CINXE.COM
Search results for: experimental setup
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: experimental setup</title> <meta name="description" content="Search results for: experimental setup"> <meta name="keywords" content="experimental setup"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="experimental setup" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="experimental setup"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7620</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: experimental setup</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7620</span> Development of a New Device for Bending Fatigue Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Mokhtarnia">B. Mokhtarnia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Layeghi"> M. Layeghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presented an original bending fatigue-testing setup for fatigue characterization of composite materials. A three-point quasi-static setup was introduced that was capable of applying stress control load in different loading waveforms, frequencies, and stress ratios. This setup was equipped with computerized measuring instruments to evaluate fatigue damage mechanisms. A detailed description of its different parts and working features was given, and dynamic analysis was done to verify the functional accuracy of the device. Feasibility was validated successfully by conducting experimental fatigue tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20fatigue" title="bending fatigue">bending fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-static%20testing%20setup" title=" quasi-static testing setup"> quasi-static testing setup</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20fatigue%20testing" title=" experimental fatigue testing"> experimental fatigue testing</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a> </p> <a href="https://publications.waset.org/abstracts/165432/development-of-a-new-device-for-bending-fatigue-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7619</span> Experimental Study on Two-Step Pyrolysis of Automotive Shredder Residue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Letizia%20Marchetti">Letizia Marchetti</a>, <a href="https://publications.waset.org/abstracts/search?q=Federica%20Annunzi"> Federica Annunzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Federico%20Fiorini"> Federico Fiorini</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristiano%20Nicolella"> Cristiano Nicolella</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automotive shredder residue (ASR) is a mixture of waste that makes up 20-25% of end-of-life vehicles. For many years, ASR was commonly disposed of in landfills or incinerated, causing serious environmental problems. Nowadays, thermochemical treatments are a promising alternative, although the heterogeneity of ASR still poses some challenges. One of the emerging thermochemical treatments for ASR is pyrolysis, which promotes the decomposition of long polymeric chains by providing heat in the absence of an oxidizing agent. In this way, pyrolysis promotes the conversion of ASR into solid, liquid, and gaseous phases. This work aims to improve the performance of a two-step pyrolysis process. After the characterization of the analysed ASR, the focus is on determining the effects of residence time on product yields and gas composition. A batch experimental setup that reproduces the entire process was used. The setup consists of three sections: the pyrolysis section (made of two reactors), the separation section, and the analysis section. Two different residence times were investigated to find suitable conditions for the first sample of ASR. These first tests showed that the products obtained were more sensitive to residence time in the second reactor. Indeed, slightly increasing residence time in the second reactor managed to raise the yield of gas and carbon residue and decrease the yield of liquid fraction. Then, to test the versatility of the setup, the same conditions were applied to a different sample of ASR coming from a different chemical plant. The comparison between the two ASR samples shows that similar product yields and compositions are obtained using the same setup. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20shredder%20residue" title="automotive shredder residue">automotive shredder residue</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20tests" title=" experimental tests"> experimental tests</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title=" heterogeneity"> heterogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20yields" title=" product yields"> product yields</a>, <a href="https://publications.waset.org/abstracts/search?q=two-step%20pyrolysis" title=" two-step pyrolysis"> two-step pyrolysis</a> </p> <a href="https://publications.waset.org/abstracts/174857/experimental-study-on-two-step-pyrolysis-of-automotive-shredder-residue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7618</span> Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maamar%20Ali%20Saud%20Al%20Tobi">Maamar Ali Saud Al Tobi</a>, <a href="https://publications.waset.org/abstracts/search?q=Geraint%20Bevan"> Geraint Bevan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20Ramachandran"> K. P. Ramachandran</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Wallace"> Peter Wallace</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Harrison"> David Harrison</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20pump%20setup" title="centrifugal pump setup">centrifugal pump setup</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/66155/experimental-set-up-for-investigation-of-fault-diagnosis-of-a-centrifugal-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7617</span> Numerical Investigation of Fluid Flow and Temperature Distribution on Power Transformer Windings Using Open Foam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Khandan%20Siar">Saeed Khandan Siar</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Tenbohlen"> Stefan Tenbohlen</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Breuer"> Christian Breuer</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphael%20Lebreton"> Raphael Lebreton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this article is to investigate the detailed temperature distribution and the fluid flow of an oil cooled winding of a power transformer by means of computational fluid dynamics (CFD). The experimental setup consists of three passes of a zig-zag cooled disc type winding, in which losses are modeled by heating cartridges in each winding segment. A precise temperature sensor measures the temperature of each turn. The laboratory setup allows the exact control of the boundary conditions, e.g. the oil flow rate and the inlet temperature. Furthermore, a simulation model is solved using the open source computational fluid dynamics solver OpenFOAM and validated with the experimental results. The model utilizes the laminar and turbulent flow for the different mass flow rate of the oil. The good agreement of the simulation results with experimental measurements validates the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugated%20heat%20transfer" title=" conjugated heat transfer"> conjugated heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20transformers" title=" power transformers"> power transformers</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20distribution" title=" temperature distribution"> temperature distribution</a> </p> <a href="https://publications.waset.org/abstracts/58425/numerical-investigation-of-fluid-flow-and-temperature-distribution-on-power-transformer-windings-using-open-foam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7616</span> Parallel Operated Rotary Frequency Converters within a Ship Micro-Grid System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamdy%20Ahmed%20Ashour">Hamdy Ahmed Ashour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the parallel operation of rotary