade1cff8570c17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.478ex; height:3.009ex;" alt="{\displaystyle C_{c}^{k}(U)}"></span> is canonically identified with its image in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{k}(V)\subseteq C^{k}(V).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{k}(V)\subseteq C^{k}(V).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/990870106a65ad9c08c3f0f56edbefca1750817f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.711ex; height:3.176ex;" alt="{\displaystyle C_{c}^{k}(V)\subseteq C^{k}(V).}"></span> Because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;U)\subseteq C_{c}^{k}(U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;U)\subseteq C_{c}^{k}(U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99789186d4ae4b44fdfe9c27125cd16b0125420b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.802ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;U)\subseteq C_{c}^{k}(U),}"></span> through this identification, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fa9cf456e8f257acdfe71cfb721cb6b3804989b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.578ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;U)}"></span> can also be considered as a subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(V).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(V).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cce2b937687754bdf818de06ed8da7744739209c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.13ex; height:3.176ex;" alt="{\displaystyle C^{k}(V).}"></span> Thus the topology on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fa9cf456e8f257acdfe71cfb721cb6b3804989b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.578ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;U)}"></span> is independent of the open subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> that contains <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fea4b5006afa0eb81c21b577efe304ab545d571" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.713ex; height:2.509ex;" alt="{\displaystyle K,}"></span><sup id="cite_ref-FOOTNOTERudin1991149–181_10-0" class="reference"><a href="#cite_note-FOOTNOTERudin1991149–181-10"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> which justifies the practice of writing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9fe0dd2512b5d08340b89e2ed6c2349a10098bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.762ex; height:3.176ex;" alt="{\displaystyle C^{k}(K)}"></span> instead of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1309841ff10cbdbeb85fe735f826ddf5a4822a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.225ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;U).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Canonical_LF_topology">Canonical LF topology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=7" title="Edit section: Canonical LF topology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Spaces_of_test_functions_and_distributions" title="Spaces of test functions and distributions">Spaces of test functions and distributions</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/LF-space" title="LF-space">LF-space</a> and <a href="/wiki/Topology_of_uniform_convergence" class="mw-redirect" title="Topology of uniform convergence">Topology of uniform convergence</a></div> <p>Recall that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7debf9e12995a3b3061090f012ade1cff8570c17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.478ex; height:3.009ex;" alt="{\displaystyle C_{c}^{k}(U)}"></span> denotes all functions in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/073d4c8080827cd63cadcb5f0521b856f702b4e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.478ex; height:3.176ex;" alt="{\displaystyle C^{k}(U)}"></span> that have compact <a href="#support_of_a_function">support</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59c21c569e498e0197798e3428b2bc6f25c0a457" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.429ex; height:2.509ex;" alt="{\displaystyle U,}"></span> where note that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7debf9e12995a3b3061090f012ade1cff8570c17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.478ex; height:3.009ex;" alt="{\displaystyle C_{c}^{k}(U)}"></span> is the union of all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9fe0dd2512b5d08340b89e2ed6c2349a10098bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.762ex; height:3.176ex;" alt="{\displaystyle C^{k}(K)}"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> ranges over all compact subsets of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a305ef479ab152035f334467a2c314baa23eb36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.429ex; height:2.176ex;" alt="{\displaystyle U.}"></span> Moreover, for each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k,\,C_{c}^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>,</mo> <mspace width="thinmathspace" /> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k,\,C_{c}^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f48ddd0ede08cd106dd80564f41c429e8e6bf715" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.111ex; height:3.009ex;" alt="{\displaystyle k,\,C_{c}^{k}(U)}"></span> is a dense subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5543c6ec214913fbde2803cebef471b72764d44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.125ex; height:3.176ex;" alt="{\displaystyle C^{k}(U).}"></span> The special case when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0162aaa93d21bf01a25a7387fcb24c4626118ab9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.633ex; height:2.176ex;" alt="{\displaystyle k=\infty }"></span> gives us the space of test functions. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent" style="padding-left: 1.5em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> is called the <em><b>space of test functions</b> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span></em> and it may also be denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86b89bbd40d06988c0bb0b6835645a761097f8d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.031ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(U).}"></span> Unless indicated otherwise, it is endowed with a topology called <b><em>the canonical LF topology</em></b>, whose definition is given in the article: <a href="/wiki/Spaces_of_test_functions_and_distributions" title="Spaces of test functions and distributions">Spaces of test functions and distributions</a>.</div> <p>The canonical LF-topology is <em>not</em> metrizable and importantly, it is <a href="/wiki/Comparison_of_topologies" title="Comparison of topologies"><em><b>strictly</b> finer</em></a> than the <a href="/wiki/Subspace_topology" title="Subspace topology">subspace topology</a> that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4551e29a7341d79592ff93adc25a23fb2744b0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(U)}"></span> induces on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e92e471e1d8f128f057566fd495ceaf3bbdd0f66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.912ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U).}"></span> However, the canonical LF-topology does make <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> into a <a href="/wiki/Complete_topological_vector_space" title="Complete topological vector space">complete</a> <a href="/wiki/Reflexive_space" title="Reflexive space">reflexive</a> <a href="/wiki/Nuclear_space" title="Nuclear space">nuclear</a><sup id="cite_ref-FOOTNOTETrèves2006526–534_11-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006526–534-11"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Montel_space" title="Montel space">Montel</a><sup id="cite_ref-FOOTNOTETrèves2006357_12-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006357-12"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Bornological_space" title="Bornological space">bornological</a> <a href="/wiki/Barrelled_space" title="Barrelled space">barrelled</a> <a href="/wiki/Mackey_space" title="Mackey space">Mackey space</a>; the same is true of its <a href="/wiki/Strong_dual_space" title="Strong dual space">strong dual space</a> (that is, the space of all distributions with its usual topology). The canonical <a href="/wiki/LF-space" title="LF-space">LF-topology</a> can be defined in various ways. </p> <div class="mw-heading mw-heading3"><h3 id="Distributions">Distributions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=8" title="Edit section: Distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Continuous_linear_functional" class="mw-redirect" title="Continuous linear functional">Continuous linear functional</a></div> <p>As discussed earlier, continuous <a href="/wiki/Linear_form" title="Linear form">linear functionals</a> on a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> are known as distributions on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a305ef479ab152035f334467a2c314baa23eb36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.429ex; height:2.176ex;" alt="{\displaystyle U.}"></span> Other equivalent definitions are described below. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent" style="padding-left: 1.5em;">By definition, a <em><b>distribution</b> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span></em> is a <a href="/wiki/Continuous_linear_operator" title="Continuous linear operator">continuous</a> <a href="/wiki/Linear_form" title="Linear form">linear functional</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e92e471e1d8f128f057566fd495ceaf3bbdd0f66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.912ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U).}"></span> Said differently, a distribution on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> is an element of the <a href="/wiki/Continuous_dual_space" class="mw-redirect" title="Continuous dual space">continuous dual space</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> is endowed with its canonical LF topology.</div> <p>There is a canonical <a href="/wiki/Dual_system" title="Dual system">duality pairing</a> between a distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> and a test function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C_{c}^{\infty }(U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C_{c}^{\infty }(U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/098cdce64bdf11322df64434ae1fb9e43dd0e6cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.031ex; height:2.843ex;" alt="{\displaystyle f\in C_{c}^{\infty }(U),}"></span> which is denoted using <a href="/wiki/Angle_brackets" class="mw-redirect" title="Angle brackets">angle brackets</a> by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}{\mathcal {D}}'(U)\times C_{c}^{\infty }(U)\to \mathbb {R} \\(T,f)\mapsto \langle T,f\rangle :=T(f)\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>T</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mo>,</mo> <mi>f</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>:=</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}{\mathcal {D}}'(U)\times C_{c}^{\infty }(U)\to \mathbb {R} \\(T,f)\mapsto \langle T,f\rangle :=T(f)\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fbd5f6497c818d8b5194b348bfc1af2250b8420" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.094ex; height:6.176ex;" alt="{\displaystyle {\begin{cases}{\mathcal {D}}&#039;(U)\times C_{c}^{\infty }(U)\to \mathbb {R} \\(T,f)\mapsto \langle T,f\rangle :=T(f)\end{cases}}}"></span> </p><p>One interprets this notation as the distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> acting on the test function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> to give a scalar, or symmetrically as the test function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> acting on the distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4de28b735beca1303bc5da9ba518a5a22a70a5d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.283ex; height:2.176ex;" alt="{\displaystyle T.}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Characterizations_of_distributions">Characterizations of distributions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=9" title="Edit section: Characterizations of distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b>Proposition.</b> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is a <a href="/wiki/Linear_form" title="Linear form">linear functional</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> then the following are equivalent: </p> <ol><li><span class="texhtml mvar" style="font-style:italic;">T</span> is a distribution;</li> <li><span class="texhtml mvar" style="font-style:italic;">T</span> is <a href="/wiki/Continuous_function" title="Continuous function">continuous</a>;</li> <li><span class="texhtml mvar" style="font-style:italic;">T</span> is <a href="/wiki/Continuous_function" title="Continuous function">continuous</a> at the origin;</li> <li><span class="texhtml mvar" style="font-style:italic;">T</span> is <a href="/wiki/Uniform_continuity" title="Uniform continuity">uniformly continuous</a>;</li> <li><span class="texhtml mvar" style="font-style:italic;">T</span> is a <a href="/wiki/Bounded_operator" title="Bounded operator">bounded operator</a>;</li> <li><span class="texhtml mvar" style="font-style:italic;">T</span> is <a href="/wiki/Sequentially_continuous" class="mw-redirect" title="Sequentially continuous">sequentially continuous</a>; <ul><li>explicitly, for every sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(f_{i}\right)_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(f_{i}\right)_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b03f099554c0eb6d313d20abffe2685d53e8e53f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.648ex; height:3.176ex;" alt="{\displaystyle \left(f_{i}\right)_{i=1}^{\infty }}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> that converges in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> to some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C_{c}^{\infty }(U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C_{c}^{\infty }(U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/098cdce64bdf11322df64434ae1fb9e43dd0e6cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.031ex; height:2.843ex;" alt="{\displaystyle f\in C_{c}^{\infty }(U),}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lim _{i\to \infty }T\left(f_{i}\right)=T(f);}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mi>T</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lim _{i\to \infty }T\left(f_{i}\right)=T(f);}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04f7710aafd629f5df418156ee4694a444e5b9e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.944ex; height:2.843ex;" alt="{\textstyle \lim _{i\to \infty }T\left(f_{i}\right)=T(f);}"></span><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>note 4<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li><span class="texhtml mvar" style="font-style:italic;">T</span> is <a href="/wiki/Sequentially_continuous" class="mw-redirect" title="Sequentially continuous">sequentially continuous</a> at the origin; in other words, <span class="texhtml mvar" style="font-style:italic;">T</span> maps null sequences<sup id="cite_ref-Def_null_sequence_14-0" class="reference"><a href="#cite_note-Def_null_sequence-14"><span class="cite-bracket">&#91;</span>note 5<span class="cite-bracket">&#93;</span></a></sup> to null sequences; <ul><li>explicitly, for every sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(f_{i}\right)_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(f_{i}\right)_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b03f099554c0eb6d313d20abffe2685d53e8e53f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.648ex; height:3.176ex;" alt="{\displaystyle \left(f_{i}\right)_{i=1}^{\infty }}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> that converges in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> to the origin (such a sequence is called a <em>null sequence</em>), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lim _{i\to \infty }T\left(f_{i}\right)=0;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mi>T</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lim _{i\to \infty }T\left(f_{i}\right)=0;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9900592973a0dce0f39622fc1dc5e06c96c07259" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.382ex; height:2.843ex;" alt="{\textstyle \lim _{i\to \infty }T\left(f_{i}\right)=0;}"></span></li> <li>a <em>null sequence</em> is by definition any sequence that converges to the origin;</li></ul></li> <li><span class="texhtml mvar" style="font-style:italic;">T</span> maps null sequences to bounded subsets; <ul><li>explicitly, for every sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(f_{i}\right)_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(f_{i}\right)_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b03f099554c0eb6d313d20abffe2685d53e8e53f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.648ex; height:3.176ex;" alt="{\displaystyle \left(f_{i}\right)_{i=1}^{\infty }}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> that converges in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> to the origin, the sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(T\left(f_{i}\right)\right)_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo>(</mo> <mrow> <mi>T</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(T\left(f_{i}\right)\right)_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cda93a446741035e410af43548f430842362c71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.481ex; height:3.176ex;" alt="{\displaystyle \left(T\left(f_{i}\right)\right)_{i=1}^{\infty }}"></span> is bounded;</li></ul></li> <li><span class="texhtml mvar" style="font-style:italic;">T</span> maps <a href="/wiki/Mackey_convergence" class="mw-redirect" title="Mackey convergence">Mackey convergent</a> null sequences to bounded subsets; <ul><li>explicitly, for every Mackey convergent null sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(f_{i}\right)_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(f_{i}\right)_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b03f099554c0eb6d313d20abffe2685d53e8e53f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.648ex; height:3.176ex;" alt="{\displaystyle \left(f_{i}\right)_{i=1}^{\infty }}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f1e56e0917e84e0fd78532a79accd01ba2badad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.912ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U),}"></span> the sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(T\left(f_{i}\right)\right)_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo>(</mo> <mrow> <mi>T</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(T\left(f_{i}\right)\right)_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cda93a446741035e410af43548f430842362c71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.481ex; height:3.176ex;" alt="{\displaystyle \left(T\left(f_{i}\right)\right)_{i=1}^{\infty }}"></span> is bounded;</li> <li>a sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{\bullet }=\left(f_{i}\right)_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2219;<!-- ∙ --></mo> </mrow> </msub> <mo>=</mo> <msubsup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{\bullet }=\left(f_{i}\right)_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb733c90345e7736d1ef178da4ca74c0a9012292" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.94ex; height:3.176ex;" alt="{\displaystyle f_{\bullet }=\left(f_{i}\right)_{i=1}^{\infty }}"></span> is said to be <em><a href="/wiki/Mackey_convergence" class="mw-redirect" title="Mackey convergence">Mackey convergent</a> to the origin</em> if there exists a divergent sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{\bullet }=\left(r_{i}\right)_{i=1}^{\infty }\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2219;<!-- ∙ --></mo> </mrow> </msub> <mo>=</mo> <msubsup> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{\bullet }=\left(r_{i}\right)_{i=1}^{\infty }\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c32b62d0849d8ebb70d5caccdf70a3fb4363466" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.697ex; height:3.176ex;" alt="{\displaystyle r_{\bullet }=\left(r_{i}\right)_{i=1}^{\infty }\to \infty }"></span> of positive real numbers such that the sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(r_{i}f_{i}\right)_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo>(</mo> <mrow> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(r_{i}f_{i}\right)_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cad3c3ec0861e723f56eaed5d5d748dc51711d4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.497ex; height:3.176ex;" alt="{\displaystyle \left(r_{i}f_{i}\right)_{i=1}^{\infty }}"></span> is bounded; every sequence that is Mackey convergent to the origin necessarily converges to the origin (in the usual sense);</li></ul></li> <li>The kernel of <span class="texhtml mvar" style="font-style:italic;">T</span> is a closed subspace of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U);}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U);}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4852786f6295df1ea1af87eb180260728cc9c7ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.912ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U);}"></span></li> <li>The graph of <span class="texhtml mvar" style="font-style:italic;">T</span> is closed;</li> <li>There exists a continuous seminorm <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |T|\leq g;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>g</mi> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |T|\leq g;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4cafffd6252d2570c3f6d8d0e9e23645f7180d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.791ex; height:2.843ex;" alt="{\displaystyle |T|\leq g;}"></span></li> <li>There exists a constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c84d4126c6df243734f9355927c026df6b0d3859" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.027ex; height:2.176ex;" alt="{\displaystyle C&gt;0}"></span> and a finite subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{g_{1},\ldots ,g_{m}\}\subseteq {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo>&#x2286;<!-- ⊆ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{g_{1},\ldots ,g_{m}\}\subseteq {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/000e0c241e73118fda5ee4f63df54029420842df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.253ex; height:2.843ex;" alt="{\displaystyle \{g_{1},\ldots ,g_{m}\}\subseteq {\mathcal {P}}}"></span> (where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> is any collection of continuous seminorms that defines the canonical LF topology on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span>) such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |T|\leq C(g_{1}+\cdots +g_{m});}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>C</mi> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |T|\leq C(g_{1}+\cdots +g_{m});}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dc89d19c96c5ad9e3701af8d1c5d8758da24bc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.602ex; height:2.843ex;" alt="{\displaystyle |T|\leq C(g_{1}+\cdots +g_{m});}"></span><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>note 6<span class="cite-bracket">&#93;</span></a></sup></li> <li>For every compact subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subseteq U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subseteq U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03e72a341c3ea869b7cd9a149f349b972a854a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.947ex; height:2.343ex;" alt="{\displaystyle K\subseteq U}"></span> there exist constants <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c84d4126c6df243734f9355927c026df6b0d3859" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.027ex; height:2.176ex;" alt="{\displaystyle C&gt;0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b985ba501f78cb9890f3ecda3e2e315cbd5cb26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.582ex; height:2.176ex;" alt="{\displaystyle N\in \mathbb {N} }"></span> such that for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C^{\infty }(K),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C^{\infty }(K),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e03f9c11f7a4706b93b156faa44fcc5a2916288a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.315ex; height:2.843ex;" alt="{\displaystyle f\in C^{\infty }(K),}"></span><sup id="cite_ref-FOOTNOTETrèves2006222–223_1-1" class="reference"><a href="#cite_note-FOOTNOTETrèves2006222–223-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |T(f)|\leq C\sup\{|\partial ^{\alpha }f(x)|:x\in U,|\alpha |\leq N\};}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>T</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>C</mi> <mo movablelimits="true" form="prefix">sup</mo> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>:</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>U</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>N</mi> <mo fence="false" stretchy="false">}</mo> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |T(f)|\leq C\sup\{|\partial ^{\alpha }f(x)|:x\in U,|\alpha |\leq N\};}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c135998aaf22afeca006af5f25a02e97957529ff" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.949ex; height:2.843ex;" alt="{\displaystyle |T(f)|\leq C\sup\{|\partial ^{\alpha }f(x)|:x\in U,|\alpha |\leq N\};}"></span></li> <li>For every compact subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subseteq U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subseteq U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03e72a341c3ea869b7cd9a149f349b972a854a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.947ex; height:2.343ex;" alt="{\displaystyle K\subseteq U}"></span> there exist constants <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{K}&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </msub> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{K}&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ba350d5f8f304b64832ef86f15d4c3b04cdb33c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.616ex; height:2.509ex;" alt="{\displaystyle C_{K}&gt;0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N_{K}\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N_{K}\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9af2c13f94cf16435b9fc16d430ade94d32309df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.078ex; height:2.509ex;" alt="{\displaystyle N_{K}\in \mathbb {N} }"></span> such that for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c8a9daa4a9b59dc5a913672797e80ddbfc5c642" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.384ex; height:2.843ex;" alt="{\displaystyle f\in C_{c}^{\infty }(U)}"></span> with <a href="#support_of_a_function">support</a> contained in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fea4b5006afa0eb81c21b577efe304ab545d571" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.713ex; height:2.509ex;" alt="{\displaystyle K,}"></span><sup id="cite_ref-Grubb_2009_page=14_16-0" class="reference"><a href="#cite_note-Grubb_2009_page=14-16"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |T(f)|\leq C_{K}\sup\{|\partial ^{\alpha }f(x)|:x\in K,|\alpha |\leq N_{K}\};}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>T</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </msub> <mo movablelimits="true" form="prefix">sup</mo> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>:</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>K</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |T(f)|\leq C_{K}\sup\{|\partial ^{\alpha }f(x)|:x\in K,|\alpha |\leq N_{K}\};}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33b47367170bcb5b2f567817ded182909075eb29" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:46.316ex; height:2.843ex;" alt="{\displaystyle |T(f)|\leq C_{K}\sup\{|\partial ^{\alpha }f(x)|:x\in K,|\alpha |\leq N_{K}\};}"></span></li> <li>For any compact subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subseteq U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subseteq U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03e72a341c3ea869b7cd9a149f349b972a854a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.947ex; height:2.343ex;" alt="{\displaystyle K\subseteq U}"></span> and any sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{f_{i}\}_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{f_{i}\}_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/207eb1a2c812e85436d2dd5c38649a5477894d7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.164ex; height:3.009ex;" alt="{\displaystyle \{f_{i}\}_{i=1}^{\infty }}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(K),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(K),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be9f6785e29e747ead5a9b22426cc4990cc1c3ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.195ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(K),}"></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\partial ^{p}f_{i}\}_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\partial ^{p}f_{i}\}_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28c921c631691cb3696e8c32a50ee86152cd86a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.566ex; height:3.009ex;" alt="{\displaystyle \{\partial ^{p}f_{i}\}_{i=1}^{\infty }}"></span> converges uniformly to zero for all <a href="/wiki/Multi-index" class="mw-redirect" title="Multi-index">multi-indices</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/393fcf18074cb42eafb26b76c515a1e93e17512c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.906ex; height:2.009ex;" alt="{\displaystyle p,}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(f_{i})\to 0;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(f_{i})\to 0;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84194656a7f8258223aa3378ae0b1b0952857f85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.808ex; height:2.843ex;" alt="{\displaystyle T(f_{i})\to 0;}"></span></li></ol> <div class="mw-heading mw-heading4"><h4 id="Topology_on_the_space_of_distributions_and_its_relation_to_the_weak-*_topology"><span id="Topology_on_the_space_of_distributions_and_its_relation_to_the_weak-.2A_topology"></span>Topology on the space of distributions and its relation to the weak-* topology</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=10" title="Edit section: Topology on the space of distributions and its relation to the weak-* topology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The set of all distributions on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> is the <a href="/wiki/Continuous_dual_space" class="mw-redirect" title="Continuous dual space">continuous dual space</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f1e56e0917e84e0fd78532a79accd01ba2badad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.912ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U),}"></span> which when endowed with the <a href="/wiki/Strong_topology_(polar_topology)" class="mw-redirect" title="Strong topology (polar topology)">strong dual topology</a> is denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f1f6c933a1491eccb464d2f52700079c2e7fa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.715ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U).}"></span> Importantly, unless indicated otherwise, the topology on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> is the <a href="/wiki/Strong_dual_topology" class="mw-redirect" title="Strong dual topology">strong dual topology</a>; if the topology is instead the <a href="/wiki/Weak-*_topology" class="mw-redirect" title="Weak-* topology">weak-* topology</a> then this will be indicated. Neither topology is metrizable although unlike the weak-* topology, the strong dual topology makes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> into a <a href="/wiki/Complete_topological_vector_space" title="Complete topological vector space">complete</a> <a href="/wiki/Nuclear_space" title="Nuclear space">nuclear space</a>, to name just a few of its desirable properties. </p><p>Neither <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> nor its strong dual <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> is a <a href="/wiki/Sequential_space" title="Sequential space">sequential space</a> and so neither of their topologies can be fully described by sequences (in other words, defining only what sequences converge in these spaces is <em>not</em> enough to fully/correctly define their topologies). However, a <em>sequence</em> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> converges in the strong dual topology if and only if it converges in the <a href="/wiki/Weak-*_topology" class="mw-redirect" title="Weak-* topology">weak-* topology</a> (this leads many authors to use pointwise convergence to <em>define</em> the convergence of a sequence of distributions; this is fine for sequences but this is <em>not</em> guaranteed to extend to the convergence of <a href="/wiki/Net_(mathematics)" title="Net (mathematics)">nets</a> of distributions because a net may converge pointwise but fail to converge in the strong dual topology). More information about the topology that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> is endowed with can be found in the article on <a href="/wiki/Spaces_of_test_functions_and_distributions" title="Spaces of test functions and distributions">spaces of test functions and distributions</a> and the articles on <a href="/wiki/Polar_topology" title="Polar topology">polar topologies</a> and <a href="/wiki/Dual_system" title="Dual system">dual systems</a>. </p><p>A <a href="/wiki/Linear_map" title="Linear map"><em>linear</em> map</a> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> into another <a href="/wiki/Locally_convex_topological_vector_space" title="Locally convex topological vector space">locally convex topological vector space</a> (such as any <a href="/wiki/Normed_space" class="mw-redirect" title="Normed space">normed space</a>) is <a href="/wiki/Continuous_function_(topology)" class="mw-redirect" title="Continuous function (topology)">continuous</a> if and only if it is <a href="/wiki/Sequentially_continuous" class="mw-redirect" title="Sequentially continuous">sequentially continuous</a> at the origin. However, this is no longer guaranteed if the map is not linear or for maps valued in more general <a href="/wiki/Topological_space" title="Topological space">topological spaces</a> (for example, that are not also locally convex <a href="/wiki/Topological_vector_space" title="Topological vector space">topological vector spaces</a>). The same is true of maps from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> (more generally, this is true of maps from any locally convex <a href="/wiki/Bornological_space" title="Bornological space">bornological space</a>). </p> <div class="mw-heading mw-heading2"><h2 id="Localization_of_distributions">Localization of distributions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=11" title="Edit section: Localization of distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There is no way to define the value of a distribution in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> at a particular point of <span class="texhtml mvar" style="font-style:italic;">U</span>. However, as is the case with functions, distributions on <span class="texhtml mvar" style="font-style:italic;">U</span> restrict to give distributions on open subsets of <span class="texhtml mvar" style="font-style:italic;">U</span>. Furthermore, distributions are <em>locally determined</em> in the sense that a distribution on all of <span class="texhtml mvar" style="font-style:italic;">U</span> can be assembled from a distribution on an open cover of <span class="texhtml mvar" style="font-style:italic;">U</span> satisfying some compatibility conditions on the overlaps. Such a structure is known as a <a href="/wiki/Sheaf_(mathematics)" title="Sheaf (mathematics)">sheaf</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Extensions_and_restrictions_to_an_open_subset">Extensions and restrictions to an open subset</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=12" title="Edit section: Extensions and restrictions to an open subset"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\subseteq U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\subseteq U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93c76555365eca037c1a0aa64b6ad5403ba32d9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.668ex; height:2.343ex;" alt="{\displaystyle V\subseteq U}"></span> be open subsets of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76ef548febfc9981762740107858be9e3a5576c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.543ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}.}"></span> Every function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in {\mathcal {D}}(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in {\mathcal {D}}(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44dd5e04375d3cbaeee22d8eb31077e4218bb559" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.508ex; height:2.843ex;" alt="{\displaystyle f\in {\mathcal {D}}(V)}"></span> can be <em>extended by zero</em> from its domain <span class="texhtml mvar" style="font-style:italic;">V</span> to a function on <span class="texhtml mvar" style="font-style:italic;">U</span> by setting it equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> on the <a href="/wiki/Complement_(set_theory)" title="Complement (set theory)">complement</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U\setminus V.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mi>V</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U\setminus V.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3671dab74c576889733de67249a4dfff54a87117" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.411ex; height:2.843ex;" alt="{\displaystyle U\setminus V.}"></span> This extension is a smooth compactly supported function called the <em>trivial extension of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span></em> and it will be denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{VU}(f).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> <mi>U</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{VU}(f).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e6f864d8500c53f0e6385c5cf080ead37492e06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.206ex; height:2.843ex;" alt="{\displaystyle E_{VU}(f).}"></span> This assignment <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\mapsto E_{VU}(f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> <mi>U</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\mapsto E_{VU}(f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/387874056d59f0d4926d33cd0fa36dc7f66fbccd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.452ex; height:2.843ex;" alt="{\displaystyle f\mapsto E_{VU}(f)}"></span> defines the <em>trivial extension</em> operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{VU}:{\mathcal {D}}(V)\to {\mathcal {D}}(U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> <mi>U</mi> </mrow> </msub> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{VU}:{\mathcal {D}}(V)\to {\mathcal {D}}(U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ee93cb9d51bcfe81b7afb8a4127ab606c87f989" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.442ex; height:2.843ex;" alt="{\displaystyle E_{VU}:{\mathcal {D}}(V)\to {\mathcal {D}}(U),}"></span> which is a continuous injective linear map. It is used to canonically identify <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/350b21418e60e9add21c17e7e291d9491f3a22d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.388ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(V)}"></span> as a <a href="/wiki/Vector_subspace" class="mw-redirect" title="Vector subspace">vector subspace</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e72f5fe5656e7492d45267d817eb4d996dbe8f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.384ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(U)}"></span> (although <em>not</em> as a <a href="/wiki/Topological_subspace" class="mw-redirect" title="Topological subspace">topological subspace</a>). Its transpose (<a href="#Transpose_of_a_linear_operator">explained here</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{VU}:={}^{t}E_{VU}:{\mathcal {D}}'(U)\to {\mathcal {D}}'(V),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> <mi>U</mi> </mrow> </msub> <mo>:=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> <mi>U</mi> </mrow> </msub> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho _{VU}:={}^{t}E_{VU}:{\mathcal {D}}'(U)\to {\mathcal {D}}'(V),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/024a64c7b02264dc59206beb57aafb531e6b866e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.341ex; height:3.009ex;" alt="{\displaystyle \rho _{VU}:={}^{t}E_{VU}:{\mathcal {D}}&#039;(U)\to {\mathcal {D}}&#039;(V),}"></span> is called the <b><em><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="restriction_map"></span><span class="vanchor-text">restriction to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> of distributions in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span></span></span></em></b><sup id="cite_ref-FOOTNOTETrèves2006245–247_17-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006245–247-17"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> and as the name suggests, the image <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{VU}(T)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> <mi>U</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho _{VU}(T)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e2ebeb84ffac3a963c7ef6de83cf82a2550f90f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.404ex; height:2.843ex;" alt="{\displaystyle \rho _{VU}(T)}"></span> of a distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/317fe5e2f5b8c6b3ade2cb8ee45f86d5c663e7e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.545ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}&#039;(U)}"></span> under this map is a distribution on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> called the <b>restriction of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b2661a49b86bd1a5548e527bbfb068aa9f59978" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.434ex; height:2.176ex;" alt="{\displaystyle V.}"></span></b> The <a href="#Transpose_of_a_linear_operator">defining condition</a> of the restriction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{VU}(T)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> <mi>U</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho _{VU}(T)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e2ebeb84ffac3a963c7ef6de83cf82a2550f90f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.404ex; height:2.843ex;" alt="{\displaystyle \rho _{VU}(T)}"></span> is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \rho _{VU}T,\phi \rangle =\langle T,E_{VU}\phi \rangle \quad {\text{ for all }}\phi \in {\mathcal {D}}(V).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> <mi>U</mi> </mrow> </msub> <mi>T</mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mo>,</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> <mi>U</mi> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \rho _{VU}T,\phi \rangle =\langle T,E_{VU}\phi \rangle \quad {\text{ for all }}\phi \in {\mathcal {D}}(V).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cdf6eea44bd753a216b4f11dca580220490b919" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.826ex; height:2.843ex;" alt="{\displaystyle \langle \rho _{VU}T,\phi \rangle =\langle T,E_{VU}\phi \rangle \quad {\text{ for all }}\phi \in {\mathcal {D}}(V).}"></span> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\neq U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\neq U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1000ecf061cac0f3f5a9693bc3a6d65e2f1af3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.668ex; height:2.676ex;" alt="{\displaystyle V\neq U}"></span> then the (continuous injective linear) trivial extension map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{VU}:{\mathcal {D}}(V)\to {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> <mi>U</mi> </mrow> </msub> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{VU}:{\mathcal {D}}(V)\to {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c89030e6c43ccdc9d0e6d76a6c7cb47238b5dfee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.795ex; height:2.843ex;" alt="{\displaystyle E_{VU}:{\mathcal {D}}(V)\to {\mathcal {D}}(U)}"></span> is <em>not</em> a topological embedding (in other words, if this linear injection was used to identify <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/350b21418e60e9add21c17e7e291d9491f3a22d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.388ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(V)}"></span> as a subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e72f5fe5656e7492d45267d817eb4d996dbe8f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.384ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(U)}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/350b21418e60e9add21c17e7e291d9491f3a22d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.388ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(V)}"></span>'s topology would <a href="/wiki/Comparison_of_topologies" title="Comparison of topologies">strictly finer</a> than the <a href="/wiki/Subspace_topology" title="Subspace topology">subspace topology</a> that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e72f5fe5656e7492d45267d817eb4d996dbe8f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.384ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(U)}"></span> induces on it; importantly, it would <em>not</em> be a <a href="/wiki/Topological_subspace" class="mw-redirect" title="Topological subspace">topological subspace</a> since that requires equality of topologies) and its range is also <em>not</em> dense in its <a href="/wiki/Codomain" title="Codomain">codomain</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86b89bbd40d06988c0bb0b6835645a761097f8d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.031ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(U).}"></span><sup id="cite_ref-FOOTNOTETrèves2006245–247_17-1" class="reference"><a href="#cite_note-FOOTNOTETrèves2006245–247-17"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> Consequently if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\neq U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\neq U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1000ecf061cac0f3f5a9693bc3a6d65e2f1af3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.668ex; height:2.676ex;" alt="{\displaystyle V\neq U}"></span> then <a href="#restriction_map">the restriction mapping</a> is neither injective nor surjective.<sup id="cite_ref-FOOTNOTETrèves2006245–247_17-2" class="reference"><a href="#cite_note-FOOTNOTETrèves2006245–247-17"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> A distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\in {\mathcal {D}}'(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\in {\mathcal {D}}'(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c28c837b08d595bbf51af36003a15a68af02c37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.413ex; height:3.009ex;" alt="{\displaystyle S\in {\mathcal {D}}&#039;(V)}"></span> is said to be <b><em>extendible to <span class="texhtml mvar" style="font-style:italic;">U</span></em></b> if it belongs to the range of the transpose of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{VU}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> <mi>U</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{VU}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57e1191b0881b10c1f89443e5f27470ac5c5b2d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.472ex; height:2.509ex;" alt="{\displaystyle E_{VU}}"></span> and it is called <b><em>extendible</em></b> if it is extendable to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76ef548febfc9981762740107858be9e3a5576c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.543ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}.}"></span><sup id="cite_ref-FOOTNOTETrèves2006245–247_17-3" class="reference"><a href="#cite_note-FOOTNOTETrèves2006245–247-17"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>Unless <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U=V,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>=</mo> <mi>V</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U=V,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6530e45f1487435858a70068c5e8a81ba30849f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.315ex; height:2.509ex;" alt="{\displaystyle U=V,}"></span> the restriction to <span class="texhtml mvar" style="font-style:italic;">V</span> is neither <a href="/wiki/Injective" class="mw-redirect" title="Injective">injective</a> nor <a href="/wiki/Surjective" class="mw-redirect" title="Surjective">surjective</a>. Lack of surjectivity follows since distributions can blow up towards the boundary of <span class="texhtml mvar" style="font-style:italic;">V</span>. For instance, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U=\mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U=\mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7144f67be80ffe9b4b8f4d09cde56282d86443f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.559ex; height:2.176ex;" alt="{\displaystyle U=\mathbb {R} }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V=(0,2),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V=(0,2),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9beb0d165e36be667462701829b37aacaec498a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.701ex; height:2.843ex;" alt="{\displaystyle V=(0,2),}"></span> then the distribution <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(x)=\sum _{n=1}^{\infty }n\,\delta \left(x-{\frac {1}{n}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>n</mi> <mspace width="thinmathspace" /> <mi>&#x03B4;<!-- δ --></mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(x)=\sum _{n=1}^{\infty }n\,\delta \left(x-{\frac {1}{n}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a085100eb58313e05565cdc850cb5522cc9c09fc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.655ex; height:6.843ex;" alt="{\displaystyle T(x)=\sum _{n=1}^{\infty }n\,\delta \left(x-{\frac {1}{n}}\right)}"></span> is in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9566f60a789c1be07566ee1da80dac67344f3b6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.073ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(V)}"></span> but admits no extension to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f1f6c933a1491eccb464d2f52700079c2e7fa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.715ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Gluing_and_distributions_that_vanish_in_a_set">Gluing and distributions that vanish in a set</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=13" title="Edit section: Gluing and distributions that vanish in a set"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1110004140">.mw-parser-output .math_theorem{margin:1em 2em;padding:0.5em 1em 0.4em;border:1px solid #aaa;overflow:hidden}@media(max-width:500px){.mw-parser-output .math_theorem{margin:1em 0em;padding:0.5em 0.5em 0.4em}}</style><div class="math_theorem" style=""> <p><strong class="theorem-name">Theorem<sup id="cite_ref-FOOTNOTETrèves2006253–255_18-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006253–255-18"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup></strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (U_{i})_{i\in I}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (U_{i})_{i\in I}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e19fc9e6317dca261a077df0afcfa1dbf5cfe73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.921ex; height:2.843ex;" alt="{\displaystyle (U_{i})_{i\in I}}"></span> be a collection of open subsets of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76ef548febfc9981762740107858be9e3a5576c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.543ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}.}"></span> For each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\in I,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\in I,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42f9f22d39bd7568720b485fdb9ced8f99c1c63e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.462ex; height:2.509ex;" alt="{\displaystyle i\in I,}"></span> let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{i}\in {\mathcal {D}}'(U_{i})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{i}\in {\mathcal {D}}'(U_{i})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b18ab38f304cf450c36d538fa695314e83626e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.671ex; height:3.009ex;" alt="{\displaystyle T_{i}\in {\mathcal {D}}&#039;(U_{i})}"></span> and suppose that for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i,j\in I,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i,j\in I,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1223680e1e574686bb5a5513d20199cf56ee2d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.454ex; height:2.509ex;" alt="{\displaystyle i,j\in I,}"></span> the restriction of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8dd1c50cb9436474f83624c3f679ccf3eebbfef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.157ex; height:2.509ex;" alt="{\displaystyle T_{i}}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{i}\cap U_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2229;<!-- ∩ --></mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{i}\cap U_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be592e07a07b4ce92cc30774ae3a8d984eca426e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.467ex; height:2.843ex;" alt="{\displaystyle U_{i}\cap U_{j}}"></span> is equal to the restriction of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27cdb9041c8aa769beb9153a48f41002297faacc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.267ex; height:2.843ex;" alt="{\displaystyle T_{j}}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{i}\cap U_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2229;<!-- ∩ --></mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{i}\cap U_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be592e07a07b4ce92cc30774ae3a8d984eca426e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.467ex; height:2.843ex;" alt="{\displaystyle U_{i}\cap U_{j}}"></span> (note that both restrictions are elements of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U_{i}\cap U_{j})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2229;<!-- ∩ --></mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U_{i}\cap U_{j})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd494216196bfccc4e17cd3e462804f0a4e327fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.753ex; height:3.176ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U_{i}\cap U_{j})}"></span>). Then there exists a unique <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle T\in {\mathcal {D}}'(\bigcup _{i\in I}U_{i})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <munder> <mo>&#x22C3;<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle T\in {\mathcal {D}}'(\bigcup _{i\in I}U_{i})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/523a9bcd43e600f0a887969341a43f286ed78a44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.197ex; height:3.176ex;" alt="{\textstyle T\in {\mathcal {D}}&#039;(\bigcup _{i\in I}U_{i})}"></span> such that for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\in I,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\in I,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42f9f22d39bd7568720b485fdb9ced8f99c1c63e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.462ex; height:2.509ex;" alt="{\displaystyle i\in I,}"></span> the restriction of <span class="texhtml mvar" style="font-style:italic;">T</span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b21a6f475b0e68475c6019abe1fed0b415e0e42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.387ex; height:2.509ex;" alt="{\displaystyle U_{i}}"></span> is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe36c744d3aa94271033e1b4f37b6d8009ea0fdd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.804ex; height:2.509ex;" alt="{\displaystyle T_{i}.}"></span> </p> </div> <p>Let <span class="texhtml mvar" style="font-style:italic;">V</span> be an open subset of <span class="texhtml mvar" style="font-style:italic;">U</span>. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/317fe5e2f5b8c6b3ade2cb8ee45f86d5c663e7e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.545ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}&#039;(U)}"></span> is said to <b><em>vanish in <span class="texhtml mvar" style="font-style:italic;">V</span></em></b> if for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdc7c94259571d75489953aac9752bd8bb20f74e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.503ex; height:2.843ex;" alt="{\displaystyle f\in {\mathcal {D}}(U)}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {supp} (f)\subseteq V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {supp} (f)\subseteq V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c258e7dc7ab9cc0ef05305fe32d656ce365de800" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.767ex; height:2.843ex;" alt="{\displaystyle \operatorname {supp} (f)\subseteq V}"></span> we have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Tf=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mi>f</mi> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Tf=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97f4f8d8559f8ee53f693c90b069aef4bd776381" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.823ex; height:2.509ex;" alt="{\displaystyle Tf=0.}"></span> <span class="texhtml mvar" style="font-style:italic;">T</span> vanishes in <span class="texhtml mvar" style="font-style:italic;">V</span> if and only if the restriction of <span class="texhtml mvar" style="font-style:italic;">T</span> to <span class="texhtml mvar" style="font-style:italic;">V</span> is equal to 0, or equivalently, if and only if <span class="texhtml mvar" style="font-style:italic;">T</span> lies in the <a href="/wiki/Kernel_(algebra)" title="Kernel (algebra)">kernel</a> of the restriction map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{VU}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> <mi>U</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho _{VU}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52bab532bb61e89cb9fafee8c069957fbe21e1cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.605ex; height:2.176ex;" alt="{\displaystyle \rho _{VU}.}"></span> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name">Corollary<sup id="cite_ref-FOOTNOTETrèves2006253–255_18-1" class="reference"><a href="#cite_note-FOOTNOTETrèves2006253–255-18"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup></strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (U_{i})_{i\in I}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (U_{i})_{i\in I}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e19fc9e6317dca261a077df0afcfa1dbf5cfe73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.921ex; height:2.843ex;" alt="{\displaystyle (U_{i})_{i\in I}}"></span> be a collection of open subsets of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle T\in {\mathcal {D}}'(\bigcup _{i\in I}U_{i}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <munder> <mo>&#x22C3;<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle T\in {\mathcal {D}}'(\bigcup _{i\in I}U_{i}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87d6360773e593c7880e9126033ccbf080ff8a35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.844ex; height:3.176ex;" alt="{\textstyle T\in {\mathcal {D}}&#039;(\bigcup _{i\in I}U_{i}).}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c6a5b6d0370b358a8d5f3df6d17eeca08d3629b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.897ex; height:2.176ex;" alt="{\displaystyle T=0}"></span> if and only if for each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\in I,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\in I,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42f9f22d39bd7568720b485fdb9ced8f99c1c63e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.462ex; height:2.509ex;" alt="{\displaystyle i\in I,}"></span> the restriction of <span class="texhtml mvar" style="font-style:italic;">T</span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b21a6f475b0e68475c6019abe1fed0b415e0e42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.387ex; height:2.509ex;" alt="{\displaystyle U_{i}}"></span> is equal to 0. </p> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name">Corollary<sup id="cite_ref-FOOTNOTETrèves2006253–255_18-2" class="reference"><a href="#cite_note-FOOTNOTETrèves2006253–255-18"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup></strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>The union of all open subsets of <span class="texhtml mvar" style="font-style:italic;">U</span> in which a distribution <span class="texhtml mvar" style="font-style:italic;">T</span> vanishes is an open subset of <span class="texhtml mvar" style="font-style:italic;">U</span> in which <span class="texhtml mvar" style="font-style:italic;">T</span> vanishes. </p> </div> <div class="mw-heading mw-heading3"><h3 id="Support_of_a_distribution">Support of a distribution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=14" title="Edit section: Support of a distribution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This last corollary implies that for every distribution <span class="texhtml mvar" style="font-style:italic;">T</span> on <span class="texhtml mvar" style="font-style:italic;">U</span>, there exists a unique largest subset <span class="texhtml mvar" style="font-style:italic;">V</span> of <span class="texhtml mvar" style="font-style:italic;">U</span> such that <span class="texhtml mvar" style="font-style:italic;">T</span> vanishes in <span class="texhtml mvar" style="font-style:italic;">V</span> (and does not vanish in any open subset of <span class="texhtml mvar" style="font-style:italic;">U</span> that is not contained in <span class="texhtml mvar" style="font-style:italic;">V</span>); the complement in <span class="texhtml mvar" style="font-style:italic;">U</span> of this unique largest open subset is called <em>the <b>support</b> of <span class="texhtml mvar" style="font-style:italic;">T</span></em>.<sup id="cite_ref-FOOTNOTETrèves2006253–255_18-3" class="reference"><a href="#cite_note-FOOTNOTETrèves2006253–255-18"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> Thus <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {supp} (T)=U\setminus \bigcup \{V\mid \rho _{VU}T=0\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>U</mi> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mo>&#x22C3;<!-- ⋃ --></mo> <mo fence="false" stretchy="false">{</mo> <mi>V</mi> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> <mi>U</mi> </mrow> </msub> <mi>T</mi> <mo>=</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {supp} (T)=U\setminus \bigcup \{V\mid \rho _{VU}T=0\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acf1a96a373bac97ed3c77918e90ff0036c56512" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:34.448ex; height:3.843ex;" alt="{\displaystyle \operatorname {supp} (T)=U\setminus \bigcup \{V\mid \rho _{VU}T=0\}.}"></span> </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is a locally integrable function on <span class="texhtml mvar" style="font-style:italic;">U</span> and if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13b8420d715315c8e8b57f178a1b3a8512bd0959" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.061ex; height:2.843ex;" alt="{\displaystyle D_{f}}"></span> is its associated distribution, then the support of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13b8420d715315c8e8b57f178a1b3a8512bd0959" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.061ex; height:2.843ex;" alt="{\displaystyle D_{f}}"></span> is the smallest closed subset of <span class="texhtml mvar" style="font-style:italic;">U</span> in the complement of which <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is <a href="/wiki/Almost_everywhere" title="Almost everywhere">almost everywhere</a> equal to 0.<sup id="cite_ref-FOOTNOTETrèves2006253–255_18-4" class="reference"><a href="#cite_note-FOOTNOTETrèves2006253–255-18"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is continuous, then the support of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13b8420d715315c8e8b57f178a1b3a8512bd0959" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.061ex; height:2.843ex;" alt="{\displaystyle D_{f}}"></span> is equal to the closure of the set of points in <span class="texhtml mvar" style="font-style:italic;">U</span> at which <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> does not vanish.<sup id="cite_ref-FOOTNOTETrèves2006253–255_18-5" class="reference"><a href="#cite_note-FOOTNOTETrèves2006253–255-18"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> The support of the distribution associated with the <a href="/wiki/Dirac_measure" title="Dirac measure">Dirac measure</a> at a point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> is the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x_{0}\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x_{0}\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a9103b7b0b66a7b74ec716ec4f92702aebbf110" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.356ex; height:2.843ex;" alt="{\displaystyle \{x_{0}\}.}"></span><sup id="cite_ref-FOOTNOTETrèves2006253–255_18-6" class="reference"><a href="#cite_note-FOOTNOTETrèves2006253–255-18"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> If the support of a test function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> does not intersect the support of a distribution <span class="texhtml mvar" style="font-style:italic;">T</span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Tf=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mi>f</mi> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Tf=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97f4f8d8559f8ee53f693c90b069aef4bd776381" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.823ex; height:2.509ex;" alt="{\displaystyle Tf=0.}"></span> A distribution <span class="texhtml mvar" style="font-style:italic;">T</span> is 0 if and only if its support is empty. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9271f99825877470cdcf8b2b36c5ac3bc2000bf1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.384ex; height:2.843ex;" alt="{\displaystyle f\in C^{\infty }(U)}"></span> is identically 1 on some open set containing the support of a distribution <span class="texhtml mvar" style="font-style:italic;">T</span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle fT=T.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mi>T</mi> <mo>=</mo> <mi>T</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle fT=T.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/923e787b9fa901d95d57cb8a87cf98048dd72451" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.296ex; height:2.509ex;" alt="{\displaystyle fT=T.}"></span> If the support of a distribution <span class="texhtml mvar" style="font-style:italic;">T</span> is compact then it has finite order and there is a constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> and a non-negative integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> such that:<sup id="cite_ref-FOOTNOTERudin1991149–181_10-1" class="reference"><a href="#cite_note-FOOTNOTERudin1991149–181-10"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |T\phi |\leq C\|\phi \|_{N}:=C\sup \left\{\left|\partial ^{\alpha }\phi (x)\right|:x\in U,|\alpha |\leq N\right\}\quad {\text{ for all }}\phi \in {\mathcal {D}}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>T</mi> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>C</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo>:=</mo> <mi>C</mi> <mo movablelimits="true" form="prefix">sup</mo> <mrow> <mo>{</mo> <mrow> <mrow> <mo>|</mo> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mo>:</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>U</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>N</mi> </mrow> <mo>}</mo> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |T\phi |\leq C\|\phi \|_{N}:=C\sup \left\{\left|\partial ^{\alpha }\phi (x)\right|:x\in U,|\alpha |\leq N\right\}\quad {\text{ for all }}\phi \in {\mathcal {D}}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/917a2ad898848d450ef76033eeb7880e4b1fc130" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:71.957ex; height:2.843ex;" alt="{\displaystyle |T\phi |\leq C\|\phi \|_{N}:=C\sup \left\{\left|\partial ^{\alpha }\phi (x)\right|:x\in U,|\alpha |\leq N\right\}\quad {\text{ for all }}\phi \in {\mathcal {D}}(U).}"></span> </p><p>If <span class="texhtml mvar" style="font-style:italic;">T</span> has compact support, then it has a unique extension to a continuous linear functional <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>T</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33cd213f0365eee1e8f263b9739eb7f5b5b1fe11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.019ex; width:1.858ex; height:2.843ex;" alt="{\displaystyle {\widehat {T}}}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4551e29a7341d79592ff93adc25a23fb2744b0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(U)}"></span>; this function can be defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {T}}(f):=T(\psi f),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>T</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>&#x03C8;<!-- ψ --></mi> <mi>f</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {T}}(f):=T(\psi f),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db8ffef8d9762d7d64023eb7c21885638c98f655" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.556ex; height:3.343ex;" alt="{\displaystyle {\widehat {T}}(f):=T(\psi f),}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi \in {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi \in {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51c5c54793c9fde7fffc47d0c6a3e7174b807a7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.738ex; height:2.843ex;" alt="{\displaystyle \psi \in {\mathcal {D}}(U)}"></span> is any function that is identically 1 on an open set containing the support of <span class="texhtml mvar" style="font-style:italic;">T</span>.<sup id="cite_ref-FOOTNOTERudin1991149–181_10-2" class="reference"><a href="#cite_note-FOOTNOTERudin1991149–181-10"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S,T\in {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>,</mo> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S,T\in {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223813a5edc1ad22ee31c3404e174ea51ef21ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.079ex; height:3.009ex;" alt="{\displaystyle S,T\in {\mathcal {D}}&#039;(U)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda \neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda \neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dedcbbf652c56a75cb890f36b4ff1f3bd984af45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.616ex; height:2.676ex;" alt="{\displaystyle \lambda \neq 0}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {supp} (S+T)\subseteq \operatorname {supp} (S)\cup \operatorname {supp} (T)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo>+</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>&#x222A;<!-- ∪ --></mo> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {supp} (S+T)\subseteq \operatorname {supp} (S)\cup \operatorname {supp} (T)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6da7fd71271454489685104a35a607ccf42b5322" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.602ex; height:2.843ex;" alt="{\displaystyle \operatorname {supp} (S+T)\subseteq \operatorname {supp} (S)\cup \operatorname {supp} (T)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {supp} (\lambda T)=\operatorname {supp} (T).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mi>T</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {supp} (\lambda T)=\operatorname {supp} (T).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb73e2a62be1090fa972c8d8b2d5b98637882e75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.579ex; height:2.843ex;" alt="{\displaystyle \operatorname {supp} (\lambda T)=\operatorname {supp} (T).}"></span> Thus, distributions with support in a given subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\subseteq U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\subseteq U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08a940c5084dea009e3e54dc2ffd92daab14c00d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.624ex; height:2.343ex;" alt="{\displaystyle A\subseteq U}"></span> form a vector subspace of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f1f6c933a1491eccb464d2f52700079c2e7fa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.715ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U).}"></span><sup id="cite_ref-FOOTNOTETrèves2006255–257_19-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006255–257-19"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> Furthermore, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> is a differential operator in <span class="texhtml mvar" style="font-style:italic;">U</span>, then for all distributions <span class="texhtml mvar" style="font-style:italic;">T</span> on <span class="texhtml mvar" style="font-style:italic;">U</span> and all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9271f99825877470cdcf8b2b36c5ac3bc2000bf1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.384ex; height:2.843ex;" alt="{\displaystyle f\in C^{\infty }(U)}"></span> we have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {supp} (P(x,\partial )T)\subseteq \operatorname {supp} (T)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">)</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {supp} (P(x,\partial )T)\subseteq \operatorname {supp} (T)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea2e8faafeb24b15fb26ddb8b71d72b848b08124" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.814ex; height:2.843ex;" alt="{\displaystyle \operatorname {supp} (P(x,\partial )T)\subseteq \operatorname {supp} (T)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {supp} (fT)\subseteq \operatorname {supp} (f)\cap \operatorname {supp} (T).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mi>T</mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>&#x2229;<!-- ∩ --></mo> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {supp} (fT)\subseteq \operatorname {supp} (f)\cap \operatorname {supp} (T).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3575a602435cb95d9a5e4b54970b2168d742afee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.967ex; height:2.843ex;" alt="{\displaystyle \operatorname {supp} (fT)\subseteq \operatorname {supp} (f)\cap \operatorname {supp} (T).}"></span><sup id="cite_ref-FOOTNOTETrèves2006255–257_19-1" class="reference"><a href="#cite_note-FOOTNOTETrèves2006255–257-19"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Distributions_with_compact_support">Distributions with compact support</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=15" title="Edit section: Distributions with compact support"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Support_in_a_point_set_and_Dirac_measures">Support in a point set and Dirac measures</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=16" title="Edit section: Support in a point set and Dirac measures"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in U,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>U</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in U,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6464e502c893c31824dbf63bef563fede447bf6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.6ex; height:2.509ex;" alt="{\displaystyle x\in U,}"></span> let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{x}\in {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{x}\in {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5510d114b3f7607c0d499f68b368c1fa09bff25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.114ex; height:3.009ex;" alt="{\displaystyle \delta _{x}\in {\mathcal {D}}&#039;(U)}"></span> denote the distribution induced by the Dirac measure at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d07e9f568a88785ae48006ac3c4b951020f1699a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.977ex; height:1.676ex;" alt="{\displaystyle x.}"></span> For any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}\in U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}\in U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dee8010e46dd5891756fb4b02b43bc661f7c666" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.007ex; height:2.509ex;" alt="{\displaystyle x_{0}\in U}"></span> and distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}'(U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}'(U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95faf2dc23fffc4a1fe6a9abda31d6671064990c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.192ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}&#039;(U),}"></span> the support of <span class="texhtml mvar" style="font-style:italic;">T</span> is contained in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x_{0}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x_{0}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dbe40e5f6b61246f9c283af47895b3aaa409d02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.709ex; height:2.843ex;" alt="{\displaystyle \{x_{0}\}}"></span> if and only if <span class="texhtml mvar" style="font-style:italic;">T</span> is a finite linear combination of derivatives of the Dirac measure at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ec756993d89cc1bd74f84040c07f5e11f0a8102" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.031ex; height:2.009ex;" alt="{\displaystyle x_{0}.}"></span><sup id="cite_ref-FOOTNOTETrèves2006264–266_20-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006264–266-20"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> If in addition the order of <span class="texhtml mvar" style="font-style:italic;">T</span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leq k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \leq k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17f47ca487127f924b3d2025db2eeb1d7ec1dcdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.665ex; height:2.343ex;" alt="{\displaystyle \leq k}"></span> then there exist constants <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c48aa9000af59f94d3022f58beadb61cea7d8b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.547ex; height:2.343ex;" alt="{\displaystyle \alpha _{p}}"></span> such that:<sup id="cite_ref-FOOTNOTERudin1991165_21-0" class="reference"><a href="#cite_note-FOOTNOTERudin1991165-21"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=\sum _{|p|\leq k}\alpha _{p}\partial ^{p}\delta _{x_{0}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> </mrow> </munder> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=\sum _{|p|\leq k}\alpha _{p}\partial ^{p}\delta _{x_{0}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aeb21f4e1c3d04fb2fe359d5542368c41bf0eca" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:17.631ex; height:6.009ex;" alt="{\displaystyle T=\sum _{|p|\leq k}\alpha _{p}\partial ^{p}\delta _{x_{0}}.}"></span> </p><p>Said differently, if <span class="texhtml mvar" style="font-style:italic;">T</span> has support at a single point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{P\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>P</mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{P\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66095dd0147dd9d20abf4b8e9ce2290c324ba418" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.717ex; height:2.843ex;" alt="{\displaystyle \{P\},}"></span> then <span class="texhtml mvar" style="font-style:italic;">T</span> is in fact a finite linear combination of distributional derivatives of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\displaystyle \delta }"></span> function at <span class="texhtml mvar" style="font-style:italic;">P</span>. That is, there exists an integer <span class="texhtml mvar" style="font-style:italic;">m</span> and complex constants <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06a4585da0160327a01afe7a1a32a8cfcf7a229e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.514ex; height:2.009ex;" alt="{\displaystyle a_{\alpha }}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=\sum _{|\alpha |\leq m}a_{\alpha }\partial ^{\alpha }(\tau _{P}\delta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>m</mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=\sum _{|\alpha |\leq m}a_{\alpha }\partial ^{\alpha }(\tau _{P}\delta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16d12e16aee66e83b79be6dc48dfb2f16d261b31" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:20.292ex; height:6.009ex;" alt="{\displaystyle T=\sum _{|\alpha |\leq m}a_{\alpha }\partial ^{\alpha }(\tau _{P}\delta )}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{P}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{P}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef973fcbad4d9c1f768ef0747caa4065e03d98d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.483ex; height:2.009ex;" alt="{\displaystyle \tau _{P}}"></span> is the translation operator. </p> <div class="mw-heading mw-heading4"><h4 id="Distribution_with_compact_support">Distribution with compact support</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=17" title="Edit section: Distribution with compact support"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name">Theorem<sup id="cite_ref-FOOTNOTERudin1991149–181_10-3" class="reference"><a href="#cite_note-FOOTNOTERudin1991149–181-10"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Suppose <span class="texhtml mvar" style="font-style:italic;">T</span> is a distribution on <span class="texhtml mvar" style="font-style:italic;">U</span> with compact support <span class="texhtml mvar" style="font-style:italic;">K</span>. There exists a continuous function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> defined on <span class="texhtml mvar" style="font-style:italic;">U</span> and a multi-index <span class="texhtml"><i>p</i></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=\partial ^{p}f,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>f</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=\partial ^{p}f,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44128bb0af484dafe304414e4bb41ef8c76e1e3e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.063ex; height:2.676ex;" alt="{\displaystyle T=\partial ^{p}f,}"></span> where the derivatives are understood in the sense of distributions. That is, for all test functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> on <span class="texhtml mvar" style="font-style:italic;">U</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\phi =(-1)^{|p|}\int _{U}f(x)(\partial ^{p}\phi )(x)\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mi>&#x03D5;<!-- ϕ --></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\phi =(-1)^{|p|}\int _{U}f(x)(\partial ^{p}\phi )(x)\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b7e2872249162e613823e2aaa6a773b3d9b9a0a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:33.167ex; height:5.676ex;" alt="{\displaystyle T\phi =(-1)^{|p|}\int _{U}f(x)(\partial ^{p}\phi )(x)\,dx.}"></span> </p> </div> <div class="mw-heading mw-heading4"><h4 id="Distributions_of_finite_order_with_support_in_an_open_subset">Distributions of finite order with support in an open subset</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=18" title="Edit section: Distributions of finite order with support in an open subset"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name">Theorem<sup id="cite_ref-FOOTNOTERudin1991149–181_10-4" class="reference"><a href="#cite_note-FOOTNOTERudin1991149–181-10"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Suppose <span class="texhtml mvar" style="font-style:italic;">T</span> is a distribution on <span class="texhtml mvar" style="font-style:italic;">U</span> with compact support <span class="texhtml mvar" style="font-style:italic;">K</span> and let <span class="texhtml mvar" style="font-style:italic;">V</span> be an open subset of <span class="texhtml mvar" style="font-style:italic;">U</span> containing <span class="texhtml mvar" style="font-style:italic;">K</span>. Since every distribution with compact support has finite order, take <span class="texhtml mvar" style="font-style:italic;">N</span> to be the order of <span class="texhtml mvar" style="font-style:italic;">T</span> and define <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P:=\{0,1,\ldots ,N+2\}^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>N</mi> <mo>+</mo> <mn>2</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P:=\{0,1,\ldots ,N+2\}^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43eabeb697d4e9c66f9ca7a2cfbc98ec6d56700" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.284ex; height:2.843ex;" alt="{\displaystyle P:=\{0,1,\ldots ,N+2\}^{n}.}"></span> There exists a family of continuous functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f_{p})_{p\in P}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>P</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f_{p})_{p\in P}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afcaa9573a17d918ff1da9e9849ea0abc19c0f43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.397ex; height:3.009ex;" alt="{\displaystyle (f_{p})_{p\in P}}"></span> defined on <span class="texhtml mvar" style="font-style:italic;">U</span> <b>with support in <span class="texhtml mvar" style="font-style:italic;">V</span></b> such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=\sum _{p\in P}\partial ^{p}f_{p},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>P</mi> </mrow> </munder> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=\sum _{p\in P}\partial ^{p}f_{p},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f8659a6d8c85b5abd8ca6314aadfc56418ae710" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:13.724ex; height:5.843ex;" alt="{\displaystyle T=\sum _{p\in P}\partial ^{p}f_{p},}"></span> where the derivatives are understood in the sense of distributions. That is, for all test functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> on <span class="texhtml mvar" style="font-style:italic;">U</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\phi =\sum _{p\in P}(-1)^{|p|}\int _{U}f_{p}(x)(\partial ^{p}\phi )(x)\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mi>&#x03D5;<!-- ϕ --></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>P</mi> </mrow> </munder> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\phi =\sum _{p\in P}(-1)^{|p|}\int _{U}f_{p}(x)(\partial ^{p}\phi )(x)\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/610348eb197604826be4d9dd61acc2ce919cd97a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:37.441ex; height:6.676ex;" alt="{\displaystyle T\phi =\sum _{p\in P}(-1)^{|p|}\int _{U}f_{p}(x)(\partial ^{p}\phi )(x)\,dx.}"></span> </p> </div> <div class="mw-heading mw-heading3"><h3 id="Global_structure_of_distributions">Global structure of distributions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=19" title="Edit section: Global structure of distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The formal definition of distributions exhibits them as a subspace of a very large space, namely the topological dual of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e72f5fe5656e7492d45267d817eb4d996dbe8f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.384ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(U)}"></span> (or the <a href="/wiki/Schwartz_space" title="Schwartz space">Schwartz space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0078d18e4675b6e7e2acb6c2c25c65294193e36d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.198ex; height:2.843ex;" alt="{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n})}"></span> for tempered distributions). It is not immediately clear from the definition how exotic a distribution might be. To answer this question, it is instructive to see distributions built up from a smaller space, namely the space of continuous functions. Roughly, any distribution is locally a (multiple) derivative of a continuous function. A precise version of this result, given below, holds for distributions of compact support, tempered distributions, and general distributions. Generally speaking, no proper subset of the space of distributions contains all continuous functions and is closed under differentiation. This says that distributions are not particularly exotic objects; they are only as complicated as necessary. </p> <div class="mw-heading mw-heading4"><h4 id="Distributions_as_sheaves">Distributions as <a href="/wiki/Sheaf_(mathematics)" title="Sheaf (mathematics)">sheaves</a></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=20" title="Edit section: Distributions as sheaves"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name">Theorem<sup id="cite_ref-FOOTNOTETrèves2006258–264_22-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006258–264-22"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup></strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Let <span class="texhtml mvar" style="font-style:italic;">T</span> be a distribution on <span class="texhtml mvar" style="font-style:italic;">U</span>. There exists a sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (T_{i})_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (T_{i})_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2cf70d450fa99abc7998c3040901ed44130c0f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.867ex; height:3.009ex;" alt="{\displaystyle (T_{i})_{i=1}^{\infty }}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> such that each <span class="texhtml mvar" style="font-style:italic;">T<sub>i</sub></span> has compact support and every compact subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subseteq U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subseteq U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03e72a341c3ea869b7cd9a149f349b972a854a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.947ex; height:2.343ex;" alt="{\displaystyle K\subseteq U}"></span> intersects the support of only finitely many <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{i},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{i},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46baae33fc48186f453a59edc3964340ad8765ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.804ex; height:2.509ex;" alt="{\displaystyle T_{i},}"></span> and the sequence of partial sums <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (S_{j})_{j=1}^{\infty },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (S_{j})_{j=1}^{\infty },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1295f29d9cf479efaf7b33327e22239fea663e6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:7.801ex; height:3.343ex;" alt="{\displaystyle (S_{j})_{j=1}^{\infty },}"></span> defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{j}:=T_{1}+\cdots +T_{j},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>:=</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{j}:=T_{1}+\cdots +T_{j},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/643a3834e071706aa2b170d55cfb5d1c15a24895" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.81ex; height:2.843ex;" alt="{\displaystyle S_{j}:=T_{1}+\cdots +T_{j},}"></span> converges in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> to <span class="texhtml mvar" style="font-style:italic;">T</span>; in other words we have: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=\sum _{i=1}^{\infty }T_{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=\sum _{i=1}^{\infty }T_{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f577683555a7a919a0239dd539e2ceebb3e98d42" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:11.281ex; height:6.843ex;" alt="{\displaystyle T=\sum _{i=1}^{\infty }T_{i}.}"></span> Recall that a sequence converges in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> (with its strong dual topology) if and only if it converges pointwise. </p> </div> <div class="mw-heading mw-heading4"><h4 id="Decomposition_of_distributions_as_sums_of_derivatives_of_continuous_functions">Decomposition of distributions as sums of derivatives of continuous functions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=21" title="Edit section: Decomposition of distributions as sums of derivatives of continuous functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>By combining the above results, one may express any distribution on <span class="texhtml mvar" style="font-style:italic;">U</span> as the sum of a series of distributions with compact support, where each of these distributions can in turn be written as a finite sum of distributional derivatives of continuous functions on <span class="texhtml mvar" style="font-style:italic;">U</span>. In other words, for arbitrary <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/317fe5e2f5b8c6b3ade2cb8ee45f86d5c663e7e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.545ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}&#039;(U)}"></span> we can write: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=\sum _{i=1}^{\infty }\sum _{p\in P_{i}}\partial ^{p}f_{ip},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </munder> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>p</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=\sum _{i=1}^{\infty }\sum _{p\in P_{i}}\partial ^{p}f_{ip},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/099e4fca39d2707e0f40684ebe26ca4c89568151" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:18.282ex; height:7.176ex;" alt="{\displaystyle T=\sum _{i=1}^{\infty }\sum _{p\in P_{i}}\partial ^{p}f_{ip},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1},P_{2},\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1},P_{2},\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/281bcbf81ec3b9e5705dcf2ba1644d1f268d9d76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.884ex; height:2.509ex;" alt="{\displaystyle P_{1},P_{2},\ldots }"></span> are finite sets of multi-indices and the functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{ip}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{ip}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de24d72cb7ee3a96845420757cbaf8c1b9bf33d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.766ex; height:2.843ex;" alt="{\displaystyle f_{ip}}"></span> are continuous. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name">Theorem<sup id="cite_ref-FOOTNOTERudin1991169–170_23-0" class="reference"><a href="#cite_note-FOOTNOTERudin1991169–170-23"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Let <span class="texhtml mvar" style="font-style:italic;">T</span> be a distribution on <span class="texhtml mvar" style="font-style:italic;">U</span>. For every multi-index <span class="texhtml mvar" style="font-style:italic;">p</span> there exists a continuous function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb8699118cdd0dd2bded6fe4d529a6af245d7a83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.168ex; height:2.343ex;" alt="{\displaystyle g_{p}}"></span> on <span class="texhtml mvar" style="font-style:italic;">U</span> such that </p> <ol><li>any compact subset <span class="texhtml mvar" style="font-style:italic;">K</span> of <span class="texhtml mvar" style="font-style:italic;">U</span> intersects the support of only finitely many <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{p},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{p},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7abc638038067d8c174191f526781101cd17b539" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.815ex; height:2.343ex;" alt="{\displaystyle g_{p},}"></span> and</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=\sum \nolimits _{p}\partial ^{p}g_{p}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <msub> <mo movablelimits="false">&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=\sum \nolimits _{p}\partial ^{p}g_{p}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f77413ef72c97370160b3f8b48cac2c140c8744a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:14.753ex; height:4.176ex;" alt="{\displaystyle T=\sum \nolimits _{p}\partial ^{p}g_{p}.}"></span></li></ol> <p>Moreover, if <span class="texhtml mvar" style="font-style:italic;">T</span> has finite order, then one can choose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb8699118cdd0dd2bded6fe4d529a6af245d7a83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.168ex; height:2.343ex;" alt="{\displaystyle g_{p}}"></span> in such a way that only finitely many of them are non-zero. </p> </div> <p>Note that the infinite sum above is well-defined as a distribution. The value of <span class="texhtml mvar" style="font-style:italic;">T</span> for a given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdc7c94259571d75489953aac9752bd8bb20f74e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.503ex; height:2.843ex;" alt="{\displaystyle f\in {\mathcal {D}}(U)}"></span> can be computed using the finitely many <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f738d4d35d65018d3295ad23c0cccf17c4e9eb44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.393ex; height:2.009ex;" alt="{\displaystyle g_{\alpha }}"></span> that intersect the support of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecb3ed2e17fa8f336dcc0fd4b3eddbfb02a50ef3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.925ex; height:2.509ex;" alt="{\displaystyle f.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Operations_on_distributions">Operations on distributions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=22" title="Edit section: Operations on distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Many operations which are defined on smooth functions with compact support can also be defined for distributions. In general, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A:{\mathcal {D}}(U)\to {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A:{\mathcal {D}}(U)\to {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d6001cc1b5317eaab8756478fa73f5ae8db55ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.062ex; height:2.843ex;" alt="{\displaystyle A:{\mathcal {D}}(U)\to {\mathcal {D}}(U)}"></span> is a linear map that is continuous with respect to the <a href="/wiki/Weak_topology" title="Weak topology">weak topology</a>, then it is not always possible to extend <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> to a map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A':{\mathcal {D}}'(U)\to {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mo>&#x2032;</mo> </msup> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A':{\mathcal {D}}'(U)\to {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8684568fb05919e58aaa08ef6241741b1dd8722" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.116ex; height:3.009ex;" alt="{\displaystyle A&#039;:{\mathcal {D}}&#039;(U)\to {\mathcal {D}}&#039;(U)}"></span> by classic extension theorems of topology or linear functional analysis.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>note 7<span class="cite-bracket">&#93;</span></a></sup> The “distributional” extension of the above linear continuous operator A is possible if and only if A admits a Schwartz adjoint, that is another linear continuous operator B of the same type such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle Af,g\rangle =\langle f,Bg\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>A</mi> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>B</mi> <mi>g</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle Af,g\rangle =\langle f,Bg\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/689d85c82bdfbbf1444664558d6ed1e54254e73f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.081ex; height:2.843ex;" alt="{\displaystyle \langle Af,g\rangle =\langle f,Bg\rangle }"></span>, for every pair of test functions. In that condition, B is unique and the extension A’ is the transpose of the Schwartz adjoint B. <sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (September 2020)">citation needed</span></a></i>&#93;</sup><sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="The text near this tag may need clarification or removal of jargon. (September 2020)">clarification needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Preliminaries:_Transpose_of_a_linear_operator">Preliminaries: Transpose of a linear operator</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=23" title="Edit section: Preliminaries: Transpose of a linear operator"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="Transpose_of_a_linear_operator"></span> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Transpose_of_a_linear_map" title="Transpose of a linear map">Transpose of a linear map</a></div> <p>Operations on distributions and spaces of distributions are often defined using the <a href="/wiki/Transpose_of_a_linear_map" title="Transpose of a linear map">transpose</a> of a linear operator. This is because the transpose allows for a unified presentation of the many definitions in the theory of distributions and also because its properties are well-known in <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a>.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> For instance, the well-known <a href="/wiki/Hermitian_adjoint" title="Hermitian adjoint">Hermitian adjoint</a> of a linear operator between <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert spaces</a> is just the operator's transpose (but with the <a href="/wiki/Riesz_representation_theorem" title="Riesz representation theorem">Riesz representation theorem</a> used to identify each Hilbert space with its <a href="/wiki/Strong_dual_space" title="Strong dual space">continuous dual space</a>). In general, the transpose of a continuous linear map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A:X\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A:X\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17ec2495406c54001faae8b2169e31e277048215" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.048ex; height:2.176ex;" alt="{\displaystyle A:X\to Y}"></span> is the linear map <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}A:Y'\to X'\qquad {\text{ defined by }}\qquad {}^{t}A(y'):=y'\circ A,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>A</mi> <mo>:</mo> <msup> <mi>Y</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>X</mi> <mo>&#x2032;</mo> </msup> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;defined by&#xA0;</mtext> </mrow> <mspace width="2em" /> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>A</mi> <mo stretchy="false">(</mo> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>:=</mo> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2218;<!-- ∘ --></mo> <mi>A</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}A:Y'\to X'\qquad {\text{ defined by }}\qquad {}^{t}A(y'):=y'\circ A,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32bd1f3933c429d8588043d670e4c7287e9a790f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.639ex; height:3.009ex;" alt="{\displaystyle {}^{t}A:Y&#039;\to X&#039;\qquad {\text{ defined by }}\qquad {}^{t}A(y&#039;):=y&#039;\circ A,}"></span> or equivalently, it is the unique map satisfying <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle y',A(x)\rangle =\left\langle {}^{t}A(y'),x\right\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mo>,</mo> <mi>A</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow> <mo>&#x27E8;</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>A</mi> <mo stretchy="false">(</mo> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>,</mo> <mi>x</mi> </mrow> <mo>&#x27E9;</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle y',A(x)\rangle =\left\langle {}^{t}A(y'),x\right\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be86c24de2df563b3556ec3a174286c23f80c645" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.451ex; height:3.176ex;" alt="{\displaystyle \langle y&#039;,A(x)\rangle =\left\langle {}^{t}A(y&#039;),x\right\rangle }"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e580967f68f36743e894aa7944f032dda6ea01d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.15ex; height:2.176ex;" alt="{\displaystyle x\in X}"></span> and all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y'\in Y'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>Y</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y'\in Y'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72eafe6206d192b5064421df4c1a05b1098cf610" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.271ex; height:2.843ex;" alt="{\displaystyle y&#039;\in Y&#039;}"></span> (the prime symbol in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a535de94a2183d7130731eab8a83531d7c35c6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.845ex; height:2.843ex;" alt="{\displaystyle y&#039;}"></span> does not denote a derivative of any kind; it merely indicates that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a535de94a2183d7130731eab8a83531d7c35c6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.845ex; height:2.843ex;" alt="{\displaystyle y&#039;}"></span> is an element of the continuous dual space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>Y</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bacdb2a4ddcc06c2dfbb7af3d92aec37bbaaf0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:2.585ex; height:2.343ex;" alt="{\displaystyle Y&#039;}"></span>). Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> is continuous, the transpose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}A:Y'\to X'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>A</mi> <mo>:</mo> <msup> <mi>Y</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>X</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}A:Y'\to X'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/789e39871172895a11df9846a2f2b615dfaad20f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.387ex; height:2.509ex;" alt="{\displaystyle {}^{t}A:Y&#039;\to X&#039;}"></span> is also continuous when both duals are endowed with their respective <a href="/wiki/Strong_dual_space" title="Strong dual space">strong dual topologies</a>; it is also continuous when both duals are endowed with their respective <a href="/wiki/Weak*_topology" class="mw-redirect" title="Weak* topology">weak* topologies</a> (see the articles <a href="/wiki/Polar_topology#Polar_topologies_and_topological_vector_spaces" title="Polar topology">polar topology</a> and <a href="/wiki/Dual_system#Weak_topology" title="Dual system">dual system</a> for more details). </p><p>In the context of distributions, the characterization of the transpose can be refined slightly. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A:{\mathcal {D}}(U)\to {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A:{\mathcal {D}}(U)\to {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d6001cc1b5317eaab8756478fa73f5ae8db55ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.062ex; height:2.843ex;" alt="{\displaystyle A:{\mathcal {D}}(U)\to {\mathcal {D}}(U)}"></span> be a continuous linear map. Then by definition, the transpose of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> is the unique linear operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}A:{\mathcal {D}}'(U)\to {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>A</mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}A:{\mathcal {D}}'(U)\to {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36d5f3b1fea2b56ca3b76a1e69668bb426c3012b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.257ex; height:3.009ex;" alt="{\displaystyle {}^{t}A:{\mathcal {D}}&#039;(U)\to {\mathcal {D}}&#039;(U)}"></span> that satisfies: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle {}^{t}A(T),\phi \rangle =\langle T,A(\phi )\rangle \quad {\text{ for all }}\phi \in {\mathcal {D}}(U){\text{ and all }}T\in {\mathcal {D}}'(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>A</mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mo>,</mo> <mi>A</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and all&#xA0;</mtext> </mrow> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle {}^{t}A(T),\phi \rangle =\langle T,A(\phi )\rangle \quad {\text{ for all }}\phi \in {\mathcal {D}}(U){\text{ and all }}T\in {\mathcal {D}}'(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66142e3cd19640b6d1ed3ed8782bbb96ce8a12b0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:60.813ex; height:3.009ex;" alt="{\displaystyle \langle {}^{t}A(T),\phi \rangle =\langle T,A(\phi )\rangle \quad {\text{ for all }}\phi \in {\mathcal {D}}(U){\text{ and all }}T\in {\mathcal {D}}&#039;(U).}"></span> </p><p>Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e72f5fe5656e7492d45267d817eb4d996dbe8f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.384ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(U)}"></span> is dense in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> (here, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e72f5fe5656e7492d45267d817eb4d996dbe8f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.384ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(U)}"></span> actually refers to the set of distributions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{D_{\psi }:\psi \in {\mathcal {D}}(U)\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> <mo>:</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{D_{\psi }:\psi \in {\mathcal {D}}(U)\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03c9ee11c341b3b92efbeb9e28f833353ebd4448" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.226ex; height:3.009ex;" alt="{\displaystyle \left\{D_{\psi }:\psi \in {\mathcal {D}}(U)\right\}}"></span>) it is sufficient that the defining equality hold for all distributions of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=D_{\psi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=D_{\psi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99f6243b11a1e64d8a72cf5555f72a06924012e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.961ex; height:2.843ex;" alt="{\displaystyle T=D_{\psi }}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi \in {\mathcal {D}}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi \in {\mathcal {D}}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80fb1d8b692356869d0df57b0de227b99212d0c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.384ex; height:2.843ex;" alt="{\displaystyle \psi \in {\mathcal {D}}(U).}"></span> Explicitly, this means that a continuous linear map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B:{\mathcal {D}}'(U)\to {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B:{\mathcal {D}}'(U)\to {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e313c1b67ed242aabbec21baed803fd7adc173a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.452ex; height:3.009ex;" alt="{\displaystyle B:{\mathcal {D}}&#039;(U)\to {\mathcal {D}}&#039;(U)}"></span> is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/038c833f94b6e71efbdbfc30694ea1dcf7b8f523" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.569ex; height:2.509ex;" alt="{\displaystyle {}^{t}A}"></span> if and only if the condition below holds: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle B(D_{\psi }),\phi \rangle =\langle {}^{t}A(D_{\psi }),\phi \rangle \quad {\text{ for all }}\phi ,\psi \in {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>B</mi> <mo stretchy="false">(</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>A</mi> <mo stretchy="false">(</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo>,</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle B(D_{\psi }),\phi \rangle =\langle {}^{t}A(D_{\psi }),\phi \rangle \quad {\text{ for all }}\phi ,\psi \in {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1411a54458ada69770379d51a306e51e3d316cd9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:47.424ex; height:3.176ex;" alt="{\displaystyle \langle B(D_{\psi }),\phi \rangle =\langle {}^{t}A(D_{\psi }),\phi \rangle \quad {\text{ for all }}\phi ,\psi \in {\mathcal {D}}(U)}"></span> where the right-hand side equals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle {}^{t}A(D_{\psi }),\phi \rangle =\langle D_{\psi },A(\phi )\rangle =\langle \psi ,A(\phi )\rangle =\int _{U}\psi \cdot A(\phi )\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>A</mi> <mo stretchy="false">(</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> <mo>,</mo> <mi>A</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mo>,</mo> <mi>A</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>&#x03C8;<!-- ψ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>A</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle {}^{t}A(D_{\psi }),\phi \rangle =\langle D_{\psi },A(\phi )\rangle =\langle \psi ,A(\phi )\rangle =\int _{U}\psi \cdot A(\phi )\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c968d78c695cda9d4fc5894aff164045f271456c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:56.313ex; height:5.676ex;" alt="{\displaystyle \langle {}^{t}A(D_{\psi }),\phi \rangle =\langle D_{\psi },A(\phi )\rangle =\langle \psi ,A(\phi )\rangle =\int _{U}\psi \cdot A(\phi )\,dx.