CINXE.COM

Search results for: number of bioremediation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: number of bioremediation</title> <meta name="description" content="Search results for: number of bioremediation"> <meta name="keywords" content="number of bioremediation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="number of bioremediation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="number of bioremediation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10164</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: number of bioremediation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10164</span> Bioremediation Influence on Shear Strength of Contaminated Soils </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tawar%20Mahmoodzadeh">Tawar Mahmoodzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today soil contamination is an unavoidable issue; Irrespective of environmental impact, which happens during the soil contaminating and remediating process, the influence of this phenomenon on soil has not been searched thoroughly. In this study, unconfined compression and compaction tests were done on samples, contaminated and treated soil after 50 days of bio-treatment. The results show that rising in the amount of oil, cause decreased optimum water content and maximum dry density and increased strength. However, almost 65% of this contamination terminated by using a Bioremer as a bioremediation agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20contamination%20soil" title="oil contamination soil">oil contamination soil</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction" title=" compaction"> compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a> </p> <a href="https://publications.waset.org/abstracts/108173/bioremediation-influence-on-shear-strength-of-contaminated-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10163</span> Bioremediation Potentials of Some Indigenous Microorganisms Isolated from Auto Mechanic Workshops on Irrigation Water Used in Lokoja Kogi State of Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Ekpa">Emmanuel Ekpa</a>, <a href="https://publications.waset.org/abstracts/search?q=Adaji%20Andrew"> Adaji Andrew</a>, <a href="https://publications.waset.org/abstracts/search?q=Queen%20Opaluwa"> Queen Opaluwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Isreal%20Daraobong"> Isreal Daraobong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three (3) indigenous bacteria species (Bacillus spp, Acinectobacter spp and Moraxella spp) previously isolated from contaminated soil of some auto mechanic workshops were used for bioremediation studies on some irrigation water used at Sarkin-noma Fadama farms located in Lokoja Kogi State, Nigeria. This was done in order to investigate their bioremediation potentials using a simple pour plate method. The physicochemical parameters and heavy metal analysis (using AAS iCE 3000) of the irrigation water were performed before and after inoculation of the isolated organisms. Nitrate and phosphate concentration were found to be 10.56mg/L and 12.63mg/L prior to inoculation while iron and zinc were 0.9569mg/L and 0.2245mg/L respectively. Other physicochemical parameters were also observed to be high prior to inoculation. After the bioremediation test (inoculation with the isolated organisms), a nitrate and phosphate content of 2.53mg/L and 2.61mg/L were recorded respectively, iron and zinc gave 0.1694mg/L and 0.0174mg/L concentrations while other physicochemical parameters measured were also found to be lower in their respective values. The implication of this present study is that a number of carefully isolated indigenous bacteria species are capable of reducing the amount of heavy metal concentrations in water. Also, non-metallic contaminants like nitrate and phosphate are susceptible to bioremediation in the presence of such efficient system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20parameters" title=" physicochemical parameters"> physicochemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20spp" title=" Bacillus spp"> Bacillus spp</a>, <a href="https://publications.waset.org/abstracts/search?q=Acinectobacter%20spp%20and%20Moraxella%20spp" title=" Acinectobacter spp and Moraxella spp"> Acinectobacter spp and Moraxella spp</a>, <a href="https://publications.waset.org/abstracts/search?q=AAS" title=" AAS"> AAS</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrometer%203000" title=" spectrometer 3000"> spectrometer 3000</a> </p> <a href="https://publications.waset.org/abstracts/56986/bioremediation-potentials-of-some-indigenous-microorganisms-isolated-from-auto-mechanic-workshops-on-irrigation-water-used-in-lokoja-kogi-state-of-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10162</span> Diversity of Culturable Forms of Microorganisms in Soils with Long-term Exposure to Petroleum Hydrocarbons and Prospects for Bioremediation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yessentayeva%20K.%20Y.">Yessentayeva K. Y.</a>, <a href="https://publications.waset.org/abstracts/search?q=Berzhanova%20R.%20Z."> Berzhanova R. Z.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukasheva%20T.%20D."> Mukasheva T. D.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to study the microbial diversity of soils with long-standing hydrocarbon pollution in the S. Balgimbayev field (Kazakhstan), where the transformation of meadow coastal soils technogenic solonchak soils, as well as the assessment of the degradation potential of microorganisms perspective for the use for bioremediation. In the present work autochthonous microorganisms of the surface horizon of soils were investigated. In samples with a low degree of pollution the number of microorganisms, was comparable to the number in the uncontaminated soil and was 103 - 104 CFU/g. and one and two orders of magnitude lower in samples with high oil content. A collection of microorganisms was created using different culture media, which made it possible to isolate isolates that play a key role in different successional stages of biodegradation of petroleum hydrocarbons. The collection included the main bacterial filiiments, Protobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Mycelial fungi andyeast-like fungwere assigned to the Ascomycota division. Studies showed that the percentage of isolates capable of growth in hydrocarbons varied. More than 50 % of the isolates grew on crude oil, a low percentage of less than 10 % of the isolates grew on an anthracene, phenanthrene and naphthalene, more than 20 % of the isolates belonging to different genera Pseudomonas, Bacillus, Rhodococcus, Achromobacter, Gordonia, Microbacterium, and Trichosporon, characterized the growth on two or three different hydrocarbons. The ability to grow using all hydrocarbons, associated with the synthesis of biosurfactants, was detected only in a few isolates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil" title="oil">oil</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20of%20bioremediation" title=" number of bioremediation"> number of bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbons%20%E2%80%93%20oxidizing%20microorganisms" title=" hydrocarbons – oxidizing microorganisms"> hydrocarbons – oxidizing microorganisms</a> </p> <a href="https://publications.waset.org/abstracts/182428/diversity-of-culturable-forms-of-microorganisms-in-soils-with-long-term-exposure-to-petroleum-hydrocarbons-and-prospects-for-bioremediation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10161</span> Potential Hydrocarbon Degraders Present in Oil from WWII Wrecks in the Pacific</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Awei%20Bainivalu">Awei Bainivalu</a>, <a href="https://publications.waset.org/abstracts/search?q=Joachim%20Larsen"> Joachim Larsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Logesh%20Panneerselvan"> Logesh Panneerselvan</a>, <a href="https://publications.waset.org/abstracts/search?q=Toby%20Mills"> Toby Mills</a>, <a href="https://publications.waset.org/abstracts/search?q=Brett%20Neilan"> Brett Neilan</a>, <a href="https://publications.waset.org/abstracts/search?q=Megharaj%20Mallavarapu"> Megharaj Mallavarapu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> World War II (WWII) shipwrecks harbour up to 20 million tonnes of oil. More than 3000 wrecks are in the Pacific Ocean; 300 are oil tankers. Compared to other oil removal methods, bioremediation is environmentally friendly and cost-effective. Oil's microbial community and hydrocarbon properties from the Pacific WWII wrecks were identified. Dominant phyla are Proteobacteria, Actinobacteria, and Firmicutes. Native marine bacteria oil-degraders were isolated for bioremediation. Petroleum degradation data from the bacterial consortium will be analyzed over the next three months. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20bioremediation" title="oil bioremediation">oil bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20bacteria" title=" marine bacteria"> marine bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=WWII%20shipwrecks" title=" WWII shipwrecks"> WWII shipwrecks</a>, <a href="https://publications.waset.org/abstracts/search?q=pacific" title=" pacific"> pacific</a> </p> <a href="https://publications.waset.org/abstracts/147889/potential-hydrocarbon-degraders-present-in-oil-from-wwii-wrecks-in-the-pacific" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10160</span> Implementing Bioremediation Technologies to Degrade Chemical Warfare Agents and Explosives from War Affected Regions in Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elackiya%20Sithamparanathan">Elackiya Sithamparanathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical agents used during the Sri Lankan civil war continue to threaten human and environmental health as affected areas are re-settled. Bioremediation is a cost-effective and eco-friendly approach to degrading chemical agents, and has greater public acceptance than chemical degradation. Baseline data on contaminant distribution, environmental parameters, and indigenous microbes are required before bioremediation can commence. The culture and isolate of suitable microbes and enzymes should be followed by laboratory trials, before field application and long-term monitoring of contaminant concentration, soil parameters, microbial ecology, and public health to monitor environmental and public health. As local people are not aware of the persistence of warfare chemicals and do not understand the potential impacts on human health, community awareness programs are required. Active community participation, and collaboration with international and local agencies, would contribute to the success of bioremediation and the effective removal of chemical agents in war affected areas of Sri Lanka. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20protection" title=" environmental protection"> environmental protection</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20health" title=" human health"> human health</a>, <a href="https://publications.waset.org/abstracts/search?q=war%20affected%20regions%20in%20Sri%20Lanka" title=" war affected regions in Sri Lanka"> war affected regions in Sri Lanka</a> </p> <a href="https://publications.waset.org/abstracts/26882/implementing-bioremediation-technologies-to-degrade-chemical-warfare-agents-and-explosives-from-war-affected-regions-in-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10159</span> Isolation of Biosurfactant Producing Spore-Forming Bacteria from Oman: Potential Applications in Bioremediation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saif%20N.%20Al-Bahry">Saif N. Al-Bahry</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahya%20M.%20Al-Wahaibi"> Yahya M. Al-Wahaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulkadir%20E.%20Elshafie"> Abdulkadir E. Elshafie</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20S.%20Al-Bemani"> Ali S. Al-Bemani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanket%20J.%20Joshi"> Sanket J. Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental pollution is a global problem and best possible solution is identifying and utilizing native microorganisms. One possible application of microbial product -biosurfactant is in bioremediation of hydrocarbon contaminated sites. We have screened forty two different petroleum contaminated sites from Oman, for biosurfactant producing spore-forming bacterial isolates. Initial screening showed that out of 42 soil samples, three showed reduction in surface tension (ST) and interfacial tension (IFT) within 24h of incubation at 40°C. Out of those 3 soil samples, one was further selected for isolation of bacteria and 14 different bacteria were isolated in pure form. Of those 14 spore-forming, rod shaped bacteria, two showed highest reduction in ST and IFT in the range of 70mN/m to < 35mN/m and 26.69mN/m to < 9mN/m, respectively within 24h. These bacterial biosurfactants may be utilized for bioremediation of oil-spills. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20pollution" title=" hydrocarbon pollution"> hydrocarbon pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=spore-forming%20bacteria" title=" spore-forming bacteria"> spore-forming bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-surfactant" title=" bio-surfactant"> bio-surfactant</a> </p> <a href="https://publications.waset.org/abstracts/3715/isolation-of-biosurfactant-producing-spore-forming-bacteria-from-oman-potential-applications-in-bioremediation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10158</span> Isolation, Identification and Crude Oil Biodegradation Potential of Providencia sp. BAZ 01</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aisami%20A.">Aisami A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20A.%20Adamu"> Z. A. Adamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lawan%20Bulama"> Lawan Bulama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to growing issues of crude oil pollution in both marine and terrestrial environments, Billions to Trillions of US Dollars were spent over the years for the treatment of this spill. There is an urgent need for effective bioremediation strategies. This current study focuses on the isolation and characterization of a crude oil-degrading bacterium from hydrocarbon-contaminated soil samples. Soil samples were collected from an oil spill site and subjected to enrichment culture techniques in a mineral salt medium supplemented with crude oil as the singular carbon source. The isolates were screened for their crude oil-degrading capabilities using gravimetric analysis. The most efficient isolation was identified through 16S rRNA gene sequencing. Cultural and physical conditions such pH, temperature salinity and crude oil concentrations were optimized. The isolates showed significant crude oil degradation efficiency, reducing oil concentration (2.5%) by 75% within 15 days of incubation. The strain was identified as Providencia sp. through molecular characterization, the sequence was deposited at the NCBI Genbank with accession number MN880494. The bacterium exhibited optimal growth at 32.5°C, pH 7.0 to 7.5, and in the presence of 1.5% (w/v) NaCl. The isolated Providencia sp. shows encouraging potential for bioremediation of crude oil-contaminated environments. This study successfully isolated and characterized a crude oil-degrading Providencia sp., highlighting its potential in bioremediation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil%20degradation" title="crude oil degradation">crude oil degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=providencia%20sp." title=" providencia sp."> providencia sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20utilization" title=" hydrocarbon utilization"> hydrocarbon utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution." title=" environmental pollution."> environmental pollution.</a> </p> <a href="https://publications.waset.org/abstracts/188258/isolation-identification-and-crude-oil-biodegradation-potential-of-providencia-sp-baz-01" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10157</span> Optimization of Lead Bioremediation by Marine Halomonas sp. ES015 Using Statistical Experimental Methods </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliaa%20M.%20El-Borai">Aliaa M. El-Borai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehab%20A.%20Beltagy"> Ehab A. Beltagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20E.%20Gadallah"> Eman E. Gadallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Samy%20A.%20ElAssar"> Samy A. ElAssar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioremediation technology is now used for treatment instead of traditional metal removal methods. A strain was isolated from Marsa Alam, Red sea, Egypt showed high resistance to high lead concentration and was identified by the 16S rRNA gene sequencing technique as <em>Halomonas</em> sp. ES015. Medium optimization was carried out using Plackett-Burman design, and the most significant factors were yeast extract, casamino acid and inoculums size. The optimized media obtained by the statistical design raised the removal efficiency from 84% to 99% from initial concentration 250 ppm of lead. Moreover, Box-Behnken experimental design was applied to study the relationship between yeast extract concentration, casamino acid concentration and inoculums size. The optimized medium increased removal efficiency to 97% from initial concentration 500 ppm of lead. Immobilized <em>Halomonas</em> sp. ES015 cells on sponge cubes, using optimized medium in loop bioremediation column, showed relatively constant lead removal efficiency when reused six successive cycles over the range of time interval. Also metal removal efficiency was not affected by flow rate changes. Finally, the results of this research refer to the possibility of lead bioremediation by free or immobilized cells of <em>Halomonas</em> sp. ES015. Also, bioremediation can be done in batch cultures and semicontinuous cultures using column technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=Box%E2%80%93Behnken" title=" Box–Behnken"> Box–Behnken</a>, <a href="https://publications.waset.org/abstracts/search?q=Halomonas%20sp.