frequency converters which can be used within a ship micro-grid system and also to supply ships and equipment in a harbour during off-sail and maintenance periods with their suitable voltage and frequency requirements in order to overcome the possible associated problems of overloading on a single converter. The paper theoretically and experimentally investigated the operation of 3-ph induction motor / 3-ph synchronous generator based rotary converters set. Concept of operation and merits of such converters has been discussed. Overall dynamic simulation model of two parallel operated rotary converters has been developed. Active and reactive load sharing of the two converters has been analyzed. Experimental setup has been implemented for proof of concept and practical validation. Simulation and experimental results have been obtained and well correlated; showing how the rotary converters based setup can be manipulated to achieve different requirements of operating conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental" title="experimental">experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency-converters" title=" frequency-converters"> frequency-converters</a>, <a href="https://publications.waset.org/abstracts/search?q=load-sharing" title=" load-sharing"> load-sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=marine-applications" title=" marine-applications"> marine-applications</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronization" title=" synchronization"> synchronization</a> </p> <a href="https://publications.waset.org/abstracts/44199/parallel-operated-rotary-frequency-converters-within-a-ship-micro-grid-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7615</span> Experimental Study and Analysis of Parabolic Trough Collector with Various Reflectors </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avadhesh%20Yadav">Avadhesh Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Balram%20Manoj%20Kumar"> Balram Manoj Kumar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A solar powered air heating system using parabolic trough collector was experimentally investigated. In this experimental setup, the reflected solar radiations were focused on absorber tube which was placed at focal length of the parabolic trough. In this setup, air was used as working fluid which collects the heat from absorber tube. To enhance the performance of parabolic trough, collector with different type of reflectors were used. It was observed for aluminum sheet maximum temperature is 52.3ºC, which 24.22% more than steel sheet as reflector and 8.5% more than aluminum foil as reflector, also efficiency by using Aluminum sheet as reflector compared to steel sheet as reflector is 61.18% more. Efficiency by using aluminum sheet as reflector compared to aluminum foil as reflector is 18.98% more. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20collector" title="parabolic trough collector">parabolic trough collector</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectors" title=" reflectors"> reflectors</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20flow%20rates" title=" air flow rates"> air flow rates</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20power" title=" solar power"> solar power</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20sheet" title=" aluminum sheet"> aluminum sheet</a> </p> <a href="https://publications.waset.org/abstracts/2172/experimental-study-and-analysis-of-parabolic-trough-collector-with-various-reflectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7614</span> Investigation of Dynamic Heat Transfer in Masonry Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joelle%20Al%20Fakhoury">Joelle Al Fakhoury</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilio%20Sassine"> Emilio Sassine</a>, <a href="https://publications.waset.org/abstracts/search?q=Yassine%20Cherif"> Yassine Cherif</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Dgheim"> Joseph Dgheim</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Antczak"> Emmanuel Antczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hollow block masonry is the most used building technology in the Lebanese context. These blocks are manufactured in an artisanal way and have unknown thermal properties; their overall thermos-physical performance is thus unknown and also poorly investigated scientifically in both single wall and also double wall configurations. In this work, experimental measurements and numerical simulations are performed for a better understanding of the heat transfer in masonry walls. This study was realized using an experimental setup consisting of a masonry hollow block wall (0.1m x 1m x 1m) and two heat boxes, such that each covers one side of the wall. The first is a reference box having a constant interior temperature, and the other is a control box having an adjustable interior temperature. At first, the numerical model is validated using an experimental setup; then 3D numerical analyzes are held in order to investigate the effect of the air gap, the mortar joints, and the plastering on the thermal performance of masonry walls for a better understanding of the heat transfer process and the recommendation of suitable thermal improvements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=masonry%20wall" title="masonry wall">masonry wall</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20blocks" title=" hollow blocks"> hollow blocks</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20instrumentation" title=" wall instrumentation"> wall instrumentation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20improvement" title=" thermal improvement"> thermal improvement</a> </p> <a href="https://publications.waset.org/abstracts/141822/investigation-of-dynamic-heat-transfer-in-masonry-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7613</span> Density Measurement of Underexpanded Jet Using Stripe Patterned Background Oriented Schlieren Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shinsuke%20Udagawa">Shinsuke Udagawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Masato%20Yamagishi"> Masato Yamagishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masanori%20Ota"> Masanori Ota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Schlieren method, which has been conventionally used to visualize high-speed flows, has disadvantages such as the complexity of the experimental setup and the inability to quantitatively analyze the amount of refraction of light. The Background Oriented Schlieren (BOS) method proposed by Meier is one of the measurement methods that solves the problems, as mentioned above. The refraction of light is used for BOS method same as the Schlieren method. The BOS method is characterized using a digital camera to capture the images of the background behind the observation area. The images are later analyzed by a computer to quantitatively detect the amount of shift of the background image. The experimental setup for BOS does not require concave mirrors, pinholes, or color filters, which are necessary in the conventional Schlieren method, thus simplifying the experimental setup. However, the defocusing of the observation results is caused in case of using BOS method. Since the focus of camera on the background image leads to defocusing of the observed object. The defocusing of object becomes greater with increasing the distance between the background and the object. On the other hand, the higher sensitivity can be obtained. Therefore, it is necessary to adjust the distance between the background and the object to be appropriate for the experiment, considering the relation between the defocus and the sensitivity. The purpose of this study is to experimentally clarify the effect of defocus on density field reconstruction. In this study, the visualization experiment of underexpanded jet using BOS measurement system with ronchi ruling as the background that we constructed, have been performed. The reservoir pressure of the jet and the distance between camera and axis of jet is fixed, and the distance between background and axis of jet has been changed as the parameter. The images have been later analyzed by using personal computer to quantitatively detect the amount of shift of the background image from the comparison between the background pattern and the captured image of underexpanded jet. The quantitatively measured amount of shift have been reconstructed into a density flow field using the Abel transformation and the Gradstone-Dale equation. From the experimental results, it is found that the reconstructed density image becomes blurring, and noise becomes decreasing with increasing the distance between background and axis of underexpanded jet. Consequently, it is cralified that the sensitivity constant should be greater than 20, and the circle of confusion diameter should be less than 2.7mm at least in this experimental setup. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BOS%20method" title="BOS method">BOS method</a>, <a href="https://publications.waset.org/abstracts/search?q=underexpanded%20jet" title=" underexpanded jet"> underexpanded jet</a>, <a href="https://publications.waset.org/abstracts/search?q=abel%20transformation" title=" abel transformation"> abel transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20field%20visualization" title=" density field visualization"> density field visualization</a> </p> <a href="https://publications.waset.org/abstracts/170604/density-measurement-of-underexpanded-jet-using-stripe-patterned-background-oriented-schlieren-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7612</span> A Performance Comparison between Conventional and Flexible Box Erecting Machines Using Dispatching Rules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Kyu%20Kim">Min Kyu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun%20Young%20Lee"> Eun Young Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Woo%20Son"> Dong Woo Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoon%20Seok%20Chang"> Yoon Seok Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we introduce a flexible box erecting machine (BEM) that swiftly and automatically transforms cardboard into a three dimensional box. Recently, the parcel service and home-shopping industries have grown rapidly, and there is an increasing need for various box types to ship various products. However, workers cannot fold thousands of boxes manually in a day. As such, automatic BEMs are garnering greater attention. This study takes equipment operation into consideration as well as mechanical improvements in order to design a BEM that is able to outperform its conventional counterparts. We analyzed six dispatching rules – First In First Out (FIFO), Shortest Processing Time (SPT), Earliest Due Date (EDD), Setup Avoidance, EDD + SPT, and EDD + Setup Avoidance – to determine which one was most suitable for BEM operation. Consequently, SPT and Setup Avoidance were found to be the most critical rules, followed by EDD + Setup Avoidance, EDD + SPT, EDD, and FIFO. This hierarchy was valid for both our conventional BEM and our new flexible BEM from the viewpoint of processing time. We believe that this research can contribute to flexible BEM management, which has the potential to increase productivity and convenience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=box%20erecting%20machine" title=" box erecting machine"> box erecting machine</a>, <a href="https://publications.waset.org/abstracts/search?q=dispatching%20rule" title=" dispatching rule"> dispatching rule</a>, <a href="https://publications.waset.org/abstracts/search?q=setup%20time" title=" setup time"> setup time</a> </p> <a href="https://publications.waset.org/abstracts/42437/a-performance-comparison-between-conventional-and-flexible-box-erecting-machines-using-dispatching-rules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7611</span> A Methodology of Testing Beam to Column Connection under Lateral Impact Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Al-Rifaie">A. Al-Rifaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20W.%20Guan"> Z. W. Guan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Jones"> S. W. Jones</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beam to column connection can be considered as the most important structural part that affects the response of buildings to progressive collapse. However, many studies were conducted to investigate the beam to column connection under accidental loads such as fire, blast and impact load to investigate the connection response. The study is a part of a PhD plan to investigate different types of connections under lateral impact load. The conventional test setups, such as cruciform setup, were designed to apply shear forces and bending moment on the connection, whilst, in the lateral impact case, the connection is subjected to combined tension and moment. Hence, a review is presented to introduce the previous test setup that is used to investigate the connection behaviour. Then, the design and fabrication of the novel test setup is presented. Finally, some trial test results to investigate the efficiency of the proposed setup are discussed. The final results indicate that the setup was efficient in terms of the simplicity and strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=connections" title="connections">connections</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20load" title=" impact load"> impact load</a>, <a href="https://publications.waset.org/abstracts/search?q=drop%20hammer" title=" drop hammer"> drop hammer</a>, <a href="https://publications.waset.org/abstracts/search?q=testing%20methods" title=" testing methods"> testing methods</a> </p> <a href="https://publications.waset.org/abstracts/76082/a-methodology-of-testing-beam-to-column-connection-under-lateral-impact-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7610</span> Individual Actuators of a Car-Like Robot with Back Trailer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20El-Derini">Tarek El-Derini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20El-Shenawy"> Ahmed El-Shenawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the hardware implemented and validation for a special system to assist the unprofessional users of car with back trailers. The system consists of two platforms; the front car platform (C) and the trailer platform (T). The main objective is to control the Trailer platform using the actuators found in the front platform (c). The mobility of the platform (C) is investigated and inverse and forward kinematics model is obtained for both platforms (C) and (T). The system is simulated using Matlab M-file and the simulation examples results illustrated the system performance. The system is constructed with a hardware setup for the front and trailer platform. The hardware experimental results and the simulated examples outputs showed the validation of the hardware setup. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinematics" title="kinematics">kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=robot" title=" robot"> robot</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a> </p> <a href="https://publications.waset.org/abstracts/18343/individual-actuators-of-a-car-like-robot-with-back-trailer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7609</span> Experimental Investigation of Natural Frequency and Forced Vibration of Euler-Bernoulli Beam under Displacement of Concentrated Mass and Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aref%20Aasi">Aref Aasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadegh%20Mehdi%20Aghaei"> Sadegh Mehdi Aghaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Balaji%20Panchapakesan"> Balaji Panchapakesan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to evaluate the free and forced vibration of a beam with two end joints subjected to a concentrated moving mass and a load using the Euler-Bernoulli method. The natural frequency is calculated for different locations of the concentrated mass and load on the beam. The analytical results are verified by the experimental data. The variations of natural frequency as a function of the location of the mass, the effect of the forced frequency on the vibrational amplitude, and the displacement amplitude versus time are investigated. It is discovered that as the concentrated mass moves toward the center of the beam, the natural frequency of the beam and the relative error between experimental and analytical data decreases. There is a close resemblance between analytical data and experimental observations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Euler-Bernoulli%20beam" title="Euler-Bernoulli beam">Euler-Bernoulli beam</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20vibration" title=" forced vibration"> forced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20setup" title=" experimental setup"> experimental setup</a> </p> <a href="https://publications.waset.org/abstracts/144338/experimental-investigation-of-natural-frequency-and-forced-vibration-of-euler-bernoulli-beam-under-displacement-of-concentrated-mass-and-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7608</span> Minimizing Total Completion Time in No-Wait Flowshops with Setup Times</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Allahverdi">Ali Allahverdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The m-machine no-wait flowshop scheduling problem is addressed in this paper. The objective is to minimize total completion time subject to the constraint that the makespan value is not greater than a certain value. Setup times are treated as separate from processing times. Several recent algorithms are adapted and proposed for the problem. An extensive computational analysis has been conducted for the evaluation of the proposed algorithms. The computational analysis indicates that the best proposed algorithm performs significantly better than the earlier existing best algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scheduling" title="scheduling">scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=no-wait%20flowshop" title=" no-wait flowshop"> no-wait flowshop</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=setup%20times" title=" setup times"> setup times</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20completion%20time" title=" total completion time"> total completion time</a>, <a href="https://publications.waset.org/abstracts/search?q=makespan" title=" makespan "> makespan </a> </p> <a href="https://publications.waset.org/abstracts/4858/minimizing-total-completion-time-in-no-wait-flowshops-with-setup-times" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7607</span> Two Stage Assembly Flowshop Scheduling Problem Minimizing Total Tardiness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Allahverdi">Ali Allahverdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Harun%20Aydilek"> Harun Aydilek</a>, <a href="https://publications.waset.org/abstracts/search?q=Asiye%20Aydilek"> Asiye Aydilek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The two stage assembly flowshop scheduling problem has lots of application in real life. To the best of our knowledge, the two stage assembly flowshop scheduling problem with total tardiness performance measure and separate setup times has not been addressed so far, and hence, it is addressed in this paper. Different dominance relations are developed and several algorithms are proposed. Extensive computational experiments are conducted to evaluate the proposed algorithms. The computational experiments have shown that one of the algorithms performs much better than the others. Moreover, the experiments have shown that the best performing algorithm performs much better than the best existing algorithm for the case of zero setup times in the literature. Therefore, the proposed best performing algorithm not only can be used for problems with separate setup times but also for the case of zero setup times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scheduling" title="scheduling">scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly%20flowshop" title=" assembly flowshop"> assembly flowshop</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20tardiness" title=" total tardiness"> total tardiness</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a> </p> <a href="https://publications.waset.org/abstracts/48248/two-stage-assembly-flowshop-scheduling-problem-minimizing-total-tardiness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7606</span> Bayesian Optimization for Reaction Parameter Tuning: An Exploratory Study of Parameter Optimization in Oxidative Desulfurization of Thiophene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aman%20Sharma">Aman Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonali%20Sengupta"> Sonali Sengupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study explores the utility of Bayesian optimization in tuning the physical and chemical parameters of reactions in an offline experimental setup. A comparative analysis of the influence of the acquisition function on the optimization performance is also studied. For proxy first and second-order reactions, the results are indifferent to the acquisition function used, whereas, while studying the parameters for oxidative desulphurization of thiophene in an offline setup, upper confidence bound (UCB) provides faster convergence along with a marginal trade-off in the maximum conversion achieved. The work also demarcates the critical number of independent parameters and input observations required for both sequential and offline reaction setups to yield tangible results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acquisition%20function" title="acquisition function">acquisition function</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20optimization" title=" Bayesian optimization"> Bayesian optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=desulfurization" title=" desulfurization"> desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=thiophene" title=" thiophene"> thiophene</a> </p> <a href="https://publications.waset.org/abstracts/135023/bayesian-optimization-for-reaction-parameter-tuning-an-exploratory-study-of-parameter-optimization-in-oxidative-desulfurization-of-thiophene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7605</span> Experimental Study of Upsetting and Die Forging with Controlled Impact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Penchev">T. Penchev</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Karastoyanov"> D. Karastoyanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The results from experimental research of deformation by upsetting and die forging of lead specimens wit controlled impact are presented. Laboratory setup for conducting the investigations, which uses cold rocket engine operated with compressed air, is described. The results show that when using controlled impact is achieving greater plastic deformation and consumes less impact energy than at ordinary impact deformation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rocket%20engine" title="rocket engine">rocket engine</a>, <a href="https://publications.waset.org/abstracts/search?q=forging%20hammer" title=" forging hammer"> forging hammer</a>, <a href="https://publications.waset.org/abstracts/search?q=sticking%20impact" title=" sticking impact"> sticking impact</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20deformation" title=" plastic deformation"> plastic deformation</a> </p> <a href="https://publications.waset.org/abstracts/3645/experimental-study-of-upsetting-and-die-forging-with-controlled-impact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7604</span> Uncertainty Analysis of a Hardware in Loop Setup for Testing Products Related to Building Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balasundaram%20Prasaant">Balasundaram Prasaant</a>, <a href="https://publications.waset.org/abstracts/search?q=Ploix%20Stephane"> Ploix Stephane</a>, <a