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Differential_operators">Differential operators</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=24" title="Edit section: Differential operators"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Differentiation_of_distributions">Differentiation of distributions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=25" title="Edit section: Differentiation of distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A:{\mathcal {D}}(U)\to {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A:{\mathcal {D}}(U)\to {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d6001cc1b5317eaab8756478fa73f5ae8db55ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.062ex; height:2.843ex;" alt="{\displaystyle A:{\mathcal {D}}(U)\to {\mathcal {D}}(U)}"></span> be the partial derivative operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {\partial }{\partial x_{k}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {\partial }{\partial x_{k}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89c1fc65fed2c49eace5521329e56516978940b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:4.215ex; height:4.176ex;" alt="{\displaystyle {\tfrac {\partial }{\partial x_{k}}}.}"></span> To extend <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> we compute its transpose: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\langle {}^{t}A(D_{\psi }),\phi \rangle &amp;=\int _{U}\psi (A\phi )\,dx&amp;&amp;{\text{(See above.)}}\\&amp;=\int _{U}\psi {\frac {\partial \phi }{\partial x_{k}}}\,dx\\[4pt]&amp;=-\int _{U}\phi {\frac {\partial \psi }{\partial x_{k}}}\,dx&amp;&amp;{\text{(integration by parts)}}\\[4pt]&amp;=-\left\langle {\frac {\partial \psi }{\partial x_{k}}},\phi \right\rangle \\[4pt]&amp;=-\langle A\psi ,\phi \rangle =\langle -A\psi ,\phi \rangle \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt 0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>A</mi> <mo stretchy="false">(</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>(See above.)</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C8;<!-- ψ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>(integration by parts)</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>&#x27E8;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C8;<!-- ψ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>&#x27E9;</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>A</mi> <mi>&#x03C8;<!-- ψ --></mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <mi>&#x03C8;<!-- ψ --></mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\langle {}^{t}A(D_{\psi }),\phi \rangle &amp;=\int _{U}\psi (A\phi )\,dx&amp;&amp;{\text{(See above.)}}\\&amp;=\int _{U}\psi {\frac {\partial \phi }{\partial x_{k}}}\,dx\\[4pt]&amp;=-\int _{U}\phi {\frac {\partial \psi }{\partial x_{k}}}\,dx&amp;&amp;{\text{(integration by parts)}}\\[4pt]&amp;=-\left\langle {\frac {\partial \psi }{\partial x_{k}}},\phi \right\rangle \\[4pt]&amp;=-\langle A\psi ,\phi \rangle =\langle -A\psi ,\phi \rangle \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4af67b152655a622c5db42626dbb10d93d3e9247" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -14.505ex; width:63.811ex; height:30.176ex;" alt="{\displaystyle {\begin{aligned}\langle {}^{t}A(D_{\psi }),\phi \rangle &amp;=\int _{U}\psi (A\phi )\,dx&amp;&amp;{\text{(See above.)}}\\&amp;=\int _{U}\psi {\frac {\partial \phi }{\partial x_{k}}}\,dx\\[4pt]&amp;=-\int _{U}\phi {\frac {\partial \psi }{\partial x_{k}}}\,dx&amp;&amp;{\text{(integration by parts)}}\\[4pt]&amp;=-\left\langle {\frac {\partial \psi }{\partial x_{k}}},\phi \right\rangle \\[4pt]&amp;=-\langle A\psi ,\phi \rangle =\langle -A\psi ,\phi \rangle \end{aligned}}}"></span> </p><p>Therefore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}A=-A.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>A</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}A=-A.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71bb48cd34578c507877106c07fbfdb0a69d0243" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.866ex; height:2.676ex;" alt="{\displaystyle {}^{t}A=-A.}"></span> Thus, the partial derivative of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> with respect to the coordinate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d2b88c64c76a03611549fb9b4cf4ed060b56002" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.418ex; height:2.009ex;" alt="{\displaystyle x_{k}}"></span> is defined by the formula <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\langle {\frac {\partial T}{\partial x_{k}}},\phi \right\rangle =-\left\langle T,{\frac {\partial \phi }{\partial x_{k}}}\right\rangle \qquad {\text{ for all }}\phi \in {\mathcal {D}}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>&#x27E8;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>T</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>&#x27E9;</mo> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>&#x27E8;</mo> <mrow> <mi>T</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mrow> <mo>&#x27E9;</mo> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\langle {\frac {\partial T}{\partial x_{k}}},\phi \right\rangle =-\left\langle T,{\frac {\partial \phi }{\partial x_{k}}}\right\rangle \qquad {\text{ for all }}\phi \in {\mathcal {D}}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09416383e20e3b803b57b2268f491a5e1d14be0c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:48.774ex; height:6.176ex;" alt="{\displaystyle \left\langle {\frac {\partial T}{\partial x_{k}}},\phi \right\rangle =-\left\langle T,{\frac {\partial \phi }{\partial x_{k}}}\right\rangle \qquad {\text{ for all }}\phi \in {\mathcal {D}}(U).}"></span> </p><p>With this definition, every distribution is infinitely differentiable, and the derivative in the direction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d2b88c64c76a03611549fb9b4cf4ed060b56002" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.418ex; height:2.009ex;" alt="{\displaystyle x_{k}}"></span> is a <a href="/wiki/Linear_operator" class="mw-redirect" title="Linear operator">linear operator</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f1f6c933a1491eccb464d2f52700079c2e7fa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.715ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U).}"></span> </p><p>More generally, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> is an arbitrary <a href="/wiki/Multi-index" class="mw-redirect" title="Multi-index">multi-index</a>, then the partial derivative <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial ^{\alpha }T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial ^{\alpha }T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4fd8fc5bff0d8fb4118e3376fafe399ef998a85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.264ex; height:2.343ex;" alt="{\displaystyle \partial ^{\alpha }T}"></span> of the distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/317fe5e2f5b8c6b3ade2cb8ee45f86d5c663e7e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.545ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}&#039;(U)}"></span> is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \partial ^{\alpha }T,\phi \rangle =(-1)^{|\alpha |}\langle T,\partial ^{\alpha }\phi \rangle \qquad {\text{ for all }}\phi \in {\mathcal {D}}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>T</mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mo>,</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \partial ^{\alpha }T,\phi \rangle =(-1)^{|\alpha |}\langle T,\partial ^{\alpha }\phi \rangle \qquad {\text{ for all }}\phi \in {\mathcal {D}}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b72243fec7c7c4e1a4b3e1748d69edb392c8bb13" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:48.948ex; height:3.343ex;" alt="{\displaystyle \langle \partial ^{\alpha }T,\phi \rangle =(-1)^{|\alpha |}\langle T,\partial ^{\alpha }\phi \rangle \qquad {\text{ for all }}\phi \in {\mathcal {D}}(U).}"></span> </p><p>Differentiation of distributions is a continuous operator on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U);}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U);}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f524745cf9c66793df819cb6fabaef031fa060b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.715ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U);}"></span> this is an important and desirable property that is not shared by most other notions of differentiation. </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is a distribution in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{x\to 0}{\frac {T-\tau _{x}T}{x}}=T'\in {\mathcal {D}}'(\mathbb {R} ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>T</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>T</mi> </mrow> <mi>x</mi> </mfrac> </mrow> <mo>=</mo> <msup> <mi>T</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{x\to 0}{\frac {T-\tau _{x}T}{x}}=T'\in {\mathcal {D}}'(\mathbb {R} ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cfa216b01a554a45c53467df0ef25e80feb37ad" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:27.885ex; height:5.343ex;" alt="{\displaystyle \lim _{x\to 0}{\frac {T-\tau _{x}T}{x}}=T&#039;\in {\mathcal {D}}&#039;(\mathbb {R} ),}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b32d735f4fbb6eff3b35ed3dc1005a069d0b2e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.405ex; height:2.509ex;" alt="{\displaystyle T&#039;}"></span> is the derivative of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37a5ac03db3195b6344143fd455813a20b98aa6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.189ex; height:2.009ex;" alt="{\displaystyle \tau _{x}}"></span> is a translation by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05a950b252371110b85a784de7babc2448d28cc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.009ex;" alt="{\displaystyle x;}"></span> thus the derivative of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> may be viewed as a limit of quotients.<sup id="cite_ref-FOOTNOTERudin1991180_27-0" class="reference"><a href="#cite_note-FOOTNOTERudin1991180-27"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Differential_operators_acting_on_smooth_functions">Differential operators acting on smooth functions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=26" title="Edit section: Differential operators acting on smooth functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A linear differential operator in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> with smooth coefficients acts on the space of smooth functions on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a305ef479ab152035f334467a2c314baa23eb36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.429ex; height:2.176ex;" alt="{\displaystyle U.}"></span> Given such an operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle P:=\sum _{\alpha }c_{\alpha }\partial ^{\alpha },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>P</mi> <mo>:=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle P:=\sum _{\alpha }c_{\alpha }\partial ^{\alpha },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c64dec874b37a6bcb0562d6ae1463f7fabe46ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.181ex; height:3.009ex;" alt="{\textstyle P:=\sum _{\alpha }c_{\alpha }\partial ^{\alpha },}"></span> we would like to define a continuous linear map, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{P}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{P}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fe66f611cc50979755f4a8cef1a9bc9614e968f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.391ex; height:2.509ex;" alt="{\displaystyle D_{P}}"></span> that extends the action of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4551e29a7341d79592ff93adc25a23fb2744b0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(U)}"></span> to distributions on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a305ef479ab152035f334467a2c314baa23eb36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.429ex; height:2.176ex;" alt="{\displaystyle U.}"></span> In other words, we would like to define <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{P}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{P}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fe66f611cc50979755f4a8cef1a9bc9614e968f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.391ex; height:2.509ex;" alt="{\displaystyle D_{P}}"></span> such that the following diagram <a href="/wiki/Commutative_diagram" title="Commutative diagram">commutes</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\mathcal {D}}'(U)&amp;{\stackrel {D_{P}}{\longrightarrow }}&amp;{\mathcal {D}}'(U)\\[2pt]\uparrow &amp;&amp;\uparrow \\[2pt]C^{\infty }(U)&amp;{\stackrel {P}{\longrightarrow }}&amp;C^{\infty }(U)\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="0.6em 0.6em 0.4em" columnspacing="1em"> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27F6;<!-- ⟶ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mrow> </mover> </mrow> </mrow> </mtd> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">&#x2191;<!-- ↑ --></mo> </mtd> <mtd /> <mtd> <mo stretchy="false">&#x2191;<!-- ↑ --></mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27F6;<!-- ⟶ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </mover> </mrow> </mrow> </mtd> <mtd> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\mathcal {D}}'(U)&amp;{\stackrel {D_{P}}{\longrightarrow }}&amp;{\mathcal {D}}'(U)\\[2pt]\uparrow &amp;&amp;\uparrow \\[2pt]C^{\infty }(U)&amp;{\stackrel {P}{\longrightarrow }}&amp;C^{\infty }(U)\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97027c86b8d6a85b092e7f318bd7445d2314438b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:23.732ex; height:12.843ex;" alt="{\displaystyle {\begin{matrix}{\mathcal {D}}&#039;(U)&amp;{\stackrel {D_{P}}{\longrightarrow }}&amp;{\mathcal {D}}&#039;(U)\\[2pt]\uparrow &amp;&amp;\uparrow \\[2pt]C^{\infty }(U)&amp;{\stackrel {P}{\longrightarrow }}&amp;C^{\infty }(U)\end{matrix}}}"></span> where the vertical maps are given by assigning <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9271f99825877470cdcf8b2b36c5ac3bc2000bf1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.384ex; height:2.843ex;" alt="{\displaystyle f\in C^{\infty }(U)}"></span> its canonical distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{f}\in {\mathcal {D}}'(U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{f}\in {\mathcal {D}}'(U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96ba497adb515c8e8b77328c5724b00cbb4320a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.617ex; height:3.176ex;" alt="{\displaystyle D_{f}\in {\mathcal {D}}&#039;(U),}"></span> which is defined by: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{f}(\phi )=\langle f,\phi \rangle :=\int _{U}f(x)\phi (x)\,dx\quad {\text{ for all }}\phi \in {\mathcal {D}}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>:=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{f}(\phi )=\langle f,\phi \rangle :=\int _{U}f(x)\phi (x)\,dx\quad {\text{ for all }}\phi \in {\mathcal {D}}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/396b222534c7faab44a1f8f979897c59cf4e7847" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:53.217ex; height:5.676ex;" alt="{\displaystyle D_{f}(\phi )=\langle f,\phi \rangle :=\int _{U}f(x)\phi (x)\,dx\quad {\text{ for all }}\phi \in {\mathcal {D}}(U).}"></span> With this notation, the diagram commuting is equivalent to: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{P(f)}=D_{P}D_{f}\qquad {\text{ for all }}f\in C^{\infty }(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo>=</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{P(f)}=D_{P}D_{f}\qquad {\text{ for all }}f\in C^{\infty }(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69ff8d0fd78088f07354adc847ec44d9c541d143" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:38.784ex; height:3.176ex;" alt="{\displaystyle D_{P(f)}=D_{P}D_{f}\qquad {\text{ for all }}f\in C^{\infty }(U).}"></span> </p><p>To find <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{P},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{P},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b401a8e7299c83547e07b13a7a1d961c9cdb00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.038ex; height:2.509ex;" alt="{\displaystyle D_{P},}"></span> the transpose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}P:{\mathcal {D}}'(U)\to {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>P</mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}P:{\mathcal {D}}'(U)\to {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/810aeec20c73d48a303dfc28329731f999ce7712" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.26ex; height:3.009ex;" alt="{\displaystyle {}^{t}P:{\mathcal {D}}&#039;(U)\to {\mathcal {D}}&#039;(U)}"></span> of the continuous induced map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P:{\mathcal {D}}(U)\to {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P:{\mathcal {D}}(U)\to {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b0a8327e9d4e558929a797c0242b052695e945b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.064ex; height:2.843ex;" alt="{\displaystyle P:{\mathcal {D}}(U)\to {\mathcal {D}}(U)}"></span> defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi \mapsto P(\phi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi \mapsto P(\phi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87eb77dd6cebc6cd076a5e3848ff2bbf794a90f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.94ex; height:2.843ex;" alt="{\displaystyle \phi \mapsto P(\phi )}"></span> is considered in the lemma below. This leads to the following definition of the differential operator on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> called <em>the <b>formal transpose</b> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd35af9d5901e795c83d9f519ac73264e74fa595" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.392ex; height:2.509ex;" alt="{\displaystyle P,}"></span></em> which will be denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b66b4c13fd72ffea93cd9440e43047ffd24cc666" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.293ex; margin-bottom: -0.379ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{*}}"></span> to avoid confusion with the transpose map, that is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{*}:=\sum _{\alpha }b_{\alpha }\partial ^{\alpha }\quad {\text{ where }}\quad b_{\alpha }:=\sum _{\beta \geq \alpha }(-1)^{|\beta |}{\binom {\beta }{\alpha }}\partial ^{\beta -\alpha }c_{\beta }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> <mo>:=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;where&#xA0;</mtext> </mrow> <mspace width="1em" /> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo>:=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B1;<!-- α --></mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{*}:=\sum _{\alpha }b_{\alpha }\partial ^{\alpha }\quad {\text{ where }}\quad b_{\alpha }:=\sum _{\beta \geq \alpha }(-1)^{|\beta |}{\binom {\beta }{\alpha }}\partial ^{\beta -\alpha }c_{\beta }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15ffecd0ba85f909586086d95a9aceda6b07ad4d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:55.532ex; height:7.009ex;" alt="{\displaystyle P_{*}:=\sum _{\alpha }b_{\alpha }\partial ^{\alpha }\quad {\text{ where }}\quad b_{\alpha }:=\sum _{\beta \geq \alpha }(-1)^{|\beta |}{\binom {\beta }{\alpha }}\partial ^{\beta -\alpha }c_{\beta }.}"></span> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name">Lemma</strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> be a linear differential operator with smooth coefficients in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a305ef479ab152035f334467a2c314baa23eb36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.429ex; height:2.176ex;" alt="{\displaystyle U.}"></span> Then for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi \in {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi \in {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/998179c62f0270bb6011d01618b3eb5387861ec7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.61ex; height:2.843ex;" alt="{\displaystyle \phi \in {\mathcal {D}}(U)}"></span> we have <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\langle {}^{t}P(D_{f}),\phi \right\rangle =\left\langle D_{P_{*}(f)},\phi \right\rangle ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>&#x27E8;</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>&#x27E9;</mo> </mrow> <mo>=</mo> <mrow> <mo>&#x27E8;</mo> <mrow> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>&#x27E9;</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\langle {}^{t}P(D_{f}),\phi \right\rangle =\left\langle D_{P_{*}(f)},\phi \right\rangle ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c12104fc9dd0debc7ee19162bab4163a2b311f5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:27.029ex; height:3.343ex;" alt="{\displaystyle \left\langle {}^{t}P(D_{f}),\phi \right\rangle =\left\langle D_{P_{*}(f)},\phi \right\rangle ,}"></span> which is equivalent to: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}P(D_{f})=D_{P_{*}(f)}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}P(D_{f})=D_{P_{*}(f)}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0daa6c75140f03c45bf9e47f96f0d0c221f5084" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:17.413ex; height:3.343ex;" alt="{\displaystyle {}^{t}P(D_{f})=D_{P_{*}(f)}.}"></span> </p> </div> <style data-mw-deduplicate="TemplateStyles:r1256386598">.mw-parser-output .cot-header-mainspace{background:#F0F2F5;color:inherit}.mw-parser-output .cot-header-other{background:#CCFFCC;color:inherit}@media screen{html.skin-theme-clientpref-night .mw-parser-output .cot-header-mainspace{background:#14181F;color:inherit}html.skin-theme-clientpref-night .mw-parser-output .cot-header-other{background:#003500;color:inherit}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cot-header-mainspace{background:#14181F;color:inherit}html.skin-theme-clientpref-os .mw-parser-output .cot-header-other{background:#003500;color:inherit}}</style> <div style="margin-left:0"> <table class="mw-collapsible mw-archivedtalk mw-collapsed" style="color:inherit; background: transparent; text-align: left; border: 1px solid Silver; margin: 0.2em auto auto; width:100%; clear: both; padding: 1px;"> <tbody><tr> <th class="cot-header-mainspace" style="; font-size:87%; padding:0.2em 0.3em; text-align:left;"><div style="font-size:115%;">Proof</div> </th></tr> <tr> <td style="color:inherit; border: solid 1px Silver; padding: 0.6em; background: var(--background-color-base, #fff);"> <p>As discussed above, for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi \in {\mathcal {D}}(U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi \in {\mathcal {D}}(U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f9265ba1547f5dbfd7a2d5f2c9ad404d867ca9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.257ex; height:2.843ex;" alt="{\displaystyle \phi \in {\mathcal {D}}(U),}"></span> the transpose may be calculated by: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left\langle {}^{t}P(D_{f}),\phi \right\rangle &amp;=\int _{U}f(x)P(\phi )(x)\,dx\\&amp;=\int _{U}f(x)\left[\sum \nolimits _{\alpha }c_{\alpha }(x)(\partial ^{\alpha }\phi )(x)\right]\,dx\\&amp;=\sum \nolimits _{\alpha }\int _{U}f(x)c_{\alpha }(x)(\partial ^{\alpha }\phi )(x)\,dx\\&amp;=\sum \nolimits _{\alpha }(-1)^{|\alpha |}\int _{U}\phi (x)(\partial ^{\alpha }(c_{\alpha }f))(x)\,dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow> <mo>&#x27E8;</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>&#x27E9;</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow> <mo>[</mo> <mrow> <msub> <mo movablelimits="false">&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mo movablelimits="false">&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mo movablelimits="false">&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\left\langle {}^{t}P(D_{f}),\phi \right\rangle &amp;=\int _{U}f(x)P(\phi )(x)\,dx\\&amp;=\int _{U}f(x)\left[\sum \nolimits _{\alpha }c_{\alpha }(x)(\partial ^{\alpha }\phi )(x)\right]\,dx\\&amp;=\sum \nolimits _{\alpha }\int _{U}f(x)c_{\alpha }(x)(\partial ^{\alpha }\phi )(x)\,dx\\&amp;=\sum \nolimits _{\alpha }(-1)^{|\alpha |}\int _{U}\phi (x)(\partial ^{\alpha }(c_{\alpha }f))(x)\,dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a73471cb9ab68b74797566d1588d6dcaf761940d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.338ex; width:51.495ex; height:23.843ex;" alt="{\displaystyle {\begin{aligned}\left\langle {}^{t}P(D_{f}),\phi \right\rangle &amp;=\int _{U}f(x)P(\phi )(x)\,dx\\&amp;=\int _{U}f(x)\left[\sum \nolimits _{\alpha }c_{\alpha }(x)(\partial ^{\alpha }\phi )(x)\right]\,dx\\&amp;=\sum \nolimits _{\alpha }\int _{U}f(x)c_{\alpha }(x)(\partial ^{\alpha }\phi )(x)\,dx\\&amp;=\sum \nolimits _{\alpha }(-1)^{|\alpha |}\int _{U}\phi (x)(\partial ^{\alpha }(c_{\alpha }f))(x)\,dx\end{aligned}}}"></span> </p><p>For the last line we used <a href="/wiki/Integration_by_parts" title="Integration by parts">integration by parts</a> combined with the fact that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> and therefore all the functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)c_{\alpha }(x)\partial ^{\alpha }\phi (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)c_{\alpha }(x)\partial ^{\alpha }\phi (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f4294ddc93019d9efe9a9e6585890e6904bd694" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.999ex; height:2.843ex;" alt="{\displaystyle f(x)c_{\alpha }(x)\partial ^{\alpha }\phi (x)}"></span> have compact support.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>note 8<span class="cite-bracket">&#93;</span></a></sup> Continuing the calculation above, for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi \in {\mathcal {D}}(U):}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>:</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi \in {\mathcal {D}}(U):}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95f6be4d0042538165ab4a664040e48e6efdac1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.902ex; height:2.843ex;" alt="{\displaystyle \phi \in {\mathcal {D}}(U):}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left\langle {}^{t}P(D_{f}),\phi \right\rangle &amp;=\sum \nolimits _{\alpha }(-1)^{|\alpha |}\int _{U}\phi (x)(\partial ^{\alpha }(c_{\alpha }f))(x)\,dx&amp;&amp;{\text{As shown above}}\\[4pt]&amp;=\int _{U}\phi (x)\sum \nolimits _{\alpha }(-1)^{|\alpha |}(\partial ^{\alpha }(c_{\alpha }f))(x)\,dx\\[4pt]&amp;=\int _{U}\phi (x)\sum _{\alpha }\left[\sum _{\gamma \leq \alpha }{\binom {\alpha }{\gamma }}(\partial ^{\gamma }c_{\alpha })(x)(\partial ^{\alpha -\gamma }f)(x)\right]\,dx&amp;&amp;{\text{Leibniz rule}}\\&amp;=\int _{U}\phi (x)\left[\sum _{\alpha }\sum _{\gamma \leq \alpha }(-1)^{|\alpha |}{\binom {\alpha }{\gamma }}(\partial ^{\gamma }c_{\alpha })(x)(\partial ^{\alpha -\gamma }f)(x)\right]\,dx\\&amp;=\int _{U}\phi (x)\left[\sum _{\alpha }\left[\sum _{\beta \geq \alpha }(-1)^{|\beta |}{\binom {\beta }{\alpha }}\left(\partial ^{\beta -\alpha }c_{\beta }\right)(x)\right](\partial ^{\alpha }f)(x)\right]\,dx&amp;&amp;{\text{Grouping terms by derivatives of }}f\\&amp;=\int _{U}\phi (x)\left[\sum \nolimits _{\alpha }b_{\alpha }(x)(\partial ^{\alpha }f)(x)\right]\,dx&amp;&amp;b_{\alpha }:=\sum _{\beta \geq \alpha }(-1)^{|\beta |}{\binom {\beta }{\alpha }}\partial ^{\beta -\alpha }c_{\beta }\\&amp;=\left\langle \left(\sum \nolimits _{\alpha }b_{\alpha }\partial ^{\alpha }\right)(f),\phi \right\rangle \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.3em 0.3em 0.3em 0.3em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow> <mo>&#x27E8;</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>&#x27E9;</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mo movablelimits="false">&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>As shown above</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mo movablelimits="false">&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <mrow> <mo>[</mo> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B3;<!-- γ --></mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>Leibniz rule</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow> <mo>[</mo> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B3;<!-- γ --></mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow> <mo>[</mo> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <mrow> <mo>[</mo> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B1;<!-- α --></mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>Grouping terms by derivatives of&#xA0;</mtext> </mrow> <mi>f</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow> <mo>[</mo> <mrow> <msub> <mo movablelimits="false">&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> <mtd /> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo>:=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B1;<!-- α --></mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>&#x27E8;</mo> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mo movablelimits="false">&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>&#x27E9;</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\left\langle {}^{t}P(D_{f}),\phi \right\rangle &amp;=\sum \nolimits _{\alpha }(-1)^{|\alpha |}\int _{U}\phi (x)(\partial ^{\alpha }(c_{\alpha }f))(x)\,dx&amp;&amp;{\text{As shown above}}\\[4pt]&amp;=\int _{U}\phi (x)\sum \nolimits _{\alpha }(-1)^{|\alpha |}(\partial ^{\alpha }(c_{\alpha }f))(x)\,dx\\[4pt]&amp;=\int _{U}\phi (x)\sum _{\alpha }\left[\sum _{\gamma \leq \alpha }{\binom {\alpha }{\gamma }}(\partial ^{\gamma }c_{\alpha })(x)(\partial ^{\alpha -\gamma }f)(x)\right]\,dx&amp;&amp;{\text{Leibniz rule}}\\&amp;=\int _{U}\phi (x)\left[\sum _{\alpha }\sum _{\gamma \leq \alpha }(-1)^{|\alpha |}{\binom {\alpha }{\gamma }}(\partial ^{\gamma }c_{\alpha })(x)(\partial ^{\alpha -\gamma }f)(x)\right]\,dx\\&amp;=\int _{U}\phi (x)\left[\sum _{\alpha }\left[\sum _{\beta \geq \alpha }(-1)^{|\beta |}{\binom {\beta }{\alpha }}\left(\partial ^{\beta -\alpha }c_{\beta }\right)(x)\right](\partial ^{\alpha }f)(x)\right]\,dx&amp;&amp;{\text{Grouping terms by derivatives of }}f\\&amp;=\int _{U}\phi (x)\left[\sum \nolimits _{\alpha }b_{\alpha }(x)(\partial ^{\alpha }f)(x)\right]\,dx&amp;&amp;b_{\alpha }:=\sum _{\beta \geq \alpha }(-1)^{|\beta |}{\binom {\beta }{\alpha }}\partial ^{\beta -\alpha }c_{\beta }\\&amp;=\left\langle \left(\sum \nolimits _{\alpha }b_{\alpha }\partial ^{\alpha }\right)(f),\phi \right\rangle \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/135d1166231a190edfc094f39010b8432d361f32" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -24.005ex; width:113.426ex; height:49.176ex;" alt="{\displaystyle {\begin{aligned}\left\langle {}^{t}P(D_{f}),\phi \right\rangle &amp;=\sum \nolimits _{\alpha }(-1)^{|\alpha |}\int _{U}\phi (x)(\partial ^{\alpha }(c_{\alpha }f))(x)\,dx&amp;&amp;{\text{As shown above}}\\[4pt]&amp;=\int _{U}\phi (x)\sum \nolimits _{\alpha }(-1)^{|\alpha |}(\partial ^{\alpha }(c_{\alpha }f))(x)\,dx\\[4pt]&amp;=\int _{U}\phi (x)\sum _{\alpha }\left[\sum _{\gamma \leq \alpha }{\binom {\alpha }{\gamma }}(\partial ^{\gamma }c_{\alpha })(x)(\partial ^{\alpha -\gamma }f)(x)\right]\,dx&amp;&amp;{\text{Leibniz rule}}\\&amp;=\int _{U}\phi (x)\left[\sum _{\alpha }\sum _{\gamma \leq \alpha }(-1)^{|\alpha |}{\binom {\alpha }{\gamma }}(\partial ^{\gamma }c_{\alpha })(x)(\partial ^{\alpha -\gamma }f)(x)\right]\,dx\\&amp;=\int _{U}\phi (x)\left[\sum _{\alpha }\left[\sum _{\beta \geq \alpha }(-1)^{|\beta |}{\binom {\beta }{\alpha }}\left(\partial ^{\beta -\alpha }c_{\beta }\right)(x)\right](\partial ^{\alpha }f)(x)\right]\,dx&amp;&amp;{\text{Grouping terms by derivatives of }}f\\&amp;=\int _{U}\phi (x)\left[\sum \nolimits _{\alpha }b_{\alpha }(x)(\partial ^{\alpha }f)(x)\right]\,dx&amp;&amp;b_{\alpha }:=\sum _{\beta \geq \alpha }(-1)^{|\beta |}{\binom {\beta }{\alpha }}\partial ^{\beta -\alpha }c_{\beta }\\&amp;=\left\langle \left(\sum \nolimits _{\alpha }b_{\alpha }\partial ^{\alpha }\right)(f),\phi \right\rangle \end{aligned}}}"></span> </p> </td></tr></tbody></table></div> <p>The Lemma combined with the fact that the formal transpose of the formal transpose is the original differential operator, that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{**}=P,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> <mo>=</mo> <mi>P</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{**}=P,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b632683d4287ed433a2dac58c8229252d137dcda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.859ex; height:2.509ex;" alt="{\displaystyle P_{**}=P,}"></span><sup id="cite_ref-FOOTNOTETrèves2006247–252_29-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006247–252-29"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> enables us to arrive at the correct definition: the formal transpose induces the (continuous) canonical linear operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{*}:C_{c}^{\infty }(U)\to C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> <mo>:</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{*}:C_{c}^{\infty }(U)\to C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c67a03649efe01e8804c31561f75b18b9f9f1b5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.628ex; height:2.843ex;" alt="{\displaystyle P_{*}:C_{c}^{\infty }(U)\to C_{c}^{\infty }(U)}"></span> defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi \mapsto P_{*}(\phi ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi \mapsto P_{*}(\phi ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/593c4e609d3aa655a2bfe909a065d561fa69fdc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.388ex; height:2.843ex;" alt="{\displaystyle \phi \mapsto P_{*}(\phi ).}"></span> We claim that the transpose of this map, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}P_{*}:{\mathcal {D}}'(U)\to {\mathcal {D}}'(U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}P_{*}:{\mathcal {D}}'(U)\to {\mathcal {D}}'(U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a49b53c686d353dbb57dca1cd2de057fcd00f933" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.708ex; height:3.009ex;" alt="{\displaystyle {}^{t}P_{*}:{\mathcal {D}}&#039;(U)\to {\mathcal {D}}&#039;(U),}"></span> can be taken as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{P}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{P}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14acf5fad0b3f9e821334e45d09722332f67f89f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.038ex; height:2.509ex;" alt="{\displaystyle D_{P}.}"></span> To see this, for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi \in {\mathcal {D}}(U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi \in {\mathcal {D}}(U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f9265ba1547f5dbfd7a2d5f2c9ad404d867ca9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.257ex; height:2.843ex;" alt="{\displaystyle \phi \in {\mathcal {D}}(U),}"></span> compute its action on a distribution of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13b8420d715315c8e8b57f178a1b3a8512bd0959" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.061ex; height:2.843ex;" alt="{\displaystyle D_{f}}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9271f99825877470cdcf8b2b36c5ac3bc2000bf1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.384ex; height:2.843ex;" alt="{\displaystyle f\in C^{\infty }(U)}"></span>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left\langle {}^{t}P_{*}\left(D_{f}\right),\phi \right\rangle &amp;=\left\langle D_{P_{**}(f)},\phi \right\rangle &amp;&amp;{\text{Using Lemma above with }}P_{*}{\text{ in place of }}P\\&amp;=\left\langle D_{P(f)},\phi \right\rangle &amp;&amp;P_{**}=P\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow> <mo>&#x27E8;</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>&#x27E9;</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>&#x27E8;</mo> <mrow> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>&#x27E9;</mo> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>Using Lemma above with&#xA0;</mtext> </mrow> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;in place of&#xA0;</mtext> </mrow> <mi>P</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>&#x27E8;</mo> <mrow> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>&#x27E9;</mo> </mrow> </mtd> <mtd /> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> <mo>=</mo> <mi>P</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\left\langle {}^{t}P_{*}\left(D_{f}\right),\phi \right\rangle &amp;=\left\langle D_{P_{**}(f)},\phi \right\rangle &amp;&amp;{\text{Using Lemma above with }}P_{*}{\text{ in place of }}P\\&amp;=\left\langle D_{P(f)},\phi \right\rangle &amp;&amp;P_{**}=P\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37dd6b880dd5cd13c8613ddb86b17786fcf64f0b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:75.232ex; height:6.843ex;" alt="{\displaystyle {\begin{aligned}\left\langle {}^{t}P_{*}\left(D_{f}\right),\phi \right\rangle &amp;=\left\langle D_{P_{**}(f)},\phi \right\rangle &amp;&amp;{\text{Using Lemma above with }}P_{*}{\text{ in place of }}P\\&amp;=\left\langle D_{P(f)},\phi \right\rangle &amp;&amp;P_{**}=P\end{aligned}}}"></span> </p><p>We call the continuous linear operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{P}:={}^{t}P_{*}:{\mathcal {D}}'(U)\to {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>:=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{P}:={}^{t}P_{*}:{\mathcal {D}}'(U)\to {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87b0c1ab9f5dfd689887efaf6132b622a0bf2572" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.197ex; height:3.009ex;" alt="{\displaystyle D_{P}:={}^{t}P_{*}:{\mathcal {D}}&#039;(U)\to {\mathcal {D}}&#039;(U)}"></span> the <b><em>differential operator on distributions extending <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span></em></b>.<sup id="cite_ref-FOOTNOTETrèves2006247–252_29-1" class="reference"><a href="#cite_note-FOOTNOTETrèves2006247–252-29"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> Its action on an arbitrary distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> is defined via: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{P}(S)(\phi )=S\left(P_{*}(\phi )\right)\quad {\text{ for all }}\phi \in {\mathcal {D}}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>S</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{P}(S)(\phi )=S\left(P_{*}(\phi )\right)\quad {\text{ for all }}\phi \in {\mathcal {D}}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65a0a2d37260bc34f78f5a6fb6ddb150ccfab26e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.38ex; height:2.843ex;" alt="{\displaystyle D_{P}(S)(\phi )=S\left(P_{*}(\phi )\right)\quad {\text{ for all }}\phi \in {\mathcal {D}}(U).}"></span> </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (T_{i})_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (T_{i})_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2cf70d450fa99abc7998c3040901ed44130c0f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.867ex; height:3.009ex;" alt="{\displaystyle (T_{i})_{i=1}^{\infty }}"></span> converges to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/317fe5e2f5b8c6b3ade2cb8ee45f86d5c663e7e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.545ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}&#039;(U)}"></span> then for every multi-index <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha ,(\partial ^{\alpha }T_{i})_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha ,(\partial ^{\alpha }T_{i})_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2a22d6c8af42a1bbf098f8b6ac5db58df390b0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.016ex; height:3.009ex;" alt="{\displaystyle \alpha ,(\partial ^{\alpha }T_{i})_{i=1}^{\infty }}"></span> converges to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial ^{\alpha }T\in {\mathcal {D}}'(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial ^{\alpha }T\in {\mathcal {D}}'(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdc8be9bc0d9c74f888fc45ca975c50739647c9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.82ex; height:3.009ex;" alt="{\displaystyle \partial ^{\alpha }T\in {\mathcal {D}}&#039;(U).}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Multiplication_of_distributions_by_smooth_functions">Multiplication of distributions by smooth functions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=27" title="Edit section: Multiplication of distributions by smooth functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A differential operator of order 0 is just multiplication by a smooth function. And conversely, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is a smooth function then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P:=f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>:=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P:=f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e91c549c05bb3e121e435178e51ecb499dd53ec8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.908ex; height:2.843ex;" alt="{\displaystyle P:=f(x)}"></span> is a differential operator of order 0, whose formal transpose is itself (that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{*}=P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> <mo>=</mo> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{*}=P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f300927c87f2cbd96d58494b76688d32d4a848f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.293ex; margin-bottom: -0.379ex; width:7.39ex; height:2.509ex;" alt="{\displaystyle P_{*}=P}"></span>). The induced differential operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{P}:{\mathcal {D}}'(U)\to {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{P}:{\mathcal {D}}'(U)\to {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34f75f6e9ff43038bd9893ab8c781074d7a3ba31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.079ex; height:3.009ex;" alt="{\displaystyle D_{P}:{\mathcal {D}}&#039;(U)\to {\mathcal {D}}&#039;(U)}"></span> maps a distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> to a distribution denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle fT:=D_{P}(T).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mi>T</mi> <mo>:=</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle fT:=D_{P}(T).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36d5072efbd811d70a5802ca732c2d176fdad783" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.143ex; height:2.843ex;" alt="{\displaystyle fT:=D_{P}(T).}"></span> We have thus defined the multiplication of a distribution by a smooth function. </p><p>We now give an alternative presentation of the multiplication of a distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> by a smooth function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m:U\to \mathbb {R} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>:</mo> <mi>U</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m:U\to \mathbb {R} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa31e90c6bbdfc6470671db9a896da4bf6dbbb0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.699ex; height:2.176ex;" alt="{\displaystyle m:U\to \mathbb {R} .}"></span> The product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mT}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle mT}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea28b3e07996007adf2525e0fd0ecd8074c82623" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.677ex; height:2.176ex;" alt="{\displaystyle mT}"></span> is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle mT,\phi \rangle =\langle T,m\phi \rangle \qquad {\text{ for all }}\phi \in {\mathcal {D}}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>m</mi> <mi>T</mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mo>,</mo> <mi>m</mi> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle mT,\phi \rangle =\langle T,m\phi \rangle \qquad {\text{ for all }}\phi \in {\mathcal {D}}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0220549f915b237f8ad63d32dfb421b846f953a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.795ex; height:2.843ex;" alt="{\displaystyle \langle mT,\phi \rangle =\langle T,m\phi \rangle \qquad {\text{ for all }}\phi \in {\mathcal {D}}(U).}"></span> </p><p>This definition coincides with the transpose definition since if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M:{\mathcal {D}}(U)\to {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M:{\mathcal {D}}(U)\to {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c56ec8d40e0f2c79506f4bcd50afccdaa83e7caf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.761ex; height:2.843ex;" alt="{\displaystyle M:{\mathcal {D}}(U)\to {\mathcal {D}}(U)}"></span> is the operator of multiplication by the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> (that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (M\phi )(x)=m(x)\phi (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>M</mi> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>m</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (M\phi )(x)=m(x)\phi (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d0ba9f717be970cc06a8c6ceae435ce182719a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.578ex; height:2.843ex;" alt="{\displaystyle (M\phi )(x)=m(x)\phi (x)}"></span>), then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{U}(M\phi )(x)\psi (x)\,dx=\int _{U}m(x)\phi (x)\psi (x)\,dx=\int _{U}\phi (x)m(x)\psi (x)\,dx=\int _{U}\phi (x)(M\psi )(x)\,dx,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>M</mi> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>m</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>m</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>M</mi> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{U}(M\phi )(x)\psi (x)\,dx=\int _{U}m(x)\phi (x)\psi (x)\,dx=\int _{U}\phi (x)m(x)\psi (x)\,dx=\int _{U}\phi (x)(M\psi )(x)\,dx,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3dfdd739e303e0571f169689be02ec3318a96bc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:89.543ex; height:5.676ex;" alt="{\displaystyle \int _{U}(M\phi )(x)\psi (x)\,dx=\int _{U}m(x)\phi (x)\psi (x)\,dx=\int _{U}\phi (x)m(x)\psi (x)\,dx=\int _{U}\phi (x)(M\psi )(x)\,dx,}"></span> so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}M=M.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>M</mi> <mo>=</mo> <mi>M</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}M=M.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dbae38449a307d8aacaf93a8ec58db709f3a8df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.456ex; height:2.509ex;" alt="{\displaystyle {}^{t}M=M.}"></span> </p><p>Under multiplication by smooth functions, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> is a <a href="/wiki/Module_(mathematics)" title="Module (mathematics)">module</a> over the <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">ring</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c88e7383e095d01b0e1d41f1c581d2eb28a1436b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.912ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(U).}"></span> With this definition of multiplication by a smooth function, the ordinary <a href="/wiki/Product_rule" title="Product rule">product rule</a> of calculus remains valid. However, some unusual identities also arise. For example, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\displaystyle \delta }"></span> is the Dirac delta distribution on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0522388d36b55de7babe4bbfc49475eaf590c2bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.325ex; height:2.509ex;" alt="{\displaystyle \mathbb {R} ,}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\delta =m(0)\delta ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mi>&#x03B4;<!-- δ --></mi> <mo>=</mo> <mi>m</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mi>&#x03B4;<!-- δ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\delta =m(0)\delta ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f95ac5d2a7a18ba71ed27585c30936975c68d79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.895ex; height:2.843ex;" alt="{\displaystyle m\delta =m(0)\delta ,}"></span> and if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta ^{'}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mo>&#x2032;</mo> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta ^{'}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/402d757fe288deeb445020d1821644f91164c3cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.817ex; height:2.843ex;" alt="{\displaystyle \delta ^{&#039;}}"></span> is the derivative of the delta distribution, then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\delta '=m(0)\delta '-m'\delta =m(0)\delta '-m'(0)\delta .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <msup> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>m</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <msup> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x2032;</mo> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>m</mi> <mo>&#x2032;</mo> </msup> <mi>&#x03B4;<!-- δ --></mi> <mo>=</mo> <mi>m</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <msup> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x2032;</mo> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>m</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mi>&#x03B4;<!-- δ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\delta '=m(0)\delta '-m'\delta =m(0)\delta '-m'(0)\delta .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad26af9a70d30acd1323229221d5cf8c4f44abe2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.324ex; height:3.009ex;" alt="{\displaystyle m\delta &#039;=m(0)\delta &#039;-m&#039;\delta =m(0)\delta &#039;-m&#039;(0)\delta .}"></span> </p><p>The bilinear multiplication map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(\mathbb {R} ^{n})\times {\mathcal {D}}'(\mathbb {R} ^{n})\to {\mathcal {D}}'\left(\mathbb {R} ^{n}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mrow> <mo>(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(\mathbb {R} ^{n})\times {\mathcal {D}}'(\mathbb {R} ^{n})\to {\mathcal {D}}'\left(\mathbb {R} ^{n}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a8afa98f9e3cec2995e36eaca28f0e6955d83d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.585ex; height:3.009ex;" alt="{\displaystyle C^{\infty }(\mathbb {R} ^{n})\times {\mathcal {D}}&#039;(\mathbb {R} ^{n})\to {\mathcal {D}}&#039;\left(\mathbb {R} ^{n}\right)}"></span> given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f,T)\mapsto fT}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>f</mi> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f,T)\mapsto fT}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9be50b2d6b5530a4913f867b2dc9b099ee8a761" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.287ex; height:2.843ex;" alt="{\displaystyle (f,T)\mapsto fT}"></span> is <em>not</em> continuous; it is however, <a href="/wiki/Hypocontinuous" class="mw-redirect" title="Hypocontinuous">hypocontinuous</a>.<sup id="cite_ref-FOOTNOTETrèves2006423_30-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006423-30"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p><p><b>Example.</b> The product of any distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> with the function that is identically <span class="texhtml">1</span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4de28b735beca1303bc5da9ba518a5a22a70a5d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.283ex; height:2.176ex;" alt="{\displaystyle T.}"></span> </p><p><b>Example.</b> Suppose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f_{i})_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f_{i})_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abed5c9b22e8b890ca1cab3b158577ab77b4f123" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.648ex; height:3.009ex;" alt="{\displaystyle (f_{i})_{i=1}^{\infty }}"></span> is a sequence of test functions on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> that converges to the constant function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\in C^{\infty }(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\in C^{\infty }(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a44fc4606d97b866d030875e345cfb614868d8d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.915ex; height:2.843ex;" alt="{\displaystyle 1\in C^{\infty }(U).}"></span> For any distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59c21c569e498e0197798e3428b2bc6f25c0a457" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.429ex; height:2.509ex;" alt="{\displaystyle U,}"></span> the sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f_{i}T)_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mi>T</mi> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f_{i}T)_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c10e5d803d5f9fbd5fbc2270be5ff89e114067d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.285ex; height:3.009ex;" alt="{\displaystyle (f_{i}T)_{i=1}^{\infty }}"></span> converges to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}'(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}'(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16bf22f30369af2a2fb2ef622dc14ad8b6d7ab14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.192ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}&#039;(U).}"></span><sup id="cite_ref-FOOTNOTETrèves2006261_31-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006261-31"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (T_{i})_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (T_{i})_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2cf70d450fa99abc7998c3040901ed44130c0f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.867ex; height:3.009ex;" alt="{\displaystyle (T_{i})_{i=1}^{\infty }}"></span> converges to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/317fe5e2f5b8c6b3ade2cb8ee45f86d5c663e7e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.545ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}&#039;(U)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f_{i})_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f_{i})_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abed5c9b22e8b890ca1cab3b158577ab77b4f123" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.648ex; height:3.009ex;" alt="{\displaystyle (f_{i})_{i=1}^{\infty }}"></span> converges to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9271f99825877470cdcf8b2b36c5ac3bc2000bf1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.384ex; height:2.843ex;" alt="{\displaystyle f\in C^{\infty }(U)}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f_{i}T_{i})_{i=1}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f_{i}T_{i})_{i=1}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4279aff367ccbe6470da6d12f035e4d5afb53d90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.806ex; height:3.009ex;" alt="{\displaystyle (f_{i}T_{i})_{i=1}^{\infty }}"></span> converges to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle fT\in {\mathcal {D}}'(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle fT\in {\mathcal {D}}'(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da50f85d31394f338e2a1bf87563cb17bd65af21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.471ex; height:3.009ex;" alt="{\displaystyle fT\in {\mathcal {D}}&#039;(U).}"></span> </p> <div class="mw-heading mw-heading5"><h5 id="Problem_of_multiplying_distributions">Problem of multiplying distributions</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=28" title="Edit section: Problem of multiplying distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It is easy to define the product of a distribution with a smooth function, or more generally the product of two distributions whose <a href="/wiki/Singular_support" class="mw-redirect" title="Singular support">singular supports</a> are disjoint.<sup id="cite_ref-StackOverflow_32-0" class="reference"><a href="#cite_note-StackOverflow-32"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> With more effort, it is possible to define a well-behaved product of several distributions provided their <a href="/wiki/Wave_front_set" title="Wave front set">wave front sets</a> at each point are compatible. A limitation of the theory of distributions (and hyperfunctions) is that there is no associative product of two distributions extending the product of a distribution by a smooth function, as has been proved by <a href="/wiki/Laurent_Schwartz" title="Laurent Schwartz">Laurent Schwartz</a> in the 1950s. For example, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {p.v.} {\frac {1}{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">p</mi> <mo>.</mo> <mi mathvariant="normal">v</mi> <mo>.</mo> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {p.v.} {\frac {1}{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1af09d4af61102b6455c40485ccee5232831c94f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:6.754ex; height:5.176ex;" alt="{\displaystyle \operatorname {p.v.} {\frac {1}{x}}}"></span> is the distribution obtained by the <a href="/wiki/Cauchy_principal_value" title="Cauchy principal value">Cauchy principal value</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\operatorname {p.v.