%20ES015" title=" Halomonas sp. ES015"> Halomonas sp. ES015</a>, <a href="https://publications.waset.org/abstracts/search?q=loop%20bioremediation" title=" loop bioremediation"> loop bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=Plackett-Burman" title=" Plackett-Burman"> Plackett-Burman</a> </p> <a href="https://publications.waset.org/abstracts/73249/optimization-of-lead-bioremediation-by-marine-halomonas-sp-es015-using-statistical-experimental-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10156</span> Chromium Reduction Using Bacteria: Bioremediation Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baljeet%20Singh%20Saharan">Baljeet Singh Saharan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioremediation is the demand of the day. Tannery and textile effluents/waste waters have lots of pollution due to presence of hexavalent Chromium. Methodologies used in the present investigations include isolation, cultivation and purification of bacterial strain. Further characterization techniques and 16S rRNA sequencing were performed. Efficient bacterial strain capable of reducing hexavalent chromium was obtained. The strain can be used for bioremediation of industrial effluents containing hexavalent Cr. A gram negative, rod shaped and yellowish pigment producing bacterial strain from tannery effluent was isolated using nutrient agar. The 16S rRNA gene sequence similarity indicated that isolate SA13A is associated with genus Luteimonas (99%). This isolate has been found to reduce 100% of hexavalent chromium Cr (VI) (100 mg L-1) 100% in 16 h. Growth conditions were optimized for Cr (VI) reduction. Maximum reduction was observed at a temperature of 37 °C and pH 8.0. Additionally, Luteimonas aestuarii SA13A showed resistance against various heavy metals like Cr+6, Cr+3, Cu+2, Zn+2, Co+2, Ni+2 and Cd+2 . Hence, Luteimonas aestuarii SA13A could be used as potent Cr (VI) reducing strain as well as significant bioremediator in heavy metal contaminated sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly" title=" eco-friendly"> eco-friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a> </p> <a href="https://publications.waset.org/abstracts/37155/chromium-reduction-using-bacteria-bioremediation-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10155</span> Production, Optimization, Characterization, and Kinetics of a Partially Purified Laccase from Pleurotus citrinopileatus and Its Application in Swift Bioremediation of Azo Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankita%20Kushwaha">Ankita Kushwaha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Singh"> M. P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: In the present investigation the efficiency of laccase (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) from Pleurotus citrinopileatus was assessed for the decolorization of azo dyes. Aim: Enzyme production, characterization and kinetics of a partially purified laccase from Pleurotus citrinopileatus were determined for its application in bioremediation of azo dyes. Methods & Results: Laccase has been partially purified by using 80% ammonium sulphate solution. Total activity, total protein, specific activity and purification fold for partially purified laccase were found to be 40.38U, 293.33mg/100ml, 0.91U/mg and 2.84, respectively. The pH and temperature optima of laccase were 5.0 and 50ºC, respectively, while the enzyme was most stable at pH 4.0 and temperature 30ºC when exposed for one hour. The Km of the partially purified laccase for substrates guaiacol, DMP (2,6-dimethoxyphenol) and syringaldazine (3,5-dimethoxy-4-hydroxybenzaldehyde azine) were 60, 95 and 26, respectively. This laccase has been tested for the use in the bioremediation of azo dyes in the absence of mediator molecules. Two dyes namely congo red and bromophenol blue were tested. Discussion: It was observed that laccase enzyme was very effective in the decolorization of these two dyes. More than 80% decolorization was observed within half an hour even in the absence of mediator and their lower Km value indicates that efficiency of the enzyme is very high. The results were promising due to quicker decolorization in the absence of mediators showing that it can be used as a valuable biocatalyst for quick bioremediation of azo dyes. Conclusion: The enzymatic properties of laccase from P. citrinopileatus should be considered for a potential environmental (biodegradation and bioremediation) or industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azo%20dyes" title="azo dyes">azo dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=decolorization" title=" decolorization"> decolorization</a>, <a href="https://publications.waset.org/abstracts/search?q=laccase" title=" laccase"> laccase</a>, <a href="https://publications.waset.org/abstracts/search?q=P.citrinopileatus" title=" P.citrinopileatus"> P.citrinopileatus</a> </p> <a href="https://publications.waset.org/abstracts/88221/production-optimization-characterization-and-kinetics-of-a-partially-purified-laccase-from-pleurotus-citrinopileatus-and-its-application-in-swift-bioremediation-of-azo-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10154</span> Molecular Characterization and Determination of Bioremediation Potentials of Some Bacteria Isolated from Spent Oil Contaminated Soil Mechanic Workshops in Kaduna Metropolis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20D.%20Adams">David D. Adams</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20B.%20Bello"> Ibrahim B. Bello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spent oil contaminated Soil from ten selected mechanic workshops were investigated for their bacteria and bioremediation potentials. The bacterial isolates were morphologically and molecularly identified as Enterobacter hormaechei, Escherichia coli, Klebsiella pneumoniae, Shigella flexneri , Wesiella cibaria, Lactobacillus planetarium. The singles and a consortium of these bacteria incubated in the minimal salt medium incorporated with 1% engine oil exhibited various biodegradation rates, with the mixed consortium exhibiting the highest for this oil. The gene for the hydrocarbon enzyme Catechol 2, 3 dioxygenase (C2,30) was detected and amplified in Enterobacter hormaechei, Escherichia coli and Shigella flexneri using PCR and Agarose gel electrophoresis. The detection of the (C2,30) enzyme gene in, and the spent oil biodegradation activity exhibited by these bacteria suggest their possible possession of bioremediating potentials for the spent engine oil. It is therefore suggested that a pilot study on the field application of these bacteria for bioremediation and restoration of spent oil polluted environment should be done in mechanic workshops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spent%20engine%20oil" title="spent engine oil">spent engine oil</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme" title=" enzyme"> enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanic%20workshop" title=" mechanic workshop"> mechanic workshop</a> </p> <a href="https://publications.waset.org/abstracts/78069/molecular-characterization-and-determination-of-bioremediation-potentials-of-some-bacteria-isolated-from-spent-oil-contaminated-soil-mechanic-workshops-in-kaduna-metropolis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10153</span> Potential of Ozonation and Phytoremediation to Reduce Hydrocarbon Levels Remaining after the Pilot Scale Microbial Based Bioremediation (Land-Farming) of a Heavily Polluted Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hakima%20Althalb">Hakima Althalb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Petroleum contamination of sandy soils is a severe environmental problem in Libya, but relatively little work has been carried out to optimize the bioremediation of such heavily contaminated soil, particularly at a pilot scale. The purpose of this research was to determine the potential for the microbial-based bioremediation of hydrocarbon-contaminated soil obtained from an oil refinery in Libya and to assess the potential of both ozonation and phytoremediation (both applied after initial bioremediation) to reduce residual hydrocarbon levels. Plots containing 500 kg soil (triplicates) (contaminated soil diluted with clean soil 50% volume) were set up, (designated as Land Treatment Units; LTUs) containing five different nutrient levels and mixtures (Urea + NPK (nitrogen; phosphor; potassium) mixtures) to obtain C:N:P ratios 100:10:1, and monitored for 90 days. Hydrocarbon levels, microbial numbers, and toxicity (EC50 using luminescent microbial based tests) were assessed. Hydrocarbon levels in non-diluted and diluted soil ranged from 20 733-22 366 mg/kg and from 16 000-17 000 mg/kg respectively. Although all the land treatment units revealed a significant hydrocarbon reduction over time, the highest reduction in hydrocarbon