href="https://publications.waset.org/abstracts/search?q=Delinchant%20Benoit"> Delinchant Benoit</a>, <a href="https://publications.waset.org/abstracts/search?q=Muresan%20Cristian"> Muresan Cristian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hardware in Loop (HIL) testing is done to test and validate a particular product especially in building technology. When it comes to building technology, it is more important to test the products for their efficiency. The test rig in the HIL simulator may contribute to some uncertainties on measured efficiency. The uncertainties include physical uncertainties and scenario-based uncertainties. In this paper, a simple uncertainty analysis framework for an HIL setup is shown considering only the physical uncertainties. The entire modeling of the HIL setup is done in Dymola. The uncertain sources are considered based on available knowledge of the components and also on expert knowledge. For the propagation of uncertainty, Monte Carlo Simulation is used since it is the most reliable and easy to use. In this article it is shown how an HIL setup can be modeled and how uncertainty propagation can be performed on it. Such an approach is not common in building energy analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20in%20buildings" title="energy in buildings">energy in buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware%20in%20loop%20testing" title=" hardware in loop testing"> hardware in loop testing</a>, <a href="https://publications.waset.org/abstracts/search?q=modelica%20modelling" title=" modelica modelling"> modelica modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20propagation" title=" uncertainty propagation "> uncertainty propagation </a> </p> <a href="https://publications.waset.org/abstracts/129384/uncertainty-analysis-of-a-hardware-in-loop-setup-for-testing-products-related-to-building-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7603</span> Design and Implementation of an Efficient Solar-Powered Pumping System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mennatallah%20M.%20Fouad">Mennatallah M. Fouad</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Hussein"> Omar Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamia%20A.%20Shihata"> Lamia A. Shihata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main problem in many rural areas is the absence of electricity and limited access to water. The novelty of this work lies in implementing a small-scale experimental setup for a solar-powered water pumping system with a battery back-up system. Cooling and cleaning of the PV panel are implemented to enhance its overall efficiency and output. Moreover, a simulation for a large scale solar-powered pumping system is performed using PVSyst software. Results of the experimental setup show that the PV system with a battery backup proved to be a feasible and viable system to operate the water pumping system. Excess water from the pumping system is used to cool and clean the PV panel and achieved an average percentage increase in the PV output by 21.8%. Simulation results have shown that the system provides adequate output to power the solar-powered system and saves 0.3 tons of CO₂ compared to conventional fossil fuels. It is recommended for hot countries to adopt this system, which would help in decreasing the dependence on the depleting fossil fuels, provide access to electricity to areas where there is no electricity supply and also provide a source of water for crop growth as well as decrease the carbon emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficient%20solar%20pumping" title="efficient solar pumping">efficient solar pumping</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20cleaning" title=" PV cleaning"> PV cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20cooling" title=" PV cooling"> PV cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=PV-operated%20water%20pump" title=" PV-operated water pump"> PV-operated water pump</a> </p> <a href="https://publications.waset.org/abstracts/117406/design-and-implementation-of-an-efficient-solar-powered-pumping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7602</span> Experimental Characterization of Fatigue Crack Initiation of AA320 Alloy under Combined Thermal Cycling (CTC) and Mechanical Loading (ML) during Four Point Rotating and Bending Fatigue Testing Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rana%20Atta%20Ur%20Rahman">Rana Atta Ur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Juhre"> Daniel Juhre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Initiation of crack during fatigue of casting alloys are noticed mainly on the basis of experimental results. Crack initiation and strength of fatigue of AA320 are summarized here. Load sequence effect is applied to notify initiation phase life. Crack initiation at notch root and fatigue life is calculated under single & two-step mechanical loading (ML) with and without combined thermal cycling (CTC). An Experimental setup is proposed to create the working temperature as per alloy applications. S-N curves are plotted, and a comparison is made between crack initiation leading to failure under different ML with & without thermal loading (TL). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue" title="fatigue">fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=initiation" title=" initiation"> initiation</a>, <a href="https://publications.waset.org/abstracts/search?q=SN%20curve" title=" SN curve"> SN curve</a>, <a href="https://publications.waset.org/abstracts/search?q=alloy" title=" alloy"> alloy</a> </p> <a href="https://publications.waset.org/abstracts/63983/experimental-characterization-of-fatigue-crack-initiation-of-aa320-alloy-under-combined-thermal-cycling-ctc-and-mechanical-loading-ml-during-four-point-rotating-and-bending-fatigue-testing-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7601</span> Time and Cost Efficiency Analysis of Quick Die Change System on Metal Stamping Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rudi%20Kurniawan%20Arief">Rudi Kurniawan Arief</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing cost and setup time are the hot topics to improve in Metal Stamping industry because material and components price are always rising up while costumer requires to cut down the component price year by year. The Single Minute Exchange of Die (SMED) is one of many methods to reduce waste in stamping industry. The Japanese Quick Die Change (QDC) dies system is one of SMED systems that could reduce both of setup time and manufacturing cost. However, this system is rarely used in stamping industries. This paper will analyze how deep the QDC dies system could reduce setup time and the manufacturing cost. The research is conducted by direct observation, simulating and comparing of QDC dies system with conventional dies system. In this research, we found that the QDC dies system could save up to 35% of manufacturing cost and reduce 70% of setup times. This simulation proved that the QDC die system is effective for cost reduction but must be applied in several parallel production processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=press%20die" title="press die">press die</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20stamping" title=" metal stamping"> metal stamping</a>, <a href="https://publications.waset.org/abstracts/search?q=QDC%20system" title=" QDC system"> QDC system</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20minute%20exchange%20die" title=" single minute exchange die"> single minute exchange die</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20cost%20saving" title=" manufacturing cost saving"> manufacturing cost saving</a>, <a href="https://publications.waset.org/abstracts/search?q=SMED" title=" SMED"> SMED</a> </p> <a href="https://publications.waset.org/abstracts/86870/time-and-cost-efficiency-analysis-of-quick-die-change-system-on-metal-stamping-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7600</span> Non-Destructive