} {\frac {1}{x}}\right)(\phi )=\lim _{\varepsilon \to 0^{+}}\int _{|x|\geq \varepsilon }{\frac {\phi (x)}{x}}\,dx\quad {\text{ for all }}\phi \in {\mathcal {S}}(\mathbb {R} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">p</mi> <mo>.</mo> <mi mathvariant="normal">v</mi> <mo>.</mo> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </munder> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2265;<!-- ≥ --></mo> <mi>&#x03B5;<!-- ε --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>x</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\operatorname {p.v.} {\frac {1}{x}}\right)(\phi )=\lim _{\varepsilon \to 0^{+}}\int _{|x|\geq \varepsilon }{\frac {\phi (x)}{x}}\,dx\quad {\text{ for all }}\phi \in {\mathcal {S}}(\mathbb {R} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39b1e746035a6113552642db5e57d70175f8942e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:54.94ex; height:6.509ex;" alt="{\displaystyle \left(\operatorname {p.v.} {\frac {1}{x}}\right)(\phi )=\lim _{\varepsilon \to 0^{+}}\int _{|x|\geq \varepsilon }{\frac {\phi (x)}{x}}\,dx\quad {\text{ for all }}\phi \in {\mathcal {S}}(\mathbb {R} ).}"></span> </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\displaystyle \delta }"></span> is the Dirac delta distribution then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\delta \times x)\times \operatorname {p.v.} {\frac {1}{x}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x00D7;<!-- × --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">p</mi> <mo>.</mo> <mi mathvariant="normal">v</mi> <mo>.</mo> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\delta \times x)\times \operatorname {p.v.} {\frac {1}{x}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a364573b159cfb9aa07a6fe3546e6688f5c9b827" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.883ex; height:5.176ex;" alt="{\displaystyle (\delta \times x)\times \operatorname {p.v.} {\frac {1}{x}}=0}"></span> but, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \times \left(x\times \operatorname {p.v.} {\frac {1}{x}}\right)=\delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x00D7;<!-- × --></mo> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">p</mi> <mo>.</mo> <mi mathvariant="normal">v</mi> <mo>.</mo> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta \times \left(x\times \operatorname {p.v.} {\frac {1}{x}}\right)=\delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39dbb5b87e14599925f4ada7fa9b42a7cc09487a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.381ex; height:6.176ex;" alt="{\displaystyle \delta \times \left(x\times \operatorname {p.v.} {\frac {1}{x}}\right)=\delta }"></span> so the product of a distribution by a smooth function (which is always well-defined) cannot be extended to an <a href="/wiki/Associativity" class="mw-redirect" title="Associativity">associative</a> product on the space of distributions. </p><p>Thus, nonlinear problems cannot be posed in general and thus are not solved within distribution theory alone. In the context of <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a>, however, solutions can be found. In more than two spacetime dimensions the problem is related to the <a href="/wiki/Regularization_(physics)" title="Regularization (physics)">regularization</a> of <a href="/wiki/Ultraviolet_divergence" title="Ultraviolet divergence">divergences</a>. Here <a href="/w/index.php?title=Henri_Epstein&amp;action=edit&amp;redlink=1" class="new" title="Henri Epstein (page does not exist)">Henri Epstein</a> and <a href="/wiki/Vladimir_Glaser" class="mw-redirect" title="Vladimir Glaser">Vladimir Glaser</a> developed the mathematically rigorous (but extremely technical) <em><a href="/wiki/Causal_perturbation_theory" title="Causal perturbation theory">causal perturbation theory</a></em>. This does not solve the problem in other situations. Many other interesting theories are non-linear, like for example the <a href="/wiki/Navier%E2%80%93Stokes_equations" title="Navier–Stokes equations">Navier–Stokes equations</a> of <a href="/wiki/Fluid_dynamics" title="Fluid dynamics">fluid dynamics</a>. </p><p>Several not entirely satisfactory<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="Why are they not satisfactory? (July 2019)">citation needed</span></a></i>&#93;</sup> theories of <a href="/wiki/Algebra_(ring_theory)" class="mw-redirect" title="Algebra (ring theory)">algebras</a> of <a href="/wiki/Generalized_function" title="Generalized function">generalized functions</a> have been developed, among which <a href="/wiki/Colombeau_algebra" title="Colombeau algebra">Colombeau's (simplified) algebra</a> is maybe the most popular in use today. </p><p>Inspired by Lyons' <a href="/wiki/Rough_path" title="Rough path">rough path</a> theory,<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Martin_Hairer" title="Martin Hairer">Martin Hairer</a> proposed a consistent way of multiplying distributions with certain structures (<a href="/wiki/Regularity_structures" class="mw-redirect" title="Regularity structures">regularity structures</a><sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup>), available in many examples from stochastic analysis, notably stochastic partial differential equations. See also Gubinelli–Imkeller–Perkowski (2015) for a related development based on <a href="/wiki/Jean-Michel_Bony" title="Jean-Michel Bony">Bony</a>'s <a href="/wiki/Paraproduct" title="Paraproduct">paraproduct</a> from Fourier analysis. </p> <div class="mw-heading mw-heading3"><h3 id="Composition_with_a_smooth_function">Composition with a smooth function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=29" title="Edit section: Composition with a smooth function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> be a distribution on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a305ef479ab152035f334467a2c314baa23eb36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.429ex; height:2.176ex;" alt="{\displaystyle U.}"></span> Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> be an open set in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F:V\to U.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>:</mo> <mi>V</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>U</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F:V\to U.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cabae0d2e928ab5311cd6d5e7ad97913e2f9fd66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.509ex; height:2.176ex;" alt="{\displaystyle F:V\to U.}"></span> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> is a <a href="/wiki/Submersion_(mathematics)" title="Submersion (mathematics)">submersion</a> then it is possible to define <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\circ F\in {\mathcal {D}}'(V).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>F</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\circ F\in {\mathcal {D}}'(V).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e393aa32dbf1cda01ae0fe3f70eecf3b593c30bf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.132ex; height:3.009ex;" alt="{\displaystyle T\circ F\in {\mathcal {D}}&#039;(V).}"></span> </p><p>This is <em>the <b>composition</b> of the distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span></em>, and is also called <em>the <b><a href="/wiki/Pullback_(differential_geometry)" title="Pullback (differential geometry)">pullback</a></b> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> along <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span></em>, sometimes written <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{\sharp }:T\mapsto F^{\sharp }T=T\circ F.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x266F;<!-- ♯ --></mi> </mrow> </msup> <mo>:</mo> <mi>T</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x266F;<!-- ♯ --></mi> </mrow> </msup> <mi>T</mi> <mo>=</mo> <mi>T</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>F</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{\sharp }:T\mapsto F^{\sharp }T=T\circ F.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4694fee2df048a2ca31f9f08063323ac1f51cf3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:23.514ex; height:2.676ex;" alt="{\displaystyle F^{\sharp }:T\mapsto F^{\sharp }T=T\circ F.}"></span> </p><p>The pullback is often denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{*},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{*},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6874c06a4ca5106b9358fb1bac256af743cecee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.516ex; height:2.676ex;" alt="{\displaystyle F^{*},}"></span> although this notation should not be confused with the use of '*' to denote the adjoint of a linear mapping. </p><p>The condition that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> be a submersion is equivalent to the requirement that the <a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian</a> derivative <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dF(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dF(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c065fcd7517b20d2163ac5e66595b0cc3f363d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.096ex; height:2.843ex;" alt="{\displaystyle dF(x)}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> is a <a href="/wiki/Surjective" class="mw-redirect" title="Surjective">surjective</a> linear map for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in V.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>V</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in V.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2db8a2c9b98774154e833074ffbab1d3fc6c0f61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.604ex; height:2.176ex;" alt="{\displaystyle x\in V.}"></span> A necessary (but not sufficient) condition for extending <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{\#}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x0023;<!-- # --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{\#}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70f93d55ac14e1a22e4c1a6b4d728a4bac21a5ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.416ex; height:2.676ex;" alt="{\displaystyle F^{\#}}"></span> to distributions is that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> be an <a href="/wiki/Open_mapping" class="mw-redirect" title="Open mapping">open mapping</a>.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Inverse_function_theorem" title="Inverse function theorem">Inverse function theorem</a> ensures that a submersion satisfies this condition. </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> is a submersion, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{\#}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x0023;<!-- # --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{\#}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70f93d55ac14e1a22e4c1a6b4d728a4bac21a5ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.416ex; height:2.676ex;" alt="{\displaystyle F^{\#}}"></span> is defined on distributions by finding the transpose map. The uniqueness of this extension is guaranteed since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{\#}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x0023;<!-- # --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{\#}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70f93d55ac14e1a22e4c1a6b4d728a4bac21a5ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.416ex; height:2.676ex;" alt="{\displaystyle F^{\#}}"></span> is a continuous linear operator on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86b89bbd40d06988c0bb0b6835645a761097f8d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.031ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(U).}"></span> Existence, however, requires using the <a href="/wiki/Integration_by_substitution" title="Integration by substitution">change of variables</a> formula, the inverse function theorem (locally), and a <a href="/wiki/Partition_of_unity" title="Partition of unity">partition of unity</a> argument.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the special case when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> is a <a href="/wiki/Diffeomorphism" title="Diffeomorphism">diffeomorphism</a> from an open subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> onto an open subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> change of variables under the integral gives: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{V}\phi \circ F(x)\psi (x)\,dx=\int _{U}\phi (x)\psi \left(F^{-1}(x)\right)\left|\det dF^{-1}(x)\right|\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>&#x03C8;<!-- ψ --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mi>d</mi> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{V}\phi \circ F(x)\psi (x)\,dx=\int _{U}\phi (x)\psi \left(F^{-1}(x)\right)\left|\det dF^{-1}(x)\right|\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/494ce2a1f35a090b4a9234582f5b1969e0e9c863" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:59.099ex; height:5.676ex;" alt="{\displaystyle \int _{V}\phi \circ F(x)\psi (x)\,dx=\int _{U}\phi (x)\psi \left(F^{-1}(x)\right)\left|\det dF^{-1}(x)\right|\,dx.}"></span> </p><p>In this particular case, then, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{\#}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x0023;<!-- # --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{\#}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70f93d55ac14e1a22e4c1a6b4d728a4bac21a5ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.416ex; height:2.676ex;" alt="{\displaystyle F^{\#}}"></span> is defined by the transpose formula: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\langle F^{\sharp }T,\phi \right\rangle =\left\langle T,\left|\det d(F^{-1})\right|\phi \circ F^{-1}\right\rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>&#x27E8;</mo> <mrow> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x266F;<!-- ♯ --></mi> </mrow> </msup> <mi>T</mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>&#x27E9;</mo> </mrow> <mo>=</mo> <mrow> <mo>&#x27E8;</mo> <mrow> <mi>T</mi> <mo>,</mo> <mrow> <mo>|</mo> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mi>d</mi> <mo stretchy="false">(</mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2218;<!-- ∘ --></mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>&#x27E9;</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\langle F^{\sharp }T,\phi \right\rangle =\left\langle T,\left|\det d(F^{-1})\right|\phi \circ F^{-1}\right\rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20f2c4efafb7e77d1dbf1222ecb08d2c58b266e6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:38.778ex; height:4.843ex;" alt="{\displaystyle \left\langle F^{\sharp }T,\phi \right\rangle =\left\langle T,\left|\det d(F^{-1})\right|\phi \circ F^{-1}\right\rangle .}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Convolution">Convolution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=30" title="Edit section: Convolution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Under some circumstances, it is possible to define the <a href="/wiki/Convolution" title="Convolution">convolution</a> of a function with a distribution, or even the convolution of two distributions. Recall that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> are functions on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> then we denote by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\ast g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\ast g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f646d7f404b2b4c55d2005540bfe7cf36ee0eaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.589ex; height:2.509ex;" alt="{\displaystyle f\ast g}"></span> <em>the <b>convolution</b> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81f2986cd965e404a1ee33ec84baee5c43da47fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.763ex; height:2.009ex;" alt="{\displaystyle g,}"></span></em> defined at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c520ee2cb6ccf8a93c89a8c58a8378796bd52e53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.067ex; height:2.343ex;" alt="{\displaystyle x\in \mathbb {R} ^{n}}"></span> to be the integral <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f\ast g)(x):=\int _{\mathbb {R} ^{n}}f(x-y)g(y)\,dy=\int _{\mathbb {R} ^{n}}f(y)g(x-y)\,dy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f\ast g)(x):=\int _{\mathbb {R} ^{n}}f(x-y)g(y)\,dy=\int _{\mathbb {R} ^{n}}f(y)g(x-y)\,dy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90958b2d74154d1095153d68a63e4de7809b4c7d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:55.013ex; height:5.676ex;" alt="{\displaystyle (f\ast g)(x):=\int _{\mathbb {R} ^{n}}f(x-y)g(y)\,dy=\int _{\mathbb {R} ^{n}}f(y)g(x-y)\,dy}"></span> provided that the integral exists. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\leq p,q,r\leq \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>r</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\leq p,q,r\leq \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4666c45d1ebad9f4c68a9dc7c4062e0c806a079d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.039ex; height:2.509ex;" alt="{\displaystyle 1\leq p,q,r\leq \infty }"></span> are such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {1}{r}}={\frac {1}{p}}+{\frac {1}{q}}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {1}{r}}={\frac {1}{p}}+{\frac {1}{q}}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ff71be20ab9358d4a8e90a75d14347bd55edf01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:14.921ex; height:3.676ex;" alt="{\textstyle {\frac {1}{r}}={\frac {1}{p}}+{\frac {1}{q}}-1}"></span> then for any functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in L^{p}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in L^{p}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6279b562dd86e9e8d52f83c380136b41b0c9762" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.467ex; height:2.843ex;" alt="{\displaystyle f\in L^{p}(\mathbb {R} ^{n})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\in L^{q}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\in L^{q}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7f418e06daa8aceaa085e3c0bb7f86661941608" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.234ex; height:2.843ex;" alt="{\displaystyle g\in L^{q}(\mathbb {R} ^{n})}"></span> we have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\ast g\in L^{r}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\ast g\in L^{r}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e2fa5c6600b05b7e8b17f5bf452933b755fb0e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.692ex; height:2.843ex;" alt="{\displaystyle f\ast g\in L^{r}(\mathbb {R} ^{n})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\ast g\|_{L^{r}}\leq \|f\|_{L^{p}}\|g\|_{L^{q}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> </msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\ast g\|_{L^{r}}\leq \|f\|_{L^{p}}\|g\|_{L^{q}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16c5302d5b3a8394afe88453d8f8f8ee65af2fee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.138ex; height:2.843ex;" alt="{\displaystyle \|f\ast g\|_{L^{r}}\leq \|f\|_{L^{p}}\|g\|_{L^{q}}.}"></span><sup id="cite_ref-FOOTNOTETrèves2006278–283_37-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006278–283-37"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> are continuous functions on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7035fcb9fe3ebecc6bc9f372f82d0352202c8bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.543ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{n},}"></span> at least one of which has compact support, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {supp} (f\ast g)\subseteq \operatorname {supp} (f)+\operatorname {supp} (g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {supp} (f\ast g)\subseteq \operatorname {supp} (f)+\operatorname {supp} (g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96ec78c2d0c7f272e5f6ab652f558a0719e0dd13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.732ex; height:2.843ex;" alt="{\displaystyle \operatorname {supp} (f\ast g)\subseteq \operatorname {supp} (f)+\operatorname {supp} (g)}"></span> and if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\subseteq \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\subseteq \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95bad35b5ba5857aafe1ff36380171bb37894b73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.738ex; height:2.509ex;" alt="{\displaystyle A\subseteq \mathbb {R} ^{n}}"></span> then the value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\ast g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\ast g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f646d7f404b2b4c55d2005540bfe7cf36ee0eaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.589ex; height:2.509ex;" alt="{\displaystyle f\ast g}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> do <em>not</em> depend on the values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> outside of the <a href="/wiki/Minkowski_sum" class="mw-redirect" title="Minkowski sum">Minkowski sum</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A-\operatorname {supp} (g)=\{a-s:a\in A,s\in \operatorname {supp} (g)\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mo>:</mo> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>,</mo> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A-\operatorname {supp} (g)=\{a-s:a\in A,s\in \operatorname {supp} (g)\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c39bd2037d58893df864b89b9aab9d8cbefd415" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.968ex; height:2.843ex;" alt="{\displaystyle A-\operatorname {supp} (g)=\{a-s:a\in A,s\in \operatorname {supp} (g)\}.}"></span><sup id="cite_ref-FOOTNOTETrèves2006278–283_37-1" class="reference"><a href="#cite_note-FOOTNOTETrèves2006278–283-37"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p><p>Importantly, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\in L^{1}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\in L^{1}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b80b08df7669e66b49ea66d6cc1ba532114426d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.3ex; height:3.176ex;" alt="{\displaystyle g\in L^{1}(\mathbb {R} ^{n})}"></span> has compact support then for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq k\leq \infty ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq k\leq \infty ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dce246d731b119b4eecf33f8fe68ebb914ad0884" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.541ex; height:2.509ex;" alt="{\displaystyle 0\leq k\leq \infty ,}"></span> the convolution map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\mapsto f\ast g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\mapsto f\ast g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b04cf58dbbc7d7c4e38399e25e9838b91087d369" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.482ex; height:2.509ex;" alt="{\displaystyle f\mapsto f\ast g}"></span> is continuous when considered as the map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(\mathbb {R} ^{n})\to C^{k}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(\mathbb {R} ^{n})\to C^{k}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7de1d85bc8ba9494e4c067ddb1c57c27631f2f81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.799ex; height:3.176ex;" alt="{\displaystyle C^{k}(\mathbb {R} ^{n})\to C^{k}(\mathbb {R} ^{n})}"></span> or as the map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{k}(\mathbb {R} ^{n})\to C_{c}^{k}(\mathbb {R} ^{n}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{k}(\mathbb {R} ^{n})\to C_{c}^{k}(\mathbb {R} ^{n}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b57eeca53f3a9e377b8986755fc5247c22b8aa36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.446ex; height:3.009ex;" alt="{\displaystyle C_{c}^{k}(\mathbb {R} ^{n})\to C_{c}^{k}(\mathbb {R} ^{n}).}"></span><sup id="cite_ref-FOOTNOTETrèves2006278–283_37-2" class="reference"><a href="#cite_note-FOOTNOTETrèves2006278–283-37"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Translation_and_symmetry">Translation and symmetry</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=31" title="Edit section: Translation and symmetry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\in \mathbb {R} ^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\in \mathbb {R} ^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1057ddea7c5b7b7b5c12cd4fa6f1761793870dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.614ex; height:2.676ex;" alt="{\displaystyle a\in \mathbb {R} ^{n},}"></span> the translation operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8226166d0745e6eddff95ec4bc3dfac130e12d0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.118ex; height:2.009ex;" alt="{\displaystyle \tau _{a}}"></span> sends <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca97ed9dc4e3aea89927fa7e0e6bea9976539e24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.404ex; height:2.676ex;" alt="{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {C} }"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{a}f:\mathbb {R} ^{n}\to \mathbb {C} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mi>f</mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{a}f:\mathbb {R} ^{n}\to \mathbb {C} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d215e93262d02a7d66f7c2680bf55b146f0ec188" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.169ex; height:2.676ex;" alt="{\displaystyle \tau _{a}f:\mathbb {R} ^{n}\to \mathbb {C} ,}"></span> defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{a}f(y)=f(y-a).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{a}f(y)=f(y-a).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8be7881107db83413938db1365e11847d826bb1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.42ex; height:2.843ex;" alt="{\displaystyle \tau _{a}f(y)=f(y-a).}"></span> This can be extended by the transpose to distributions in the following way: given a distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30ee86b741f542feb8f95f3c81fd53b043a25e26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.283ex; height:2.509ex;" alt="{\displaystyle T,}"></span> <em>the <b>translation</b> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span></em> is the distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{a}T:{\mathcal {D}}(\mathbb {R} ^{n})\to \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mi>T</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{a}T:{\mathcal {D}}(\mathbb {R} ^{n})\to \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b556f30d767449800dbec3ae9f4bcecbdd061b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.481ex; height:2.843ex;" alt="{\displaystyle \tau _{a}T:{\mathcal {D}}(\mathbb {R} ^{n})\to \mathbb {C} }"></span> defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{a}T(\phi ):=\left\langle T,\tau _{-a}\phi \right\rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mi>T</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mrow> <mo>&#x27E8;</mo> <mrow> <mi>T</mi> <mo>,</mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>&#x27E9;</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{a}T(\phi ):=\left\langle T,\tau _{-a}\phi \right\rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b8677eaa5da7739c87195fe79af953423484477" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.99ex; height:2.843ex;" alt="{\displaystyle \tau _{a}T(\phi ):=\left\langle T,\tau _{-a}\phi \right\rangle .}"></span><sup id="cite_ref-FOOTNOTETrèves2006284–297_38-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006284–297-38"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p><p>Given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {C} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {C} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e4dd21a3a6673fc44a89d08820f2ce6844c5e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.051ex; height:2.676ex;" alt="{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {C} ,}"></span> define the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {f}}:\mathbb {R} ^{n}\to \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {f}}:\mathbb {R} ^{n}\to \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82eb2ea2bff02067c928fcfa5585e072865f95d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.825ex; height:3.009ex;" alt="{\displaystyle {\tilde {f}}:\mathbb {R} ^{n}\to \mathbb {C} }"></span> by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {f}}(x):=f(-x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {f}}(x):=f(-x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/561e7aab8a35c7408574bc1eef7fde8ce91b7aef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.456ex; height:3.176ex;" alt="{\displaystyle {\tilde {f}}(x):=f(-x).}"></span> Given a distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30ee86b741f542feb8f95f3c81fd53b043a25e26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.283ex; height:2.509ex;" alt="{\displaystyle T,}"></span> let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {T}}:{\mathcal {D}}(\mathbb {R} ^{n})\to \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>T</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {T}}:{\mathcal {D}}(\mathbb {R} ^{n})\to \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41dbbe597225e8dc7b0f519b16cdd9467bbf1286" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.501ex; height:3.176ex;" alt="{\displaystyle {\tilde {T}}:{\mathcal {D}}(\mathbb {R} ^{n})\to \mathbb {C} }"></span> be the distribution defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {T}}(\phi ):=T\left({\tilde {\phi }}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>T</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>T</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {T}}(\phi ):=T\left({\tilde {\phi }}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71db81306fd6d8ee93621b35782ed9d454547b3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.369ex; height:3.343ex;" alt="{\displaystyle {\tilde {T}}(\phi ):=T\left({\tilde {\phi }}\right).}"></span> The operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\mapsto {\tilde {T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>T</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\mapsto {\tilde {T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/300ffb7f1b0e78f3ba3d69e0f8732e8cb9064057" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.024ex; height:2.676ex;" alt="{\displaystyle T\mapsto {\tilde {T}}}"></span> is called <b><em>the symmetry with respect to the origin</em></b>.<sup id="cite_ref-FOOTNOTETrèves2006284–297_38-1" class="reference"><a href="#cite_note-FOOTNOTETrèves2006284–297-38"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Convolution_of_a_test_function_with_a_distribution">Convolution of a test function with a distribution</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=32" title="Edit section: Convolution of a test function with a distribution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Convolution with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in {\mathcal {D}}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in {\mathcal {D}}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a620211630e46ecb395468b33ba3357db99df65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.617ex; height:2.843ex;" alt="{\displaystyle f\in {\mathcal {D}}(\mathbb {R} ^{n})}"></span> defines a linear map: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{4}C_{f}:\,&amp;{\mathcal {D}}(\mathbb {R} ^{n})&amp;&amp;\to \,&amp;&amp;{\mathcal {D}}(\mathbb {R} ^{n})\\&amp;g&amp;&amp;\mapsto \,&amp;&amp;f\ast g\\\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>:</mo> <mspace width="thinmathspace" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi>g</mi> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{4}C_{f}:\,&amp;{\mathcal {D}}(\mathbb {R} ^{n})&amp;&amp;\to \,&amp;&amp;{\mathcal {D}}(\mathbb {R} ^{n})\\&amp;g&amp;&amp;\mapsto \,&amp;&amp;f\ast g\\\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11915da11204257bf4789e629575df5e29708af7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:21.58ex; height:6.176ex;" alt="{\displaystyle {\begin{alignedat}{4}C_{f}:\,&amp;{\mathcal {D}}(\mathbb {R} ^{n})&amp;&amp;\to \,&amp;&amp;{\mathcal {D}}(\mathbb {R} ^{n})\\&amp;g&amp;&amp;\mapsto \,&amp;&amp;f\ast g\\\end{alignedat}}}"></span> which is <a href="/wiki/Continuous_function" title="Continuous function">continuous</a> with respect to the canonical <a href="/wiki/LF_space" class="mw-redirect" title="LF space">LF space</a> topology on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/251ef3c7cb12cfebafa9125d174245c53f97df56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.145ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n}).}"></span> </p><p>Convolution of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> with a distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}'(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}'(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba140a78b648e430d1b5cf667f3dd473de22a969" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.659ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}&#039;(\mathbb {R} ^{n})}"></span> can be defined by taking the transpose of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7765fc9102a19771111a01cd0b18c79e231029cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.798ex; height:2.843ex;" alt="{\displaystyle C_{f}}"></span> relative to the duality pairing of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40967820fe4c745ac9e5246e47e5897b08b2dc9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.498ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n})}"></span> with the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/963053e27b2c2698296922a9a79e6171c2a2a7a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.182ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(\mathbb {R} ^{n})}"></span> of distributions.<sup id="cite_ref-FOOTNOTETrèves2006Chapter_27_40-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006Chapter_27-40"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f,g,\phi \in {\mathcal {D}}(\mathbb {R} ^{n}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f,g,\phi \in {\mathcal {D}}(\mathbb {R} ^{n}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb3ad13ca2a40739795e697b7a3ff9a4fe6a487a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.833ex; height:2.843ex;" alt="{\displaystyle f,g,\phi \in {\mathcal {D}}(\mathbb {R} ^{n}),}"></span> then by <a href="/wiki/Fubini%27s_theorem" title="Fubini&#39;s theorem">Fubini's theorem</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle C_{f}g,\phi \rangle =\int _{\mathbb {R} ^{n}}\phi (x)\int _{\mathbb {R} ^{n}}f(x-y)g(y)\,dy\,dx=\left\langle g,C_{\tilde {f}}\phi \right\rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mi>g</mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow> <mo>&#x27E8;</mo> <mrow> <mi>g</mi> <mo>,</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>&#x27E9;</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle C_{f}g,\phi \rangle =\int _{\mathbb {R} ^{n}}\phi (x)\int _{\mathbb {R} ^{n}}f(x-y)g(y)\,dy\,dx=\left\langle g,C_{\tilde {f}}\phi \right\rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0063a5da17b5296109ecf48c3ab60f7060c7fd1e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:56.182ex; height:5.676ex;" alt="{\displaystyle \langle C_{f}g,\phi \rangle =\int _{\mathbb {R} ^{n}}\phi (x)\int _{\mathbb {R} ^{n}}f(x-y)g(y)\,dy\,dx=\left\langle g,C_{\tilde {f}}\phi \right\rangle .}"></span> </p><p>Extending by continuity, the convolution of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> with a distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f\ast T,\phi \rangle =\left\langle T,{\tilde {f}}\ast \phi \right\rangle ,\quad {\text{ for all }}\phi \in {\mathcal {D}}(\mathbb {R} ^{n}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>T</mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow> <mo>&#x27E8;</mo> <mrow> <mi>T</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>&#x2217;<!-- ∗ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>&#x27E9;</mo> </mrow> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle f\ast T,\phi \rangle =\left\langle T,{\tilde {f}}\ast \phi \right\rangle ,\quad {\text{ for all }}\phi \in {\mathcal {D}}(\mathbb {R} ^{n}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7715dcba4cba8157dbf19d6c89f66f7679aa7101" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:44.679ex; height:3.343ex;" alt="{\displaystyle \langle f\ast T,\phi \rangle =\left\langle T,{\tilde {f}}\ast \phi \right\rangle ,\quad {\text{ for all }}\phi \in {\mathcal {D}}(\mathbb {R} ^{n}).}"></span> </p><p>An alternative way to define the convolution of a test function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and a distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is to use the translation operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{a}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{a}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26c1d715fcbe209dd1051deaae18ab88516f12af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.765ex; height:2.009ex;" alt="{\displaystyle \tau _{a}.}"></span> The convolution of the compactly supported function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and the distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is then the function defined for each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c520ee2cb6ccf8a93c89a8c58a8378796bd52e53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.067ex; height:2.343ex;" alt="{\displaystyle x\in \mathbb {R} ^{n}}"></span> by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f\ast T)(x)=\left\langle T,\tau _{x}{\tilde {f}}\right\rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>&#x27E8;</mo> <mrow> <mi>T</mi> <mo>,</mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mrow> <mo>&#x27E9;</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f\ast T)(x)=\left\langle T,\tau _{x}{\tilde {f}}\right\rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/254727ff0279a5532db49e3da5c8fe1035cb7919" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.943ex; height:3.343ex;" alt="{\displaystyle (f\ast T)(x)=\left\langle T,\tau _{x}{\tilde {f}}\right\rangle .}"></span> </p><p>It can be shown that the convolution of a smooth, compactly supported function and a distribution is a smooth function. If the distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> has compact support, and if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is a polynomial (resp. an exponential function, an analytic function, the restriction of an entire analytic function on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a53b4e76242764d1bca004168353c380fef25258" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {C} ^{n}}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7035fcb9fe3ebecc6bc9f372f82d0352202c8bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.543ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{n},}"></span> the restriction of an entire function of exponential type in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a53b4e76242764d1bca004168353c380fef25258" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {C} ^{n}}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>), then the same is true of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\ast f.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>f</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\ast f.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fbb484df1c523535f63a584277fd19601f69eb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.756ex; height:2.509ex;" alt="{\displaystyle T\ast f.}"></span><sup id="cite_ref-FOOTNOTETrèves2006284–297_38-2" class="reference"><a href="#cite_note-FOOTNOTETrèves2006284–297-38"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> If the distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> has compact support as well, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\ast T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\ast T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e22b296c743be0a7dd3d8a378fda79ede03f458e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.11ex; height:2.509ex;" alt="{\displaystyle f\ast T}"></span> is a compactly supported function, and the <a href="/wiki/Titchmarsh_convolution_theorem" title="Titchmarsh convolution theorem">Titchmarsh convolution theorem</a> <a href="#CITEREFHörmander1983">Hörmander (1983</a>, Theorem 4.3.3) implies that: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {ch} (\operatorname {supp} (f\ast T))=\operatorname {ch} (\operatorname {supp} (f))+\operatorname {ch} (\operatorname {supp} (T))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {ch} (\operatorname {supp} (f\ast T))=\operatorname {ch} (\operatorname {supp} (f))+\operatorname {ch} (\operatorname {supp} (T))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a5eb76afb9db4510d009c43627fc6057c1c2845" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:46.175ex; height:2.843ex;" alt="{\displaystyle \operatorname {ch} (\operatorname {supp} (f\ast T))=\operatorname {ch} (\operatorname {supp} (f))+\operatorname {ch} (\operatorname {supp} (T))}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {ch} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ch</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {ch} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09dc7ce210c0c1e878674928a3445ed845617bd1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle \operatorname {ch} }"></span> denotes the <a href="/wiki/Convex_hull" title="Convex hull">convex hull</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {supp} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>supp</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {supp} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c87aa63d9e51192f8fb823a64e984939bc8643c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.794ex; height:2.009ex;" alt="{\displaystyle \operatorname {supp} }"></span> denotes the support. </p> <div class="mw-heading mw-heading4"><h4 id="Convolution_of_a_smooth_function_with_a_distribution">Convolution of a smooth function with a distribution</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=33" title="Edit section: Convolution of a smooth function with a distribution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C^{\infty }(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C^{\infty }(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d02fa0dacbd65e311a4cf678a28a3e072fe4e305" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.498ex; height:2.843ex;" alt="{\displaystyle f\in C^{\infty }(\mathbb {R} ^{n})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}'(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}'(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba140a78b648e430d1b5cf667f3dd473de22a969" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.659ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}&#039;(\mathbb {R} ^{n})}"></span> and assume that at least one of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> has compact support. The <b><em>convolution</em></b> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30ee86b741f542feb8f95f3c81fd53b043a25e26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.283ex; height:2.509ex;" alt="{\displaystyle T,}"></span> denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\ast T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\ast T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e22b296c743be0a7dd3d8a378fda79ede03f458e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.11ex; height:2.509ex;" alt="{\displaystyle f\ast T}"></span> or by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\ast f,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>f</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\ast f,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f30474d068d77d7608e9b733d1cb5885fdb73eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.756ex; height:2.509ex;" alt="{\displaystyle T\ast f,}"></span> is the smooth function:<sup id="cite_ref-FOOTNOTETrèves2006284–297_38-3" class="reference"><a href="#cite_note-FOOTNOTETrèves2006284–297-38"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{4}f\ast T:\,&amp;\mathbb {R} ^{n}&amp;&amp;\to \,&amp;&amp;\mathbb {C} \\&amp;x&amp;&amp;\mapsto \,&amp;&amp;\left\langle T,\tau _{x}{\tilde {f}}\right\rangle \\\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>T</mi> <mo>:</mo> <mspace width="thinmathspace" /> </mtd> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi>x</mi> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mrow> <mo>&#x27E8;</mo> <mrow> <mi>T</mi> <mo>,</mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mrow> <mo>&#x27E9;</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{4}f\ast T:\,&amp;\mathbb {R} ^{n}&amp;&amp;\to \,&amp;&amp;\mathbb {C} \\&amp;x&amp;&amp;\mapsto \,&amp;&amp;\left\langle T,\tau _{x}{\tilde {f}}\right\rangle \\\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c49766dc29062c424478af997bf9c805ef44bb3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:22.545ex; height:6.509ex;" alt="{\displaystyle {\begin{alignedat}{4}f\ast T:\,&amp;\mathbb {R} ^{n}&amp;&amp;\to \,&amp;&amp;\mathbb {C} \\&amp;x&amp;&amp;\mapsto \,&amp;&amp;\left\langle T,\tau _{x}{\tilde {f}}\right\rangle \\\end{alignedat}}}"></span> satisfying for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\in \mathbb {N} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\in \mathbb {N} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77a67e284264ca4f3efcbb7c898b6fe1bbb99854" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:6.996ex; height:2.676ex;" alt="{\displaystyle p\in \mathbb {N} ^{n}}"></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\operatorname {supp} (f\ast T)\subseteq \operatorname {supp} (f)+\operatorname {supp} (T)\\[6pt]&amp;{\text{ for all }}p\in \mathbb {N} ^{n}:\quad {\begin{cases}\partial ^{p}\left\langle T,\tau _{x}{\tilde {f}}\right\rangle =\left\langle T,\partial ^{p}\tau _{x}{\tilde {f}}\right\rangle \\\partial ^{p}(T\ast f)=(\partial ^{p}T)\ast f=T\ast (\partial ^{p}f).\end{cases}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>:</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mrow> <mo>&#x27E8;</mo> <mrow> <mi>T</mi> <mo>,</mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mrow> <mo>&#x27E9;</mo> </mrow> <mo>=</mo> <mrow> <mo>&#x27E8;</mo> <mrow> <mi>T</mi> <mo>,</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mrow> <mo>&#x27E9;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>T</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>T</mi> <mo stretchy="false">)</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>f</mi> <mo>=</mo> <mi>T</mi> <mo>&#x2217;<!-- ∗ --></mo> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\operatorname {supp} (f\ast T)\subseteq \operatorname {supp} (f)+\operatorname {supp} (T)\\[6pt]&amp;{\text{ for all }}p\in \mathbb {N} ^{n}:\quad {\begin{cases}\partial ^{p}\left\langle T,\tau _{x}{\tilde {f}}\right\rangle =\left\langle T,\partial ^{p}\tau _{x}{\tilde {f}}\right\rangle \\\partial ^{p}(T\ast f)=(\partial ^{p}T)\ast f=T\ast (\partial ^{p}f).\end{cases}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/607c94c3cb33ab03262e95db308c9ecd64a42502" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.838ex; width:56.204ex; height:10.843ex;" alt="{\displaystyle {\begin{aligned}&amp;\operatorname {supp} (f\ast T)\subseteq \operatorname {supp} (f)+\operatorname {supp} (T)\\[6pt]&amp;{\text{ for all }}p\in \mathbb {N} ^{n}:\quad {\begin{cases}\partial ^{p}\left\langle T,\tau _{x}{\tilde {f}}\right\rangle =\left\langle T,\partial ^{p}\tau _{x}{\tilde {f}}\right\rangle \\\partial ^{p}(T\ast f)=(\partial ^{p}T)\ast f=T\ast (\partial ^{p}f).\end{cases}}\end{aligned}}}"></span> </p><p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> be the map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\mapsto T\ast f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>T</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\mapsto T\ast f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ddb2a3c8cb57fc0ab8bd26ff9a0f4030e3cac48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.002ex; height:2.509ex;" alt="{\displaystyle f\mapsto T\ast f}"></span>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is a distribution, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> is continuous as a map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n})\to C^{\infty }(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n})\to C^{\infty }(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d497f174e597740d01a0460d02ac5bd852d1a30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.491ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n})\to C^{\infty }(\mathbb {R} ^{n})}"></span>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> also has compact support, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> is also continuous as the map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(\mathbb {R} ^{n})\to C^{\infty }(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(\mathbb {R} ^{n})\to C^{\infty }(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e44508cd74d68f55e234bfa0ccf61d40b415a1c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.372ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(\mathbb {R} ^{n})\to C^{\infty }(\mathbb {R} ^{n})}"></span> and continuous as the map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n})\to {\mathcal {D}}(\mathbb {R} ^{n}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n})\to {\mathcal {D}}(\mathbb {R} ^{n}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0971f7f87e51b6726759b9b76250e2f60c92c70c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.256ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n})\to {\mathcal {D}}(\mathbb {R} ^{n}).}"></span><sup id="cite_ref-FOOTNOTETrèves2006284–297_38-4" class="reference"><a href="#cite_note-FOOTNOTETrèves2006284–297-38"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L:{\mathcal {D}}(\mathbb {R} ^{n})\to C^{\infty }(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L:{\mathcal {D}}(\mathbb {R} ^{n})\to C^{\infty }(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/368dbd88c54e4aafe6d3e827f79bc8ecbbcabc2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.011ex; height:2.843ex;" alt="{\displaystyle L:{\mathcal {D}}(\mathbb {R} ^{n})\to C^{\infty }(\mathbb {R} ^{n})}"></span> is a continuous linear map such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L\partial ^{\alpha }\phi =\partial ^{\alpha }L\phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>&#x03D5;<!-- ϕ --></mi> <mo>=</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>L</mi> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L\partial ^{\alpha }\phi =\partial ^{\alpha }L\phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a798febe7e5a62a6692ec3fabe5cda2bcb007b1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.29ex; height:2.676ex;" alt="{\displaystyle L\partial ^{\alpha }\phi =\partial ^{\alpha }L\phi }"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> and all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi \in {\mathcal {D}}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi \in {\mathcal {D}}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f21391ca85d4c1ca7397213e8cbd4836ede244e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.724ex; height:2.843ex;" alt="{\displaystyle \phi \in {\mathcal {D}}(\mathbb {R} ^{n})}"></span> then there exists a distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}'(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}'(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba140a78b648e430d1b5cf667f3dd473de22a969" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.659ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}&#039;(\mathbb {R} ^{n})}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L\phi =T\circ \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mi>&#x03D5;<!-- ϕ --></mi> <mo>=</mo> <mi>T</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L\phi =T\circ \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c8509f8649ab949238f95769856f6df4620dd6c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.283ex; height:2.509ex;" alt="{\displaystyle L\phi =T\circ \phi }"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi \in {\mathcal {D}}(\mathbb {R} ^{n}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi \in {\mathcal {D}}(\mathbb {R} ^{n}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acc2aa40f4fd4e7f7e4e4a9c0c27a57291621384" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.371ex; height:2.843ex;" alt="{\displaystyle \phi \in {\mathcal {D}}(\mathbb {R} ^{n}).}"></span><sup id="cite_ref-FOOTNOTERudin1991149–181_10-5" class="reference"><a href="#cite_note-FOOTNOTERudin1991149–181-10"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p><b>Example.</b><sup id="cite_ref-FOOTNOTERudin1991149–181_10-6" class="reference"><a href="#cite_note-FOOTNOTERudin1991149–181-10"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> be the <a href="/wiki/Heaviside_step_function" title="Heaviside step function">Heaviside function</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc9de9049e03e5e5a0cab57076dbe4a369c1e3a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} .}"></span> For any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi \in {\mathcal {D}}(\mathbb {R} ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi \in {\mathcal {D}}(\mathbb {R} ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d9792b408fb76a99ac61f05cee8d862064c2c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.152ex; height:2.843ex;" alt="{\displaystyle \phi \in {\mathcal {D}}(\mathbb {R} ),}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (H\ast \phi )(x)=\int _{-\infty }^{x}\phi (t)\,dt.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>H</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (H\ast \phi )(x)=\int _{-\infty }^{x}\phi (t)\,dt.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8f381dfb89c1c1ef9549e7133551c223261ae80" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:25.648ex; height:6.009ex;" alt="{\displaystyle (H\ast \phi )(x)=\int _{-\infty }^{x}\phi (t)\,dt.}"></span> </p><p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\displaystyle \delta }"></span> be the Dirac measure at 0 and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta '}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta '}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aab2d3fbf71b804a6005c7546c058e15f4ea3685" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.738ex; height:2.509ex;" alt="{\displaystyle \delta &#039;}"></span> be its derivative as a distribution. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta '\ast H=\delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x2032;</mo> </msup> <mo>&#x2217;<!-- ∗ --></mo> <mi>H</mi> <mo>=</mo> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta '\ast H=\delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9437ce31894c1c2b1d6daa26545338cf797abf86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.144ex; height:2.509ex;" alt="{\displaystyle \delta &#039;\ast H=\delta }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\ast \delta '=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2217;<!-- ∗ --></mo> <msup> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\ast \delta '=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64f47a7bea15d909224c22eee4389155496a0154" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.003ex; height:2.509ex;" alt="{\displaystyle 1\ast \delta &#039;=0.}"></span> Importantly, the associative law fails to hold: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1=1\ast \delta =1\ast (\delta '\ast H)\neq (1\ast \delta ')\ast H=0\ast H=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>=</mo> <mn>1</mn> <mo>&#x2217;<!-- ∗ --></mo> <mi>&#x03B4;<!-- δ --></mi> <mo>=</mo> <mn>1</mn> <mo>&#x2217;<!-- ∗ --></mo> <mo stretchy="false">(</mo> <msup> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x2032;</mo> </msup> <mo>&#x2217;<!-- ∗ --></mo> <mi>H</mi> <mo stretchy="false">)</mo> <mo>&#x2260;<!-- ≠ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2217;<!-- ∗ --></mo> <msup> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>H</mi> <mo>=</mo> <mn>0</mn> <mo>&#x2217;<!-- ∗ --></mo> <mi>H</mi> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1=1\ast \delta =1\ast (\delta '\ast H)\neq (1\ast \delta ')\ast H=0\ast H=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f70d02a04b3ddbdb0cb04c421c7c4927315a2e8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.617ex; height:3.009ex;" alt="{\displaystyle 1=1\ast \delta =1\ast (\delta &#039;\ast H)\neq (1\ast \delta &#039;)\ast H=0\ast H=0.