levels obtained was around 60%. For example, 63% hydrocarbon removal was observed using a mixture of urea and NPK with a C:N:P ratio of 100:10:1). Soil toxicity (as assessed using luminescence based toxicity assays) reduced in line with the reduction in total petroleum hydrocarbons observed. However, as relatively high residual TPH (total petroleum hydrocarbon) levels (ranging from 6033-14166mg/kg) were still present after initial bioremediation two ‘post-treatments’ (phytoremediation and ozonation) were attempted to remove residual hydrocarbons remaining. Five locally grown (agriculturally important) plant species were tested. The germination of all plants examined was strongly inhibited (80-100%) and seedlings failed to grow well in the contaminated soil, indicating that the previously bioremediated soils were still toxic to the plants. Subsequent ozonation followed by another bioremediation of soil was more successful than phytoremediation. But even the most promising successful treatment in this study (ozonation for 6 hours at 25ppm followed by bioremediation) still only removed approximately 31% of the residual hydrocarbons. Overall, this work showed that the bioremediation of such highly contaminated soils is difficult and that a combination of treatments would be required to achieve successful remediation. Even after initial dilution and bioremediation the soils remained toxic to plant growth and were therefore not suitable for phytoremediation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20hydrocarbons" title=" petroleum hydrocarbons"> petroleum hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone" title=" ozone"> ozone</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a> </p> <a href="https://publications.waset.org/abstracts/90318/potential-of-ozonation-and-phytoremediation-to-reduce-hydrocarbon-levels-remaining-after-the-pilot-scale-microbial-based-bioremediation-land-farming-of-a-heavily-polluted-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10152</span> Experimental and Theoretical Studies for Removal of Dyes from Industrial Wastewater Using Bioremediation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakshi%20Batra">Sakshi Batra</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Gupta"> Suresh Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Pratik%20Pande"> Pratik Pande</a>, <a href="https://publications.waset.org/abstracts/search?q=Navneet%20Kaur"> Navneet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Lovdeep%20Kaur"> Lovdeep Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is removal of Methylene blue dye or reactive orange-16 from industrial waste water or from soil using bioremediation technique. As huge amount of dyes are releasing from textile industry in water and soil environment during dyeing process. In this study, we focused on removal of Methylene blue dye and Reactive orange dye from industrial soil at different initial concentration of dye. An experiment study was carried out at methylene blue dye or Reactive orange-16 dye at varying concentration of both the dye as 50 ppm, 100ppm, 200 ppm, 300 ppm and 400 ppm. Maximum removal is obtained at 16-20 hours Experiments are carried out for pH, Temperature and MSM composition. The final concentration has been observed by UV-VIS. The two species has been isolated from the Industrial effluent. Finally the product analysis has been done by GC-MS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20growth" title=" cultural growth"> cultural growth</a>, <a href="https://publications.waset.org/abstracts/search?q=dyes" title=" dyes"> dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/50466/experimental-and-theoretical-studies-for-removal-of-dyes-from-industrial-wastewater-using-bioremediation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10151</span> Bioremediation Effect on Shear Strength of Contaminated Soils </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Abbaspour">Samira Abbaspour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil contamination by oil industry is unavoidable issue; irrespective of environmental impact, which occurs during the process of soil contaminating and remediating. Effect of this phenomenon on the geotechnical properties of the soil has not been investigated thoroughly. Some researchers studied the environmental aspects of these phenomena more than geotechnical point of view. In this research, compaction and unconfined compression tests were conducted on samples of natural, contaminated and treated soil after 50 days of bio-treatment. The results manifest that increasing the amount of crude oil, leads to decreased values of maximum dry density and optimum water content and increased values of unconfined compression strength (UCS). However, almost 65% of this contamination terminated by using a Bioremer as a bioremediation agent. Foremost, as bioremediation takes place, values of maximum dry density, unconfined compression strength and failure strain increase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination" title="contamination">contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction" title=" compaction"> compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20contamination" title=" oil contamination"> oil contamination</a> </p> <a href="https://publications.waset.org/abstracts/84458/bioremediation-effect-on-shear-strength-of-contaminated-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10150</span> Bioremediation of Hydrocarbon and Some Heavy Metal Polluted Wastewater Effluent of a Typical Refinery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Abdulsalam">S. Abdulsalam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20I.%20Suleiman"> A. D. I. Suleiman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Musa"> N. M. Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Yusuf"> M. Yusuf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environment free of pollutants should be the concern of every individual but with industrialization and urbanization it is difficult to achieve. In view of achieving a pollution limited environment at low cost, a study was conducted on the use of bioremediation technology to remediate hydrocarbons and three heavy metals namely; copper (Cu), zinc (Zn) and iron (Fe) from a typical petroleum refinery wastewater in a closed system. Physicochemical and microbiological characteristics on the wastewater sample revealed that it was polluted with the aforementioned pollutants. Isolation and identification of microorganisms present in the wastewater sample revealed the presence of <em>Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus</em> and <em>Staphylococcus epidermidis</em>. Bioremediation experiments carried out on five batch reactors with different compositions but at same environmental conditions revealed that treatment T5 (boosted with the association of <em>Bacillus subtilis, Micrococcus luteus</em>) gave the best result in terms of oil and grease content removal (i.e. 67% in 63 days). In addition, these microorganisms were able of reducing the concentrations of heavy metals in the sample. Treatments T5, T3 (boosted with <em>Bacillus subtilis </em>only) and T4 (boosted with<em> Micrococcus luteus </em>only) gave optimum percentage uptakes of 65, 75 and 25 for Cu, Zn and Fe respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boosted" title="boosted">boosted</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20system" title=" closed system"> closed system</a>, <a href="https://publications.waset.org/abstracts/search?q=aeration" title=" aeration"> aeration</a>, <a href="https://publications.waset.org/abstracts/search?q=uptake" title=" uptake"> uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/43117/bioremediation-of-hydrocarbon-and-some-heavy-metal-polluted-wastewater-effluent-of-a-typical-refinery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10149</span> Encapsulated Bacteria In Polymer Composites For Bioremediation Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahsa%20Mafi">Mahsa Mafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Encapsulation of Micrococcus Luteus (M. Luteus) in polymeric composites has been employed for the bioremediation, sequestration of metals and for the biodegradation of chemical pollutants and toxic components in waste water. Polymer composites in the form of nonwovens of nanofibers, or core/shell particles can provide a bacterial friendly environment for transfer of nutrients and metabolisms, with the least leakage of bacteria. M. Luteus is encapsulated in a hydrophilic core of poly (vinyl alcohol), following by synthesis or coating of a proper shell as a support to maintain the chemical and mechanical strength. The biological activity of bacteria is confirmed by Live/Dead analysis and agar plate tests. SEM and TEM analysis were utilized for morphological studies of polymer composites. As a result of the successful encapsulation of the alive bacteria in polymers, longer storage time in their functional state were achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Polymer%20composites" title="Polymer composites">Polymer composites</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacteria%20encapsulation" title=" Bacteria encapsulation"> Bacteria encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Bioremediation" title=" Bioremediation"> Bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=Waste%20water%20treatment" title=" Waste water treatment"> Waste water treatment</a> </p> <a href="https://publications.waset.org/abstracts/120376/encapsulated-bacteria-in-polymer-composites-for-bioremediation-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10148</span> Potential Biosorption of Rhodococcus erythropolis, an Isolated Strain from Sossego Copper Mine, Brazil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcela%20dos%20P.