CINXE.COM

Statistics (STAT) < University of Wisconsin-Madison

<!doctype html> <html class="no-js" xml:lang="en" lang="en" dir="ltr"> <head> <script>(function(H){H.className=H.className.replace(/\bno-js\b/,'js')})(document.documentElement)</script> <title>Statistics (STAT) &lt; University of Wisconsin-Madison</title> <!-- Google Tag Manager --> <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-TG62T5B');</script> <!-- End Google Tag Manager --> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <link rel="search" type="application/opensearchdescription+xml" href="/search/opensearch.xml" title="Catalog" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, minimum-scale=1.0" /> <link href="/favicon.ico" rel="shortcut icon" /> <link rel="stylesheet" type="text/css" href="/css/reset.css" /> <link rel="stylesheet" type="text/css" href="/css/courseleaf.css" /> <link rel="stylesheet" type="text/css" href="/fonts/font-awesome/font-awesome.min.css" /> <link rel="stylesheet" type="text/css" href="/css/screen.css?v=05162023" media="screen" /> <link rel="stylesheet" type="text/css" href="/css/custom.css" /> <link rel="stylesheet" type="text/css" href="/css/print.css" media="print" /> <script type="text/javascript" src="/js/jquery.js"></script> <script type="text/javascript" src="/js/lfjs.js"></script> <script type="text/javascript" src="/js/lfjs_any.js"></script> <link rel="stylesheet" type="text/css" href="/js/lfjs.css" /> <script type="text/javascript" src="/js/courseleaf.js"></script> <script type="text/javascript" src="/js/custom.js"></script> <script type="text/javascript">var gakey = "UA-100764097-1";</script><script type="text/javascript" src="/js/analytics.js"></script> </head> <body> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-TG62T5B" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!--htdig_noindex--> <div class="accessible noscript"> <div class="accessible-menu"> <ul> <li><a href="#content" rel="section">Skip to Content</a></li> <li><a href="/azindex/">AZ Index</a></li> <li><a href="/">Catalog Home</a></li> </ul> </div> </div> <!--/htdig_noindex--> <!--htdig_noindex--> <div id="global-bar"> <a href="http://www.wisc.edu" aria-label="University of Wisconsin Madison">U<span>niversity <span class="uw-of">of</span> </span>W<span>isconsin</span>–Madison</a> </div> <header id="header" role="banner" class="uw-header "> <div class="wrap"> <div class="header-crest-title"> <div class="header-crest"> <a href="http://www.wisc.edu"><img class="crest-svg" src="/images/uw-crest.svg" alt="Link to University of Wisconsin-Madison home page"></a> </div> <div class="title-tagline"> <h1 class="site-title"> <a href="/" rel="home">Guide</a> </h1> <div class="site-tagline">2024-2025</div> </div> </div> <div class="header-search"> <form role="search" method="get" action="/search/" class="uw-search-form form-inline collapse"> <label for="search-term" class="sr-only">Search this site</label> <input type="text" class="uw-search-input" placeholder="Search" name="search" id="search-term" value=""> <button class="unstyle uw-search-submit" type="success"> <svg aria-hidden="true" role="presentation"> <use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-search"></use> </svg> <span class="sr-only">Submit search</span> </button> </form> </div> <!-- end search --> </div> </header> <button class="uw-mobile-menu-button-bar" onclick="expandMobileNav(); return false" data-menu="uw-top-menus" aria-label="Open menu" aria-expanded="false" aria-controls="uw-top-menus"> Menu <svg aria-hidden="true"> <use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-menu"></use> </svg> <svg aria-hidden="true"> <use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-close"></use> </svg> </button> <nav id="navigation" role="navigation" aria-label="header navigation"> <div class="wrap"> <ul id="uw-top-menus"> <li><a href="/undergraduate/">Undergraduate</a></li><li class="primary-menu"><button type="button">Graduate/Professional</button><ul class="sub-menu"> <li><a href="/graduate">Graduate</a></li> <li><a href="/law">Law</a></li> <li><a href="/medicine">Medicine &amp; Public Health</a></li> <li><a href="/pharmacy">Pharmacy</a></li> <li><a href="/veterinary">Veterinary Medicine</a></li> </ul></li><li><a href="/nondegree/">Nondegree</a></li><li class="current-menu-item"><a href="/courses/">Courses</a></li><li><a href="/faculty/">Faculty</a></li><li><a href="/archive/">Archive</a></li> <li class="apply-now"><a href="http://www.wisc.edu/admissions/apply/" target="_blank">Apply <span style="white-space: nowrap;">Now <svg class="uw-symbol-more" viewBox="0 0 17 15"> <title id="svg-more">More</title> <path d="M5.8,13.4H2l3.9-5.9L2,1.7h3.8l3.8,5.8L5.8,13.4z M12,13.4H8.2l3.9-5.9L8.2,1.7H12l3.8,5.8L12,13.4z"></path> </svg></span> </a> </li> </ul> </div><!