}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Convolution_of_distributions">Convolution of distributions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=34" title="Edit section: Convolution of distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It is also possible to define the convolution of two distributions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7035fcb9fe3ebecc6bc9f372f82d0352202c8bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.543ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{n},}"></span> provided one of them has compact support. Informally, to define <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\ast T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\ast T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60153eb41b7e7541a0608a09b1df784e0f0178d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.33ex; height:2.176ex;" alt="{\displaystyle S\ast T}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> has compact support, the idea is to extend the definition of the convolution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\ast \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2217;<!-- ∗ --></mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\ast \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4479b9497bac3f251092fbb6e76e3ba95a67a7fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.937ex; height:1.509ex;" alt="{\displaystyle \,\ast \,}"></span> to a linear operation on distributions so that the associativity formula <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\ast (T\ast \phi )=(S\ast T)\ast \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>&#x2217;<!-- ∗ --></mo> <mo stretchy="false">(</mo> <mi>T</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\ast (T\ast \phi )=(S\ast T)\ast \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32709af511883b3fa9ef308d0439f49f2bdb8e0b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.538ex; height:2.843ex;" alt="{\displaystyle S\ast (T\ast \phi )=(S\ast T)\ast \phi }"></span> continues to hold for all test functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3b065a61a08fe84742ade270b4dbd8c087510e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.032ex; height:2.509ex;" alt="{\displaystyle \phi .}"></span><sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> </p><p>It is also possible to provide a more explicit characterization of the convolution of distributions.<sup id="cite_ref-FOOTNOTETrèves2006Chapter_27_40-1" class="reference"><a href="#cite_note-FOOTNOTETrèves2006Chapter_27-40"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> Suppose that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> are distributions and that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> has compact support. Then the linear maps <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{9}\bullet \ast {\tilde {S}}:\,&amp;{\mathcal {D}}(\mathbb {R} ^{n})&amp;&amp;\to \,&amp;&amp;{\mathcal {D}}(\mathbb {R} ^{n})&amp;&amp;\quad {\text{ and }}\quad &amp;&amp;\bullet \ast {\tilde {T}}:\,&amp;&amp;{\mathcal {D}}(\mathbb {R} ^{n})&amp;&amp;\to \,&amp;&amp;{\mathcal {D}}(\mathbb {R} ^{n})\\&amp;f&amp;&amp;\mapsto \,&amp;&amp;f\ast {\tilde {S}}&amp;&amp;&amp;&amp;&amp;&amp;f&amp;&amp;\mapsto \,&amp;&amp;f\ast {\tilde {T}}\\\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mo>&#x2219;<!-- ∙ --></mo> <mo>&#x2217;<!-- ∗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>S</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>:</mo> <mspace width="thinmathspace" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mspace width="1em" /> </mtd> <mtd /> <mtd> <mi></mi> <mo>&#x2219;<!-- ∙ --></mo> <mo>&#x2217;<!-- ∗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>T</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>:</mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi>f</mi> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>S</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mtd> <mtd /> <mtd /> <mtd /> <mtd /> <mtd /> <mtd> <mi>f</mi> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>T</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{9}\bullet \ast {\tilde {S}}:\,&amp;{\mathcal {D}}(\mathbb {R} ^{n})&amp;&amp;\to \,&amp;&amp;{\mathcal {D}}(\mathbb {R} ^{n})&amp;&amp;\quad {\text{ and }}\quad &amp;&amp;\bullet \ast {\tilde {T}}:\,&amp;&amp;{\mathcal {D}}(\mathbb {R} ^{n})&amp;&amp;\to \,&amp;&amp;{\mathcal {D}}(\mathbb {R} ^{n})\\&amp;f&amp;&amp;\mapsto \,&amp;&amp;f\ast {\tilde {S}}&amp;&amp;&amp;&amp;&amp;&amp;f&amp;&amp;\mapsto \,&amp;&amp;f\ast {\tilde {T}}\\\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6ff72ee455a20a33a14905131e715e09be967dc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:56.428ex; height:6.509ex;" alt="{\displaystyle {\begin{alignedat}{9}\bullet \ast {\tilde {S}}:\,&amp;{\mathcal {D}}(\mathbb {R} ^{n})&amp;&amp;\to \,&amp;&amp;{\mathcal {D}}(\mathbb {R} ^{n})&amp;&amp;\quad {\text{ and }}\quad &amp;&amp;\bullet \ast {\tilde {T}}:\,&amp;&amp;{\mathcal {D}}(\mathbb {R} ^{n})&amp;&amp;\to \,&amp;&amp;{\mathcal {D}}(\mathbb {R} ^{n})\\&amp;f&amp;&amp;\mapsto \,&amp;&amp;f\ast {\tilde {S}}&amp;&amp;&amp;&amp;&amp;&amp;f&amp;&amp;\mapsto \,&amp;&amp;f\ast {\tilde {T}}\\\end{alignedat}}}"></span> are continuous. The transposes of these maps: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}\left(\bullet \ast {\tilde {S}}\right):{\mathcal {D}}'(\mathbb {R} ^{n})\to {\mathcal {D}}'(\mathbb {R} ^{n})\qquad {}^{t}\left(\bullet \ast {\tilde {T}}\right):{\mathcal {E}}'(\mathbb {R} ^{n})\to {\mathcal {D}}'(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mo>&#x2219;<!-- ∙ --></mo> <mo>&#x2217;<!-- ∗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>S</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mspace width="2em" /> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mo>&#x2219;<!-- ∙ --></mo> <mo>&#x2217;<!-- ∗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>T</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}\left(\bullet \ast {\tilde {S}}\right):{\mathcal {D}}'(\mathbb {R} ^{n})\to {\mathcal {D}}'(\mathbb {R} ^{n})\qquad {}^{t}\left(\bullet \ast {\tilde {T}}\right):{\mathcal {E}}'(\mathbb {R} ^{n})\to {\mathcal {D}}'(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa29c73c618f39cd9109a266bddbfbc9c96b8b03" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:60.769ex; height:3.343ex;" alt="{\displaystyle {}^{t}\left(\bullet \ast {\tilde {S}}\right):{\mathcal {D}}&#039;(\mathbb {R} ^{n})\to {\mathcal {D}}&#039;(\mathbb {R} ^{n})\qquad {}^{t}\left(\bullet \ast {\tilde {T}}\right):{\mathcal {E}}&#039;(\mathbb {R} ^{n})\to {\mathcal {D}}&#039;(\mathbb {R} ^{n})}"></span> are consequently continuous and it can also be shown that<sup id="cite_ref-FOOTNOTETrèves2006284–297_38-5" class="reference"><a href="#cite_note-FOOTNOTETrèves2006284–297-38"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}\left(\bullet \ast {\tilde {S}}\right)(T)={}^{t}\left(\bullet \ast {\tilde {T}}\right)(S).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mo>&#x2219;<!-- ∙ --></mo> <mo>&#x2217;<!-- ∗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>S</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mo>&#x2219;<!-- ∙ --></mo> <mo>&#x2217;<!-- ∗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>T</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}\left(\bullet \ast {\tilde {S}}\right)(T)={}^{t}\left(\bullet \ast {\tilde {T}}\right)(S).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/495b37ee0c441242bf00c9543867161bbfccb5d2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.02ex; height:3.343ex;" alt="{\displaystyle {}^{t}\left(\bullet \ast {\tilde {S}}\right)(T)={}^{t}\left(\bullet \ast {\tilde {T}}\right)(S).}"></span> </p><p>This common value is called <em>the <b>convolution</b> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span></em> and it is a distribution that is denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\ast T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\ast T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60153eb41b7e7541a0608a09b1df784e0f0178d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.33ex; height:2.176ex;" alt="{\displaystyle S\ast T}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\ast S.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>S</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\ast S.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc0487fbb9c52aea3a568e0c7f474996d7ecf8c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.977ex; height:2.176ex;" alt="{\displaystyle T\ast S.}"></span> It satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {supp} (S\ast T)\subseteq \operatorname {supp} (S)+\operatorname {supp} (T).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {supp} (S\ast T)\subseteq \operatorname {supp} (S)+\operatorname {supp} (T).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38912c1d3fb25027e38c8930ea0f61591979b2bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.861ex; height:2.843ex;" alt="{\displaystyle \operatorname {supp} (S\ast T)\subseteq \operatorname {supp} (S)+\operatorname {supp} (T).}"></span><sup id="cite_ref-FOOTNOTETrèves2006284–297_38-6" class="reference"><a href="#cite_note-FOOTNOTETrèves2006284–297-38"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> are two distributions, at least one of which has compact support, then for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\in \mathbb {R} ^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\in \mathbb {R} ^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1057ddea7c5b7b7b5c12cd4fa6f1761793870dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.614ex; height:2.676ex;" alt="{\displaystyle a\in \mathbb {R} ^{n},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{a}(S\ast T)=\left(\tau _{a}S\right)\ast T=S\ast \left(\tau _{a}T\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>S</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mi>S</mi> </mrow> <mo>)</mo> </mrow> <mo>&#x2217;<!-- ∗ --></mo> <mi>T</mi> <mo>=</mo> <mi>S</mi> <mo>&#x2217;<!-- ∗ --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mi>T</mi> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{a}(S\ast T)=\left(\tau _{a}S\right)\ast T=S\ast \left(\tau _{a}T\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91b6a809189fc4db1edcce8f970a52c9c2ba4c9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.003ex; height:2.843ex;" alt="{\displaystyle \tau _{a}(S\ast T)=\left(\tau _{a}S\right)\ast T=S\ast \left(\tau _{a}T\right).}"></span><sup id="cite_ref-FOOTNOTETrèves2006284–297_38-7" class="reference"><a href="#cite_note-FOOTNOTETrèves2006284–297-38"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is a distribution in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> and if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\displaystyle \delta }"></span> is a <a href="/wiki/Dirac_measure" title="Dirac measure">Dirac measure</a> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\ast \delta =T=\delta \ast T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>&#x03B4;<!-- δ --></mi> <mo>=</mo> <mi>T</mi> <mo>=</mo> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\ast \delta =T=\delta \ast T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66ad8c58dc316273e5f7e82f5c3cb82533e05138" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:17.592ex; height:2.343ex;" alt="{\displaystyle T\ast \delta =T=\delta \ast T}"></span>;<sup id="cite_ref-FOOTNOTETrèves2006284–297_38-8" class="reference"><a href="#cite_note-FOOTNOTETrèves2006284–297-38"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\displaystyle \delta }"></span> is the <a href="/wiki/Identity_element" title="Identity element">identity element</a> of the convolution operation. Moreover, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is a function then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\ast \delta ^{\prime }=f^{\prime }=\delta ^{\prime }\ast f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <msup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <msup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>&#x2217;<!-- ∗ --></mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\ast \delta ^{\prime }=f^{\prime }=\delta ^{\prime }\ast f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6309d27b69f3b44de9490fd839ecb9572fedfeb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.625ex; height:2.843ex;" alt="{\displaystyle f\ast \delta ^{\prime }=f^{\prime }=\delta ^{\prime }\ast f}"></span> where now the associativity of convolution implies that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{\prime }\ast g=g^{\prime }\ast f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo>=</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>&#x2217;<!-- ∗ --></mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{\prime }\ast g=g^{\prime }\ast f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42566584b846f1d51183902bf6bacf0f1e6f1ba2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.691ex; height:2.843ex;" alt="{\displaystyle f^{\prime }\ast g=g^{\prime }\ast f}"></span> for all functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23a3f421f58ef3bc6f9ec70e883e1496ff871e9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.763ex; height:2.009ex;" alt="{\displaystyle g.}"></span> </p><p>Suppose that it is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> that has compact support. For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi \in {\mathcal {D}}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi \in {\mathcal {D}}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f21391ca85d4c1ca7397213e8cbd4836ede244e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.724ex; height:2.843ex;" alt="{\displaystyle \phi \in {\mathcal {D}}(\mathbb {R} ^{n})}"></span> consider the function <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (x)=\langle T,\tau _{-x}\phi \rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mo>,</mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (x)=\langle T,\tau _{-x}\phi \rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/972b026521737a376093dabc492f2c4417110d62" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.73ex; height:2.843ex;" alt="{\displaystyle \psi (x)=\langle T,\tau _{-x}\phi \rangle .}"></span> </p><p>It can be readily shown that this defines a smooth function of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feff4d40084c7351bf57b11ba2427f6331f5bdbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.009ex;" alt="{\displaystyle x,}"></span> which moreover has compact support. The convolution of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle S\ast T,\phi \rangle =\langle S,\psi \rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>S</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>T</mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>S</mi> <mo>,</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle S\ast T,\phi \rangle =\langle S,\psi \rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c637d6f45e30ff691e2b9623f30acd964fa3e2ce" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.16ex; height:2.843ex;" alt="{\displaystyle \langle S\ast T,\phi \rangle =\langle S,\psi \rangle .}"></span> </p><p>This generalizes the classical notion of <a href="/wiki/Convolution" title="Convolution">convolution</a> of functions and is compatible with differentiation in the following sense: for every multi-index <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/794850adc0db51d11a6d8cfa857538183424909c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.134ex; height:1.676ex;" alt="{\displaystyle \alpha .}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial ^{\alpha }(S\ast T)=(\partial ^{\alpha }S)\ast T=S\ast (\partial ^{\alpha }T).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>S</mi> <mo stretchy="false">)</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>T</mi> <mo>=</mo> <mi>S</mi> <mo>&#x2217;<!-- ∗ --></mo> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>T</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial ^{\alpha }(S\ast T)=(\partial ^{\alpha }S)\ast T=S\ast (\partial ^{\alpha }T).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf48eb7da6b0c58093146a6777f30dc0d46a917c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.145ex; height:2.843ex;" alt="{\displaystyle \partial ^{\alpha }(S\ast T)=(\partial ^{\alpha }S)\ast T=S\ast (\partial ^{\alpha }T).}"></span> </p><p>The convolution of a finite number of distributions, all of which (except possibly one) have compact support, is <a href="/wiki/Associative" class="mw-redirect" title="Associative">associative</a>.<sup id="cite_ref-FOOTNOTETrèves2006284–297_38-9" class="reference"><a href="#cite_note-FOOTNOTETrèves2006284–297-38"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p><p>This definition of convolution remains valid under less restrictive assumptions about <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4de28b735beca1303bc5da9ba518a5a22a70a5d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.283ex; height:2.176ex;" alt="{\displaystyle T.}"></span><sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </p><p>The convolution of distributions with compact support induces a continuous bilinear map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {E}}'\times {\mathcal {E}}'\to {\mathcal {E}}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {E}}'\times {\mathcal {E}}'\to {\mathcal {E}}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/443b67776f0ba85a4393978727dbb0920583f56f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.518ex; height:2.509ex;" alt="{\displaystyle {\mathcal {E}}&#039;\times {\mathcal {E}}&#039;\to {\mathcal {E}}&#039;}"></span> defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (S,T)\mapsto S*T,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>S</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>T</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (S,T)\mapsto S*T,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aaba58f76d2ab37b62c3f3f2f71ed6879eb5a87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.57ex; height:2.843ex;" alt="{\displaystyle (S,T)\mapsto S*T,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {E}}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {E}}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0169061a154e354d2c6b3ef4bf2b986f31f5588" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.021ex; height:2.509ex;" alt="{\displaystyle {\mathcal {E}}&#039;}"></span> denotes the space of distributions with compact support.<sup id="cite_ref-FOOTNOTETrèves2006423_30-1" class="reference"><a href="#cite_note-FOOTNOTETrèves2006423-30"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> However, the convolution map as a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {E}}'\times {\mathcal {D}}'\to {\mathcal {D}}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {E}}'\times {\mathcal {D}}'\to {\mathcal {D}}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/264febca12a621e199bfde2500471a3713a88451" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.429ex; height:2.509ex;" alt="{\displaystyle {\mathcal {E}}&#039;\times {\mathcal {D}}&#039;\to {\mathcal {D}}&#039;}"></span> is <em>not</em> continuous<sup id="cite_ref-FOOTNOTETrèves2006423_30-2" class="reference"><a href="#cite_note-FOOTNOTETrèves2006423-30"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> although it is separately continuous.<sup id="cite_ref-FOOTNOTETrèves2006294_43-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006294-43"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> The convolution maps <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n})\times {\mathcal {D}}'\to {\mathcal {D}}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n})\times {\mathcal {D}}'\to {\mathcal {D}}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e25208f2f1cdac734de6b0760a873836a8dbca78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.905ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n})\times {\mathcal {D}}&#039;\to {\mathcal {D}}&#039;}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n})\times {\mathcal {D}}'\to {\mathcal {D}}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n})\times {\mathcal {D}}'\to {\mathcal {D}}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f9f9a1c2ae0121731beafd32d6a1c8bf0902eba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.927ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n})\times {\mathcal {D}}&#039;\to {\mathcal {D}}(\mathbb {R} ^{n})}"></span> given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f,T)\mapsto f*T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f,T)\mapsto f*T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bdb1e1cebd14f0ee61a08fe1ac45ace1d289d6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.482ex; height:2.843ex;" alt="{\displaystyle (f,T)\mapsto f*T}"></span> both <em>fail</em> to be continuous.<sup id="cite_ref-FOOTNOTETrèves2006423_30-3" class="reference"><a href="#cite_note-FOOTNOTETrèves2006423-30"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> Each of these non-continuous maps is, however, <a href="/wiki/Separately_continuous" class="mw-redirect" title="Separately continuous">separately continuous</a> and <a href="/wiki/Hypocontinuous" class="mw-redirect" title="Hypocontinuous">hypocontinuous</a>.<sup id="cite_ref-FOOTNOTETrèves2006423_30-4" class="reference"><a href="#cite_note-FOOTNOTETrèves2006423-30"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Convolution_versus_multiplication">Convolution versus multiplication</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=35" title="Edit section: Convolution versus multiplication"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In general, <a href="/wiki/Regularization_(physics)" title="Regularization (physics)">regularity</a> is required for multiplication products, and <a href="/wiki/Principle_of_locality" title="Principle of locality">locality</a> is required for convolution products. It is expressed in the following extension of the <a href="/wiki/Convolution_theorem" title="Convolution theorem">Convolution Theorem</a> which guarantees the existence of both convolution and multiplication products. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(\alpha )=f\in {\mathcal {O}}'_{C}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(\alpha )=f\in {\mathcal {O}}'_{C}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a17706f82be011ea8f1a16b3ece4bebfcf0dbf69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.587ex; height:3.009ex;" alt="{\displaystyle F(\alpha )=f\in {\mathcal {O}}&#039;_{C}}"></span> be a rapidly decreasing tempered distribution or, equivalently, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(f)=\alpha \in {\mathcal {O}}_{M}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(f)=\alpha \in {\mathcal {O}}_{M}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e59f7d26349e7debbcd8141bd1f9823053902d84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.064ex; height:2.843ex;" alt="{\displaystyle F(f)=\alpha \in {\mathcal {O}}_{M}}"></span> be an ordinary (slowly growing, smooth) function within the space of tempered distributions and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> be the normalized (unitary, ordinary frequency) <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transform</a>.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> Then, according to <a href="#CITEREFSchwartz1951">Schwartz (1951)</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(f*g)=F(f)\cdot F(g)\qquad {\text{ and }}\qquad F(\alpha \cdot g)=F(\alpha )*F(g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mspace width="2em" /> <mi>F</mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(f*g)=F(f)\cdot F(g)\qquad {\text{ and }}\qquad F(\alpha \cdot g)=F(\alpha )*F(g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2a9da70856e564e3bed6bd2d3e27c6c2a3dcc8a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:59.441ex; height:2.843ex;" alt="{\displaystyle F(f*g)=F(f)\cdot F(g)\qquad {\text{ and }}\qquad F(\alpha \cdot g)=F(\alpha )*F(g)}"></span> hold within the space of tempered distributions.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> In particular, these equations become the <a href="/wiki/Poisson_summation_formula" title="Poisson summation formula">Poisson Summation Formula</a> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\equiv \operatorname {\text{&#x428;}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2261;<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mtext>&#x428;</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\equiv \operatorname {\text{Ш}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/630dbdac689152fdee5b29873f23f41f2645e6a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:5.631ex; height:3.343ex;" alt="{\displaystyle g\equiv \operatorname {\text{Ш}} }"></span> is the <a href="/wiki/Dirac_comb" title="Dirac comb">Dirac Comb</a>.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> The space of all rapidly decreasing tempered distributions is also called the space of <em>convolution operators</em> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {O}}'_{C}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {O}}'_{C}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6454cc8f544d3259acc157c65521eff641ad2df6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.331ex; height:3.009ex;" alt="{\displaystyle {\mathcal {O}}&#039;_{C}}"></span> and the space of all ordinary functions within the space of tempered distributions is also called the space of <em>multiplication operators</em> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {O}}_{M}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {O}}_{M}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c53cfce6db16348d44fb65e4cd148b2f12b3b0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.456ex; height:2.509ex;" alt="{\displaystyle {\mathcal {O}}_{M}.}"></span> More generally, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F({\mathcal {O}}'_{C})={\mathcal {O}}_{M}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F({\mathcal {O}}'_{C})={\mathcal {O}}_{M}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b7ff4e8c894e1074e54c10ab83ee63f05660609" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.789ex; height:3.009ex;" alt="{\displaystyle F({\mathcal {O}}&#039;_{C})={\mathcal {O}}_{M}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F({\mathcal {O}}_{M})={\mathcal {O}}'_{C}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F({\mathcal {O}}_{M})={\mathcal {O}}'_{C}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6f4e5895cc5c7e525812492e87ee18f84568f78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.436ex; height:3.009ex;" alt="{\displaystyle F({\mathcal {O}}_{M})={\mathcal {O}}&#039;_{C}.}"></span><sup id="cite_ref-FOOTNOTETrèves2006318–319_49-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006318–319-49"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> A particular case is the <a href="/wiki/Paley%E2%80%93Wiener_theorem#Schwartz&#39;s_Paley–Wiener_theorem" title="Paley–Wiener theorem">Paley-Wiener-Schwartz Theorem</a> which states that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F({\mathcal {E}}')=\operatorname {PW} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>PW</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F({\mathcal {E}}')=\operatorname {PW} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e4e5962c10bb9e5f50b26a50cf7bb3cd14d1821" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.641ex; height:3.009ex;" alt="{\displaystyle F({\mathcal {E}}&#039;)=\operatorname {PW} }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(\operatorname {PW} )={\mathcal {E}}'.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>PW</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(\operatorname {PW} )={\mathcal {E}}'.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f03ad2029398e2773d767ac1e2e7d40b33ceb375" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.288ex; height:3.009ex;" alt="{\displaystyle F(\operatorname {PW} )={\mathcal {E}}&#039;.}"></span> This is because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {E}}'\subseteq {\mathcal {O}}'_{C}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo>&#x2286;<!-- ⊆ --></mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {E}}'\subseteq {\mathcal {O}}'_{C}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f57b6c6bb87c742fc6fe98d4fe4e0c2c58ab5dd1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.451ex; height:3.009ex;" alt="{\displaystyle {\mathcal {E}}&#039;\subseteq {\mathcal {O}}&#039;_{C}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {PW} \subseteq {\mathcal {O}}_{M}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>PW</mi> <mo>&#x2286;<!-- ⊆ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {PW} \subseteq {\mathcal {O}}_{M}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80c7d54f1c42236d85d7bfef9c66eee72133b64b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.526ex; height:2.509ex;" alt="{\displaystyle \operatorname {PW} \subseteq {\mathcal {O}}_{M}.}"></span> In other words, compactly supported tempered distributions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {E}}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {E}}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0169061a154e354d2c6b3ef4bf2b986f31f5588" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.021ex; height:2.509ex;" alt="{\displaystyle {\mathcal {E}}&#039;}"></span> belong to the space of <em>convolution operators</em> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {O}}'_{C}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {O}}'_{C}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6454cc8f544d3259acc157c65521eff641ad2df6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.331ex; height:3.009ex;" alt="{\displaystyle {\mathcal {O}}&#039;_{C}}"></span> and Paley-Wiener functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {PW} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>PW</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {PW} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0fbbd4d8cb872fa365cadba0d4356eeb14c0d2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.618ex; height:2.509ex;" alt="{\displaystyle \operatorname {PW} ,}"></span> better known as <a href="/wiki/Bandlimiting" title="Bandlimiting">bandlimited functions</a>, belong to the space of <em>multiplication operators</em> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {O}}_{M}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {O}}_{M}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c53cfce6db16348d44fb65e4cd148b2f12b3b0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.456ex; height:2.509ex;" alt="{\displaystyle {\mathcal {O}}_{M}.}"></span><sup id="cite_ref-FOOTNOTESchwartz1951_51-0" class="reference"><a href="#cite_note-FOOTNOTESchwartz1951-51"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p><p>For example, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\equiv \operatorname {\text{&#x428;}} \in {\mathcal {S}}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2261;<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mtext>&#x428;</mtext> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\equiv \operatorname {\text{Ш}} \in {\mathcal {S}}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/beea3f3f5925eaa3e20035a8942c59a4dbe02f89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:10.674ex; height:3.343ex;" alt="{\displaystyle g\equiv \operatorname {\text{Ш}} \in {\mathcal {S}}&#039;}"></span> be the Dirac comb and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\equiv \delta \in {\mathcal {E}}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2261;<!-- ≡ --></mo> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\equiv \delta \in {\mathcal {E}}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70fc91a35d4f6e034679f0cf130dd38bce63fbc1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.287ex; height:2.843ex;" alt="{\displaystyle f\equiv \delta \in {\mathcal {E}}&#039;}"></span> be the <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta</a>;then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \equiv 1\in \operatorname {PW} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>1</mn> <mo>&#x2208;<!-- ∈ --></mo> <mi>PW</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \equiv 1\in \operatorname {PW} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a3db3f271c388b3d5064750de5ea4df27c896ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.561ex; height:2.176ex;" alt="{\displaystyle \alpha \equiv 1\in \operatorname {PW} }"></span> is the function that is constantly one and both equations yield the <a href="/wiki/Dirac_comb#Dirac-comb_identity" title="Dirac comb">Dirac-comb identity</a>. Another example is to let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> be the Dirac comb and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\equiv \operatorname {rect} \in {\mathcal {E}}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2261;<!-- ≡ --></mo> <mi>rect</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\equiv \operatorname {rect} \in {\mathcal {E}}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbec97022b4e369626e8a6f04a58c4e12c68b571" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.12ex; height:2.843ex;" alt="{\displaystyle f\equiv \operatorname {rect} \in {\mathcal {E}}&#039;}"></span> be the <a href="/wiki/Rectangular_function" title="Rectangular function">rectangular function</a>; then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \equiv \operatorname {sinc} \in \operatorname {PW} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2261;<!-- ≡ --></mo> <mi>sinc</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>PW</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \equiv \operatorname {sinc} \in \operatorname {PW} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9a1e9940d03254e8afbd76820cdd155b0cc407c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.286ex; height:2.176ex;" alt="{\displaystyle \alpha \equiv \operatorname {sinc} \in \operatorname {PW} }"></span> is the <a href="/wiki/Sinc_function" title="Sinc function">sinc function</a> and both equations yield the <a href="/wiki/Nyquist%E2%80%93Shannon_sampling_theorem" title="Nyquist–Shannon sampling theorem">Classical Sampling Theorem</a> for suitable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {rect} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>rect</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {rect} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f0f44278630d3c113a35a8f8ad109a8b759c8ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.881ex; height:2.009ex;" alt="{\displaystyle \operatorname {rect} }"></span> functions. More generally, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> is the Dirac comb and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in {\mathcal {S}}\subseteq {\mathcal {O}}'_{C}\cap {\mathcal {O}}_{M}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo>&#x2286;<!-- ⊆ --></mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>&#x2229;<!-- ∩ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in {\mathcal {S}}\subseteq {\mathcal {O}}'_{C}\cap {\mathcal {O}}_{M}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca99a83bd234a0d3778583850bdfdaac9b6ef94f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.433ex; height:3.009ex;" alt="{\displaystyle f\in {\mathcal {S}}\subseteq {\mathcal {O}}&#039;_{C}\cap {\mathcal {O}}_{M}}"></span> is a <a href="/wiki/Smoothness" title="Smoothness">smooth</a> <a href="/wiki/Window_function" title="Window function">window function</a> (<a href="/wiki/Schwartz_space" title="Schwartz space">Schwartz function</a>), for example, the <a href="/wiki/Gaussian_function" title="Gaussian function">Gaussian</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \in {\mathcal {S}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \in {\mathcal {S}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a91a9ff98ff8d84df17342f6ae108c0d7d3efd1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.821ex; height:2.176ex;" alt="{\displaystyle \alpha \in {\mathcal {S}}}"></span> is another smooth window function (Schwartz function). They are known as <a href="/wiki/Mollifier" title="Mollifier">mollifiers</a>, especially in <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equations</a> theory, or as <a href="/wiki/Regularization_(mathematics)" title="Regularization (mathematics)">regularizers</a> in <a href="/wiki/Regularization_(physics)" title="Regularization (physics)">physics</a> because they allow turning <a href="/wiki/Generalized_function" title="Generalized function">generalized functions</a> into <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">regular functions</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Tensor_products_of_distributions">Tensor products of distributions<span class="anchor" id="Tensor_product_of_distributions"></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=36" title="Edit section: Tensor products of distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U\subseteq \mathbb {R} ^{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U\subseteq \mathbb {R} ^{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ecd5d92ef4421c86ffed80be59c0bdb3a6e5373" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.234ex; height:2.509ex;" alt="{\displaystyle U\subseteq \mathbb {R} ^{m}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\subseteq \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\subseteq \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38dc028a43dffef2fa914e719981f1e1da22c0bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.782ex; height:2.509ex;" alt="{\displaystyle V\subseteq \mathbb {R} ^{n}}"></span> be open sets. Assume all vector spaces to be over the field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {F} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">F</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {F} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68a47d5182b1a29ce1a2ed46c59e7bc117aeb083" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.067ex; height:2.509ex;" alt="{\displaystyle \mathbb {F} ,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {F} =\mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">F</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {F} =\mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9e1200c55f062d38108d482407e8a36b868eb91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.197ex; height:2.176ex;" alt="{\displaystyle \mathbb {F} =\mathbb {R} }"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f4d5d3ec97eee8b915d3b14d3fb38579ee639d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} .}"></span> For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in {\mathcal {D}}(U\times V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo>&#x00D7;<!-- × --></mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in {\mathcal {D}}(U\times V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98a01425dac0c4782899697305bc64c3df19cd49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.131ex; height:2.843ex;" alt="{\displaystyle f\in {\mathcal {D}}(U\times V)}"></span> define for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u\in U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u\in U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65c3e0203fca1c3b6c1982520132b9f057ed5d88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.953ex; height:2.176ex;" alt="{\displaystyle u\in U}"></span> and every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v\in V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v\in V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99886ebbde63daa0224fb9bf56fa11b3c8a6f4fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.756ex; height:2.176ex;" alt="{\displaystyle v\in V}"></span> the following functions: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{9}f_{u}:\,&amp;V&amp;&amp;\to \,&amp;&amp;\mathbb {F} &amp;&amp;\quad {\text{ and }}\quad &amp;&amp;f^{v}:\,&amp;&amp;U&amp;&amp;\to \,&amp;&amp;\mathbb {F} \\&amp;y&amp;&amp;\mapsto \,&amp;&amp;f(u,y)&amp;&amp;&amp;&amp;&amp;&amp;x&amp;&amp;\mapsto \,&amp;&amp;f(x,v)\\\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo>:</mo> <mspace width="thinmathspace" /> </mtd> <mtd> <mi>V</mi> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">F</mi> </mrow> </mtd> <mtd /> <mtd> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mspace width="1em" /> </mtd> <mtd /> <mtd> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msup> <mo>:</mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mi>U</mi> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">F</mi> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi>y</mi> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd /> <mtd /> <mtd /> <mtd /> <mtd> <mi>x</mi> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{9}f_{u}:\,&amp;V&amp;&amp;\to \,&amp;&amp;\mathbb {F} &amp;&amp;\quad {\text{ and }}\quad &amp;&amp;f^{v}:\,&amp;&amp;U&amp;&amp;\to \,&amp;&amp;\mathbb {F} \\&amp;y&amp;&amp;\mapsto \,&amp;&amp;f(u,y)&amp;&amp;&amp;&amp;&amp;&amp;x&amp;&amp;\mapsto \,&amp;&amp;f(x,v)\\\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f77d352bafb41269fed578555507e192228b21bf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:41.793ex; height:5.843ex;" alt="{\displaystyle {\begin{alignedat}{9}f_{u}:\,&amp;V&amp;&amp;\to \,&amp;&amp;\mathbb {F} &amp;&amp;\quad {\text{ and }}\quad &amp;&amp;f^{v}:\,&amp;&amp;U&amp;&amp;\to \,&amp;&amp;\mathbb {F} \\&amp;y&amp;&amp;\mapsto \,&amp;&amp;f(u,y)&amp;&amp;&amp;&amp;&amp;&amp;x&amp;&amp;\mapsto \,&amp;&amp;f(x,v)\\\end{alignedat}}}"></span> </p><p>Given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\in {\mathcal {D}}^{\prime }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\in {\mathcal {D}}^{\prime }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/556509b8e058fe02b56db3e659b0bcd1dec6359d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.408ex; height:3.009ex;" alt="{\displaystyle S\in {\mathcal {D}}^{\prime }(U)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}^{\prime }(V),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}^{\prime }(V),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52d9c954349ce4df586e044861bb7f8c9b4d4e13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.197ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}^{\prime }(V),}"></span> define the following functions: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{9}\langle S,f^{\bullet }\rangle :\,&amp;V&amp;&amp;\to \,&amp;&amp;\mathbb {F} &amp;&amp;\quad {\text{ and }}\quad &amp;&amp;\langle T,f_{\bullet }\rangle :\,&amp;&amp;U&amp;&amp;\to \,&amp;&amp;\mathbb {F} \\&amp;v&amp;&amp;\mapsto \,&amp;&amp;\langle S,f^{v}\rangle &amp;&amp;&amp;&amp;&amp;&amp;u&amp;&amp;\mapsto \,&amp;&amp;\langle T,f_{u}\rangle \\\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>S</mi> <mo>,</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2219;<!-- ∙ --></mo> </mrow> </msup> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>:</mo> <mspace width="thinmathspace" /> </mtd> <mtd> <mi>V</mi> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">F</mi> </mrow> </mtd> <mtd /> <mtd> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mspace width="1em" /> </mtd> <mtd /> <mtd> <mi></mi> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2219;<!-- ∙ --></mo> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>:</mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mi>U</mi> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">F</mi> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi>v</mi> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mi></mi> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>S</mi> <mo>,</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msup> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mtd> <mtd /> <mtd /> <mtd /> <mtd /> <mtd /> <mtd> <mi>u</mi> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mi></mi> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{9}\langle S,f^{\bullet }\rangle :\,&amp;V&amp;&amp;\to \,&amp;&amp;\mathbb {F} &amp;&amp;\quad {\text{ and }}\quad &amp;&amp;\langle T,f_{\bullet }\rangle :\,&amp;&amp;U&amp;&amp;\to \,&amp;&amp;\mathbb {F} \\&amp;v&amp;&amp;\mapsto \,&amp;&amp;\langle S,f^{v}\rangle &amp;&amp;&amp;&amp;&amp;&amp;u&amp;&amp;\mapsto \,&amp;&amp;\langle T,f_{u}\rangle \\\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/732f63f502ecd05f161fb550709260ff6e6fe1fc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:50.819ex; height:6.176ex;" alt="{\displaystyle {\begin{alignedat}{9}\langle S,f^{\bullet }\rangle :\,&amp;V&amp;&amp;\to \,&amp;&amp;\mathbb {F} &amp;&amp;\quad {\text{ and }}\quad &amp;&amp;\langle T,f_{\bullet }\rangle :\,&amp;&amp;U&amp;&amp;\to \,&amp;&amp;\mathbb {F} \\&amp;v&amp;&amp;\mapsto \,&amp;&amp;\langle S,f^{v}\rangle &amp;&amp;&amp;&amp;&amp;&amp;u&amp;&amp;\mapsto \,&amp;&amp;\langle T,f_{u}\rangle \\\end{alignedat}}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle T,f_{\bullet }\rangle \in {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2219;<!-- ∙ --></mo> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle T,f_{\bullet }\rangle \in {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59b0accf4614d978730ab1029220156a018d22f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.897ex; height:2.843ex;" alt="{\displaystyle \langle T,f_{\bullet }\rangle \in {\mathcal {D}}(U)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle S,f^{\bullet }\rangle \in {\mathcal {D}}(V).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>S</mi> <mo>,</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2219;<!-- ∙ --></mo> </mrow> </msup> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle S,f^{\bullet }\rangle \in {\mathcal {D}}(V).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bee20d519483b213822d1d06099f57dd82c8db66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.593ex; height:2.843ex;" alt="{\displaystyle \langle S,f^{\bullet }\rangle \in {\mathcal {D}}(V).}"></span> These definitions associate every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\in {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\in {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe391800f07ba1090a47c6abac9b781cea86d957" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.408ex; height:3.009ex;" alt="{\displaystyle S\in {\mathcal {D}}&#039;(U)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}'(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}'(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bedbae2138c70e674d24ec57612c28e0d8959a92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.55ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}&#039;(V)}"></span> with the (respective) continuous linear map: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{9}\,&amp;&amp;{\mathcal {D}}(U\times V)&amp;\to \,&amp;&amp;{\mathcal {D}}(V)&amp;&amp;\quad {\text{ and }}\quad &amp;&amp;\,&amp;{\mathcal {D}}(U\times V)&amp;&amp;\to \,&amp;&amp;{\mathcal {D}}(U)\\&amp;&amp;f\ &amp;\mapsto \,&amp;&amp;\langle S,f^{\bullet }\rangle &amp;&amp;&amp;&amp;&amp;f\ &amp;&amp;\mapsto \,&amp;&amp;\langle T,f_{\bullet }\rangle \\\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo>&#x00D7;<!-- × --></mo> <mi>V</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mspace width="1em" /> </mtd> <mtd /> <mtd> <mspace width="thinmathspace" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo>&#x00D7;<!-- × --></mo> <mi>V</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mo stretchy="false">&#x2192;<!-- → --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd /> <mtd> <mi>f</mi> <mtext>&#xA0;</mtext> </mtd> <mtd> <mi></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mi></mi> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>S</mi> <mo>,</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2219;<!-- ∙ --></mo> </mrow> </msup> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mtd> <mtd /> <mtd /> <mtd /> <mtd /> <mtd> <mi>f</mi> <mtext>&#xA0;</mtext> </mtd> <mtd /> <mtd> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2219;<!-- ∙ --></mo> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{9}\,&amp;&amp;{\mathcal {D}}(U\times V)&amp;\to \,&amp;&amp;{\mathcal {D}}(V)&amp;&amp;\quad {\text{ and }}\quad &amp;&amp;\,&amp;{\mathcal {D}}(U\times V)&amp;&amp;\to \,&amp;&amp;{\mathcal {D}}(U)\\&amp;&amp;f\ &amp;\mapsto \,&amp;&amp;\langle S,f^{\bullet }\rangle &amp;&amp;&amp;&amp;&amp;f\ &amp;&amp;\mapsto \,&amp;&amp;\langle T,f_{\bullet }\rangle \\\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30a1a320bf2082801f42ade093ab279743e24491" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:50.559ex; height:6.176ex;" alt="{\displaystyle {\begin{alignedat}{9}\,&amp;&amp;{\mathcal {D}}(U\times V)&amp;\to \,&amp;&amp;{\mathcal {D}}(V)&amp;&amp;\quad {\text{ and }}\quad &amp;&amp;\,&amp;{\mathcal {D}}(U\times V)&amp;&amp;\to \,&amp;&amp;{\mathcal {D}}(U)\\&amp;&amp;f\ &amp;\mapsto \,&amp;&amp;\langle S,f^{\bullet }\rangle &amp;&amp;&amp;&amp;&amp;f\ &amp;&amp;\mapsto \,&amp;&amp;\langle T,f_{\bullet }\rangle \\\end{alignedat}}}"></span> </p><p>Moreover, if either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> (resp. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span>) has compact support then it also induces a continuous linear map of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(U\times V)\to C^{\infty }(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo>&#x00D7;<!-- × --></mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(U\times V)\to C^{\infty }(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f7681620f1c7df0cbd712f133516938b9e06916" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.777ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(U\times V)\to C^{\infty }(V)}"></span> (resp. <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(U\times V)\to C^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo>&#x00D7;<!-- × --></mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(U\times V)\to C^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6adaccffcfea957d5843c61951ed8b0a165f7095" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.772ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(U\times V)\to C^{\infty }(U)}"></span>).</span><sup id="cite_ref-FOOTNOTETrèves2006416–419_52-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006416–419-52"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="Fubini&#39;s_theorem_for_distributions"></span><span class="vanchor-text"><a href="/wiki/Fubini%27s_theorem" title="Fubini&#39;s theorem">Fubini's theorem</a> for distributions</span></span><sup id="cite_ref-FOOTNOTETrèves2006416–419_52-1" class="reference"><a href="#cite_note-FOOTNOTETrèves2006416–419-52"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup></strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\in {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\in {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe391800f07ba1090a47c6abac9b781cea86d957" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.408ex; height:3.009ex;" alt="{\displaystyle S\in {\mathcal {D}}&#039;(U)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}'(V).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}'(V).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1223cd5a7717bfb2b2bc71ae6a69861f2b5b9b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.197ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}&#039;(V).}"></span> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in {\mathcal {D}}(U\times V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo>&#x00D7;<!-- × --></mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in {\mathcal {D}}(U\times V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98a01425dac0c4782899697305bc64c3df19cd49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.131ex; height:2.843ex;" alt="{\displaystyle f\in {\mathcal {D}}(U\times V)}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle S,\langle T,f_{\bullet }\rangle \rangle =\langle T,\langle S,f^{\bullet }\rangle \rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>S</mi> <mo>,</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2219;<!-- ∙ --></mo> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mo>,</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>S</mi> <mo>,</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2219;<!-- ∙ --></mo> </mrow> </msup> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle S,\langle T,f_{\bullet }\rangle \rangle =\langle T,\langle S,f^{\bullet }\rangle \rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da5e670dfdb3d5b1c8a453ec470d3b6a26653a28" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.957ex; height:2.843ex;" alt="{\displaystyle \langle S,\langle T,f_{\bullet }\rangle \rangle =\langle T,\langle S,f^{\bullet }\rangle \rangle .}"></span> </p> </div> <p><em>The <a href="/wiki/Tensor_product" title="Tensor product"><b><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="tensor_product"></span><span class="vanchor-text">tensor product</span></span></b></a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\in {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\in {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe391800f07ba1090a47c6abac9b781cea86d957" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.408ex; height:3.009ex;" alt="{\displaystyle S\in {\mathcal {D}}&#039;(U)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}'(V),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}'(V),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/625b96a5d91cf0d9f074f989bc08cb430a47dcf5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.197ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}&#039;(V),}"></span></em> denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\otimes T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\otimes T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d899bc1272888d8b81104aac668e17fa00f1777" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.976ex; height:2.343ex;" alt="{\displaystyle S\otimes T}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\otimes S,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>S</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\otimes S,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da664569566eb34db61ed2b05f2b4fcbc106bdd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.623ex; height:2.509ex;" alt="{\displaystyle T\otimes S,}"></span> is the distribution in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U\times V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>&#x00D7;<!-- × --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U\times V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95e44b0f84be55f63488daa04bbcf32026982a1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.41ex; height:2.176ex;" alt="{\displaystyle U\times V}"></span> defined by:<sup id="cite_ref-FOOTNOTETrèves2006416–419_52-2" class="reference"><a href="#cite_note-FOOTNOTETrèves2006416–419-52"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (S\otimes T)(f):=\langle S,\langle T,f_{\bullet }\rangle \rangle =\langle T,\langle S,f^{\bullet }\rangle \rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>S</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>S</mi> <mo>,</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2219;<!-- ∙ --></mo> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mo>,</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>S</mi> <mo>,</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2219;<!-- ∙ --></mo> </mrow> </msup> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (S\otimes T)(f):=\langle S,\langle T,f_{\bullet }\rangle \rangle =\langle T,\langle S,f^{\bullet }\rangle \rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0683ba22f8cce2ec750a57c0212270cdbf2b0989" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.576ex; height:2.843ex;" alt="{\displaystyle (S\otimes T)(f):=\langle S,\langle T,f_{\bullet }\rangle \rangle =\langle T,\langle S,f^{\bullet }\rangle \rangle .}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Spaces_of_distributions">Spaces of distributions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=37" title="Edit section: Spaces of distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Spaces_of_test_functions_and_distributions" title="Spaces of test functions and distributions">Spaces of test functions and distributions</a></div> <p>For all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;k&lt;\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>k</mi> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;k&lt;\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/880a13bd98d1e99cee22a400f19b1e3dad1c5336" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.894ex; height:2.176ex;" alt="{\displaystyle 0&lt;k&lt;\infty }"></span> and all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1&lt;p&lt;\infty ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&lt;</mo> <mi>p</mi> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1&lt;p&lt;\infty ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/203e39618106a0a92baad7c6443a390d1dec4792" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.499ex; height:2.509ex;" alt="{\displaystyle 1&lt;p&lt;\infty ,}"></span> every one of the following canonical injections is continuous and has an <a href="/wiki/Image_of_a_function" class="mw-redirect" title="Image of a function">image (also called the range)</a> that is a <a href="/wiki/Dense_set" title="Dense set">dense subset</a> of its codomain: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}C_{c}^{\infty }(U)&amp;\to &amp;C_{c}^{k}(U)&amp;\to &amp;C_{c}^{0}(U)&amp;\to &amp;L_{c}^{\infty }(U)&amp;\to &amp;L_{c}^{p}(U)&amp;\to &amp;L_{c}^{1}(U)\\\downarrow &amp;&amp;\downarrow &amp;&amp;\downarrow \\C^{\infty }(U)&amp;\to &amp;C^{k}(U)&amp;\to &amp;C^{0}(U)\\{}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mo stretchy="false">&#x2192;<!