%20G.%20Baltazar">Marcela dos P. G. Baltazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Louise%20H.%20Gracioso"> Louise H. Gracioso</a>, <a href="https://publications.waset.org/abstracts/search?q=Luciana%20J.%20Gimenes"> Luciana J. Gimenes</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Karolski"> Bruno Karolski</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingrid%20Avanzi"> Ingrid Avanzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Elen%20A.%20Perpetuo"> Elen A. Perpetuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, bacterial strains were isolated from environmental samples from a copper mine and three of them presented potential for bioremediation of copper. All the strains were identified by mass spectrometry (MALDI-TOF-Biotyper) and grown in three diferent media supplemented with 100 ppm of copper chloride in flasks of 500mL and it was incubated at 28 °C and 180 rpm. Periodically, samples were taken and monitored for cellular growth and copper biosorption by spectrophotometer UV-Vis (600 nm) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), respectively. At the end of exponential phase of cellular growth, the biomass was utilized to construct a correlation curve between absorbance and dry mass of the cells. Among the three isolates with potential for biorremediation, 1 strain exhibit capacity the most for bioremediation of effluents contaminated by copper being identified as Rhodococcus erythropolis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioprocess" title="bioprocess">bioprocess</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a> </p> <a href="https://publications.waset.org/abstracts/30539/potential-biosorption-of-rhodococcus-erythropolis-an-isolated-strain-from-sossego-copper-mine-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10147</span> Bioremediation Potential of Stegiocolonium and Spirogyra Grown in Waste Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neelma%20Munir">Neelma Munir</a>, <a href="https://publications.waset.org/abstracts/search?q=Zirwa%20Sarwar"> Zirwa Sarwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rubab%20Naseem"> Rubab Naseem</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Hasnain"> Maria Hasnain</a>, <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Naz"> Shagufta Naz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastewater discharge from different sources causes contamination of water bodies and eutrophication. Stegiocolonium and Spirogyra are commonly found algal species in the water bodies of Pakistan. These algal species were tested for their bioremediation potential using different wastewaters. Different parameters, i.e., BOD, COD, pH, nitrates, phosphates and microflora, were analyzed to observe the phycoremediation efficiency of the tested algal strains. When these different wastewaters were treated with these algae, reduction of BOD and COD was observed helped in the reduction of pollutants from the environment. From the results of the present study, it was evident that Ulothrix sp. and Oedogonium sp. showed a high biomass production in different wastewaters as compared to Stigeoclonium sp. and Spirogyra sp. Whereas the oil content of Stigeoclonium sp. was greater than Spirogyra sp. Oil extracted from algal strains was then utilized for converting it to biodiesel, indicating that these algal species can be cultured in wastewater to produce biodiesel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel" title=" biofuel"> biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a> </p> <a href="https://publications.waset.org/abstracts/146107/bioremediation-potential-of-stegiocolonium-and-spirogyra-grown-in-waste-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10146</span> Oily Sludge Bioremediation Pilot Plant Project, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ime%20R.%20Udotong">Ime R. Udotong</a>, <a href="https://publications.waset.org/abstracts/search?q=Justina%20I.%20R.%20Udotong"> Justina I. R. Udotong</a>, <a href="https://publications.waset.org/abstracts/search?q=Ofonime%20U.%20M.%20John"> Ofonime U. M. John</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brass terminal, one of the several crude oil and petroleum products storage/handling facilities in the Niger Delta was built in the 1980s. Activities at this site, over the years, released crude oil into this 3 m-deep, 1500 m-long canal lying adjacent to the terminal with oil floating on it and its sediment heavily polluted. To ensure effective clean-up, three major activities were planned: Site characterization, bioremediation pilot plant construction and testing and full-scale bioremediation of contaminated sediment/bank soil by land farming. The canal was delineated into 12 lots and each characterized, with reference to the floating oily phase, contaminated sediment and canal bank soil. As a result of site characterization, a pilot plant for on-site bioremediation was designed and a treatment basin constructed for carrying out pilot bioremediation test. Following a designed sampling protocol, samples from this pilot plant were collected for analysis at two laboratories as a quality assurance/quality control check. Results showed that Brass Canal upstream is contaminated with dark, thick and viscous oily film with characteristic hydrocarbon smell while downstream, thin oily film interspersed with water were observed. Sediments were observed to be dark with mixture of brownish sandy soil with TPH ranging from 17,800 mg/kg in Lot 1 to 88,500 mg/kg in Lot 12 samples. Brass Canal bank soil was observed to be sandy from ground surface to 3m, below ground surface (bgs) it was silty-sandy and brownish while subsurface soil (4-10m bgs) was sandy-clayey and whitish/grayish with typical hydrocarbon smell. Preliminary results obtained so far have been very promising but were proprietary. This project is considered, to the best of technical literature knowledge, the first large-scale on-site bioremediation project in the Niger Delta region, Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=contaminated%20sediment" title=" contaminated sediment"> contaminated sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20farming" title=" land farming"> land farming</a>, <a href="https://publications.waset.org/abstracts/search?q=oily%20sludge" title=" oily sludge"> oily sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20terminal" title=" oil terminal"> oil terminal</a> </p> <a href="https://publications.waset.org/abstracts/31139/oily-sludge-bioremediation-pilot-plant-project-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10145</span> Bioremediation as a Treatment of Aromatic Hydrocarbons in Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hen%20Friman">Hen Friman</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Schechter"> Alex Schechter</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeshayahu%20Nitzan"> Yeshayahu Nitzan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rivka%20Cahan"> Rivka Cahan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The treatment of aromatic hydrocarbons in wastewater resulting from oil spills and chemical manufactories is becoming a key concern in many modern countries. Benzene, ethylbenzene, toluene and xylene (BETX) contaminate groundwater as well as soil. These compounds have an acute effect on human health and are known to be carcinogenic. Conventional removal of these toxic materials involves separation and burning of the wastes, however, the cost of chemical treatment is very high and energy consuming. Bioremediation methods for removal of toxic organic compounds constitute an attractive alternative to the conventional chemical or physical techniques. Bioremediation methods use microorganisms to reduce the concentration and toxicity of various chemical pollutants Toluene is biodegradable both aerobically and anaerobically, it can be growth inhibitory to microorganisms at elevated concentrations, even to those species that can use it as a substrate. In this research culture of Pseudomonas putida was grown in bath bio-reactor (BBR) with toluene 100 mg/l as a single carbon source under constant voltage of 125 mV, 250 mV and 500 mV. The culture grown in BBR reached to 0.8 OD660nm while the control culture that grown without external voltage reached only to 0.6 OD660nm. The residual toluene concentration after 147 h, in the BBR operated under external voltage (125 mV) was 22 % on average, while in the control BBR it was 81 % on average. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=aromatic%20hydrocarbons" title=" aromatic hydrocarbons"> aromatic hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=BETX" title=" BETX"> BETX</a>, <a href="https://publications.waset.org/abstracts/search?q=toluene" title=" toluene"> toluene</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudomonas%20putida" title=" pseudomonas putida"> pseudomonas putida</a> </p> <a href="https://publications.waset.org/abstracts/38419/bioremediation-as-a-treatment-of-aromatic-hydrocarbons-in-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10144</span> Potential of Native Microorganisms in Tagus Estuary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20C.%20Sousa">Ana C. Sousa</a>, <a href="https://publications.waset.org/abstracts/search?q=Beatriz%20C.%20Santos"> Beatriz C. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=F%C3%A1tima%20N.%20Serralha"> Fátima N. Serralha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Tagus estuary is heavily affected by industrial and urban activities, making bioremediation studies crucial for environmental preservation. Fuel contamination in the area can arise from various anthropogenic sources, such as oil spills from shipping, fuel storage and transfer operations, and industrial discharges. These pollutants can cause severe harm to the ecosystem and the organisms, including humans, that inhabit it. Nonetheless, there are always natural organisms with the ability to resist these pollutants and transform them into non-toxic or harmless substances, which defines the process of bioremediation. Exploring the microbial communities existing in soil and their capacity to break down hydrocarbons has the potential to enhance the development of more efficient bioremediation approaches. The aim of this investigation was to explore the existence of hydrocarbonoclastic microorganisms in six locations within the Tagus estuary, three on the north bank: Trancão River, Praia Fluvial do Cais das Colinas and Praia de Algés, and three on the south bank: Praia Fluvial de Alcochete, Praia Fluvial de Alburrica, and Praia da Trafaria. In all studied locations, native microorganisms of the genus Pseudomonas were identified. The bioremediation rate of common hydrocarbons like gasoline, hexane, and toluene was assessed using the redox indicator 2,6-dichlorophenolindophenol (DCPIP). Effective hydrocarbon-degrading bacterial strains were identified in all analyzed areas, despite adverse environmental conditions. The highest bioremediation rates were achieved for gasoline (68%) in Alburrica, hexane (65%) in Algés, and toluene (79%) in Algés. Generally, the bacteria demonstrated efficient degradation of hydrocarbons added to the culture medium, with higher rates of aerobic biodegradation of hydrocarbons observed. These findings underscore the necessity for further in situ studies to better comprehend the relationship between native microbial communities and the potential for pollutant degradation in soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradability%20rate" title="biodegradability rate">biodegradability rate</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbonoclastic%20microorganisms" title=" hydrocarbonoclastic microorganisms"> hydrocarbonoclastic microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20bioremediation" title=" soil bioremediation"> soil bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=tagus%20estuary" title=" tagus estuary"> tagus estuary</a> </p> <a href="https://publications.waset.org/abstracts/164117/potential-of-native-microorganisms-in-tagus-estuary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10143</span> Bioremediation of Sewage Sludge Contaminated with Fluorene Using a Lipopeptide Biosurfactant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=X.%20Vecino">X. Vecino</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Cruz"> J. M. Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Moldes"> A. Moldes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The disposal and the treatment of sewage sludge is an expensive and environmentally complex problem. In this work, a lipopeptide biosurfactant extracted from corn steep liquor was used as ecofriendly and cost-competitive alternative for the mobilization and bioremediation of fluorene in sewage sludge. Results have demonstrated that this biosurfactant has the capability to mobilize fluorene to the aqueous phase, reducing the amount of fluorene in the sewage sludge from 484.4 mg/Kg up to 413.7 mg/Kg and 196.0 mg/Kg after 1 and 27 days respectively. Furthemore, once the fluorene was extracted the lipopeptide biosurfactant contained in the aqueous phase allowed the bio-degradation, up to 40.5 % of the initial concentration of this polycyclic aromatic hydrocarbon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorene" title="fluorene">fluorene</a>, <a href="https://publications.waset.org/abstracts/search?q=lipopeptide%20biosurfactant" title=" lipopeptide biosurfactant"> lipopeptide biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=mobilization" title=" mobilization"> mobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a> </p> <a href="https://publications.waset.org/abstracts/27391/bioremediation-of-sewage-sludge-contaminated-with-fluorene-using-a-lipopeptide-biosurfactant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10142</span> Metagenomics Profile during the Bioremediation of Fischer-Tropsch Derived Short-Chain Alcohols and Volatile Fatty Acids Using a Moving Bed Biofilm Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mabtho%20Moreroa-Monyelo">Mabtho Moreroa-Monyelo</a>, <a href="https://publications.waset.org/abstracts/search?q=Grace%20Ijoma"> Grace Ijoma</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosina%20Nkuna"> Rosina Nkuna</a>, <a href="https://publications.waset.org/abstracts/search?q=Tonderayi%20Matambo"> Tonderayi Matambo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A moving bed biofilm reactor (MBBR) was used for the bioremediation of high strength chemical oxygen demand (COD) Fisher-Tropsch (FT) wastewater. The aerobic MBBR system was operated over 60 days. For metagenomics profile assessment of the targeted 16S sequence of bacteria involved in the bioremediation of the chemical compounds, sludge samples were collected every second day of operation. Parameters such as pH and COD were measured daily to compare the system efficiency as the changedin microbial diversity progressed. The study revealed that pH was a contributing factor to microbial diversity, which further affected the efficiency of the MBBR system. The highest COD removal rate of 86.4% was achieved at pH 8.3. It was observed that when there was more, A higher bacterial diversity led to an improvement in the reduction of COD. Furthermore, an OTUof 4530 was obtained, which were divided into 12 phyla, 27 classes, 44 orders, 74 families, and 138 genera across all sludge samples from the MBBR. A determination of the relative abundance of microorganisms at phyla level indicates that the most abundant phylum on day it was Firmicutes (50%); thereafter, the most abundant phylum changed toProteobacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title="biodegradation">biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=fischer-tropsch%20wastewater" title=" fischer-tropsch wastewater"> fischer-tropsch wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=metagenomics" title=" metagenomics"> metagenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor" title=" moving bed biofilm reactor"> moving bed biofilm reactor</a> </p> <a href="https://publications.waset.org/abstracts/150542/metagenomics-profile-during-the-bioremediation-of-fischer-tropsch-derived-short-chain-alcohols-and-volatile-fatty-acids-using-a-moving-bed-biofilm-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10141</span> Impact of Environmental Stressors on Microbial Community Dynamics and Ecosystem Functioning: Implications for Bioremediation and Restoration Strategies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazanin%20Nikanmajd">Nazanin Nikanmajd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microorganisms are essential for influencing environmental processes, such as nutrient cycling, pollutant breakdown, and ecosystem well-being. Recent developments in high-throughput sequencing technologies and metagenomic methods have given us fresh understandings about the range and capabilities of microorganisms in different settings. This research examines how environmental stressors like climate change, pollution, and habitat degradation affect the composition and roles of microbial communities in soil and water ecosystems. We show that human-caused disruptions change the makeup of microbial communities, causing