-- end .wrap --> </nav> <!-- end navigation --> <!--/htdig_noindex--> <main> <!--htdig_noindex--> <nav id="breadcrumb" aria-label="Breadcrumb"> <ul><li><a href="/">Home</a><span class="crumbsep">/</span></li><li><a href="/courses/">Courses</a><span class="crumbsep">/</span></li><li><span class="active">Statistics (STAT)</span></li></ul> </nav> <!--/htdig_noindex--> <div id="page-title-area" class="wrap"> <h1 class="page-title">Statistics (STAT)</h1> </div> <link rel="stylesheet" type="text/css" href="/css/courseleaf.css" /> <link rel="stylesheet" type="text/css" href="/fonts/font-awesome/font-awesome.min.css" /> <link rel="stylesheet" type="text/css" href="/css/courseleaf.css" /> <link rel="stylesheet" type="text/css" href="/fonts/font-awesome/font-awesome.min.css" /> <div id="column-wrapper"> <div class="wrap clearfix"> <div id="left-col"> <div id="content" role="main"> <div id="textcontainer" class="page_content"> <div class="sc_sccoursedescs"> <style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock gradcap "> <p class="courseblocktitle noindent"><strong><i class="fa fa-graduation-cap" aria-hidden="false"></i> <span class="courseblockcode">STAT 240</span> — DATA SCIENCE MODELING I</strong></p> <p class="courseblockcredits">4 credits.</p> <p class="courseblockdesc noindent"> Introduces reproducible data management, modeling, analysis, and statistical inference through a practical, hands-on case studies approach. Topics include the use of an integrated statistical computing environment, data wrangling, the R programming language, data graphics and visualization, random variables and concepts of probability including the binomial and normal distributions, data modeling, statistical inference in one- and two- sample settings for proportions and means, simple linear regression, and report generation using R Markdown with applications to a wide variety of data to address open-ended questions.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Satisfied Quantitative Reasoning (QR) A requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Gen Ed - Quantitative Reasoning Part B<br/> Breadth - Natural Science<br/> Level - Intermediate<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. wrangle data: transform data, possibly from multiple sources, into a form convenient for analysis<br/>Audience: Undergraduate<br/><br/>2. explore data: visualize and summarize data, generate questions/hypotheses, and address them<br/>Audience: Undergraduate<br/><br/>3. program: write R code using the R Studio integrated statistical computing environment to carry out reproducible data analysis<br/>Audience: Undergraduate<br/><br/>4. model data: use probability and random variables in statistical computing environment to carry out reproducible data analysis<br/>Audience: Undergraduate<br/><br/>5. interpret data: explain what can be inferred from the data analysis and make predictions<br/>Audience: Undergraduate<br/><br/>6. communicate: use R Markdown to integrate prose, visualizations, code, interpretation, and results<br/>Audience: Undergraduate<br/><br/>7. collaborate: work with other students to solve data challenges<br/>Audience: Undergraduate<br/><br/>8. make statistical inferences: employ confidence intervals and hypothesis tests using both computational and standard methods such as binomial and t-tests<br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock gradcap "> <p class="courseblocktitle noindent"><strong><i class="fa fa-graduation-cap" aria-hidden="false"></i> <span class="courseblockcode">STAT 301</span> — INTRODUCTION TO STATISTICAL METHODS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Distributions, measures of central tendency, dispersion and shape, the normal distribution; experiments to compare means, standard errors, confidence intervals; effects of departure from assumption; method of least squares, regression, correlation, assumptions and limitations; basic ideas of experimental design.