-- → --></mo> </mtd> <mtd> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mo stretchy="false">&#x2192;<!-- → --></mo> </mtd> <mtd> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mo stretchy="false">&#x2192;<!-- → --></mo> </mtd> <mtd> <msubsup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mo stretchy="false">&#x2192;<!-- → --></mo> </mtd> <mtd> <msubsup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mo stretchy="false">&#x2192;<!-- → --></mo> </mtd> <mtd> <msubsup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">&#x2193;<!-- ↓ --></mo> </mtd> <mtd /> <mtd> <mo stretchy="false">&#x2193;<!-- ↓ --></mo> </mtd> <mtd /> <mtd> <mo stretchy="false">&#x2193;<!-- ↓ --></mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mo stretchy="false">&#x2192;<!-- → --></mo> </mtd> <mtd> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mo stretchy="false">&#x2192;<!-- → --></mo> </mtd> <mtd> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}C_{c}^{\infty }(U)&amp;\to &amp;C_{c}^{k}(U)&amp;\to &amp;C_{c}^{0}(U)&amp;\to &amp;L_{c}^{\infty }(U)&amp;\to &amp;L_{c}^{p}(U)&amp;\to &amp;L_{c}^{1}(U)\\\downarrow &amp;&amp;\downarrow &amp;&amp;\downarrow \\C^{\infty }(U)&amp;\to &amp;C^{k}(U)&amp;\to &amp;C^{0}(U)\\{}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87e2056f29d2c8e1c554bcbfbd4770f73b4d61a1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:75.297ex; height:13.176ex;" alt="{\displaystyle {\begin{matrix}C_{c}^{\infty }(U)&amp;\to &amp;C_{c}^{k}(U)&amp;\to &amp;C_{c}^{0}(U)&amp;\to &amp;L_{c}^{\infty }(U)&amp;\to &amp;L_{c}^{p}(U)&amp;\to &amp;L_{c}^{1}(U)\\\downarrow &amp;&amp;\downarrow &amp;&amp;\downarrow \\C^{\infty }(U)&amp;\to &amp;C^{k}(U)&amp;\to &amp;C^{0}(U)\\{}\end{matrix}}}"></span> where the topologies on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{c}^{q}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{c}^{q}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5787d0d99f5fc4571c953881e16322a4a5f87e07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.163ex; height:3.009ex;" alt="{\displaystyle L_{c}^{q}(U)}"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\leq q\leq \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>q</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\leq q\leq \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/888b1f8d514f5278e33d980d586b6a88bc233aa4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.753ex; height:2.509ex;" alt="{\displaystyle 1\leq q\leq \infty }"></span>) are defined as direct limits of the spaces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{c}^{q}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{c}^{q}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79cea8b4a508570dd39ec458b73d6f4f64475783" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.447ex; height:3.009ex;" alt="{\displaystyle L_{c}^{q}(K)}"></span> in a manner analogous to how the topologies on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7debf9e12995a3b3061090f012ade1cff8570c17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.478ex; height:3.009ex;" alt="{\displaystyle C_{c}^{k}(U)}"></span> were defined (so in particular, they are not the usual norm topologies). The range of each of the maps above (and of any composition of the maps above) is dense in its codomain.<sup id="cite_ref-FOOTNOTETrèves2006150–160_53-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006150–160-53"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> </p><p>Suppose that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is one of the spaces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7debf9e12995a3b3061090f012ade1cff8570c17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.478ex; height:3.009ex;" alt="{\displaystyle C_{c}^{k}(U)}"></span> (for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\in \{0,1,\ldots ,\infty \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\in \{0,1,\ldots ,\infty \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f5fcdb66b66f53c80a4e190b8abad933df09a28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.238ex; height:2.843ex;" alt="{\displaystyle k\in \{0,1,\ldots ,\infty \}}"></span>) or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{c}^{p}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{c}^{p}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91271eb8b2ddf9996739aa5cdf158bd3b474a5e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.234ex; height:3.009ex;" alt="{\displaystyle L_{c}^{p}(U)}"></span> (for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\leq p\leq \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>p</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\leq p\leq \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7d63bb8c8def80f4fb709fbb2aae6a11c9cd41d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.853ex; height:2.509ex;" alt="{\displaystyle 1\leq p\leq \infty }"></span>) or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{p}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{p}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b63df31c361195540b1bec6fdf13d98ebc06b562" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.234ex; height:2.843ex;" alt="{\displaystyle L^{p}(U)}"></span> (for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\leq p&lt;\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>p</mi> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\leq p&lt;\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d42661a6d23dcde0fb7ae1b611e233958d13da9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.853ex; height:2.509ex;" alt="{\displaystyle 1\leq p&lt;\infty }"></span>). Because the canonical injection <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {In} _{X}:C_{c}^{\infty }(U)\to X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>In</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>:</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {In} _{X}:C_{c}^{\infty }(U)\to X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd205dd247511e112f43c4eab108d47f01f9d836" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.561ex; height:2.843ex;" alt="{\displaystyle \operatorname {In} _{X}:C_{c}^{\infty }(U)\to X}"></span> is a continuous injection whose image is dense in the codomain, this map's <a href="/wiki/Transpose_of_a_linear_map" title="Transpose of a linear map">transpose</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}\operatorname {In} _{X}:X'_{b}\to {\mathcal {D}}'(U)=\left(C_{c}^{\infty }(U)\right)'_{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <msub> <mi>In</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>:</mo> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}\operatorname {In} _{X}:X'_{b}\to {\mathcal {D}}'(U)=\left(C_{c}^{\infty }(U)\right)'_{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d542d44c7decd9289f5c2c6afdf462af5917f72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:32.57ex; height:3.343ex;" alt="{\displaystyle {}^{t}\operatorname {In} _{X}:X&#039;_{b}\to {\mathcal {D}}&#039;(U)=\left(C_{c}^{\infty }(U)\right)&#039;_{b}}"></span> is a continuous injection. This injective transpose map thus allows the <a href="/wiki/Continuous_dual_space" class="mw-redirect" title="Continuous dual space">continuous dual space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/865f8505e90120a535a4ee68ca253dbd8ce7eb6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.682ex; height:2.509ex;" alt="{\displaystyle X&#039;}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> to be identified with a certain vector subspace of the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> of all distributions (specifically, it is identified with the image of this transpose map). This transpose map is continuous but it is <em>not</em> necessarily a <a href="/wiki/Topological_embedding" class="mw-redirect" title="Topological embedding">topological embedding</a>. A linear subspace of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> carrying a <a href="/wiki/Locally_convex_topological_vector_space" title="Locally convex topological vector space">locally convex</a> topology that is finer than the <a href="/wiki/Subspace_topology" title="Subspace topology">subspace topology</a> induced on it by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)=\left(C_{c}^{\infty }(U)\right)'_{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)=\left(C_{c}^{\infty }(U)\right)'_{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4edac3aba640b8e4b69fd78752c0ad3c29d62696" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.179ex; height:3.343ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)=\left(C_{c}^{\infty }(U)\right)&#039;_{b}}"></span> is called <b><em>a space of distributions</em></b>.<sup id="cite_ref-FOOTNOTETrèves2006240–252_54-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006240–252-54"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> Almost all of the spaces of distributions mentioned in this article arise in this way (for example, tempered distribution, restrictions, distributions of order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leq }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2264;<!-- ≤ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \leq }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/440568a09c3bfdf0e1278bfa79eb137c04e94035" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \leq }"></span> some integer, distributions induced by a positive Radon measure, distributions induced by an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf2317aaca1ecee4b8ccf667bc1001059eae5850" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.642ex; height:2.343ex;" alt="{\displaystyle L^{p}}"></span>-function, etc.) and any representation theorem about the continuous dual space of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> may, through the transpose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}\operatorname {In} _{X}:X'_{b}\to {\mathcal {D}}'(U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <msub> <mi>In</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>:</mo> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}\operatorname {In} _{X}:X'_{b}\to {\mathcal {D}}'(U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adec4d70dc2b72a72352da7568816d594aece4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.106ex; height:3.176ex;" alt="{\displaystyle {}^{t}\operatorname {In} _{X}:X&#039;_{b}\to {\mathcal {D}}&#039;(U),}"></span> be transferred directly to elements of the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Im} \left({}^{t}\operatorname {In} _{X}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Im</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <msub> <mi>In</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Im} \left({}^{t}\operatorname {In} _{X}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ff4dac05157dfe3ae961d223273623e94e7048b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.53ex; height:3.176ex;" alt="{\displaystyle \operatorname {Im} \left({}^{t}\operatorname {In} _{X}\right).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Radon_measures">Radon measures</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=38" title="Edit section: Radon measures"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The inclusion map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {In} :C_{c}^{\infty }(U)\to C_{c}^{0}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>In</mi> <mo>:</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {In} :C_{c}^{\infty }(U)\to C_{c}^{0}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19123228c81441f743653b4c95859017a7f9ed1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.392ex; height:3.009ex;" alt="{\displaystyle \operatorname {In} :C_{c}^{\infty }(U)\to C_{c}^{0}(U)}"></span> is a continuous injection whose image is dense in its codomain, so the <a href="/wiki/Transpose" title="Transpose">transpose</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}\operatorname {In} :(C_{c}^{0}(U))'_{b}\to {\mathcal {D}}'(U)=(C_{c}^{\infty }(U))'_{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>In</mi> <mo>:</mo> <mo stretchy="false">(</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}\operatorname {In} :(C_{c}^{0}(U))'_{b}\to {\mathcal {D}}'(U)=(C_{c}^{\infty }(U))'_{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a81ac9adf147add8770ddfd551b758d42fba2a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:37.266ex; height:3.176ex;" alt="{\displaystyle {}^{t}\operatorname {In} :(C_{c}^{0}(U))&#039;_{b}\to {\mathcal {D}}&#039;(U)=(C_{c}^{\infty }(U))&#039;_{b}}"></span> is also a continuous injection. </p><p>Note that the continuous dual space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (C_{c}^{0}(U))'_{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (C_{c}^{0}(U))'_{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/021bb51111a2cb9b6e2e4cb31ef494f17b5b5885" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.191ex; height:3.176ex;" alt="{\displaystyle (C_{c}^{0}(U))&#039;_{b}}"></span> can be identified as the space of <a href="/wiki/Radon_measure" title="Radon measure">Radon measures</a>, where there is a one-to-one correspondence between the continuous linear functionals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in (C_{c}^{0}(U))'_{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in (C_{c}^{0}(U))'_{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/769c686065c5115ee78d20d13f633ab255a99b45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.668ex; height:3.176ex;" alt="{\displaystyle T\in (C_{c}^{0}(U))&#039;_{b}}"></span> and integral with respect to a Radon measure; that is, </p> <ul><li>if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in (C_{c}^{0}(U))'_{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in (C_{c}^{0}(U))'_{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/769c686065c5115ee78d20d13f633ab255a99b45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.668ex; height:3.176ex;" alt="{\displaystyle T\in (C_{c}^{0}(U))&#039;_{b}}"></span> then there exists a Radon measure <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> on <span class="texhtml mvar" style="font-style:italic;">U</span> such that for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle f\in C_{c}^{0}(U),T(f)=\int _{U}f\,d\mu ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>f</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle f\in C_{c}^{0}(U),T(f)=\int _{U}f\,d\mu ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e04652b09168c2e200f05e8a4a871235f81f64d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.327ex; height:3.176ex;" alt="{\textstyle f\in C_{c}^{0}(U),T(f)=\int _{U}f\,d\mu ,}"></span> and</li> <li>if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> is a Radon measure on <span class="texhtml mvar" style="font-style:italic;">U</span> then the linear functional on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{0}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{0}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70f77e4c638ed29f0653cec46782f5dbda6a4d5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.444ex; height:3.009ex;" alt="{\displaystyle C_{c}^{0}(U)}"></span> defined by sending <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle f\in C_{c}^{0}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle f\in C_{c}^{0}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e8171c87aa50e433458b8c11286a1d3d9b661cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.563ex; height:3.009ex;" alt="{\textstyle f\in C_{c}^{0}(U)}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \int _{U}f\,d\mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>f</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \int _{U}f\,d\mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/008b045ad8d9c56b37177ceeeec1c7a6eb16b086" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.261ex; height:3.176ex;" alt="{\textstyle \int _{U}f\,d\mu }"></span> is continuous.</li></ul> <p>Through the injection <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}\operatorname {In} :(C_{c}^{0}(U))'_{b}\to {\mathcal {D}}'(U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>In</mi> <mo>:</mo> <mo stretchy="false">(</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}\operatorname {In} :(C_{c}^{0}(U))'_{b}\to {\mathcal {D}}'(U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef09d6bdb44c3912dc1cede3b269e0e4eac2cb55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.803ex; height:3.176ex;" alt="{\displaystyle {}^{t}\operatorname {In} :(C_{c}^{0}(U))&#039;_{b}\to {\mathcal {D}}&#039;(U),}"></span> every Radon measure becomes a distribution on <span class="texhtml mvar" style="font-style:italic;">U</span>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is a <a href="/wiki/Locally_integrable" class="mw-redirect" title="Locally integrable">locally integrable</a> function on <span class="texhtml mvar" style="font-style:italic;">U</span> then the distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \phi \mapsto \int _{U}f(x)\phi (x)\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \phi \mapsto \int _{U}f(x)\phi (x)\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22fd0357d15254a01013e9953d194e477e1fce04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.851ex; height:3.176ex;" alt="{\textstyle \phi \mapsto \int _{U}f(x)\phi (x)\,dx}"></span> is a Radon measure; so Radon measures form a large and important space of distributions. </p><p>The following is the theorem of the structure of distributions of <a href="/wiki/Radon_measure" title="Radon measure">Radon measures</a>, which shows that every Radon measure can be written as a sum of derivatives of locally <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9ab400cc4dfd865180cd84c72dc894ca457671f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.458ex; height:2.343ex;" alt="{\displaystyle L^{\infty }}"></span> functions on <span class="texhtml mvar" style="font-style:italic;">U</span>: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name"><b>Theorem.</b><sup id="cite_ref-FOOTNOTETrèves2006262–264_55-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006262–264-55"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup></strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Suppose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/317fe5e2f5b8c6b3ade2cb8ee45f86d5c663e7e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.545ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}&#039;(U)}"></span> is a Radon measure, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U\subseteq \mathbb {R} ^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U\subseteq \mathbb {R} ^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fd335bda49ac177e2c5b3f92d32973b5d7fc445" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.424ex; height:2.676ex;" alt="{\displaystyle U\subseteq \mathbb {R} ^{n},}"></span> let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\subseteq U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\subseteq U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93c76555365eca037c1a0aa64b6ad5403ba32d9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.668ex; height:2.343ex;" alt="{\displaystyle V\subseteq U}"></span> be a neighborhood of the support of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30ee86b741f542feb8f95f3c81fd53b043a25e26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.283ex; height:2.509ex;" alt="{\displaystyle T,}"></span> and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=\{p\in \mathbb {N} ^{n}:|p|\leq n\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=\{p\in \mathbb {N} ^{n}:|p|\leq n\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c008c5a2477c643230fd6a4a5000a4b394e6bfc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.042ex; height:2.843ex;" alt="{\displaystyle I=\{p\in \mathbb {N} ^{n}:|p|\leq n\}.}"></span> There exists a family <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=(f_{p})_{p\in I}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=(f_{p})_{p\in I}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca3acf80d01b5c6be3275ac8b7f35cfa719e2d96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.369ex; height:3.009ex;" alt="{\displaystyle f=(f_{p})_{p\in I}}"></span> of locally <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9ab400cc4dfd865180cd84c72dc894ca457671f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.458ex; height:2.343ex;" alt="{\displaystyle L^{\infty }}"></span> functions on <span class="texhtml mvar" style="font-style:italic;">U</span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {supp} f_{p}\subseteq V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&#x2286;<!-- ⊆ --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {supp} f_{p}\subseteq V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b33f59e636ea20ea582bc9230f1530b898d348c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.265ex; height:2.843ex;" alt="{\displaystyle \operatorname {supp} f_{p}\subseteq V}"></span> for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\in I,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\in I,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77f1fb409c8e1b5493962e663be16342147a1298" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.918ex; height:2.509ex;" alt="{\displaystyle p\in I,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=\sum _{p\in I}\partial ^{p}f_{p}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=\sum _{p\in I}\partial ^{p}f_{p}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c635e385f4857b460d9eb7eb6e6815420f8cb7c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:13.724ex; height:5.843ex;" alt="{\displaystyle T=\sum _{p\in I}\partial ^{p}f_{p}.}"></span> Furthermore, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is also equal to a finite sum of derivatives of continuous functions on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59c21c569e498e0197798e3428b2bc6f25c0a457" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.429ex; height:2.509ex;" alt="{\displaystyle U,}"></span> where each derivative has order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leq 2n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2264;<!-- ≤ --></mo> <mn>2</mn> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \leq 2n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b89ffaf1b3e66c8e2acea3efe6999a486962917" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.657ex; height:2.343ex;" alt="{\displaystyle \leq 2n.}"></span> </p> </div> <div class="mw-heading mw-heading4"><h4 id="Positive_Radon_measures">Positive Radon measures</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=39" title="Edit section: Positive Radon measures"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A linear function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> on a space of functions is called <b><em>positive</em></b> if whenever a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> that belongs to the domain of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is non-negative (that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is real-valued and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/696698f05d2d7595339e163685632f64732cc55c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.54ex; height:2.509ex;" alt="{\displaystyle f\geq 0}"></span>) then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(f)\geq 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>&#x2265;<!-- ≥ --></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(f)\geq 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95413bf6b6b3f691ef19f5a155017f982087cc17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.632ex; height:2.843ex;" alt="{\displaystyle T(f)\geq 0.}"></span> One may show that every positive linear functional on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{0}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{0}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70f77e4c638ed29f0653cec46782f5dbda6a4d5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.444ex; height:3.009ex;" alt="{\displaystyle C_{c}^{0}(U)}"></span> is necessarily continuous (that is, necessarily a Radon measure).<sup id="cite_ref-FOOTNOTETrèves2006218_56-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006218-56"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a> is an example of a positive Radon measure. </p> <div class="mw-heading mw-heading4"><h4 id="Locally_integrable_functions_as_distributions">Locally integrable functions as distributions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=40" title="Edit section: Locally integrable functions as distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One particularly important class of Radon measures are those that are induced locally integrable functions. The function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:U\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>U</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:U\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05f481901ff501baa824d1eab35eba6d9410ba57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.29ex; height:2.509ex;" alt="{\displaystyle f:U\to \mathbb {R} }"></span> is called <b><em><a href="/wiki/Locally_integrable" class="mw-redirect" title="Locally integrable">locally integrable</a></em></b> if it is <a href="/wiki/Lebesgue_integration" class="mw-redirect" title="Lebesgue integration">Lebesgue integrable</a> over every compact subset <span class="texhtml mvar" style="font-style:italic;">K</span> of <span class="texhtml mvar" style="font-style:italic;">U</span>. This is a large class of functions that includes all continuous functions and all <a href="/wiki/Lp_space" title="Lp space">Lp space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf2317aaca1ecee4b8ccf667bc1001059eae5850" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.642ex; height:2.343ex;" alt="{\displaystyle L^{p}}"></span> functions. The topology on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e72f5fe5656e7492d45267d817eb4d996dbe8f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.384ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(U)}"></span> is defined in such a fashion that any locally integrable function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> yields a continuous linear functional on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e72f5fe5656e7492d45267d817eb4d996dbe8f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.384ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(U)}"></span> – that is, an element of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> – denoted here by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{f},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{f},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a8030e38d1e869083540e90f379fa9ea8686cc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.141ex; height:2.843ex;" alt="{\displaystyle T_{f},}"></span> whose value on the test function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> is given by the Lebesgue integral: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle T_{f},\phi \rangle =\int _{U}f\phi \,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>f</mi> <mi>&#x03D5;<!-- ϕ --></mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle T_{f},\phi \rangle =\int _{U}f\phi \,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/341b90c77cda5714ea5c501c25465d1587d21d2b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:19.237ex; height:5.676ex;" alt="{\displaystyle \langle T_{f},\phi \rangle =\int _{U}f\phi \,dx.}"></span> </p><p>Conventionally, one <a href="/wiki/Abuse_of_notation" title="Abuse of notation">abuses notation</a> by identifying <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbb8cb970fa8b6a14c3edcbd6951437428003b50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.494ex; height:2.843ex;" alt="{\displaystyle T_{f}}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e9687ea22c0f310582e97ee5f6c6a5fca28203d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.925ex; height:2.509ex;" alt="{\displaystyle f,}"></span> provided no confusion can arise, and thus the pairing between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbb8cb970fa8b6a14c3edcbd6951437428003b50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.494ex; height:2.843ex;" alt="{\displaystyle T_{f}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> is often written <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f,\phi \rangle =\langle T_{f},\phi \rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle f,\phi \rangle =\langle T_{f},\phi \rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e34f7e1aa0ee40992d1d20c71cb9ba7ec874e946" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.975ex; height:3.009ex;" alt="{\displaystyle \langle f,\phi \rangle =\langle T_{f},\phi \rangle .}"></span> </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> are two locally integrable functions, then the associated distributions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbb8cb970fa8b6a14c3edcbd6951437428003b50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.494ex; height:2.843ex;" alt="{\displaystyle T_{f}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{g}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{g}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8e95177ce2147ed7b88f95acad4c46bfd195ee1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.379ex; height:2.843ex;" alt="{\displaystyle T_{g}}"></span> are equal to the same element of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> are equal <a href="/wiki/Almost_everywhere" title="Almost everywhere">almost everywhere</a> (see, for instance, <a href="#CITEREFHörmander1983">Hörmander (1983</a>, Theorem 1.2.5)). Similarly, every <a href="/wiki/Radon_measure" title="Radon measure">Radon measure</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> defines an element of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> whose value on the test function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \int \phi \,d\mu .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \int \phi \,d\mu .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e949c998cf0460c57fdcb653baa60423c7584f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.842ex; height:3.176ex;" alt="{\textstyle \int \phi \,d\mu .}"></span> As above, it is conventional to abuse notation and write the pairing between a Radon measure <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> and a test function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \mu ,\phi \rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \mu ,\phi \rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5796c529854a269fd1dc03bbfc6e3c9dd71fdd9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.277ex; height:2.843ex;" alt="{\displaystyle \langle \mu ,\phi \rangle .}"></span> Conversely, as shown in a theorem by Schwartz (similar to the <a href="/wiki/Riesz_representation_theorem" title="Riesz representation theorem">Riesz representation theorem</a>), every distribution which is non-negative on non-negative functions is of this form for some (positive) Radon measure. </p> <div class="mw-heading mw-heading4"><h4 id="Test_functions_as_distributions">Test functions as distributions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=41" title="Edit section: Test functions as distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The test functions are themselves locally integrable, and so define distributions. The space of test functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> is sequentially <a href="/wiki/Dense_(topology)" class="mw-redirect" title="Dense (topology)">dense</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> with respect to the strong topology on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f1f6c933a1491eccb464d2f52700079c2e7fa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.715ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U).}"></span><sup id="cite_ref-FOOTNOTETrèves2006300–304_57-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006300–304-57"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> This means that for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}'(U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}'(U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95faf2dc23fffc4a1fe6a9abda31d6671064990c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.192ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}&#039;(U),}"></span> there is a sequence of test functions, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\phi _{i})_{i=1}^{\infty },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\phi _{i})_{i=1}^{\infty },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/610da6a2825480afa28b7c6ce591f8cecaa48256" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.541ex; height:3.009ex;" alt="{\displaystyle (\phi _{i})_{i=1}^{\infty },}"></span> that converges to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/317fe5e2f5b8c6b3ade2cb8ee45f86d5c663e7e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.545ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}&#039;(U)}"></span> (in its strong dual topology) when considered as a sequence of distributions. Or equivalently, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \phi _{i},\psi \rangle \to \langle T,\psi \rangle \qquad {\text{ for all }}\psi \in {\mathcal {D}}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mo>,</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \phi _{i},\psi \rangle \to \langle T,\psi \rangle \qquad {\text{ for all }}\psi \in {\mathcal {D}}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21aeb4dfbd4a12ec361d25d91e4a0a1e34c2ab74" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.162ex; height:2.843ex;" alt="{\displaystyle \langle \phi _{i},\psi \rangle \to \langle T,\psi \rangle \qquad {\text{ for all }}\psi \in {\mathcal {D}}(U).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Distributions_with_compact_support_2">Distributions with compact support</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=42" title="Edit section: Distributions with compact support"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The inclusion map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {In} :C_{c}^{\infty }(U)\to C^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>In</mi> <mo>:</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {In} :C_{c}^{\infty }(U)\to C^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbe56eeadb977181cf1bc2cba4aabd8a12b0cdad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.214ex; height:2.843ex;" alt="{\displaystyle \operatorname {In} :C_{c}^{\infty }(U)\to C^{\infty }(U)}"></span> is a continuous injection whose image is dense in its codomain, so the <a href="/wiki/Transpose_of_a_linear_map" title="Transpose of a linear map">transpose map</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}\operatorname {In} :(C^{\infty }(U))'_{b}\to {\mathcal {D}}'(U)=(C_{c}^{\infty }(U))'_{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>In</mi> <mo>:</mo> <mo stretchy="false">(</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}\operatorname {In} :(C^{\infty }(U))'_{b}\to {\mathcal {D}}'(U)=(C_{c}^{\infty }(U))'_{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2867ef325830024229e5848c3a887275ac83119" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:38.087ex; height:3.176ex;" alt="{\displaystyle {}^{t}\operatorname {In} :(C^{\infty }(U))&#039;_{b}\to {\mathcal {D}}&#039;(U)=(C_{c}^{\infty }(U))&#039;_{b}}"></span> is also a continuous injection. Thus the image of the transpose, denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {E}}'(U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {E}}'(U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0aa94f2ef4696bda9b9c2d91d9a6c71fb96daba2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.26ex; height:3.009ex;" alt="{\displaystyle {\mathcal {E}}&#039;(U),}"></span> forms a space of distributions.<sup id="cite_ref-FOOTNOTETrèves2006255–257_19-2" class="reference"><a href="#cite_note-FOOTNOTETrèves2006255–257-19"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p><p>The elements of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {E}}'(U)=(C^{\infty }(U))'_{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {E}}'(U)=(C^{\infty }(U))'_{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/441d6e38fc769d0b08ee477424f1409cb3638065" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.723ex; height:3.176ex;" alt="{\displaystyle {\mathcal {E}}&#039;(U)=(C^{\infty }(U))&#039;_{b}}"></span> can be identified as the space of distributions with compact support.<sup id="cite_ref-FOOTNOTETrèves2006255–257_19-3" class="reference"><a href="#cite_note-FOOTNOTETrèves2006255–257-19"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> Explicitly, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is a distribution on <span class="texhtml mvar" style="font-style:italic;">U</span> then the following are equivalent, </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {E}}'(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {E}}'(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aafb19be68fc0cac640a067b673ba36ab6f41a87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.737ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {E}}&#039;(U).}"></span></li> <li>The support of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is compact.</li> <li>The restriction of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f1e56e0917e84e0fd78532a79accd01ba2badad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.912ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U),}"></span> when that space is equipped with the subspace topology inherited from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4551e29a7341d79592ff93adc25a23fb2744b0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(U)}"></span> (a coarser topology than the canonical LF topology), is continuous.<sup id="cite_ref-FOOTNOTETrèves2006255–257_19-4" class="reference"><a href="#cite_note-FOOTNOTETrèves2006255–257-19"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup></li> <li>There is a compact subset <span class="texhtml mvar" style="font-style:italic;">K</span> of <span class="texhtml mvar" style="font-style:italic;">U</span> such that for every test function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> whose support is completely outside of <span class="texhtml mvar" style="font-style:italic;">K</span>, we have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(\phi )=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(\phi )=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/248be607160236bbd06ef85a7ebc48cd5ff5602c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.739ex; height:2.843ex;" alt="{\displaystyle T(\phi )=0.}"></span></li></ul> <p>Compactly supported distributions define continuous linear functionals on the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4551e29a7341d79592ff93adc25a23fb2744b0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(U)}"></span>; recall that the topology on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4551e29a7341d79592ff93adc25a23fb2744b0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(U)}"></span> is defined such that a sequence of test functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi _{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi _{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e05cbe22ddd99c09d5b962f52b05ebf25833389f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.474ex; height:2.509ex;" alt="{\displaystyle \phi _{k}}"></span> converges to 0 if and only if all derivatives of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi _{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi _{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e05cbe22ddd99c09d5b962f52b05ebf25833389f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.474ex; height:2.509ex;" alt="{\displaystyle \phi _{k}}"></span> converge uniformly to 0 on every compact subset of <span class="texhtml mvar" style="font-style:italic;">U</span>. Conversely, it can be shown that every continuous linear functional on this space defines a distribution of compact support. Thus compactly supported distributions can be identified with those distributions that can be extended from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c88e7383e095d01b0e1d41f1c581d2eb28a1436b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.912ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(U).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Distributions_of_finite_order">Distributions of finite order</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=43" title="Edit section: Distributions of finite order"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\in \mathbb {N} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\in \mathbb {N} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7037847116113f919f4a73998f7466f9c0615a1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.377ex; height:2.176ex;" alt="{\displaystyle k\in \mathbb {N} .}"></span> The inclusion map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {In} :C_{c}^{\infty }(U)\to C_{c}^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>In</mi> <mo>:</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {In} :C_{c}^{\infty }(U)\to C_{c}^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/820ebc64ae1c9578b1bfaa4bbdd51e67c542ba62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.427ex; height:3.009ex;" alt="{\displaystyle \operatorname {In} :C_{c}^{\infty }(U)\to C_{c}^{k}(U)}"></span> is a continuous injection whose image is dense in its codomain, so the <a href="/wiki/Transpose" title="Transpose">transpose</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}\operatorname {In} :(C_{c}^{k}(U))'_{b}\to {\mathcal {D}}'(U)=(C_{c}^{\infty }(U))'_{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>In</mi> <mo>:</mo> <mo stretchy="false">(</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}\operatorname {In} :(C_{c}^{k}(U))'_{b}\to {\mathcal {D}}'(U)=(C_{c}^{\infty }(U))'_{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8db845a834bf7eed99ce7cb7673004823934ca63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:37.301ex; height:3.176ex;" alt="{\displaystyle {}^{t}\operatorname {In} :(C_{c}^{k}(U))&#039;_{b}\to {\mathcal {D}}&#039;(U)=(C_{c}^{\infty }(U))&#039;_{b}}"></span> is also a continuous injection. Consequently, the image of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}\operatorname {In} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>In</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}\operatorname {In} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f22daa475e65339e38a12085c0e5b5f5e26db4d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.992ex; height:2.843ex;" alt="{\displaystyle {}^{t}\operatorname {In} ,}"></span> denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'^{k}(U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mrow> <mo class="MJX-variant">&#x2032;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'^{k}(U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a28f34c9e2767945cb7450ced73ca9a4632a48ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.572ex; height:3.176ex;" alt="{\displaystyle {\mathcal {D}}&#039;^{k}(U),}"></span> forms a space of distributions. The elements of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'^{k}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mrow> <mo class="MJX-variant">&#x2032;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'^{k}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06eeb988c2508e46cbb96446e5a60de0ab6ecebe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.925ex; height:3.176ex;" alt="{\displaystyle {\mathcal {D}}&#039;^{k}(U)}"></span> are <b><em>the distributions of order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\leq k.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\leq k.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0314934fbe8f012343aff31351dd8fd6f6da4212" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.698ex; height:2.343ex;" alt="{\displaystyle \,\leq k.}"></span></em></b><sup id="cite_ref-FOOTNOTETrèves2006258–264_22-1" class="reference"><a href="#cite_note-FOOTNOTETrèves2006258–264-22"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> The distributions of order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\leq 0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2264;<!-- ≤ --></mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\leq 0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3429734bcb6c8e8549eab7037999e0af0f0d6848" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.65ex; height:2.509ex;" alt="{\displaystyle \,\leq 0,}"></span> which are also called <b><em>distributions of order <span class="texhtml">0</span></em></b> are exactly the distributions that are Radon measures (described above). </p><p>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\neq k\in \mathbb {N} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2260;<!-- ≠ --></mo> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\neq k\in \mathbb {N} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1e94a80f8a83a009388f4257807080bd75571f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.638ex; height:2.676ex;" alt="{\displaystyle 0\neq k\in \mathbb {N} ,}"></span> a <b><em>distribution of order <span class="texhtml mvar" style="font-style:italic;">k</span></em></b> is a distribution of order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\leq k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\leq k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c09d67af669acb00af1edee47a0ea9a524e009d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.052ex; height:2.343ex;" alt="{\displaystyle \,\leq k}"></span> that is not a distribution of order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\leq k-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\leq k-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e79b9aa7ffa4b31fadec8a669bb506ef8d81f0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.054ex; height:2.343ex;" alt="{\displaystyle \,\leq k-1}"></span>.<sup id="cite_ref-FOOTNOTETrèves2006258–264_22-2" class="reference"><a href="#cite_note-FOOTNOTETrèves2006258–264-22"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p><p>A distribution is said to be of <b><em>finite order</em></b> if there is some integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> such that it is a distribution of order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\leq k,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\leq k,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/946947e42cb1b2c944afdf108880d070c94b0aa0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.698ex; height:2.509ex;" alt="{\displaystyle \,\leq k,}"></span> and the set of distributions of finite order is denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'^{F}(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mrow> <mo class="MJX-variant">&#x2032;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'^{F}(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d0fbaa22574fc69276d4238bcccffd65a7e7fe5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.946ex; height:3.176ex;" alt="{\displaystyle {\mathcal {D}}&#039;^{F}(U).}"></span> Note that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\leq l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\leq l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a4ffd43a8fd3c65a742c3c6569a114a3b4e37b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.003ex; height:2.343ex;" alt="{\displaystyle k\leq l}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'^{k}(U)\subseteq {\mathcal {D}}'^{l}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mrow> <mo class="MJX-variant">&#x2032;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mrow> <mo class="MJX-variant">&#x2032;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'^{k}(U)\subseteq {\mathcal {D}}'^{l}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b7ce8c490e6b34e48d3abee38c3752fd94457c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.582ex; height:3.176ex;" alt="{\displaystyle {\mathcal {D}}&#039;^{k}(U)\subseteq {\mathcal {D}}&#039;^{l}(U)}"></span> so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'^{F}(U):=\bigcup _{n=0}^{\infty }{\mathcal {D}}'^{n}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mrow> <mo class="MJX-variant">&#x2032;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <munderover> <mo>&#x22C3;<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mrow> <mo class="MJX-variant">&#x2032;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'^{F}(U):=\bigcup _{n=0}^{\infty }{\mathcal {D}}'^{n}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e703d5875c59dc78318f0b276bc82e79b566b6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:21.573ex; height:6.843ex;" alt="{\displaystyle {\mathcal {D}}&#039;^{F}(U):=\bigcup _{n=0}^{\infty }{\mathcal {D}}&#039;^{n}(U)}"></span> is a vector subspace of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span>, and furthermore, if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'^{F}(U)={\mathcal {D}}'(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mrow> <mo class="MJX-variant">&#x2032;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'^{F}(U)={\mathcal {D}}'(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac05e81bc9a6d5af75011b75f4b0bb0f813dbe74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.113ex; height:3.176ex;" alt="{\displaystyle {\mathcal {D}}&#039;^{F}(U)={\mathcal {D}}&#039;(U).}"></span><sup id="cite_ref-FOOTNOTETrèves2006258–264_22-3" class="reference"><a href="#cite_note-FOOTNOTETrèves2006258–264-22"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Structure_of_distributions_of_finite_order">Structure of distributions of finite order</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=44" title="Edit section: Structure of distributions of finite order"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Every distribution with compact support in <span class="texhtml mvar" style="font-style:italic;">U</span> is a distribution of finite order.<sup id="cite_ref-FOOTNOTETrèves2006258–264_22-4" class="reference"><a href="#cite_note-FOOTNOTETrèves2006258–264-22"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> Indeed, every distribution in <span class="texhtml mvar" style="font-style:italic;">U</span> is <em>locally</em> a distribution of finite order, in the following sense:<sup id="cite_ref-FOOTNOTETrèves2006258–264_22-5" class="reference"><a href="#cite_note-FOOTNOTETrèves2006258–264-22"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> If <span class="texhtml mvar" style="font-style:italic;">V</span> is an open and relatively compact subset of <span class="texhtml mvar" style="font-style:italic;">U</span> and if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{VU}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> <mi>U</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho _{VU}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0703aec8a793a92dfbd4670d4cc8dec86a56b7bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.958ex; height:2.176ex;" alt="{\displaystyle \rho _{VU}}"></span> is the restriction mapping from <span class="texhtml mvar" style="font-style:italic;">U</span> to <span class="texhtml mvar" style="font-style:italic;">V</span>, then the image of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99be794ac2f740a912b9e539d88a0ab5f9a6245e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(U)}"></span> under <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{VU}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> <mi>U</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho _{VU}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0703aec8a793a92dfbd4670d4cc8dec86a56b7bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.958ex; height:2.176ex;" alt="{\displaystyle \rho _{VU}}"></span> is contained in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'^{F}(V).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mrow> <mo class="MJX-variant">&#x2032;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </mrow> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'^{F}(V).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/839255871afbb768e78d0207952899f1d45b2fcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.951ex; height:3.176ex;" alt="{\displaystyle {\mathcal {D}}&#039;^{F}(V).}"></span> </p><p>The following is the theorem of the structure of distributions of finite order, which shows that every distribution of finite order can be written as a sum of derivatives of <a href="/wiki/Radon_measure" title="Radon measure">Radon measures</a>: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name">Theorem<sup id="cite_ref-FOOTNOTETrèves2006258–264_22-6" class="reference"><a href="#cite_note-FOOTNOTETrèves2006258–264-22"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup></strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Suppose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}'(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}'(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/317fe5e2f5b8c6b3ade2cb8ee45f86d5c663e7e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.545ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}&#039;(U)}"></span> has finite order and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=\{p\in \mathbb {N} ^{n}:|p|\leq k\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=\{p\in \mathbb {N} ^{n}:|p|\leq k\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a02a93c3a3402279795973cb0bcbfc7e6289e1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.859ex; height:2.843ex;" alt="{\displaystyle I=\{p\in \mathbb {N} ^{n}:|p|\leq k\}.}"></span> Given any open subset <span class="texhtml mvar" style="font-style:italic;">V</span> of <span class="texhtml mvar" style="font-style:italic;">U</span> containing the support of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30ee86b741f542feb8f95f3c81fd53b043a25e26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.283ex; height:2.509ex;" alt="{\displaystyle T,}"></span> there is a family of Radon measures in <span class="texhtml mvar" style="font-style:italic;">U</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mu _{p})_{p\in I},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mu _{p})_{p\in I},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/763eeb48934a332db1eee7d5f1036fd66efd5ed1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.901ex; height:3.009ex;" alt="{\displaystyle (\mu _{p})_{p\in I},}"></span> such that for very <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\in I,\operatorname {supp} (\mu _{p})\subseteq V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo>,</mo> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\in I,\operatorname {supp} (\mu _{p})\subseteq V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6254939c65bb6b4d701f666f613518d64df851e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:20.255ex; height:3.009ex;" alt="{\displaystyle p\in I,\operatorname {supp} (\mu _{p})\subseteq V}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=\sum _{|p|\leq k}\partial ^{p}\mu _{p}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> </mrow> </munder> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=\sum _{|p|\leq k}\partial ^{p}\mu _{p}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e7ae090d09ef58a2a69a216e59a5ba77fbb77b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:14.509ex; height:6.009ex;" alt="{\displaystyle T=\sum _{|p|\leq k}\partial ^{p}\mu _{p}.}"></span> </p> </div> <p><b>Example.