changes in important metabolic pathways for biogeochemical processes. More precisely, we pinpoint important microbial groups that show resistance or susceptibility to certain stress factors, emphasizing their possible uses in bioremediation and ecosystem rehabilitation. The results highlight the importance of adopting a holistic approach to comprehend microbial changes in evolving environments, impacting sustainable environmental conservation and management strategies. This research helps develop new solutions to reduce the impacts of environmental degradation on microbial ecosystem services by understanding the intricate relationships between microorganisms and their surroundings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20microbiology" title="environmental microbiology">environmental microbiology</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20communities" title=" microbial communities"> microbial communities</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=metagenomics" title=" metagenomics"> metagenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20services" title=" ecosystem services"> ecosystem services</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20restoration" title=" ecosystem restoration"> ecosystem restoration</a> </p> <a href="https://publications.waset.org/abstracts/195037/impact-of-environmental-stressors-on-microbial-community-dynamics-and-ecosystem-functioning-implications-for-bioremediation-and-restoration-strategies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/195037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10140</span> Potential Use of Spore-Forming Biosurfactant Producing Bacteria in Oil-Pollution Bioremediation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Al-Bahry">S. N. Al-Bahry</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Al-Wahaibi"> Y. M. Al-Wahaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Joshi"> S. J. Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Elshafie"> E. A. Elshafie</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Al-Bimani"> A. S. Al-Bimani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oman is one of the oil producing countries in the Arabian Peninsula and the Gulf region. About 30-40 % of oil produced from the Gulf is transported globally along the seacoast of Oman. Oil pollution from normal tanker operations, ballast water, illegal discharges and accidental spills are always serious threats to terrestrial and marine habitats. Due to Oman’s geographical location at arid region where the temperature ranges between high 40s and low 50s Celsius in summers with low annual rainfall, the main source of fresh water is desalinated sea and brackish water. Oil pollution, therefore, pose a major threat to drinking water. Biosurfactants are secondary metabolites produced by microorganisms in hydrophobic environments to release nutrients from solid surfaces, such as oil. In this study, indigenous oil degrading thermophilic spore forming bacteria were isolated from oil fields contaminated soil. The isolates were identified using MALDI-TOF biotyper and 16s RNA. Their growth conditions were optimized for the production of biosurfactant. Surface tension, interfacial tensions and microbial oil biodegradation capabilities were tested. Some thermophilic bacteria degraded either completely or partially heavy crude oil (API 10-15) within 48h suggesting their high potential in oil spill bioremediation and avoiding the commonly used physical and chemical methods which usually lead to other environmental pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=crude-oil-pollution" title=" crude-oil-pollution"> crude-oil-pollution</a> </p> <a href="https://publications.waset.org/abstracts/23753/potential-use-of-spore-forming-biosurfactant-producing-bacteria-in-oil-pollution-bioremediation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10139</span> Characterization of Biosurfactant during Crude Oil Biodegradation Employing Pseudomonas sp. PG1: A Strain Isolated from Garage Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaustuvmani%20Patowary">Kaustuvmani Patowary</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Deka"> Suresh Deka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil pollution accidents, nowadays, have become a common phenomenon and have caused ecological and social disasters. Microorganisms with high oil-degrading performance are essential for bioremediation of petroleum hydrocarbon. In this investigation, an effective biosurfactant producer and hydrocarbon degrading bacterial strain, Pseudomonas sp.PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated garage soil of Pathsala, Assam, India, using crude oil enrichment technique. The growth parameters such as pH and temperature were optimized for the strain and upto 81.8% degradation of total petroleum hydrocarbon (TPH) has been achieved after 5 weeks when grown in mineral salt media (MSM) containing 2% (w/v) crude oil as the carbon source. The biosurfactant production during the course of hydrocarbon degradation was monitored by surface tension measurement and emulsification activity. The produced biosurfactant had the ability to decrease the surface tension of MSM from 72 mN/m to 29.6 mN/m, with the critical micelle concentration (CMC)of 56 mg/L. The biosurfactant exhibited 100% emulsification activity on crude oil. FTIR spectroscopy and LCMS-MS analysis of the purified biosurfactant revealed that the biosurfactant is Rhamnolipidic in nature with several rhamnolipid congeners. Gas Chromatography-Mass spectroscopy (GC-MS) analysis clearly demonstrated that the strain PG1 efficiently degrade different hydrocarbon fractions of the crude oil. The study suggeststhat application of the biosurfactant producing strain PG1 as an appropriate candidate for bioremediation of crude oil contaminants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20hydrocarbon" title="petroleum hydrocarbon">petroleum hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20contamination" title=" hydrocarbon contamination"> hydrocarbon contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=rhamnolipid" title=" rhamnolipid"> rhamnolipid</a> </p> <a href="https://publications.waset.org/abstracts/27073/characterization-of-biosurfactant-during-crude-oil-biodegradation-employing-pseudomonas-sp-pg1-a-strain-isolated-from-garage-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10138</span> Nano-Bioremediation of Contaminated Industrial Wastewater Using Biosynthesized AgNPs and Their Nano-Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20M.%20Darwesh">Osama M. Darwesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20H.%20Hassan"> Sahar H. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abd%20El-Raheem%20R.%20El-Shanshoury"> Abd El-Raheem R. El-Shanshoury</a>, <a href="https://publications.waset.org/abstracts/search?q=Shawky%20Z.%20Sabae"> Shawky Z. Sabae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanotechnology as multidisciplinary technology is growing rapidly with important applications in several sectors. Also, nanobiotechnology is known for the use of microorganisms for the synthesis of targeted nanoparticles. The present study deals with the green synthesis of silver nanoparticles using aquatic bacteria and the development of a biogenic nanocomposite for environmental applications. Twenty morphologically different colonies were isolated from the collected water samples from eight different locations at the Rosetta branch of the Nile Delta, Egypt. The obtained results illustrated that the most effective bacterial isolate (produced the higher amount of AgNPs after 24 h of incubation time) is isolate R3. Bacillus tequilensis was the strongest extracellular bio-manufactory of AgNPs. Biosynthesized nanoparticles had a spherical shape with a mean diameter of 2.74 to 28.4 nm. The antimicrobial activity of silver nanoparticles against many pathogenic microbes indicated that the produced AgNPs had high activity against all tested multi-antibiotic resistant pathogens. Also, the stabilized prepared AgNPs-SA nanocomposite has greater catalytic activity for the decolourization of some dyes like Methylene blue (MB) and Crystal violet. Such results represent a promising stage for producing eco-friendly, cost-effective, and easy-to-handle devices for the bioremediation of contaminated industrial wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=AgNPs" title=" AgNPs"> AgNPs</a>, <a href="https://publications.waset.org/abstracts/search?q=AgNPs-SA%20nanocomposite" title=" AgNPs-SA nanocomposite"> AgNPs-SA nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20tequilensis" title=" Bacillus tequilensis"> Bacillus tequilensis</a>, <a href="https://publications.waset.org/abstracts/search?q=nanobiotechnology" title=" nanobiotechnology"> nanobiotechnology</a> </p> <a href="https://publications.waset.org/abstracts/150614/nano-bioremediation-of-contaminated-industrial-wastewater-using-biosynthesized-agnps-and-their-nano-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10137</span> Evaluation