Testing of Metal Pipes with Ultrasonic Sensors Based on Determination of Maximum Ultrasonic Frequency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Herlina%20Abdul%20Rahim">Herlina Abdul Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Abbaszadeh"> Javad Abbaszadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruzairi%20Abdul%20Rahim"> Ruzairi Abdul Rahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, the non-invasive ultrasonic transmission tomography is investigated. In order to model the ultrasonic wave scattering for different thickness of metal pipes, two-dimensional (2D) finite element modeling (FEM) has been utilized. The wall thickness variation of the metal pipe and its influence on propagation of the ultrasonic pressure wave are explored in this paper, includes frequency analysing in order to find the maximum applicable frequency. The simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining the achieved reconstructed images from experimental setup. Finally, the experimental results which are useful for further investigation for the application of ultrasonic transmission tomography in industry are illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20transmission%20tomography" title="ultrasonic transmission tomography">ultrasonic transmission tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20sensors" title=" ultrasonic sensors"> ultrasonic sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20wave" title=" ultrasonic wave"> ultrasonic wave</a>, <a href="https://publications.waset.org/abstracts/search?q=non-invasive%20tomography" title=" non-invasive tomography"> non-invasive tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20pipe" title=" metal pipe"> metal pipe</a> </p> <a href="https://publications.waset.org/abstracts/50272/non-destructive-testing-of-metal-pipes-with-ultrasonic-sensors-based-on-determination-of-maximum-ultrasonic-frequency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7599</span> Optimization of Flexible Job Shop Scheduling Problem with Sequence-Dependent Setup Times Using Genetic Algorithm Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar%20Parjapati">Sanjay Kumar Parjapati</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajai%20Jain"> Ajai Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents optimization of makespan for ‘n’ jobs and ‘m’ machines flexible job shop scheduling problem with sequence dependent setup time using genetic algorithm (GA) approach. A restart scheme has also been applied to prevent the premature convergence. Two case studies are taken into consideration. Results are obtained by considering crossover probability (pc = 0.85) and mutation probability (pm = 0.15). Five simulation runs for each case study are taken and minimum value among them is taken as optimal makespan. Results indicate that optimal makespan can be achieved with more than one sequence of jobs in a production order. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20job%20shop" title="flexible job shop">flexible job shop</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=makespan" title=" makespan"> makespan</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence%20dependent%20setup%20times" title=" sequence dependent setup times"> sequence dependent setup times</a> </p> <a href="https://publications.waset.org/abstracts/17085/optimization-of-flexible-job-shop-scheduling-problem-with-sequence-dependent-setup-times-using-genetic-algorithm-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7598</span> Monte Carlo Simulation of Thyroid Phantom Imaging Using Geant4-GATE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parimalah%20Velo">Parimalah Velo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Zakaria"> Ahmad Zakaria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Monte Carlo simulations of preclinical imaging systems allow opportunity to enable new research that could range from designing hardware up to discovery of new imaging application. The simulation system which could accurately model an imaging modality provides a platform for imaging developments that might be inconvenient in physical experiment systems due to the expense, unnecessary radiation exposures and technological difficulties. The aim of present study is to validate the Monte Carlo simulation of thyroid phantom imaging using Geant4-GATE for Siemen’s e-cam single head gamma camera. Upon the validation of the gamma camera simulation model by comparing physical characteristic such as energy resolution, spatial resolution, sensitivity, and dead time, the GATE simulation of thyroid phantom imaging is carried out. Methods: A thyroid phantom is defined geometrically which comprises of 2 lobes with 80mm in diameter, 1 hot spot, and 3 cold spots. This geometry accurately resembling the actual dimensions of thyroid phantom. A planar image of 500k counts with 128x128 matrix size was acquired using simulation model and in actual experimental setup. Upon image acquisition, quantitative image analysis was performed by investigating the total number of counts in image, the contrast of the image, radioactivity distributions on image and the dimension of hot spot. Algorithm for each quantification is described in detail. The difference in estimated and actual values for both simulation and experimental setup is analyzed for radioactivity distribution and dimension of hot spot. Results: The results show that the difference between contrast level of simulation image and experimental image is within 2%. The difference in the total count between simulation and actual study is 0.4%. The results of activity estimation show that the relative difference between estimated and actual activity for experimental and simulation is 4.62% and 3.03% respectively. The deviation in estimated diameter of hot spot for both simulation and experimental study are similar which is 0.5 pixel. In conclusion, the comparisons show good agreement between the simulation and experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma%20camera" title="gamma camera">gamma camera</a>, <a href="https://publications.waset.org/abstracts/search?q=Geant4%20application%20of%20tomographic%20emission%20%28GATE%29" title=" Geant4 application of tomographic emission (GATE)"> Geant4 application of tomographic emission (GATE)</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo" title=" Monte Carlo"> Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=thyroid%20imaging" title=" thyroid imaging"> thyroid imaging</a> </p> <a href="https://publications.waset.org/abstracts/67186/monte-carlo-simulation-of-thyroid-phantom-imaging-using-geant4-gate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7597</span> Experimental Performance of Vertical Diffusion Stills Utilizing Folded Sheets for Water Desalination </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mortada">M. Mortada</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Seleem"> A. Seleem</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20El-Morsi"> M. El-Morsi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Younan"> M. Younan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study introduces the folding technology to be utilized for the first time in vertical diffusion stills. This work represents a model of the distillation process by utilizing chevron pattern of folded structure. An experimental setup has been constructed, to investigate the performance of the folded sheets in the vertical effect diffusion still for a specific range of operating conditions. An experimental comparison between the folded type and the flat type sheets has been carried out. The folded pattern showed a higher performance and there is an increase in the condensate to feed ratio that ranges from 20-30 % through the operating hot plate temperature that ranges through 60-90°C. In addition, a parametric analysis of the system using Design of Experiments statistical technique, has been developed using the experimental results to determine the effect of operating