</b> (Distributions of infinite order) Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U:=(0,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>:=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U:=(0,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d910106851e34e5cace60f46fee79e7b13cba00a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.857ex; height:2.843ex;" alt="{\displaystyle U:=(0,\infty )}"></span> and for every test function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e9687ea22c0f310582e97ee5f6c6a5fca28203d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.925ex; height:2.509ex;" alt="{\displaystyle f,}"></span> let <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Sf:=\sum _{m=1}^{\infty }(\partial ^{m}f)\left({\frac {1}{m}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mi>f</mi> <mo>:=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Sf:=\sum _{m=1}^{\infty }(\partial ^{m}f)\left({\frac {1}{m}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76f2981540db7776154f503b1284045725f8a5a0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:23.891ex; height:6.843ex;" alt="{\displaystyle Sf:=\sum _{m=1}^{\infty }(\partial ^{m}f)\left({\frac {1}{m}}\right).}"></span> </p><p>Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> is a distribution of infinite order on <span class="texhtml mvar" style="font-style:italic;">U</span>. Moreover, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> can not be extended to a distribution on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>; that is, there exists no distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> such that the restriction of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> to <span class="texhtml mvar" style="font-style:italic;">U</span> is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23bbb1f0f6ebdfa78b4fed06049640f7386bb44b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.146ex; height:2.176ex;" alt="{\displaystyle S.}"></span><sup id="cite_ref-FOOTNOTERudin1991177–181_58-0" class="reference"><a href="#cite_note-FOOTNOTERudin1991177–181-58"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Tempered_distributions_and_Fourier_transform">Tempered distributions and Fourier transform <span class="anchor" id="Tempered_distribution"></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=45" title="Edit section: Tempered distributions and Fourier transform"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">"Tempered distribution" redirects here. For tempered distributions on semisimple groups, see <a href="/wiki/Tempered_representation" title="Tempered representation">Tempered representation</a>.</div> <p>Defined below are the <b><em>tempered distributions</em></b>, which form a subspace of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(\mathbb {R} ^{n}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(\mathbb {R} ^{n}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6532a21da6466d2981fce261ede5f094c9cf0ad2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.829ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(\mathbb {R} ^{n}),}"></span> the space of distributions on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76ef548febfc9981762740107858be9e3a5576c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.543ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}.}"></span> This is a proper subspace: while every tempered distribution is a distribution and an element of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(\mathbb {R} ^{n}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(\mathbb {R} ^{n}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6532a21da6466d2981fce261ede5f094c9cf0ad2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.829ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(\mathbb {R} ^{n}),}"></span> the converse is not true. Tempered distributions are useful if one studies the <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transform</a> since all tempered distributions have a Fourier transform, which is not true for an arbitrary distribution in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}'(\mathbb {R} ^{n}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}'(\mathbb {R} ^{n}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe36ec641e10f4010ad5d107992f5c7631ec5880" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.829ex; height:3.009ex;" alt="{\displaystyle {\mathcal {D}}&#039;(\mathbb {R} ^{n}).}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Schwartz_space">Schwartz space</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=46" title="Edit section: Schwartz space"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Schwartz_space" title="Schwartz space">Schwartz space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0078d18e4675b6e7e2acb6c2c25c65294193e36d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.198ex; height:2.843ex;" alt="{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n})}"></span> is the space of all smooth functions that are <a href="/wiki/Rapidly_decreasing" class="mw-redirect" title="Rapidly decreasing">rapidly decreasing</a> at infinity along with all partial derivatives. Thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi :\mathbb {R} ^{n}\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi :\mathbb {R} ^{n}\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c09d2ad9304a0ab33ca6bff65e97bd109aa9d2a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.511ex; height:2.676ex;" alt="{\displaystyle \phi :\mathbb {R} ^{n}\to \mathbb {R} }"></span> is in the Schwartz space provided that any derivative of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d29807959b8784f00e4d77130fd93d90a628df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.032ex; height:2.509ex;" alt="{\displaystyle \phi ,}"></span> multiplied with any power of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x|,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x|,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a005758d43adc00c141f077e4f0fb44738505506" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.27ex; height:2.843ex;" alt="{\displaystyle |x|,}"></span> converges to 0 as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x|\to \infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x|\to \infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8233f893ed31188ce1071fea90957fe498950b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.208ex; height:2.843ex;" alt="{\displaystyle |x|\to \infty .}"></span> These functions form a complete TVS with a suitably defined family of <a href="/wiki/Seminorm" title="Seminorm">seminorms</a>. More precisely, for any <a href="/wiki/Multi-indices" class="mw-redirect" title="Multi-indices">multi-indices</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed48a5e36207156fb792fa79d29925d2f7901e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.332ex; height:2.509ex;" alt="{\displaystyle \beta }"></span> define <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\alpha ,\beta }(\phi )=\sup _{x\in \mathbb {R} ^{n}}\left|x^{\alpha }\partial ^{\beta }\phi (x)\right|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </munder> <mrow> <mo>|</mo> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\alpha ,\beta }(\phi )=\sup _{x\in \mathbb {R} ^{n}}\left|x^{\alpha }\partial ^{\beta }\phi (x)\right|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/211730b9a06425c1904870029ee091660fe29711" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-left: -0.089ex; width:26.794ex; height:5.009ex;" alt="{\displaystyle p_{\alpha ,\beta }(\phi )=\sup _{x\in \mathbb {R} ^{n}}\left|x^{\alpha }\partial ^{\beta }\phi (x)\right|.}"></span> </p><p>Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> is in the Schwartz space if all the values satisfy <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\alpha ,\beta }(\phi )&lt;\infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\alpha ,\beta }(\phi )&lt;\infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d19d2347536c3ac6059c9b048d78d83ce861b2ed" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:13.206ex; height:3.009ex;" alt="{\displaystyle p_{\alpha ,\beta }(\phi )&lt;\infty .}"></span> </p><p>The family of seminorms <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\alpha ,\beta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\alpha ,\beta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e3723b70548b8ab3f4d14471c57696d23068afc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:3.942ex; height:2.343ex;" alt="{\displaystyle p_{\alpha ,\beta }}"></span> defines a <a href="/wiki/Locally_convex" class="mw-redirect" title="Locally convex">locally convex</a> topology on the Schwartz space. For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dba4db03e5186e479ecd9611484b8657140a7ff0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.302ex; height:2.509ex;" alt="{\displaystyle n=1,}"></span> the seminorms are, in fact, <a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norms</a> on the Schwartz space. One can also use the following family of seminorms to define the topology:<sup id="cite_ref-FOOTNOTETrèves200692–94_59-0" class="reference"><a href="#cite_note-FOOTNOTETrèves200692–94-59"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f|_{m,k}=\sup _{|p|\leq m}\left(\sup _{x\in \mathbb {R} ^{n}}\left\{(1+|x|)^{k}\left|(\partial ^{\alpha }f)(x)\right|\right\}\right),\qquad k,m\in \mathbb {N} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>m</mi> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </munder> <mrow> <mo>{</mo> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow> <mo>|</mo> <mrow> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mrow> <mo>}</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="2em" /> <mi>k</mi> <mo>,</mo> <mi>m</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f|_{m,k}=\sup _{|p|\leq m}\left(\sup _{x\in \mathbb {R} ^{n}}\left\{(1+|x|)^{k}\left|(\partial ^{\alpha }f)(x)\right|\right\}\right),\qquad k,m\in \mathbb {N} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e1f2cff1d61f4b9a927010f3034fd16ef6e7797" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:59.793ex; height:6.676ex;" alt="{\displaystyle |f|_{m,k}=\sup _{|p|\leq m}\left(\sup _{x\in \mathbb {R} ^{n}}\left\{(1+|x|)^{k}\left|(\partial ^{\alpha }f)(x)\right|\right\}\right),\qquad k,m\in \mathbb {N} .}"></span> </p><p>Otherwise, one can define a norm on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0078d18e4675b6e7e2acb6c2c25c65294193e36d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.198ex; height:2.843ex;" alt="{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n})}"></span> via <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\phi \|_{k}=\max _{|\alpha |+|\beta |\leq k}\sup _{x\in \mathbb {R} ^{n}}\left|x^{\alpha }\partial ^{\beta }\phi (x)\right|,\qquad k\geq 1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> </mrow> </munder> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </munder> <mrow> <mo>|</mo> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mo>,</mo> <mspace width="2em" /> <mi>k</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|\phi \|_{k}=\max _{|\alpha |+|\beta |\leq k}\sup _{x\in \mathbb {R} ^{n}}\left|x^{\alpha }\partial ^{\beta }\phi (x)\right|,\qquad k\geq 1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a84f7aa32710210cdb46c980e61086758f9b780" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:43.231ex; height:5.009ex;" alt="{\displaystyle \|\phi \|_{k}=\max _{|\alpha |+|\beta |\leq k}\sup _{x\in \mathbb {R} ^{n}}\left|x^{\alpha }\partial ^{\beta }\phi (x)\right|,\qquad k\geq 1.}"></span> </p><p>The Schwartz space is a <a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet space</a> (that is, a <a href="/wiki/Complete_topological_vector_space" title="Complete topological vector space">complete</a> <a href="/wiki/Metrizable_topological_vector_space" title="Metrizable topological vector space">metrizable</a> locally convex space). Because the <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transform</a> changes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial ^{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial ^{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/456c1354f357e40cdb9f5ee48e919b408d3171bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.627ex; height:2.343ex;" alt="{\displaystyle \partial ^{\alpha }}"></span> into multiplication by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7ecb06c51aa5eb67cb4363751c8774977ba3cd5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.614ex; height:2.343ex;" alt="{\displaystyle x^{\alpha }}"></span> and vice versa, this symmetry implies that the Fourier transform of a Schwartz function is also a Schwartz function. </p><p>A sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{f_{i}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{f_{i}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a98b80e62d2a39bb2bdf0dc2c882a3fd4b810c48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.264ex; height:2.843ex;" alt="{\displaystyle \{f_{i}\}}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0078d18e4675b6e7e2acb6c2c25c65294193e36d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.198ex; height:2.843ex;" alt="{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n})}"></span> converges to 0 in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0078d18e4675b6e7e2acb6c2c25c65294193e36d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.198ex; height:2.843ex;" alt="{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n})}"></span> if and only if the functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1+|x|)^{k}(\partial ^{p}f_{i})(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1+|x|)^{k}(\partial ^{p}f_{i})(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e982683596f5044cdccffc690936b18d089adba2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.814ex; height:3.176ex;" alt="{\displaystyle (1+|x|)^{k}(\partial ^{p}f_{i})(x)}"></span> converge to 0 uniformly in the whole of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7035fcb9fe3ebecc6bc9f372f82d0352202c8bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.543ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{n},}"></span> which implies that such a sequence must converge to zero in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(\mathbb {R} ^{n}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(\mathbb {R} ^{n}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/748b2b926a6292230c217b0c47668748c00516a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.026ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(\mathbb {R} ^{n}).}"></span><sup id="cite_ref-FOOTNOTETrèves200692–94_59-1" class="reference"><a href="#cite_note-FOOTNOTETrèves200692–94-59"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40967820fe4c745ac9e5246e47e5897b08b2dc9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.498ex; height:2.843ex;" alt="{\displaystyle {\mathcal {D}}(\mathbb {R} ^{n})}"></span> is dense in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bde2a386c57e6ddd8f235df46adc909f26a470e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.845ex; height:2.843ex;" alt="{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n}).}"></span> The subset of all analytic Schwartz functions is dense in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0078d18e4675b6e7e2acb6c2c25c65294193e36d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.198ex; height:2.843ex;" alt="{\displaystyle {\mathcal {S}}(\mathbb {R} ^{n})}"></span> as well.<sup id="cite_ref-FOOTNOTETrèves2006160_60-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006160-60"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> </p><p>The Schwartz space is <a href="/wiki/Nuclear_space" title="Nuclear space">nuclear</a>, and the tensor product of two maps induces a canonical surjective TVS-isomorphisms <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {S}}(\mathbb {R} ^{m})\ {\widehat {\otimes }}\ {\mathcal {S}}(\mathbb {R} ^{n})\to {\mathcal {S}}(\mathbb {R} ^{m+n}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>&#x2297;<!-- ⊗ --></mo> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {S}}(\mathbb {R} ^{m})\ {\widehat {\otimes }}\ {\mathcal {S}}(\mathbb {R} ^{n})\to {\mathcal {S}}(\mathbb {R} ^{m+n}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c99948f4f689ddb466e6853e1e741af403e097" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.003ex; height:3.176ex;" alt="{\displaystyle {\mathcal {S}}(\mathbb {R} ^{m})\ {\widehat {\otimes }}\ {\mathcal {S}}(\mathbb {R} ^{n})\to {\mathcal {S}}(\mathbb {R} ^{m+n}),}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\otimes }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>&#x2297;<!-- ⊗ --></mo> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\otimes }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/769aaba98f277892ad4872fa3a3620550e96323d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.843ex;" alt="{\displaystyle {\widehat {\otimes }}}"></span> represents the completion of the <a href="/wiki/Injective_tensor_product" title="Injective tensor product">injective tensor product</a> (which in this case is identical to the completion of the <a href="/wiki/Projective_tensor_product" title="Projective tensor product">projective tensor product</a>).<sup id="cite_ref-FOOTNOTETrèves2006531_61-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006531-61"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Tempered_distributions">Tempered distributions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=47" title="Edit section: Tempered distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The inclusion map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {In} :{\mathcal {D}}(\mathbb {R} ^{n})\to {\mathcal {S}}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>In</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {In} :{\mathcal {D}}(\mathbb {R} ^{n})\to {\mathcal {S}}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/441d95bd1054f01e9921363464dca0a25833e318" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.379ex; height:2.843ex;" alt="{\displaystyle \operatorname {In} :{\mathcal {D}}(\mathbb {R} ^{n})\to {\mathcal {S}}(\mathbb {R} ^{n})}"></span> is a continuous injection whose image is dense in its codomain, so the <a href="/wiki/Transpose" title="Transpose">transpose</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}\operatorname {In} :({\mathcal {S}}(\mathbb {R} ^{n}))'_{b}\to {\mathcal {D}}'(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>In</mi> <mo>:</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}\operatorname {In} :({\mathcal {S}}(\mathbb {R} ^{n}))'_{b}\to {\mathcal {D}}'(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0fb1d5d4e7f14586a9a44aecee2d37e1acd7fe0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.024ex; height:3.176ex;" alt="{\displaystyle {}^{t}\operatorname {In} :({\mathcal {S}}(\mathbb {R} ^{n}))&#039;_{b}\to {\mathcal {D}}&#039;(\mathbb {R} ^{n})}"></span> is also a continuous injection. Thus, the image of the transpose map, denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {S}}'(\mathbb {R} ^{n}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {S}}'(\mathbb {R} ^{n}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8607acc2937079f3f46703f6af708a0074ad510" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.555ex; height:3.009ex;" alt="{\displaystyle {\mathcal {S}}&#039;(\mathbb {R} ^{n}),}"></span> forms a space of distributions. </p><p>The space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {S}}'(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {S}}'(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78ca4a0bc72d2677618a39482625e3f749990455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.908ex; height:3.009ex;" alt="{\displaystyle {\mathcal {S}}&#039;(\mathbb {R} ^{n})}"></span> is called the space of <em>tempered distributions</em>. It is the <a href="/wiki/Continuous_dual_space" class="mw-redirect" title="Continuous dual space">continuous dual space</a> of the Schwartz space. Equivalently, a distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is a tempered distribution if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\text{ for all }}\alpha ,\beta \in \mathbb {N} ^{n}:\lim _{m\to \infty }p_{\alpha ,\beta }(\phi _{m})=0\right)\Longrightarrow \lim _{m\to \infty }T(\phi _{m})=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>:</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mi>T</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\text{ for all }}\alpha ,\beta \in \mathbb {N} ^{n}:\lim _{m\to \infty }p_{\alpha ,\beta }(\phi _{m})=0\right)\Longrightarrow \lim _{m\to \infty }T(\phi _{m})=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99f4c9cceaf8144101c462e6639a3d2d5edad51a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:61.013ex; height:4.843ex;" alt="{\displaystyle \left({\text{ for all }}\alpha ,\beta \in \mathbb {N} ^{n}:\lim _{m\to \infty }p_{\alpha ,\beta }(\phi _{m})=0\right)\Longrightarrow \lim _{m\to \infty }T(\phi _{m})=0.}"></span> </p><p>The derivative of a tempered distribution is again a tempered distribution. Tempered distributions generalize the bounded (or slow-growing) locally integrable functions; all distributions with compact support and all <a href="/wiki/Square-integrable" class="mw-redirect" title="Square-integrable">square-integrable</a> functions are tempered distributions. More generally, all functions that are products of polynomials with elements of <a href="/wiki/Lp_space" title="Lp space">Lp space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{p}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{p}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5cf52173a2565b7aa70dc34922de083d57bfbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.348ex; height:2.843ex;" alt="{\displaystyle L^{p}(\mathbb {R} ^{n})}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\geq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\geq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf93c1353080a21b276e79058d82c19c40310653" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.52ex; height:2.509ex;" alt="{\displaystyle p\geq 1}"></span> are tempered distributions. </p><p>The <em>tempered distributions</em> can also be characterized as <em>slowly growing</em>, meaning that each derivative of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> grows at most as fast as some <a href="/wiki/Polynomial" title="Polynomial">polynomial</a>. This characterization is dual to the <em>rapidly falling</em> behaviour of the derivatives of a function in the Schwartz space, where each derivative of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> decays faster than every inverse power of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b62265e223769ba94a6452c1ee279d3bcc574016" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.27ex; height:2.843ex;" alt="{\displaystyle |x|.}"></span> An example of a rapidly falling function is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x|^{n}\exp(-\lambda |x|^{\beta })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x|^{n}\exp(-\lambda |x|^{\beta })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/306e6087c9f970ac5937cf0d92372201d1ab2aef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.551ex; height:3.343ex;" alt="{\displaystyle |x|^{n}\exp(-\lambda |x|^{\beta })}"></span> for any positive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n,\lambda ,\beta .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>,</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n,\lambda ,\beta .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ea09a03398312a4acb1d955a533a74b4bb37987" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.797ex; height:2.509ex;" alt="{\displaystyle n,\lambda ,\beta .}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Fourier_transform">Fourier transform</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=48" title="Edit section: Fourier transform"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>To study the Fourier transform, it is best to consider complex-valued test functions and complex-linear distributions. The ordinary <a href="/wiki/Continuous_Fourier_transform" class="mw-redirect" title="Continuous Fourier transform">continuous Fourier transform</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F:{\mathcal {S}}(\mathbb {R} ^{n})\to {\mathcal {S}}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F:{\mathcal {S}}(\mathbb {R} ^{n})\to {\mathcal {S}}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45dad8ed07879f8c901222148f8a9ca88c967bd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.688ex; height:2.843ex;" alt="{\displaystyle F:{\mathcal {S}}(\mathbb {R} ^{n})\to {\mathcal {S}}(\mathbb {R} ^{n})}"></span> is a TVS-<a href="/wiki/Automorphism" title="Automorphism">automorphism</a> of the Schwartz space, and the <b><em>Fourier transform</em></b> is defined to be its <a href="/wiki/Transpose" title="Transpose">transpose</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}^{t}F:{\mathcal {S}}'(\mathbb {R} ^{n})\to {\mathcal {S}}'(\mathbb {R} ^{n}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mi>F</mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}^{t}F:{\mathcal {S}}'(\mathbb {R} ^{n})\to {\mathcal {S}}'(\mathbb {R} ^{n}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eaf623f7a2a3b678547974f0dc18a40f6d0a5add" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.581ex; height:3.009ex;" alt="{\displaystyle {}^{t}F:{\mathcal {S}}&#039;(\mathbb {R} ^{n})\to {\mathcal {S}}&#039;(\mathbb {R} ^{n}),}"></span> which (abusing notation) will again be denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6b34655c2ef19b56c81af0e6d1f2f6df0d3ed33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.388ex; height:2.176ex;" alt="{\displaystyle F.}"></span> So the Fourier transform of the tempered distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (FT)(\psi )=T(F\psi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>F</mi> <mi>T</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>F</mi> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (FT)(\psi )=T(F\psi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/785fd1bad2d3d76ca65265dce8f016f546d71fc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.307ex; height:2.843ex;" alt="{\displaystyle (FT)(\psi )=T(F\psi )}"></span> for every Schwartz function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6cc915d2bfd7c18ac9ff227c29ca47c4382890c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.16ex; height:2.509ex;" alt="{\displaystyle \psi .}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle FT}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle FT}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ec60fa86129beaa1859ed9537acf37d7d6e7275" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.377ex; height:2.176ex;" alt="{\displaystyle FT}"></span> is thus again a tempered distribution. The Fourier transform is a TVS isomorphism from the space of tempered distributions onto itself. This operation is compatible with differentiation in the sense that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F{\dfrac {dT}{dx}}=ixFT}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi>d</mi> <mi>T</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mstyle> </mrow> <mo>=</mo> <mi>i</mi> <mi>x</mi> <mi>F</mi> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F{\dfrac {dT}{dx}}=ixFT}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a796f98d13fa48ed226169342ed46b54cf802c9a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.037ex; height:5.509ex;" alt="{\displaystyle F{\dfrac {dT}{dx}}=ixFT}"></span> and also with convolution: if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is a tempered distribution and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> is a <em>slowly increasing</em> smooth function on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7035fcb9fe3ebecc6bc9f372f82d0352202c8bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.543ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{n},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/062d94135dfd66b29669cb11314d70a9680be8d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.149ex; height:2.509ex;" alt="{\displaystyle \psi T}"></span> is again a tempered distribution and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(\psi T)=F\psi *FT}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>&#x03C8;<!-- ψ --></mi> <mi>T</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>F</mi> <mi>&#x03C8;<!-- ψ --></mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>F</mi> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(\psi T)=F\psi *FT}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08361e109886a40cf570d630d188dab2ec4e1434" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.624ex; height:2.843ex;" alt="{\displaystyle F(\psi T)=F\psi *FT}"></span> is the convolution of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle FT}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle FT}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ec60fa86129beaa1859ed9537acf37d7d6e7275" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.377ex; height:2.176ex;" alt="{\displaystyle FT}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\psi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mi>&#x03C8;<!-- ψ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\psi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc2503dbfce1ebc718f27a7dbd9682369975ccf9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.901ex; height:2.509ex;" alt="{\displaystyle F\psi .}"></span> In particular, the Fourier transform of the constant function equal to 1 is the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\displaystyle \delta }"></span> distribution. </p> <div class="mw-heading mw-heading4"><h4 id="Expressing_tempered_distributions_as_sums_of_derivatives">Expressing tempered distributions as sums of derivatives</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=49" title="Edit section: Expressing tempered distributions as sums of derivatives"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {S}}'(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {S}}'(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f44614e5e873beb1e05f3d757bada9034fdc10b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.385ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {S}}&#039;(\mathbb {R} ^{n})}"></span> is a tempered distribution, then there exists a constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C&gt;0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C&gt;0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b76907643b1af0fe7c5ac1574eb82b7a457dc901" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.674ex; height:2.509ex;" alt="{\displaystyle C&gt;0,}"></span> and positive integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> such that for all <a href="/wiki/Schwartz_function" class="mw-redirect" title="Schwartz function">Schwartz functions</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi \in {\mathcal {S}}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi \in {\mathcal {S}}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/722eae1c976cf2f639e2205227405710827b275f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.424ex; height:2.843ex;" alt="{\displaystyle \phi \in {\mathcal {S}}(\mathbb {R} ^{n})}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle T,\phi \rangle \leq C\sum \nolimits _{|\alpha |\leq N,|\beta |\leq M}\sup _{x\in \mathbb {R} ^{n}}\left|x^{\alpha }\partial ^{\beta }\phi (x)\right|=C\sum \nolimits _{|\alpha |\leq N,|\beta |\leq M}p_{\alpha ,\beta }(\phi ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>C</mi> <msub> <mo movablelimits="false">&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>N</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>M</mi> </mrow> </msub> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </munder> <mrow> <mo>|</mo> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mi>C</mi> <msub> <mo movablelimits="false">&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>N</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>M</mi> </mrow> </msub> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle T,\phi \rangle \leq C\sum \nolimits _{|\alpha |\leq N,|\beta |\leq M}\sup _{x\in \mathbb {R} ^{n}}\left|x^{\alpha }\partial ^{\beta }\phi (x)\right|=C\sum \nolimits _{|\alpha |\leq N,|\beta |\leq M}p_{\alpha ,\beta }(\phi ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0f35aa534ec625f0bfc5d0e7e44226d0324e2ff" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:67.584ex; height:5.176ex;" alt="{\displaystyle \langle T,\phi \rangle \leq C\sum \nolimits _{|\alpha |\leq N,|\beta |\leq M}\sup _{x\in \mathbb {R} ^{n}}\left|x^{\alpha }\partial ^{\beta }\phi (x)\right|=C\sum \nolimits _{|\alpha |\leq N,|\beta |\leq M}p_{\alpha ,\beta }(\phi ).}"></span> </p><p>This estimate, along with some techniques from <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a>, can be used to show that there is a continuous slowly increasing function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> and a multi-index <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=\partial ^{\alpha }F.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>F</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=\partial ^{\alpha }F.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/286e63ddc935e1c919890e98d3ecdb4317e02161" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.75ex; height:2.343ex;" alt="{\displaystyle T=\partial ^{\alpha }F.}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Restriction_of_distributions_to_compact_sets">Restriction of distributions to compact sets</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=50" title="Edit section: Restriction of distributions to compact sets"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {D}}'(\mathbb {R} ^{n}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {D}}'(\mathbb {R} ^{n}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14fde967ee6a02269968e6c48cb79ae16cd44d23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.306ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {D}}&#039;(\mathbb {R} ^{n}),}"></span> then for any compact set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subseteq \mathbb {R} ^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subseteq \mathbb {R} ^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce821ba578427eeea4b17febf49e39f8e71bee2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.708ex; height:2.676ex;" alt="{\displaystyle K\subseteq \mathbb {R} ^{n},}"></span> there exists a continuous function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>compactly supported in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> (possibly on a larger set than <span class="texhtml mvar" style="font-style:italic;">K</span> itself) and a multi-index <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=\partial ^{\alpha }F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=\partial ^{\alpha }F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eaa2d161e40b26b1d406ec5351cf202f75e026f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.103ex; height:2.343ex;" alt="{\displaystyle T=\partial ^{\alpha }F}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(K).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(K).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cfdb688055903cc05f508749977bf8feb16e2e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.195ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(K).}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Using_holomorphic_functions_as_test_functions">Using holomorphic functions as test functions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=51" title="Edit section: Using holomorphic functions as test functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The success of the theory led to an investigation of the idea of <a href="/wiki/Hyperfunction" title="Hyperfunction">hyperfunction</a>, in which spaces of <a href="/wiki/Holomorphic_function" title="Holomorphic function">holomorphic functions</a> are used as test functions. A refined theory has been developed, in particular <a href="/wiki/Mikio_Sato" title="Mikio Sato">Mikio Sato</a>'s <a href="/wiki/Algebraic_analysis" title="Algebraic analysis">algebraic analysis</a>, using <a href="/wiki/Sheaf_theory" class="mw-redirect" title="Sheaf theory">sheaf theory</a> and <a href="/wiki/Several_complex_variables" class="mw-redirect" title="Several complex variables">several complex variables</a>. This extends the range of symbolic methods that can be made into rigorous mathematics, for example, <a href="/wiki/Path_integral_formulation" title="Path integral formulation">Feynman integrals</a>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=52" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Cauchy_principal_value" title="Cauchy principal value">Cauchy principal value</a>&#160;– Method for assigning values to certain improper integrals which would otherwise be undefined</li> <li><a href="/wiki/Gelfand_triple" class="mw-redirect" title="Gelfand triple">Gelfand triple</a>&#160;– Construction linking the study of "bound" and continuous eigenvalues in functional analysis<span style="display:none" class="category-annotation-with-redirected-description">Pages displaying short descriptions of redirect targets</span></li> <li><a href="/wiki/Gelfand%E2%80%93Shilov_space" title="Gelfand–Shilov space">Gelfand–Shilov space</a></li> <li><a href="/wiki/Generalized_function" title="Generalized function">Generalized function</a>&#160;– Objects extending the notion of functions</li> <li><a href="/wiki/Hilbert_transform" title="Hilbert transform">Hilbert transform</a>&#160;– Integral transform and linear operator</li> <li><a href="/wiki/Homogeneous_distribution" title="Homogeneous distribution">Homogeneous distribution</a></li> <li><a href="/wiki/Laplacian_of_the_indicator" title="Laplacian of the indicator">Laplacian of the indicator</a>&#160;– Limit of sequence of smooth functions</li> <li><a href="/wiki/Limit_of_distributions" title="Limit of distributions">Limit of distributions</a></li> <li><a href="/wiki/Mollifier" title="Mollifier">Mollifier</a>&#160;– Integration kernels for smoothing out sharp features</li> <li><a href="/wiki/Vague_topology" title="Vague topology">Vague topology</a></li></ul> <p><b>Differential equations related</b> </p> <ul><li><a href="/wiki/Fundamental_solution" title="Fundamental solution">Fundamental solution</a>&#160;– Concept in the solution of linear partial differential equations</li> <li><a href="/wiki/Pseudo-differential_operator" title="Pseudo-differential operator">Pseudo-differential operator</a>&#160;– Type of differential operator</li> <li><a href="/wiki/Weak_solution" title="Weak solution">Weak solution</a>&#160;– Mathematical solution</li></ul> <p><b>Generalizations of distributions</b> </p> <ul><li><a href="/wiki/Colombeau_algebra" title="Colombeau algebra">Colombeau algebra</a>&#160;– commutative associative differential algebra of generalized functions into which smooth functions (but not arbitrary continuous ones) embed as a subalgebra and distributions embed as a subspace<span style="display:none" class="category-wikidata-fallback-annotation">Pages displaying wikidata descriptions as a fallback</span></li> <li><a href="/wiki/Current_(mathematics)" title="Current (mathematics)">Current (mathematics)</a>&#160;– Distributions on spaces of differential forms</li> <li><a href="/wiki/Distribution_(number_theory)" title="Distribution (number theory)">Distribution (number theory)</a>&#160;– function on finite sets which is analogous to an integral<span style="display:none" class="category-wikidata-fallback-annotation">Pages displaying wikidata descriptions as a fallback</span></li> <li><a href="/wiki/Distribution_on_a_linear_algebraic_group" title="Distribution on a linear algebraic group">Distribution on a linear algebraic group</a>&#160;– Linear function satisfying a support condition</li> <li><a href="/wiki/Green%27s_function" title="Green&#39;s function">Green's function</a>&#160;– Impulse response of an inhomogeneous linear differential operator</li> <li><a href="/wiki/Hyperfunction" title="Hyperfunction">Hyperfunction</a>&#160;– Type of generalized function</li> <li><a href="/wiki/Malgrange%E2%80%93Ehrenpreis_theorem" title="Malgrange–Ehrenpreis theorem">Malgrange–Ehrenpreis theorem</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=53" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">Note that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> being an integer implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\neq \infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\neq \infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d3907564e10dcdbed06bac7622f42491869bbde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.872ex; height:2.676ex;" alt="{\displaystyle i\neq \infty .}"></span> This is sometimes expressed as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq i&lt;k+1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&lt;</mo> <mi>k</mi> <mo>+</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq i&lt;k+1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46515d130385c2473a5eb3fcb7acd8d29b31da54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:14.023ex; height:2.343ex;" alt="{\displaystyle 0\leq i&lt;k+1.}"></span> Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \infty +1=\infty ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \infty +1=\infty ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f274ac6ef55ca27704f14e360df2bb61d414316a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.396ex; height:2.509ex;" alt="{\displaystyle \infty +1=\infty ,}"></span> the inequality "<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq i&lt;k+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&lt;</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq i&lt;k+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfedd52fba4e333162498f821c80d55b46cf36e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.376ex; height:2.343ex;" alt="{\displaystyle 0\leq i&lt;k+1}"></span>" means: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq i&lt;\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq i&lt;\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4ad5f8f824d5105435b47ee702b18d75b4e1e00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.486ex; height:2.343ex;" alt="{\displaystyle 0\leq i&lt;\infty }"></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=\infty ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=\infty ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b72470351537fc263a746a123b4f12cc0dfa3306" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.28ex; height:2.509ex;" alt="{\displaystyle k=\infty ,}"></span> while if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\neq \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\neq \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bc71fd2fa8780e779cce1a0e36622fd25c82328" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.633ex; height:2.676ex;" alt="{\displaystyle k\neq \infty }"></span> then it means <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq i\leq k.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq i\leq k.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e88218276a42bf809f0948975d93b80b1b08164" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.02ex; height:2.343ex;" alt="{\displaystyle 0\leq i\leq k.}"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">The image of the <a href="/wiki/Compact_set" class="mw-redirect" title="Compact set">compact set</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> under a continuous <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>-valued map (for example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto \left|\partial ^{p}f(x)\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow> <mo>|</mo> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto \left|\partial ^{p}f(x)\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b2b6639bf2bc3c0178d86247581578deda03697" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.057ex; height:2.843ex;" alt="{\displaystyle x\mapsto \left|\partial ^{p}f(x)\right|}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c32ddcb2941216f2980b950ce969dc15cba26906" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.953ex; height:2.176ex;" alt="{\displaystyle x\in U}"></span>) is itself a compact, and thus bounded, subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc9de9049e03e5e5a0cab57076dbe4a369c1e3a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} .}"></span> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\neq \varnothing }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi class="MJX-variant">&#x2205;<!-- ∅ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\neq \varnothing }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcc437e34c01ada736334ffa43df98c0bcc3872c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.973ex; height:2.676ex;" alt="{\displaystyle K\neq \varnothing }"></span> then this implies that each of the functions defined above is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>-valued (that is, none of the <a href="/wiki/Infimum_and_supremum" title="Infimum and supremum">supremums</a> above are ever equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26c105004f30c27aa7c2a9c601550a4183b1f21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.676ex;" alt="{\displaystyle \infty }"></span>).</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">Exactly as with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;U),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;U),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/926246b83aba98096f70cef965affcd4227ce69d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.225ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;U),}"></span> the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(K;U')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo>;</mo> <msup> <mi>U</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(K;U')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44763280da389a8617241c1d0449c07f9526dc77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.322ex; height:3.176ex;" alt="{\displaystyle C^{k}(K;U&#039;)}"></span> is defined to be the vector subspace of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(U')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>U</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(U')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b502a817fe900bc3828c5eeaf04daf105cb0c9d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.222ex; height:3.176ex;" alt="{\displaystyle C^{k}(U&#039;)}"></span> consisting of maps with <a href="#support_of_a_function">support</a> contained in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> endowed with the subspace topology it inherits from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k}(U')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>U</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k}(U')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b502a817fe900bc3828c5eeaf04daf105cb0c9d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.222ex; height:3.176ex;" alt="{\displaystyle C^{k}(U&#039;)}"></span>.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">Even though the topology of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> is not metrizable, a linear functional on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f7b283be61fa50fb3142559117a3c2c56af05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:2.843ex;" alt="{\displaystyle C_{c}^{\infty }(U)}"></span> is continuous if and only if it is sequentially continuous.</span> </li> <li id="cite_note-Def_null_sequence-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-Def_null_sequence_14-0">^</a></b></span> <span class="reference-text">A <b><em>null sequence</em></b> is a sequence that converges to the origin.</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> is also <a href="/wiki/Directed_set" title="Directed set">directed</a> under the usual function comparison then we can take the finite collection to consist of a single element.</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text">The extension theorem for mappings defined from a subspace S of a topological vector space E to the topological space E itself works for non-linear mappings as well, provided they are assumed to be <a href="/wiki/Uniformly_continuous" class="mw-redirect" title="Uniformly continuous">uniformly continuous</a>. But, unfortunately, this is not our case, we would desire to “extend” a linear continuous mapping A from a tvs E into another tvs F, in order to obtain a linear continuous mapping from the dual E’ to the dual F’ (note the order of spaces). In general, this is not even an extension problem, because (in general) E is not necessarily a subset of its own dual E’. Moreover, It is not a classic topological transpose problem, because the transpose of A goes from F’ to E’ and not from E’ to F’. Our case needs, indeed, a new order of ideas, involving the specific topological properties of the Laurent Schwartz spaces D(U) and D’(U), together with the fundamental concept of weak (or Schwartz) adjoint of the linear continuous operator A.</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text">For example, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U=\mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U=\mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7144f67be80ffe9b4b8f4d09cde56282d86443f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.559ex; height:2.176ex;" alt="{\displaystyle U=\mathbb {R} }"></span> and take <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> to be the ordinary derivative for functions of one real variable and assume the support of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> to be contained in the finite interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0066e8fc90702a659ee69bff970050aba59ee02c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.717ex; height:2.843ex;" alt="{\displaystyle (a,b),}"></span> then since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {supp} (\phi )\subseteq (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {supp} (\phi )\subseteq (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ac5cbbcffecbedcbbc44b2f9d4ea8dabcc75b5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.158ex; height:2.843ex;" alt="{\displaystyle \operatorname {supp} (\phi )\subseteq (a,b)}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\int _{\mathbb {R} }\phi '(x)f(x)\,dx&amp;=\int _{a}^{b}\phi '(x)f(x)\,dx\\&amp;=\phi (x)f(x){\big \vert }_{a}^{b}-\int _{a}^{b}f'(x)\phi (x)\,dx\\&amp;=\phi (b)f(b)-\phi (a)f(a)-\int _{a}^{b}f'(x)\phi (x)\,dx\\&amp;=-\int _{a}^{b}f'(x)\phi (x)\,dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\int _{\mathbb {R} }\phi '(x)f(x)\,dx&amp;=\int _{a}^{b}\phi '(x)f(x)\,dx\\&amp;=\phi (x)f(x){\big \vert }_{a}^{b}-\int _{a}^{b}f'(x)\phi (x)\,dx\\&amp;=\phi (b)f(b)-\phi (a)f(a)-\int _{a}^{b}f'(x)\phi (x)\,dx\\&amp;=-\int _{a}^{b}f'(x)\phi (x)\,dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53c3349127d6e4dcedbdd5e49553928674049b31" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.338ex; width:58.599ex; height:25.843ex;" alt="{\displaystyle {\begin{aligned}\int _{\mathbb {R} }\phi &#039;(x)f(x)\,dx&amp;=\int _{a}^{b}\phi &#039;(x)f(x)\,dx\\&amp;=\phi (x)f(x){\big \vert }_{a}^{b}-\int _{a}^{b}f&#039;(x)\phi (x)\,dx\\&amp;=\phi (b)f(b)-\phi (a)f(a)-\int _{a}^{b}f&#039;(x)\phi (x)\,dx\\&amp;=-\int _{a}^{b}f&#039;(x)\phi (x)\,dx\end{aligned}}}"></span> where the last equality is because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (a)=\phi (b)=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (a)=\phi (b)=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/824c8cb29e52c17ed0f126b66795a61f15236ed1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.623ex; height:2.843ex;" alt="{\displaystyle \phi (a)=\phi (b)=0.}"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=54" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 29em;"> <ol class="references"> <li id="cite_note-FOOTNOTETrèves2006222–223-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTETrèves2006222–223_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006222–223_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;222–223.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrubb2009">Grubb 2009</a>, p.&#160;14</span> </li> <li id="cite_note-FOOTNOTETrèves200685–89-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrèves200685–89_5-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;85–89.</span> </li> <li id="cite_note-FOOTNOTETrèves2006142–149-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTETrèves2006142–149_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006142–149_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;142–149.</span> </li> <li id="cite_note-FOOTNOTETrèves2006356–358-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrèves2006356–358_7-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;356–358.</span> </li> <li id="cite_note-FOOTNOTETrèves2006131–134-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTETrèves2006131–134_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006131–134_8-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;131–134.</span> </li> <li id="cite_note-FOOTNOTERudin1991149–181-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTERudin1991149–181_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTERudin1991149–181_10-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTERudin1991149–181_10-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTERudin1991149–181_10-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-FOOTNOTERudin1991149–181_10-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-FOOTNOTERudin1991149–181_10-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-FOOTNOTERudin1991149–181_10-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFRudin1991">Rudin 1991</a>, pp.&#160;149–181.</span> </li> <li id="cite_note-FOOTNOTETrèves2006526–534-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrèves2006526–534_11-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;526–534.</span> </li> <li id="cite_note-FOOTNOTETrèves2006357-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrèves2006357_12-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, p.&#160;357.</span> </li> <li id="cite_note-Grubb_2009_page=14-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-Grubb_2009_page=14_16-0">^</a></b></span> <span class="reference-text">See for example <a href="#CITEREFGrubb2009">Grubb 2009</a>, p.&#160;14.</span> </li> <li id="cite_note-FOOTNOTETrèves2006245–247-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTETrèves2006245–247_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006245–247_17-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006245–247_17-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006245–247_17-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;245–247.</span> </li> <li id="cite_note-FOOTNOTETrèves2006253–255-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTETrèves2006253–255_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006253–255_18-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006253–255_18-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006253–255_18-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006253–255_18-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006253–255_18-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006253–255_18-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;253–255.</span> </li> <li id="cite_note-FOOTNOTETrèves2006255–257-19"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTETrèves2006255–257_19-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006255–257_19-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006255–257_19-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006255–257_19-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006255–257_19-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;255–257.</span> </li> <li id="cite_note-FOOTNOTETrèves2006264–266-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrèves2006264–266_20-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;264–266.</span> </li> <li id="cite_note-FOOTNOTERudin1991165-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERudin1991165_21-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1991">Rudin 1991</a>, p.&#160;165.</span> </li> <li id="cite_note-FOOTNOTETrèves2006258–264-22"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTETrèves2006258–264_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006258–264_22-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006258–264_22-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006258–264_22-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006258–264_22-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006258–264_22-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006258–264_22-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;258–264.</span> </li> <li id="cite_note-FOOTNOTERudin1991169–170-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERudin1991169–170_23-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1991">Rudin 1991</a>, pp.