of Paper Effluent with Two Bacterial Strain and Their Consortia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priya%20Tomar">Priya Tomar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20Mittal"> Pallavi Mittal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As industrialization is inevitable and progress with rapid acceleration, the need for innovative ways to get rid of waste has increased. Recent advancement in bioresource technology paves novel ideas for recycling of factory waste that has been polluting the agro-industry, soil and water bodies. Paper industries in India are in a considerable number, where molasses and impure alcohol are still being used as raw materials for manufacturing of paper. Paper mills based on nonconventional agro residues are being encouraged due to increased demand of paper and acute shortage of forest-based raw materials. The colouring body present in the wastewater from pulp and paper mill is organic in nature and is comprised of wood extractives, tannin, resins, synthetic dyes, lignin and its degradation products formed by the action of chlorine on lignin which imparts an offensive colour to the water. These mills use different chemical process for paper manufacturing due to which lignified chemicals are released into the environment. Therefore, the chemical oxygen demand (COD) of the emanating stream is quite high. This paper presents some new techniques that were developed for the efficiency of bioremediation on paper industry. A short introduction to paper industry and a variety of presently available methods of bioremediation on paper industry and different strategies are also discussed here. For solving the above problem, two bacterial strains (Pseudomonas aeruginosa and Bacillus subtilis) and their consortia (Pseudomonas aeruginosa and Bacillus subtilis) were utilized for the pulp and paper mill effluent. Pseudomonas aeruginosa and Bacillus subtilis named as T–1, T–2, T–3, T–4, T–5, T–6, for the decolourisation of paper industry effluent. The results indicated that a maximum colour reduction is (60.5%) achieved by Pseudomonas aeruginosa and COD reduction is (88.8%) achieved by Bacillus subtilis, maximum pH changes is (4.23) achieved by Pseudomonas aeruginosa, TSS reduction is (2.09 %) achieved by Bacillus subtilis, and TDS reduction is (0.95 %) achieved by Bacillus subtilis. When the wastewater was supplemented with carbon (glucose) and nitrogen (yeast extract) source and data revealed the efficiency of Bacillus subtilis, having more with glucose than Pseudomonas aeruginosa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=paper%20and%20pulp%20mill%20effluent" title=" paper and pulp mill effluent"> paper and pulp mill effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=treated%20effluent" title=" treated effluent"> treated effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin" title=" lignin"> lignin</a> </p> <a href="https://publications.waset.org/abstracts/8372/evaluation-of-paper-effluent-with-two-bacterial-strain-and-their-consortia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10136</span> Bioremediation of Phenanthrene by Monocultures and Mixed Culture Bacteria Isolated from Contaminated Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Fazilah">A. Fazilah</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Darah"> I. Darah</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Noraznawati"> I. Noraznawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three different bacteria capable of degrading phenanthrene were isolated from hydrocarbon contaminated site. In this study, the phenanthrene-degrading activity by defined monoculture was determined and mixed culture was identified as <em>Acinetobacter</em> sp. P3d, <em>Bacillus </em>sp. P4a and <em>Pseudomonas</em> sp. P6. All bacteria were able to grow in a minimal salt medium saturated with phenanthrene as the sole source of carbon and energy. Phenanthrene degradation efficiencies by different combinations (consortia) of these bacteria were investigated and their phenanthrene degradation was evaluated by gas chromatography. Among the monocultures,<em> Pseudomonas</em> sp. P6 exhibited 58.71% activity compared to <em>Acinetobacter</em> sp. P3d and <em>Bacillus</em> sp. P4a which were 56.97% and 53.05%, respectively after 28 days of cultivation. All consortia showed high phenanthrene elimination which were 95.64, 79.37, 87.19, 79.21% for Consortia A, B, C and D, respectively. The results indicate that all of the bacteria isolated may effectively degrade target chemical and have a promising application in bioremediation of hydrocarbon contaminated soil purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenanthrene" title="phenanthrene">phenanthrene</a>, <a href="https://publications.waset.org/abstracts/search?q=consortia" title=" consortia"> consortia</a>, <a href="https://publications.waset.org/abstracts/search?q=acinetobacter%20sp.%20P3d" title=" acinetobacter sp. P3d"> acinetobacter sp. P3d</a>, <a href="https://publications.waset.org/abstracts/search?q=bacillus%20sp.%20P4a" title=" bacillus sp. P4a"> bacillus sp. P4a</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudomonas%20sp.%20P6" title=" pseudomonas sp. P6"> pseudomonas sp. P6</a> </p> <a href="https://publications.waset.org/abstracts/47580/bioremediation-of-phenanthrene-by-monocultures-and-mixed-culture-bacteria-isolated-from-contaminated-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10135</span> Bioremediation of Paper Mill Effluent by Microbial Consortium Comprising Bacterial and Fungal Strain and Optimizing the Effect of Carbon Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priya%20Tomar">Priya Tomar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20Mittal"> Pallavi Mittal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioremediation has been recognized as an environment friendly and less expensive method which involves the natural processes resulting in the efficient conversion of hazardous compounds into innocuous products. The pulp and paper mill effluent is one of the high polluting effluents amongst the effluents obtained from polluting industries. The colouring body present in the wastewater from pulp and paper mill is organic in nature and is comprised of wood extractives, tannin, resins, synthetic dyes, lignin, and its degradation products formed by the action of chlorine on lignin which imparts an offensive colour to the water. These mills use different chemical process for paper manufacturing due to which lignified chemicals are released into the environment. Therefore, the chemical oxygen demand (COD) of the emanating stream is quite high. For solving the above problem we present this paper with some new techniques that were developed for the efficiency of paper mill effluents. In the present study we utilized the consortia of fungal and bacterial strain and the treatment named as C1, C2, and C3 for the decolourization of paper mill effluent. During the study, role of carbon source i.e. glucose was studied for decolourization. From the results it was observed that a maximum colour reduction of 66.9%, COD reduction of 51.8%, TSS reduction of 0.34%, TDS reduction of 0.29% and pH changes of 4.2 is achieved by consortia of Aspergillus niger with Pseudomonas aeruginosa. Data indicated that consortia of Aspergillus niger with Pseudomonas aeruginosa is giving better result with glucose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=decolourization" title=" decolourization"> decolourization</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20liquor" title=" black liquor"> black liquor</a>, <a href="https://publications.waset.org/abstracts/search?q=mycoremediation" title=" mycoremediation"> mycoremediation</a> </p> <a href="https://publications.waset.org/abstracts/33152/bioremediation-of-paper-mill-effluent-by-microbial-consortium-comprising-bacterial-and-fungal-strain-and-optimizing-the-effect-of-carbon-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=number%20of%20bioremediation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=number%20of%20bioremediation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=number%20of%20bioremediation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=number%20of%20bioremediation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=number%20of%20bioremediation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=number%20of%20bioremediation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=number%20of%20bioremediation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=number%20of%20bioremediation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=number%20of%20bioremediation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=number%20of%20bioremediation&amp;page=338">338</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=number%20of%20bioremediation&amp;page=339">339</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=number%20of%20bioremediation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10