conditions on the system's performance and the best operating conditions of the system has been evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chevron%20pattern" title="chevron pattern">chevron pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=fold%20structure" title=" fold structure"> fold structure</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20distillation" title=" solar distillation"> solar distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20diffusion%20still" title=" vertical diffusion still"> vertical diffusion still</a> </p> <a href="https://publications.waset.org/abstracts/22638/experimental-performance-of-vertical-diffusion-stills-utilizing-folded-sheets-for-water-desalination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7596</span> M-Machine Assembly Scheduling Problem to Minimize Total Tardiness with Non-Zero Setup Times</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harun%20Aydilek">Harun Aydilek</a>, <a href="https://publications.waset.org/abstracts/search?q=Asiye%20Aydilek"> Asiye Aydilek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Allahverdi"> Ali Allahverdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our objective is to minimize the total tardiness in an m-machine two-stage assembly flowshop scheduling problem. The objective is an important performance measure because of the fact that the fulfillment of due dates of customers has to be taken into account while making scheduling decisions. In the literature, the problem is considered with zero setup times which may not be realistic and appropriate for some scheduling environments. Considering separate setup times from processing times increases machine utilization by decreasing the idle time and reduces total tardiness. We propose two new algorithms and adapt four existing algorithms in the literature which are different versions of simulated annealing and genetic algorithms. Moreover, a dominance relation is developed based on the mathematical formulation of the problem. The developed dominance relation is incorporated in our proposed algorithms. Computational experiments are conducted to investigate the performance of the newly proposed algorithms. We find that one of the proposed algorithms performs significantly better than the others, i.e., the error of the best algorithm is less than those of the other algorithms by minimum 50%. The newly proposed algorithm is also efficient for the case of zero setup times and performs better than the best existing algorithm in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly%20flowshop" title=" assembly flowshop"> assembly flowshop</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20tardiness" title=" total tardiness"> total tardiness</a> </p> <a href="https://publications.waset.org/abstracts/47645/m-machine-assembly-scheduling-problem-to-minimize-total-tardiness-with-non-zero-setup-times" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7595</span> Sensor Data Analysis for a Large Mining Major</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudipto%20Shanker%20Dasgupta">Sudipto Shanker Dasgupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the largest mining companies wanted to look at health analytics for their driverless trucks. These trucks were the key to their supply chain logistics. The automated trucks had multi-level sub-assemblies which would send out sensor information. The use case that was worked on was to capture the sensor signal from the truck subcomponents and analyze the health of the trucks from repair and replacement purview. Open source software was used to stream the data into a clustered Hadoop setup in Amazon Web Services cloud and Apache Spark SQL was used to analyze the data. All of this was achieved through a 10 node amazon 32 core, 64 GB RAM setup real-time analytics was achieved on ‘300 million records’. To check the scalability of the system, the cluster was increased to 100 node setup. This talk will highlight how Open Source software was used to achieve the above use case and the insights on the high data throughput on a cloud set up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=streaming%20analytics" title="streaming analytics">streaming analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20science" title=" data science"> data science</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadoop" title=" Hadoop"> Hadoop</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20throughput" title=" high throughput"> high throughput</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20data" title=" sensor data"> sensor data</a> </p> <a href="https://publications.waset.org/abstracts/32352/sensor-data-analysis-for-a-large-mining-major" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7594</span> Implementation of a Monostatic Microwave Imaging System using a UWB Vivaldi Antenna</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babatunde%20Olatujoye">Babatunde Olatujoye</a>, <a href="https://publications.waset.org/abstracts/search?q=Binbin%20Yang"> Binbin Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microwave imaging is a portable, noninvasive, and non-ionizing imaging technique that employs low-power microwave signals to reveal objects in the microwave frequency range. This technique has immense potential for adoption in commercial and scientific applications such as security scanning, material characterization, and nondestructive testing. This work presents a monostatic microwave imaging setup using an Ultra-Wideband (UWB), low-cost, miniaturized Vivaldi antenna with a bandwidth of 1 – 6 GHz. The backscattered signals (S-parameters) of the Vivaldi antenna used for scanning targets were measured in the lab using a VNA. An automated two-dimensional (2-D) scanner was employed for the 2-D movement of the transceiver to collect the measured scattering data from different positions. The targets consist of four metallic objects, each with a distinct shape. Similar setup was also simulated in Ansys HFSS. A high-resolution Back Propagation Algorithm (BPA) was applied to both the simulated and experimental backscattered signals. The BPA utilizes the phase and amplitude information recorded over a two-dimensional aperture of 50 cm × 50 cm with a discreet step size of 2 cm to reconstruct a focused image of the targets. The adoption of BPA was demonstrated by coherently resolving and reconstructing reflection signals from conventional time-of-flight profiles. For both the simulation and experimental data, BPA accurately reconstructed a high resolution 2D image of the targets in terms of shape and location. An improvement of the BPA, in terms of target resolution, was achieved by applying the filtering method in frequency domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=back%20propagation" title="back propagation">back propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20imaging" title=" microwave imaging"> microwave imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=monostatic" title=" monostatic"> monostatic</a>, <a href="https://publications.waset.org/abstracts/search?q=vivialdi%20antenna" title=" vivialdi antenna"> vivialdi antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20wideband" title=" ultra wideband"> ultra wideband</a> </p> <a href="https://publications.waset.org/abstracts/192577/implementation-of-a-monostatic-microwave-imaging-system-using-a-uwb-vivaldi-antenna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7593</span> From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stepan%20Papacek">Stepan Papacek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Jablonsky"> Jiri Jablonsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Radek%20Kana"> Radek Kana</a>, <a href="https://publications.waset.org/abstracts/search?q=Ctirad%20Matonoha"> Ctirad Matonoha</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Kindermann"> Stefan Kindermann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FRAP" title="FRAP">FRAP</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem" title=" inverse