&#160;169–170.</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFStrichartz1993" class="citation book cs1">Strichartz, Robert (1993). <i>A Guide to Distribution Theory and Fourier Transforms</i>. USA. p.&#160;17.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Guide+to+Distribution+Theory+and+Fourier+Transforms&amp;rft.place=USA&amp;rft.pages=17&amp;rft.date=1993&amp;rft.aulast=Strichartz&amp;rft.aufirst=Robert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><a href="#CITEREFStrichartz1994">Strichartz 1994</a>, §2.3; <a href="#CITEREFTrèves2006">Trèves 2006</a>.</span> </li> <li id="cite_note-FOOTNOTERudin1991180-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERudin1991180_27-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1991">Rudin 1991</a>, p.&#160;180.</span> </li> <li id="cite_note-FOOTNOTETrèves2006247–252-29"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTETrèves2006247–252_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006247–252_29-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;247–252.</span> </li> <li id="cite_note-FOOTNOTETrèves2006423-30"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTETrèves2006423_30-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006423_30-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006423_30-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006423_30-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006423_30-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, p.&#160;423.</span> </li> <li id="cite_note-FOOTNOTETrèves2006261-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrèves2006261_31-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, p.&#160;261.</span> </li> <li id="cite_note-StackOverflow-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-StackOverflow_32-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPer_Persson_(username:_md2perpe)2017" class="citation web cs1">Per Persson (username: md2perpe) (Jun 27, 2017). <a rel="nofollow" class="external text" href="https://math.stackexchange.com/q/2338283">"Multiplication of two distributions whose singular supports are disjoint"</a>. Stack Exchange Network.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Multiplication+of+two+distributions+whose+singular+supports+are+disjoint&amp;rft.pub=Stack+Exchange+Network&amp;rft.date=2017-06-27&amp;rft.au=Per+Persson+%28username%3A+md2perpe%29&amp;rft_id=https%3A%2F%2Fmath.stackexchange.com%2Fq%2F2338283&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: numeric names: authors list (<a href="/wiki/Category:CS1_maint:_numeric_names:_authors_list" title="Category:CS1 maint: numeric names: authors list">link</a>)</span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLyons1998" class="citation journal cs1">Lyons, T. (1998). <a rel="nofollow" class="external text" href="https://doi.org/10.4171%2FRMI%2F240">"Differential equations driven by rough signals"</a>. <i>Revista Matemática Iberoamericana</i>. <b>14</b> (2): 215–310. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4171%2FRMI%2F240">10.4171/RMI/240</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Revista+Matem%C3%A1tica+Iberoamericana&amp;rft.atitle=Differential+equations+driven+by+rough+signals&amp;rft.volume=14&amp;rft.issue=2&amp;rft.pages=215-310&amp;rft.date=1998&amp;rft_id=info%3Adoi%2F10.4171%2FRMI%2F240&amp;rft.aulast=Lyons&amp;rft.aufirst=T.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.4171%252FRMI%252F240&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHairer2014" class="citation journal cs1">Hairer, Martin (2014). "A theory of regularity structures". <i>Inventiones Mathematicae</i>. <b>198</b> (2): 269–504. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1303.5113">1303.5113</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014InMat.198..269H">2014InMat.198..269H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00222-014-0505-4">10.1007/s00222-014-0505-4</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119138901">119138901</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Inventiones+Mathematicae&amp;rft.atitle=A+theory+of+regularity+structures&amp;rft.volume=198&amp;rft.issue=2&amp;rft.pages=269-504&amp;rft.date=2014&amp;rft_id=info%3Aarxiv%2F1303.5113&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119138901%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs00222-014-0505-4&amp;rft_id=info%3Abibcode%2F2014InMat.198..269H&amp;rft.aulast=Hairer&amp;rft.aufirst=Martin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text">See for example <a href="#CITEREFHörmander1983">Hörmander 1983</a>, Theorem 6.1.1.</span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text">See <a href="#CITEREFHörmander1983">Hörmander 1983</a>, Theorem 6.1.2.</span> </li> <li id="cite_note-FOOTNOTETrèves2006278–283-37"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTETrèves2006278–283_37-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006278–283_37-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006278–283_37-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;278–283.</span> </li> <li id="cite_note-FOOTNOTETrèves2006284–297-38"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTETrèves2006284–297_38-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006284–297_38-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006284–297_38-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006284–297_38-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006284–297_38-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006284–297_38-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006284–297_38-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006284–297_38-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006284–297_38-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006284–297_38-9"><sup><i><b>j</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;284–297.</span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text">See for example <a href="#CITEREFRudin1991">Rudin 1991</a>, §6.29.</span> </li> <li id="cite_note-FOOTNOTETrèves2006Chapter_27-40"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTETrèves2006Chapter_27_40-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006Chapter_27_40-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, Chapter 27.</span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><a href="#CITEREFHörmander1983">Hörmander 1983</a>, §IV.2 proves the uniqueness of such an extension.</span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text">See for instance <a href="#CITEREFGel&#39;fandShilov1966–1968">Gel'fand &amp; Shilov 1966–1968</a>, v. 1, pp. 103–104 and <a href="#CITEREFBenedetto1997">Benedetto 1997</a>, Definition 2.5.8.</span> </li> <li id="cite_note-FOOTNOTETrèves2006294-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrèves2006294_43-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, p.&#160;294.</span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFolland1989" class="citation book cs1">Folland, G.B. (1989). <i>Harmonic Analysis in Phase Space</i>. Princeton, NJ: Princeton University Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Harmonic+Analysis+in+Phase+Space&amp;rft.place=Princeton%2C+NJ&amp;rft.pub=Princeton+University+Press&amp;rft.date=1989&amp;rft.aulast=Folland&amp;rft.aufirst=G.B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHorváth1966" class="citation book cs1"><a href="/wiki/John_Horvath_(mathematician)" title="John Horvath (mathematician)">Horváth, John</a> (1966). <i>Topological Vector Spaces and Distributions</i>. Reading, MA: Addison-Wesley Publishing Company.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Vector+Spaces+and+Distributions&amp;rft.place=Reading%2C+MA&amp;rft.pub=Addison-Wesley+Publishing+Company&amp;rft.date=1966&amp;rft.aulast=Horv%C3%A1th&amp;rft.aufirst=John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarros-Neto1973" class="citation book cs1">Barros-Neto, José (1973). <i>An Introduction to the Theory of Distributions</i>. New York, NY: Dekker.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+the+Theory+of+Distributions&amp;rft.place=New+York%2C+NY&amp;rft.pub=Dekker&amp;rft.date=1973&amp;rft.aulast=Barros-Neto&amp;rft.aufirst=Jos%C3%A9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPetersen1983" class="citation book cs1">Petersen, Bent E. (1983). <i>Introduction to the Fourier Transform and Pseudo-Differential Operators</i>. Boston, MA: Pitman Publishing.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+the+Fourier+Transform+and+Pseudo-Differential+Operators&amp;rft.place=Boston%2C+MA&amp;rft.pub=Pitman+Publishing&amp;rft.date=1983&amp;rft.aulast=Petersen&amp;rft.aufirst=Bent+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWoodward1953" class="citation book cs1">Woodward, P.M. (1953). <i>Probability and Information Theory with Applications to Radar</i>. Oxford, UK: Pergamon Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Information+Theory+with+Applications+to+Radar&amp;rft.place=Oxford%2C+UK&amp;rft.pub=Pergamon+Press&amp;rft.date=1953&amp;rft.aulast=Woodward&amp;rft.aufirst=P.M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTETrèves2006318–319-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrèves2006318–319_49-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;318–319.</span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFriedlanderJoshi1998" class="citation book cs1">Friedlander, F.G.; Joshi, M.S. (1998). <i>Introduction to the Theory of Distributions</i>. Cambridge, UK: Cambridge University Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+the+Theory+of+Distributions&amp;rft.place=Cambridge%2C+UK&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1998&amp;rft.aulast=Friedlander&amp;rft.aufirst=F.G.&amp;rft.au=Joshi%2C+M.S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTESchwartz1951-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESchwartz1951_51-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSchwartz1951">Schwartz 1951</a>.</span> </li> <li id="cite_note-FOOTNOTETrèves2006416–419-52"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTETrèves2006416–419_52-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006416–419_52-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006416–419_52-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;416–419.</span> </li> <li id="cite_note-FOOTNOTETrèves2006150–160-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrèves2006150–160_53-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;150–160.</span> </li> <li id="cite_note-FOOTNOTETrèves2006240–252-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrèves2006240–252_54-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;240–252.</span> </li> <li id="cite_note-FOOTNOTETrèves2006262–264-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrèves2006262–264_55-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;262–264.</span> </li> <li id="cite_note-FOOTNOTETrèves2006218-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrèves2006218_56-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, p.&#160;218.</span> </li> <li id="cite_note-FOOTNOTETrèves2006300–304-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrèves2006300–304_57-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;300–304.</span> </li> <li id="cite_note-FOOTNOTERudin1991177–181-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERudin1991177–181_58-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1991">Rudin 1991</a>, pp.&#160;177–181.</span> </li> <li id="cite_note-FOOTNOTETrèves200692–94-59"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTETrèves200692–94_59-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves200692–94_59-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, pp.&#160;92–94.</span> </li> <li id="cite_note-FOOTNOTETrèves2006160-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrèves2006160_60-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, p.&#160;160.</span> </li> <li id="cite_note-FOOTNOTETrèves2006531-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrèves2006531_61-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, p.&#160;531.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Bibliography">Bibliography</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=55" title="Edit section: Bibliography"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarros-Neto1973" class="citation book cs1">Barros-Neto, José (1973). <i>An Introduction to the Theory of Distributions</i>. New York, NY: Dekker.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+the+Theory+of+Distributions&amp;rft.place=New+York%2C+NY&amp;rft.pub=Dekker&amp;rft.date=1973&amp;rft.aulast=Barros-Neto&amp;rft.aufirst=Jos%C3%A9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBenedetto1997" class="citation cs2"><a href="/wiki/John_Benedetto" title="John Benedetto">Benedetto, J.J.</a> (1997), <i>Harmonic Analysis and Applications</i>, CRC Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Harmonic+Analysis+and+Applications&amp;rft.pub=CRC+Press&amp;rft.date=1997&amp;rft.aulast=Benedetto&amp;rft.aufirst=J.J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLützen1982" class="citation book cs1">Lützen, J. (1982). <i>The prehistory of the theory of distributions</i>. New York, Berlin: Springer Verlag.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+prehistory+of+the+theory+of+distributions&amp;rft.place=New+York%2C+Berlin&amp;rft.pub=Springer+Verlag&amp;rft.date=1982&amp;rft.aulast=L%C3%BCtzen&amp;rft.aufirst=J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFolland1989" class="citation book cs1"><a href="/wiki/Gerald_Folland" title="Gerald Folland">Folland, G.B.</a> (1989). <i>Harmonic Analysis in Phase Space</i>. Princeton, NJ: Princeton University Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Harmonic+Analysis+in+Phase+Space&amp;rft.place=Princeton%2C+NJ&amp;rft.pub=Princeton+University+Press&amp;rft.date=1989&amp;rft.aulast=Folland&amp;rft.aufirst=G.B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFriedlanderJoshi1998" class="citation book cs1">Friedlander, F.G.; Joshi, M.S. (1998). <i>Introduction to the Theory of Distributions</i>. Cambridge, UK: Cambridge University Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+the+Theory+of+Distributions&amp;rft.place=Cambridge%2C+UK&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1998&amp;rft.aulast=Friedlander&amp;rft.aufirst=F.G.&amp;rft.au=Joshi%2C+M.S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGårding1997" class="citation cs2"><a href="/wiki/Lars_G%C3%A5rding" title="Lars Gårding">Gårding, L.</a> (1997), <i>Some Points of Analysis and their History</i>, American Mathematical Society</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Some+Points+of+Analysis+and+their+History&amp;rft.pub=American+Mathematical+Society&amp;rft.date=1997&amp;rft.aulast=G%C3%A5rding&amp;rft.aufirst=L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGel&#39;fandShilov1966–1968" class="citation cs2"><a href="/wiki/Israel_Gelfand" title="Israel Gelfand">Gel'fand, I.M.</a>; Shilov, G.E. (1966–1968), <i>Generalized functions</i>, vol.&#160;1–5, Academic Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Generalized+functions&amp;rft.pub=Academic+Press&amp;rft.date=1966%2F1968&amp;rft.aulast=Gel%27fand&amp;rft.aufirst=I.M.&amp;rft.au=Shilov%2C+G.E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrubb2009" class="citation cs2"><a href="/wiki/Gerd_Grubb" title="Gerd Grubb">Grubb, G.</a> (2009), <i>Distributions and Operators</i>, Springer</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Distributions+and+Operators&amp;rft.pub=Springer&amp;rft.date=2009&amp;rft.aulast=Grubb&amp;rft.aufirst=G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHörmander1983" class="citation cs2"><a href="/wiki/Lars_H%C3%B6rmander" title="Lars Hörmander">Hörmander, L.</a> (1983), <i>The analysis of linear partial differential operators I</i>, Grundl. Math. Wissenschaft., vol.&#160;256, Springer, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-96750-4">10.1007/978-3-642-96750-4</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-540-12104-8" title="Special:BookSources/3-540-12104-8"><bdi>3-540-12104-8</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0717035">0717035</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+analysis+of+linear+partial+differential+operators+I&amp;rft.series=Grundl.+Math.+Wissenschaft.&amp;rft.pub=Springer&amp;rft.date=1983&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0717035%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-642-96750-4&amp;rft.isbn=3-540-12104-8&amp;rft.aulast=H%C3%B6rmander&amp;rft.aufirst=L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHorváth1966" class="citation book cs1"><a href="/wiki/John_Horvath_(mathematician)" title="John Horvath (mathematician)">Horváth, John</a> (1966). <i>Topological Vector Spaces and Distributions</i>. Addison-Wesley series in mathematics. Vol.&#160;1. Reading, MA: Addison-Wesley Publishing Company. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0201029857" title="Special:BookSources/978-0201029857"><bdi>978-0201029857</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Vector+Spaces+and+Distributions&amp;rft.place=Reading%2C+MA&amp;rft.series=Addison-Wesley+series+in+mathematics&amp;rft.pub=Addison-Wesley+Publishing+Company&amp;rft.date=1966&amp;rft.isbn=978-0201029857&amp;rft.aulast=Horv%C3%A1th&amp;rft.aufirst=John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKolmogorovFomin1957" class="citation book cs1"><a href="/wiki/Andrey_Kolmogorov" title="Andrey Kolmogorov">Kolmogorov, Andrey</a>; <a href="/wiki/Sergei_Fomin" title="Sergei Fomin">Fomin, Sergei V.</a> (1957). <i>Elements of the Theory of Functions and Functional Analysis</i>. Dover Books on Mathematics. New York: Dover Books. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-61427-304-2" title="Special:BookSources/978-1-61427-304-2"><bdi>978-1-61427-304-2</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/912495626">912495626</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+the+Theory+of+Functions+and+Functional+Analysis&amp;rft.place=New+York&amp;rft.series=Dover+Books+on+Mathematics&amp;rft.pub=Dover+Books&amp;rft.date=1957&amp;rft_id=info%3Aoclcnum%2F912495626&amp;rft.isbn=978-1-61427-304-2&amp;rft.aulast=Kolmogorov&amp;rft.aufirst=Andrey&amp;rft.au=Fomin%2C+Sergei+V.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNariciBeckenstein2011" class="citation book cs1">Narici, Lawrence; Beckenstein, Edward (2011). <i>Topological Vector Spaces</i>. Pure and applied mathematics (Second&#160;ed.). Boca Raton, FL: CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1584888666" title="Special:BookSources/978-1584888666"><bdi>978-1584888666</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/144216834">144216834</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Vector+Spaces&amp;rft.place=Boca+Raton%2C+FL&amp;rft.series=Pure+and+applied+mathematics&amp;rft.edition=Second&amp;rft.pub=CRC+Press&amp;rft.date=2011&amp;rft_id=info%3Aoclcnum%2F144216834&amp;rft.isbn=978-1584888666&amp;rft.aulast=Narici&amp;rft.aufirst=Lawrence&amp;rft.au=Beckenstein%2C+Edward&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPetersen1983" class="citation book cs1">Petersen, Bent E. (1983). <i>Introduction to the Fourier Transform and Pseudo-Differential Operators</i>. Boston, MA: Pitman Publishing.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+the+Fourier+Transform+and+Pseudo-Differential+Operators&amp;rft.place=Boston%2C+MA&amp;rft.pub=Pitman+Publishing&amp;rft.date=1983&amp;rft.aulast=Petersen&amp;rft.aufirst=Bent+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRudin1991" class="citation book cs1"><a href="/wiki/Walter_Rudin" title="Walter Rudin">Rudin, Walter</a> (1991). <a rel="nofollow" class="external text" href="https://archive.org/details/functionalanalys00rudi"><i>Functional Analysis</i></a>. International Series in Pure and Applied Mathematics. Vol.&#160;8 (Second&#160;ed.). New York, NY: <a href="/wiki/McGraw-Hill_Science/Engineering/Math" class="mw-redirect" title="McGraw-Hill Science/Engineering/Math">McGraw-Hill Science/Engineering/Math</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-07-054236-5" title="Special:BookSources/978-0-07-054236-5"><bdi>978-0-07-054236-5</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/21163277">21163277</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Functional+Analysis&amp;rft.place=New+York%2C+NY&amp;rft.series=International+Series+in+Pure+and+Applied+Mathematics&amp;rft.edition=Second&amp;rft.pub=McGraw-Hill+Science%2FEngineering%2FMath&amp;rft.date=1991&amp;rft_id=info%3Aoclcnum%2F21163277&amp;rft.isbn=978-0-07-054236-5&amp;rft.aulast=Rudin&amp;rft.aufirst=Walter&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffunctionalanalys00rudi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchaeferWolff1999" class="citation book cs1"><a href="/wiki/Helmut_H._Schaefer" title="Helmut H. Schaefer">Schaefer, Helmut H.</a>; Wolff, Manfred P. (1999). <i>Topological Vector Spaces</i>. <a href="/wiki/Graduate_Texts_in_Mathematics" title="Graduate Texts in Mathematics">GTM</a>. Vol.&#160;8 (Second&#160;ed.). New York, NY: Springer New York Imprint Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-7155-0" title="Special:BookSources/978-1-4612-7155-0"><bdi>978-1-4612-7155-0</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/840278135">840278135</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Vector+Spaces&amp;rft.place=New+York%2C+NY&amp;rft.series=GTM&amp;rft.edition=Second&amp;rft.pub=Springer+New+York+Imprint+Springer&amp;rft.date=1999&amp;rft_id=info%3Aoclcnum%2F840278135&amp;rft.isbn=978-1-4612-7155-0&amp;rft.aulast=Schaefer&amp;rft.aufirst=Helmut+H.&amp;rft.au=Wolff%2C+Manfred+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchwartz1954" class="citation cs2"><a href="/wiki/Laurent_Schwartz" title="Laurent Schwartz">Schwartz, Laurent</a> (1954), "Sur l'impossibilité de la multiplications des distributions", <i>C. R. Acad. Sci. Paris</i>, <b>239</b>: 847–848</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=C.+R.+Acad.+Sci.+Paris&amp;rft.atitle=Sur+l%27impossibilit%C3%A9+de+la+multiplications+des+distributions&amp;rft.volume=239&amp;rft.pages=847-848&amp;rft.date=1954&amp;rft.aulast=Schwartz&amp;rft.aufirst=Laurent&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchwartz1951" class="citation cs2"><a href="/wiki/Laurent_Schwartz" title="Laurent Schwartz">Schwartz, Laurent</a> (1951), <i>Théorie des distributions</i>, vol.&#160;1–2, Hermann</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Th%C3%A9orie+des+distributions&amp;rft.pub=Hermann&amp;rft.date=1951&amp;rft.aulast=Schwartz&amp;rft.aufirst=Laurent&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSobolev1936" class="citation cs2"><a href="/wiki/Sergei_Sobolev" title="Sergei Sobolev">Sobolev, S.L.</a> (1936), <a rel="nofollow" class="external text" href="https://mi.mathnet.ru/msb5358">"Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales"</a>, <i>Mat. Sbornik</i>, <b>1</b>: 39–72</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mat.+Sbornik&amp;rft.atitle=M%C3%A9thode+nouvelle+%C3%A0+r%C3%A9soudre+le+probl%C3%A8me+de+Cauchy+pour+les+%C3%A9quations+lin%C3%A9aires+hyperboliques+normales&amp;rft.volume=1&amp;rft.pages=39-72&amp;rft.date=1936&amp;rft.aulast=Sobolev&amp;rft.aufirst=S.L.&amp;rft_id=http%3A%2F%2Fmi.mathnet.ru%2Fmsb5358&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteinWeiss1971" class="citation cs2"><a href="/wiki/Elias_Stein" class="mw-redirect" title="Elias Stein">Stein, Elias</a>; Weiss, Guido (1971), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/introductiontofo0000stei"><i>Introduction to Fourier Analysis on Euclidean Spaces</i></a></span>, Princeton University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-691-08078-X" title="Special:BookSources/0-691-08078-X"><bdi>0-691-08078-X</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Fourier+Analysis+on+Euclidean+Spaces&amp;rft.pub=Princeton+University+Press&amp;rft.date=1971&amp;rft.isbn=0-691-08078-X&amp;rft.aulast=Stein&amp;rft.aufirst=Elias&amp;rft.au=Weiss%2C+Guido&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontofo0000stei&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStrichartz1994" class="citation cs2">Strichartz, R. (1994), <i>A Guide to Distribution Theory and Fourier Transforms</i>, CRC Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8493-8273-4" title="Special:BookSources/0-8493-8273-4"><bdi>0-8493-8273-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Guide+to+Distribution+Theory+and+Fourier+Transforms&amp;rft.pub=CRC+Press&amp;rft.date=1994&amp;rft.isbn=0-8493-8273-4&amp;rft.aulast=Strichartz&amp;rft.aufirst=R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrèves2006" class="citation book cs1"><a href="/wiki/Fran%C3%A7ois_Tr%C3%A8ves" title="François Trèves">Trèves, François</a> (2006) [1967]. <i>Topological Vector Spaces, Distributions and Kernels</i>. Mineola, N.Y.: Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-45352-1" title="Special:BookSources/978-0-486-45352-1"><bdi>978-0-486-45352-1</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/853623322">853623322</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Vector+Spaces%2C+Distributions+and+Kernels&amp;rft.place=Mineola%2C+N.Y.&amp;rft.pub=Dover+Publications&amp;rft.date=2006&amp;rft_id=info%3Aoclcnum%2F853623322&amp;rft.isbn=978-0-486-45352-1&amp;rft.aulast=Tr%C3%A8ves&amp;rft.aufirst=Fran%C3%A7ois&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWoodward1953" class="citation book cs1"><a href="/wiki/Philip_Woodward" title="Philip Woodward">Woodward, P.M.</a> (1953). <i>Probability and Information Theory with Applications to Radar</i>. Oxford, UK: Pergamon Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Information+Theory+with+Applications+to+Radar&amp;rft.place=Oxford%2C+UK&amp;rft.pub=Pergamon+Press&amp;rft.date=1953&amp;rft.aulast=Woodward&amp;rft.aufirst=P.M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distribution_(mathematics)&amp;action=edit&amp;section=56" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>M. J. Lighthill (1959). <i>Introduction to Fourier Analysis and Generalised Functions</i>. Cambridge University Press. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-521-09128-4" title="Special:BookSources/0-521-09128-4">0-521-09128-4</a> (requires very little knowledge of analysis; defines distributions as limits of sequences of functions under integrals)</li> <li><a href="/wiki/Vasily_Vladimirov" title="Vasily Vladimirov">V.S. Vladimirov</a> (2002). <i>Methods of the theory of generalized functions</i>. Taylor &amp; Francis. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-415-27356-0" title="Special:BookSources/0-415-27356-0">0-415-27356-0</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVladimirov2001" class="citation cs2"><a href="/wiki/Vasilii_Sergeevich_Vladimirov" class="mw-redirect" title="Vasilii Sergeevich Vladimirov">Vladimirov, V.S.</a> (2001) [1994], <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Generalized_function">"Generalized function"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Generalized+function&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft.aulast=Vladimirov&amp;rft.aufirst=V.S.&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DGeneralized_function&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVladimirov2001" class="citation cs2"><a href="/wiki/Vasilii_Sergeevich_Vladimirov" class="mw-redirect" title="Vasilii Sergeevich Vladimirov">Vladimirov, V.S.</a> (2001) [1994], <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Generalized_functions,_space_of">"Generalized functions, space of"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Generalized+functions%2C+space+of&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft.aulast=Vladimirov&amp;rft.aufirst=V.S.&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DGeneralized_functions%2C_space_of&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVladimirov2001" class="citation cs2"><a href="/wiki/Vasilii_Sergeevich_Vladimirov" class="mw-redirect" title="Vasilii Sergeevich Vladimirov">Vladimirov, V.S.</a> (2001) [1994], <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Generalized_function,_derivative_of_a">"Generalized function, derivative of a"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Generalized+function%2C+derivative+of+a&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft.aulast=Vladimirov&amp;rft.aufirst=V.S.&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DGeneralized_function%2C_derivative_of_a&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVladimirov2001" class="citation cs2"><a href="/wiki/Vasilii_Sergeevich_Vladimirov" class="mw-redirect" title="Vasilii Sergeevich Vladimirov">Vladimirov, V.S.</a> (2001) [1994], <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Generalized_functions,_product_of">"Generalized functions, product of"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Generalized+functions%2C+product+of&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft.aulast=Vladimirov&amp;rft.aufirst=V.S.&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DGeneralized_functions%2C_product_of&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOberguggenberger2001" class="citation cs2">Oberguggenberger, Michael (2001) [1994], <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Generalized_function_algebras">"Generalized function algebras"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Generalized+function+algebras&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft.aulast=Oberguggenberger&amp;rft.aufirst=Michael&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DGeneralized_function_algebras&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistribution+%28mathematics%29" class="Z3988"></span>.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Functional_analysis_(topics_–_glossary)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Functional_analysis" title="Template:Functional analysis"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Functional_analysis" title="Template talk:Functional analysis"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Functional_analysis" title="Special:EditPage/Template:Functional analysis"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Functional_analysis_(topics_–_glossary)" style="font-size:114%;margin:0 4em"><a href="/wiki/Functional_analysis" title="Functional analysis">Functional analysis</a>&#160;(<a href="/wiki/List_of_functional_analysis_topics" title="List of functional analysis topics">topics</a> – <a href="/wiki/Glossary_of_functional_analysis" title="Glossary of functional analysis">glossary</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Spaces</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_space" title="Banach space">Banach</a></li> <li><a href="/wiki/Besov_space" title="Besov space">Besov</a></li> <li><a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet</a></li> <li><a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert</a></li> <li><a href="/wiki/H%C3%B6lder_space" class="mw-redirect" title="Hölder space">Hölder</a></li> <li><a href="/wiki/Nuclear_space" title="Nuclear space">Nuclear</a></li> <li><a href="/wiki/Orlicz_space" title="Orlicz space">Orlicz</a></li> <li><a href="/wiki/Schwartz_space" title="Schwartz space">Schwartz</a></li> <li><a href="/wiki/Sobolev_space" title="Sobolev space">Sobolev</a></li> <li><a href="/wiki/Topological_vector_space" title="Topological vector space">Topological vector</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Properties</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Barrelled_space" title="Barrelled space">Barrelled</a></li> <li><a href="/wiki/Complete_topological_vector_space" title="Complete topological vector space">Complete</a></li> <li><a href="/wiki/Dual_space" title="Dual space">Dual</a> (<a href="/wiki/Dual_space#Algebraic_dual_space" title="Dual space">Algebraic</a>/<a href="/wiki/Dual_space#Continuous_dual_space" title="Dual space">Topological</a>)</li> <li><a href="/wiki/Locally_convex_topological_vector_space" title="Locally convex topological vector space">Locally convex</a></li> <li><a href="/wiki/Reflexive_space" title="Reflexive space">Reflexive</a></li> <li><a href="/wiki/Separable_space" title="Separable space">Separable</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Theorems_in_functional_analysis" title="Category:Theorems in functional analysis">Theorems</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hahn%E2%80%93Banach_theorem" title="Hahn–Banach theorem">Hahn–Banach</a></li> <li><a href="/wiki/Riesz_representation_theorem" title="Riesz representation theorem">Riesz representation</a></li> <li><a href="/wiki/Closed_graph_theorem_(functional_analysis)" title="Closed graph theorem (functional analysis)">Closed graph</a></li> <li><a href="/wiki/Uniform_boundedness_principle" title="Uniform boundedness principle">Uniform boundedness principle</a></li> <li><a href="/wiki/Kakutani_fixed-point_theorem#Infinite-dimensional_generalizations" title="Kakutani fixed-point theorem">Kakutani fixed-point</a></li> <li><a href="/wiki/Krein%E2%80%93Milman_theorem" title="Krein–Milman theorem">Krein–Milman</a></li> <li><a href="/wiki/Min-max_theorem" title="Min-max theorem">Min–max</a></li> <li><a href="/wiki/Gelfand%E2%80%93Naimark_theorem" title="Gelfand–Naimark theorem">Gelfand–Naimark</a></li> <li><a href="/wiki/Banach%E2%80%93Alaoglu_theorem" title="Banach–Alaoglu theorem">Banach–Alaoglu</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Operators</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adjoint_operator" class="mw-redirect" title="Adjoint operator">Adjoint</a></li> <li><a href="/wiki/Bounded_operator" title="Bounded operator">Bounded</a></li> <li><a href="/wiki/Compact_operator" title="Compact operator">Compact</a></li> <li><a href="/wiki/Hilbert%E2%80%93Schmidt_operator" title="Hilbert–Schmidt operator">Hilbert–Schmidt</a></li> <li><a href="/wiki/Normal_operator" title="Normal operator">Normal</a></li> <li><a href="/wiki/Nuclear_operator" title="Nuclear operator">Nuclear</a></li> <li><a href="/wiki/Trace_class" title="Trace class">Trace class</a></li> <li><a href="/wiki/Transpose_of_a_linear_map" title="Transpose of a linear map">Transpose</a></li> <li><a href="/wiki/Unbounded_operator" title="Unbounded operator">Unbounded</a></li> <li><a href="/wiki/Unitary_operator" title="Unitary operator">Unitary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Algebras</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_algebra" title="Banach algebra">Banach algebra</a></li> <li><a href="/wiki/C*-algebra" title="C*-algebra">C*-algebra</a></li> <li><a href="/wiki/Spectrum_of_a_C*-algebra" title="Spectrum of a C*-algebra">Spectrum of a C*-algebra</a></li> <li><a href="/wiki/Operator_algebra" title="Operator algebra">Operator algebra</a></li> <li><a href="/wiki/Group_algebra_of_a_locally_compact_group" title="Group algebra of a locally compact group">Group algebra of a locally compact group</a></li> <li><a href="/wiki/Von_Neumann_algebra" title="Von Neumann algebra">Von Neumann algebra</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Open problems</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Invariant_subspace_problem" title="Invariant subspace problem">Invariant subspace problem</a></li> <li><a href="/wiki/Mahler%27s_conjecture" class="mw-redirect" title="Mahler&#39;s conjecture">Mahler's conjecture</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hardy_space" title="Hardy space">Hardy space</a></li> <li><a href="/wiki/Spectral_theory_of_ordinary_differential_equations" title="Spectral theory of ordinary differential equations">Spectral theory of ordinary differential equations</a></li> <li><a href="/wiki/Heat_kernel" title="Heat kernel">Heat kernel</a></li> <li><a href="/wiki/Index_theorem" class="mw-redirect" title="Index theorem">Index theorem</a></li> <li><a href="/wiki/Calculus_of_variations" title="Calculus of variations">Calculus of variations</a></li> <li><a href="/wiki/Functional_calculus" title="Functional calculus">Functional calculus</a></li> <li><a href="/wiki/Integral_operator" title="Integral operator">Integral operator</a></li> <li><a href="/wiki/Jones_polynomial" title="Jones polynomial">Jones polynomial</a></li> <li><a href="/wiki/Topological_quantum_field_theory" title="Topological quantum field theory">Topological quantum field theory</a></li> <li><a href="/wiki/Noncommutative_geometry" title="Noncommutative geometry">Noncommutative geometry</a></li> <li><a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a></li> <li><a class="mw-selflink selflink">Distribution</a> (or <a href="/wiki/Generalized_function" title="Generalized function">Generalized functions</a>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Advanced topics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Approximation_property" title="Approximation property">Approximation property</a></li> <li><a href="/wiki/Balanced_set" title="Balanced set">Balanced set</a></li> <li><a href="/wiki/Choquet_theory" title="Choquet theory">Choquet theory</a></li> <li><a href="/wiki/Weak_topology" title="Weak topology">Weak topology</a></li> <li><a href="/wiki/Banach%E2%80%93Mazur_distance" class="mw-redirect" title="Banach–Mazur distance">Banach–Mazur distance</a></li> <li><a href="/wiki/Tomita%E2%80%93Takesaki_theory" title="Tomita–Takesaki theory">Tomita–Takesaki theory</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Functional_analysis" title="Category:Functional analysis">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Topological_vector_spaces_(TVSs)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Topological_vector_spaces" title="Template:Topological vector spaces"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Topological_vector_spaces" title="Template talk:Topological vector spaces"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Topological_vector_spaces" title="Special:EditPage/Template:Topological vector spaces"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Topological_vector_spaces_(TVSs)" style="font-size:114%;margin:0 4em"><a href="/wiki/Topological_vector_space" title="Topological vector space">Topological vector spaces</a> (TVSs)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_space" title="Banach space">Banach space</a></li> <li><a href="/wiki/Metrizable_topological_vector_space" title="Metrizable topological vector space">Completeness</a></li> <li><a href="/wiki/Continuous_linear_operator" title="Continuous linear operator">Continuous linear operator</a></li> <li><a href="/wiki/Linear_form" title="Linear form">Linear functional</a></li> <li><a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet space</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a></li> <li><a href="/wiki/Locally_convex_topological_vector_space" title="Locally convex topological vector space">Locally convex space</a></li> <li><a href="/wiki/Metrizable_topological_vector_space" title="Metrizable topological vector space">Metrizability</a></li> <li><a href="/wiki/Operator_topologies" title="Operator topologies">Operator topologies</a></li> <li><a href="/wiki/Topological_vector_space" title="Topological vector space">Topological vector space</a></li> <li><a href="/wiki/Vector_space" title="Vector space">Vector space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Theorems_in_functional_analysis" title="Category:Theorems in functional analysis">Main results</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Anderson%E2%80%93Kadec_theorem" title="Anderson–Kadec theorem">Anderson–Kadec</a></li> <li><a href="/wiki/Banach%E2%80%93Alaoglu_theorem" title="Banach–Alaoglu theorem">Banach–Alaoglu</a></li> <li><a href="/wiki/Closed_graph_theorem_(functional_analysis)" title="Closed graph theorem (functional analysis)">Closed graph theorem</a></li> <li><a href="/wiki/F._Riesz%27s_theorem" title="F. Riesz&#39;s theorem">F. Riesz's</a></li> <li><a href="/wiki/Hahn%E2%80%93Banach_theorem" title="Hahn–Banach theorem">Hahn–Banach</a>&#160;(<a href="/wiki/Hyperplane_separation_theorem" title="Hyperplane separation theorem">hyperplane separation</a></li> <li><a href="/wiki/Vector-valued_Hahn%E2%80%93Banach_theorems" title="Vector-valued Hahn–Banach theorems">Vector-valued Hahn–Banach</a>)</li> <li><a href="/wiki/Open_mapping_theorem_(functional_analysis)" title="Open mapping theorem (functional analysis)">Open mapping (Banach–Schauder)</a> <ul><li><a href="/wiki/Bounded_inverse_theorem" class="mw-redirect" title="Bounded inverse theorem">Bounded inverse</a></li></ul></li> <li><a href="/wiki/Uniform_boundedness_principle" title="Uniform boundedness principle">Uniform boundedness (Banach–Steinhaus)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Maps</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bilinear_operator" class="mw-redirect" title="Bilinear operator">Bilinear operator</a> <ul><li><a href="/wiki/Bilinear_form" title="Bilinear form">form</a></li></ul></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a> <ul><li><a href="/wiki/Almost_open_linear_map" class="mw-redirect" title="Almost open linear map">Almost open</a></li> <li><a href="/wiki/Bounded_operator" title="Bounded operator">Bounded</a></li> <li><a href="/wiki/Continuous_linear_operator" title="Continuous linear operator">Continuous</a></li> <li><a href="/wiki/Closed_linear_operator" title="Closed linear operator">Closed</a></li> <li><a href="/wiki/Compact_operator" title="Compact operator">Compact</a></li> <li><a href="/wiki/Densely_defined_operator" title="Densely defined operator">Densely defined</a></li> <li><a href="/wiki/Discontinuous_linear_map" title="Discontinuous linear map">Discontinuous</a></li></ul></li> <li><a href="/wiki/Topological_homomorphism" title="Topological homomorphism">Topological homomorphism</a></li> <li><a href="/wiki/Functional_(mathematics)" title="Functional (mathematics)">Functional</a> <ul><li><a href="/wiki/Linear_form" title="Linear form">Linear</a></li> <li><a href="/wiki/Bilinear_form" title="Bilinear form">Bilinear</a></li> <li><a href="/wiki/Sesquilinear_form" title="Sesquilinear form">Sesquilinear</a></li></ul></li> <li><a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">Norm</a></li> <li><a href="/wiki/Seminorm" title="Seminorm">Seminorm</a></li> <li><a href="/wiki/Sublinear_function" title="Sublinear function">Sublinear function</a></li> <li><a href="/wiki/Transpose_of_a_linear_map" title="Transpose of a linear map">Transpose</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of sets</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Absolutely_convex_set" title="Absolutely convex set">Absolutely convex/disk</a></li> <li><a href="/wiki/Absorbing_set" title="Absorbing set">Absorbing/Radial</a></li> <li><a href="/wiki/Affine_space" title="Affine space">Affine</a></li> <li><a href="/wiki/Balanced_set" title="Balanced set">Balanced/Circled</a></li> <li><a href="/wiki/Auxiliary_normed_space" title="Auxiliary normed space">Banach disks</a></li> <li><a href="/wiki/Bounding_point" title="Bounding point">Bounding points</a></li> <li><a href="/wiki/Bounded_set_(topological_vector_space)" title="Bounded set (topological vector space)">Bounded</a></li> <li><a href="/wiki/Complemented_subspace" title="Complemented subspace">Complemented subspace</a></li> <li><a href="/wiki/Convex_set" title="Convex set">Convex</a></li> <li><a href="/wiki/Convex_cone" title="Convex cone">Convex cone <span style="font-size:85%;">(subset)</span></a></li> <li><a href="/wiki/Cone_(linear_algebra)" class="mw-redirect" title="Cone (linear algebra)">Linear cone <span style="font-size:85%;">(subset)</span></a></li> <li><a href="/wiki/Extreme_point" title="Extreme point">Extreme point</a></li> <li><a href="/wiki/Totally_bounded_space#Topological_vector_spaces" title="Totally bounded space">Pre-compact/Totally bounded</a></li> <li><a href="/wiki/Prevalent_and_shy_sets" title="Prevalent and shy sets">Prevalent/Shy</a></li> <li><a href="/wiki/Radial_set" title="Radial set">Radial</a></li> <li><a href="/wiki/Star_domain" title="Star domain">Radially convex/Star-shaped</a></li> <li><a href="/wiki/Symmetric_set" title="Symmetric set">Symmetric</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Set operations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Affine_hull" title="Affine hull">Affine hull</a></li> <li>(<a href="/wiki/Algebraic_interior#Relative_algebraic_interior" title="Algebraic interior">Relative</a>)&#160;<a href="/wiki/Algebraic_interior" title="Algebraic interior">Algebraic interior (core)</a></li> <li><a href="/wiki/Convex_hull" title="Convex hull">Convex hull</a></li> <li><a href="/wiki/Linear_span" title="Linear span">Linear span</a></li> <li><a href="/wiki/Minkowski_addition" title="Minkowski addition">Minkowski addition</a></li> <li><a href="/wiki/Polar_set" title="Polar set">Polar</a></li> <li>(<a href="/wiki/Algebraic_interior#Quasi_relative_interior" title="Algebraic interior">Quasi</a>)&#160;<a href="/wiki/Algebraic_interior#Relative_interior" title="Algebraic interior">Relative interior</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of TVSs</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Asplund_space" title="Asplund space">Asplund</a></li> <li><a href="/wiki/Ptak_space" title="Ptak space">B-complete/Ptak</a></li> <li><a href="/wiki/Banach_space" title="Banach space">Banach</a></li> <li>(<a href="/wiki/Countably_barrelled_space" title="Countably barrelled space">Countably</a>)&#160;<a href="/wiki/Barrelled_space" title="Barrelled space">Barrelled</a></li> <li><a href="/wiki/BK-space" title="BK-space">BK-space</a></li> <li>(<a href="/wiki/Ultrabornological_space" title="Ultrabornological space">Ultra-</a>)&#160;<a href="/wiki/Bornological_space" title="Bornological space">Bornological</a></li> <li><a href="/wiki/Brauner_space" title="Brauner space">Brauner</a></li> <li><a href="/wiki/Complete_topological_vector_space" title="Complete topological vector space">Complete</a></li> <li><a href="/wiki/Convenient_vector_space" title="Convenient vector space">Convenient</a></li> <li><a href="/wiki/DF-space" title="DF-space">(DF)-space</a></li> <li><a href="/wiki/Distinguished_space" title="Distinguished space">Distinguished</a></li> <li><a href="/wiki/F-space" title="F-space">F-space</a></li> <li><a href="/wiki/FK-AK_space" title="FK-AK space">FK-AK space</a></li> <li><a href="/wiki/FK-space" title="FK-space">FK-space</a></li> <li><a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet</a> <ul><li><a href="/wiki/Differentiation_in_Fr%C3%A9chet_spaces#Tame_Fréchet_spaces" title="Differentiation in Fréchet spaces">tame Fréchet</a></li></ul></li> <li><a href="/wiki/Grothendieck_space" title="Grothendieck space">Grothendieck</a></li> <li><a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert</a></li> <li><a href="/wiki/Infrabarreled_space" class="mw-redirect" title="Infrabarreled space">Infrabarreled</a></li> <li><a href="/wiki/Interpolation_space" title="Interpolation space">Interpolation space</a></li> <li><a href="/wiki/K-space_(functional_analysis)" title="K-space (functional analysis)">K-space</a></li> <li><a href="/wiki/LB-space" title="LB-space">LB-space</a></li> <li><a href="/wiki/LF-space" title="LF-space">LF-space</a></li> <li><a href="/wiki/Locally_convex_topological_vector_space" title="Locally convex topological vector space">Locally convex space</a></li> <li><a href="/wiki/Mackey_space" title="Mackey space">Mackey</a></li> <li><a href="/wiki/Metrizable_topological_vector_space" title="Metrizable topological vector space">(Pseudo)Metrizable</a></li> <li><a href="/wiki/Montel_space" title="Montel space">Montel</a></li> <li><a href="/wiki/Quasibarrelled_space" class="mw-redirect" title="Quasibarrelled space">Quasibarrelled</a></li> <li><a href="/wiki/Quasi-complete" class="mw-redirect" title="Quasi-complete">Quasi-complete</a></li> <li><a href="/wiki/Quasinorm" title="Quasinorm">Quasinormed</a></li> <li>(<a href="/wiki/Polynomially_reflexive_space" title="Polynomially reflexive space">Polynomially</a></li> <li><a href="/wiki/Semi-reflexive_space" title="Semi-reflexive space">Semi-</a>)&#160;<a href="/wiki/Reflexive_space" title="Reflexive space">Reflexive</a></li> <li><a href="/wiki/Riesz_space" title="Riesz space">Riesz</a></li> <li><a href="/wiki/Schwartz_TVS" class="mw-redirect" title="Schwartz TVS">Schwartz</a></li> <li><a href="/wiki/Semi-complete" class="mw-redirect" title="Semi-complete">Semi-complete</a></li> <li><a href="/wiki/Smith_space" title="Smith space">Smith</a></li> <li><a href="/wiki/Stereotype_space" class="mw-redirect" title="Stereotype space">Stereotype</a></li> <li>(<a href="/wiki/B-convex_space" title="B-convex space">B</a></li> <li><a href="/wiki/Strictly_convex_space" title="Strictly convex space">Strictly</a></li> <li><a href="/wiki/Uniformly_convex_space" title="Uniformly convex space">Uniformly</a>)&#160;convex</li> <li>(<a href="/wiki/Quasi-ultrabarrelled_space" title="Quasi-ultrabarrelled space">Quasi-</a>)&#160;<a href="/wiki/Ultrabarrelled_space" title="Ultrabarrelled space">Ultrabarrelled</a></li> <li><a href="/wiki/Uniformly_smooth_space" title="Uniformly smooth space">Uniformly smooth</a></li> <li><a href="/wiki/Webbed_space" title="Webbed space">Webbed</a></li> <li><a href="/wiki/Approximation_property" title="Approximation property">With the approximation property</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Topological_vector_spaces" title="Category:Topological vector spaces">Category</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐7jdc6 Cached time: 20241124173100 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.281 seconds Real time usage: 2.843 seconds Preprocessor visited node count: 21079/1000000 Post‐expand include size: 194824/2097152 bytes Template argument size: 35253/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 14/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 206324/5000000 bytes Lua time usage: 0.814/10.000 seconds Lua memory usage: 20860681/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1344.836 1 -total 16.44% 221.087 20 Template:Annotated_link 14.81% 199.110 2 Template:Reflist 14.32% 192.605 83 Template:Sfn 13.19% 177.388 19 Template:Cite_book 11.47% 154.204 1 Template:Short_description 9.89% 132.978 2 Template:Pagetype 7.00% 94.111 3 Template:Navbox 6.50% 87.408 1 Template:Functional_analysis 4.95% 66.573 1 Template:About --> <!-- Saved in parser cache with key enwiki:pcache:idhash:51955-0!canonical and timestamp 20241124173100 and revision id 1256591953. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Distribution_(mathematics)&amp;oldid=1256591953">https://en.wikipedia.org/w/index.php?title=Distribution_(mathematics)&amp;oldid=1256591953</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Functional_analysis" title="Category:Functional analysis">Functional analysis</a></li><li><a href="/wiki/Category:Generalizations_of_the_derivative" title="Category:Generalizations of the derivative">Generalizations of the derivative</a></li><li><a href="/wiki/Category:Generalized_functions" title="Category:Generalized functions">Generalized functions</a></li><li><a href="/wiki/Category:Smooth_functions" title="Category:Smooth functions">Smooth functions</a></li><li><a href="/wiki/Category:Schwartz_distributions" title="Category:Schwartz distributions">Schwartz distributions</a></li><li><a href="/wiki/Category:Differential_equations" title="Category:Differential equations">Differential equations</a></li><li><a href="/wiki/Category:Linear_functionals" title="Category:Linear functionals">Linear functionals</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">CS1 maint: location missing publisher</a></li><li><a href="/wiki/Category:CS1_maint:_numeric_names:_authors_list" title="Category:CS1 maint: numeric names: authors list">CS1 maint: numeric names: authors list</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_September_2020" title="Category:Articles with unsourced statements from September 2020">Articles with unsourced statements from September 2020</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_September_2020" title="Category:Wikipedia articles needing clarification from September 2020">Wikipedia articles needing clarification from September 2020</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_July_2019" title="Category:Articles with unsourced statements from July 2019">Articles with unsourced statements from July 2019</a></li><li><a href="/wiki/Category:Pages_displaying_short_descriptions_of_redirect_targets_via_Module:Annotated_link" title="Category:Pages displaying short descriptions of redirect targets via Module:Annotated link">Pages displaying short descriptions of redirect targets via Module:Annotated link</a></li><li><a href="/wiki/Category:Pages_displaying_wikidata_descriptions_as_a_fallback_via_Module:Annotated_link" title="Category:Pages displaying wikidata descriptions as a fallback via Module:Annotated link">Pages displaying wikidata descriptions as a fallback via Module:Annotated link</a></li><li><a href="/wiki/Category:Articles_containing_proofs" title="Category:Articles containing proofs">Articles containing proofs</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 10 November 2024, at 18:05<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Distribution_(mathematics)&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-7ztkk","wgBackendResponseTime":200,"wgPageParseReport":{"limitreport":{"cputime":"2.281","walltime":"2.843","ppvisitednodes":{"value":21079,"limit":1000000},"postexpandincludesize":{"value":194824,"limit":2097152},"templateargumentsize":{"value":35253,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":14,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":206324,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1344.836 1 -total"," 16.44% 221.087 20 Template:Annotated_link"," 14.81% 199.110 2 Template:Reflist"," 14.32% 192.605 83 Template:Sfn"," 13.19% 177.388 19 Template:Cite_book"," 11.47% 154.204 1 Template:Short_description"," 9.89% 132.978 2 Template:Pagetype"," 7.00% 94.111 3 Template:Navbox"," 6.50% 87.408 1 Template:Functional_analysis"," 4.95% 66.573 1 Template:About"]},"scribunto":{"limitreport-timeusage":{"value":"0.814","limit":"10.000"},"limitreport-memusage":{"value":20860681,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBarros-Neto1973\"] = 2,\n [\"CITEREFBenedetto1997\"] = 1,\n [\"CITEREFFolland1989\"] = 2,\n [\"CITEREFFriedlanderJoshi1998\"] = 2,\n [\"CITEREFGel\u0026#039;fandShilov1966–1968\"] = 1,\n [\"CITEREFGrubb2009\"] = 1,\n [\"CITEREFGårding1997\"] = 1,\n [\"CITEREFHairer2014\"] = 1,\n [\"CITEREFHorváth1966\"] = 1,\n [\"CITEREFHörmander1983\"] = 1,\n [\"CITEREFLyons1998\"] = 1,\n [\"CITEREFLützen1982\"] = 1,\n [\"CITEREFPer_Persson_(username:_md2perpe)2017\"] = 1,\n [\"CITEREFPetersen1983\"] = 2,\n [\"CITEREFSchwartz1951\"] = 1,\n [\"CITEREFSchwartz1954\"] = 1,\n [\"CITEREFSobolev1936\"] = 1,\n [\"CITEREFSteinWeiss1971\"] = 1,\n [\"CITEREFStrichartz1993\"] = 1,\n [\"CITEREFStrichartz1994\"] = 1,\n [\"CITEREFWoodward1953\"] = 2,\n [\"Omitting_the_open_set_from_notation\"] = 1,\n [\"Tempered_distribution\"] = 1,\n [\"Tensor_product_of_distributions\"] = 1,\n [\"Transpose_of_a_linear_operator\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 1,\n [\"About\"] = 1,\n [\"Anchor\"] = 4,\n [\"Annotated link\"] = 20,\n [\"Block indent\"] = 7,\n [\"Citation\"] = 10,\n [\"Citation needed\"] = 2,\n [\"Cite book\"] = 13,\n [\"Cite journal\"] = 2,\n [\"Cite web\"] = 1,\n [\"Clarify\"] = 1,\n [\"Collapse bottom\"] = 1,\n [\"Collapse top\"] = 1,\n [\"Em\"] = 83,\n [\"Functional analysis\"] = 1,\n [\"Harvnb\"] = 10,\n [\"Harvs\"] = 1,\n [\"Harvtxt\"] = 7,\n [\"Horváth Topological Vector Spaces and Distributions Volume 1 1966\"] = 1,\n [\"ISBN\"] = 2,\n [\"Kolmogorov Fomin Elements of the Theory of Functions and Functional Analysis\"] = 1,\n [\"Main\"] = 2,\n [\"Math\"] = 6,\n [\"Math theorem\"] = 11,\n [\"Mvar\"] = 135,\n [\"Narici Beckenstein Topological Vector Spaces\"] = 1,\n [\"Nowrap\"] = 1,\n [\"Redirect\"] = 1,\n [\"Reflist\"] = 2,\n [\"Rudin Walter Functional Analysis\"] = 1,\n [\"Schaefer Wolff Topological Vector Spaces\"] = 1,\n [\"See also\"] = 3,\n [\"Sfn\"] = 83,\n [\"Short description\"] = 1,\n [\"Springer\"] = 5,\n [\"TOCLimit\"] = 1,\n [\"Topological vector spaces\"] = 1,\n [\"Trèves François Topological vector spaces, distributions and kernels\"] = 1,\n [\"Visible anchor\"] = 4,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-7jdc6","timestamp":"20241124173100","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Distribution (mathematics)","url":"https:\/\/en.wikipedia.org\/wiki\/Distribution_(mathematics)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q865811","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q865811","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-05-12T17:21:22Z","dateModified":"2024-11-10T18:05:52Z","headline":"a continuous functional on a space of test functions (Schwartz space), which generalizes the concept of locally integrable functions"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10