problem"> inverse problem</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20identification" title=" parameter identification"> parameter identification</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20experimental%20design" title=" optimal experimental design"> optimal experimental design</a> </p> <a href="https://publications.waset.org/abstracts/19363/from-data-processing-to-experimental-design-and-back-again-a-parameter-identification-problem-based-on-frap-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7592</span> Near Infrared Spectrometry to Determine the Quality of Milk, Experimental Design Setup and Chemometrics: Review </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meghana%20Shankara">Meghana Shankara</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyadarshini%20Natarajan"> Priyadarshini Natarajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infrared (IR) spectroscopy has revolutionized the way we look at materials around us. Unraveling the pattern in the molecular spectra of materials to analyze the composition and properties of it has been one of the most interesting challenges in modern science. Applications of the IR spectrometry are numerous in the field’s pharmaceuticals, health, food and nutrition, oils, agriculture, construction, polymers, beverage, fabrics and much more limited only by the curiosity of the people. Near Infrared (NIR) spectrometry is applied robustly in analyzing the solids and liquid substances because of its non-destructive analysis method. In this paper, we have reviewed the application of NIR spectrometry in milk quality analysis and have presented the modes of measurement applied in NIRS measurement setup, Design of Experiment (DoE), classification/quantification algorithms used in the case of milk composition prediction like Fat%, Protein%, Lactose%, Solids Not Fat (SNF%) along with different approaches for adulterant identification. We have also discussed the important NIR ranges for the chosen milk parameters. The performance metrics used in the comparison of the various Chemometric approaches include Root Mean Square Error (RMSE), R^2, slope, offset, sensitivity, specificity and accuracy <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemometrics" title="chemometrics">chemometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment" title=" design of experiment"> design of experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20quality%20analysis" title=" milk quality analysis"> milk quality analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=NIRS%20measurement%20modes" title=" NIRS measurement modes"> NIRS measurement modes</a> </p> <a href="https://publications.waset.org/abstracts/60644/near-infrared-spectrometry-to-determine-the-quality-of-milk-experimental-design-setup-and-chemometrics-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7591</span> Digital Twin for a Floating Solar Energy System with Experimental Data Mining and AI Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danlei%20Yang">Danlei Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Luofeng%20Huang"> Luofeng Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The integration of digital twin technology with renewable energy systems offers an innovative approach to predicting and optimising performance throughout the entire lifecycle. A digital twin is a continuously updated virtual replica of a real-world entity, synchronised with data from its physical counterpart and environment. Many digital twin companies today claim to have mature digital twin products, but their focus is primarily on equipment visualisation. However, the core of a digital twin should be its model, which can mirror, shadow, and thread with the real-world entity, which is still underdeveloped. For a floating solar energy system, a digital twin model can be defined in three aspects: (a) the physical floating solar energy system along with environmental factors such as solar irradiance and wave dynamics, (b) a digital model powered by artificial intelligence (AI) algorithms, and (c) the integration of real system data with the AI-driven model and a user interface. The experimental setup for the floating solar energy system, is designed to replicate real-ocean conditions of floating solar installations within a controlled laboratory environment. The system consists of a water tank that simulates an aquatic surface, where a floating catamaran structure supports a solar panel. The solar simulator is set up in three positions: one directly above and two inclined at a 45° angle in front and behind the solar panel. This arrangement allows the simulation of different sun angles, such as sunrise, midday, and sunset. The solar simulator is positioned 400 mm away from the solar panel to maintain consistent solar irradiance on its surface. Stability for the floating structure is achieved through ropes attached to anchors at the bottom of the tank, which simulates the mooring systems used in real-world floating solar applications. The floating solar energy system's sensor setup includes various devices to monitor environmental and operational parameters. An irradiance sensor measures solar irradiance on the photovoltaic (PV) panel. Temperature sensors monitor ambient air and water temperatures, as well as the PV panel temperature. Wave gauges measure wave height, while load cells capture mooring force. Inclinometers and ultrasonic sensors record heave and pitch amplitudes of the floating system’s motions. An electric load measures the voltage and current output from the solar panel. All sensors collect data simultaneously. Artificial neural network (ANN) algorithms are central to developing the digital model, which processes historical and real-time data, identifies patterns, and predicts the system’s performance in real time. The data collected from various sensors are partly used to train the digital model, with the remaining data reserved for validation and testing. The digital twin model combines the experimental setup with the ANN model, enabling monitoring, analysis, and prediction of the floating solar energy system's operation. The digital model mirrors the functionality of the physical setup, running in sync with the experiment to provide real-time insights and predictions. It provides useful industrial benefits, such as informing maintenance plans as well as design and control strategies for optimal energy efficiency. In long term, this digital twin will help improve overall solar energy yield whilst minimising the operational costs and risks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20twin" title="digital twin">digital twin</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20solar%20energy%20system" title=" floating solar energy system"> floating solar energy system</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment%20setup" title=" experiment setup"> experiment setup</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a> </p> <a href="https://publications.waset.org/abstracts/194616/digital-twin-for-a-floating-solar-energy-system-with-experimental-data-mining-and-ai-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">9</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20setup&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20setup&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20setup&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20setup&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20setup&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20setup&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20setup&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20setup&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20setup&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20setup&page=253">253</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20setup&page=254">254</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20setup&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>