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Satisfied Quantitative Reasoning (QR) A requirement. Not open to students with credit for STAT 302, <a href="/search/?P=STAT%20324" title="STAT 324" class="bubblelink code" onclick="return showCourse(this, 'STAT 324');">324</a>, or <a href="/search/?P=STAT%20371" title="STAT 371" class="bubblelink code" onclick="return showCourse(this, 'STAT 371');">371</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Gen Ed - Quantitative Reasoning Part B<br/> Breadth - Natural Science<br/> Level - Intermediate<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 303</span> — R FOR STATISTICS I</strong></p> <p class="courseblockcredits">1 credit.</p> <p class="courseblockdesc noindent"> An understanding of the commonly used statistical language R. Topics will include using R to manipulate data and perform exploratory data analysis.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20240" title="STAT 240" class="bubblelink code" onclick="return showCourse(this, 'STAT 240');">STAT 240</a>, <a href="/search/?P=STAT%20301" title="STAT 301" class="bubblelink code" onclick="return showCourse(this, 'STAT 301');">301</a>, 302, <a href="/search/?P=STAT%20312" title="STAT 312" class="bubblelink code" onclick="return showCourse(this, 'STAT 312');">312</a>, <a href="/search/?P=STAT%20324" title="STAT 324" class="bubblelink code" onclick="return showCourse(this, 'STAT 324');">324</a>, <a href="/search/?P=STAT%20371" title="STAT 371" class="bubblelink code" onclick="return showCourse(this, 'STAT 371');">371</a>, <a href="/search/?P=MATH%20310" title="MATH/​STAT  310" class="bubblelink code" onclick="return showCourse(this, 'MATH 310');">MATH/​STAT  310</a>, <a href="/search/?P=ECON%20310" title="ECON 310" class="bubblelink code" onclick="return showCourse(this, 'ECON 310');">ECON 310</a>, GEN BUS 303, 304, <a href="/search/?P=GEN%20BUS%20306" title="GEN BUS 306" class="bubblelink code" onclick="return showCourse(this, 'GEN BUS 306');">306</a>, <a href="/search/?P=GEN%20BUS%20307" title="GEN BUS 307" class="bubblelink code" onclick="return showCourse(this, 'GEN BUS 307');">307</a>, <a href="/search/?P=GEN%20BUS%20317" title="GEN BUS 317" class="bubblelink code" onclick="return showCourse(this, 'GEN BUS 317');">317</a>, <a href="/search/?P=PSYCH%20210" title="PSYCH 210" class="bubblelink code" onclick="return showCourse(this, 'PSYCH 210');">PSYCH 210</a>, <a href="/search/?P=B%20M%20E%20325" title="B M E 325" class="bubblelink code" onclick="return showCourse(this, 'B M E 325');">B M E 325</a>, <a href="/search/?P=I%20SY%20E%20210" title="I SY E 210" class="bubblelink code" onclick="return showCourse(this, 'I SY E 210');">I SY E 210</a>, <a href="/search/?P=SOC%20360" title="SOC/​C&amp;E SOC  360" class="bubblelink code" onclick="return showCourse(this, 'SOC 360');">SOC/​C&amp;E SOC  360</a>, graduate/professional standing, or declared in Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Intermediate<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Use basic R vocabulary<br/>Audience: Undergraduate<br/><br/>2. Manipulate data in R<br/>Audience: Undergraduate<br/><br/>3. Produce graphics and reports<br/>Audience: Undergraduate<br/><br/>4. Apply statistical methods<br/>Audience: Undergraduate<br/><br/>5. Run basic simulations<br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 304</span> — R FOR STATISTICS II</strong></p> <p class="courseblockcredits">1 credit.</p> <p class="courseblockdesc noindent"> Provides an understanding of the commonly used statistical language R. Topics will include writing conditional expressions, loops, and functions; manipulating data matrices and arrays; extracting data from text; and making high level visualizations of data.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20303" title="STAT 303" class="bubblelink code" onclick="return showCourse(this, 'STAT 303');">STAT 303</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Intermediate<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 305</span> — R FOR STATISTICS III</strong></p> <p class="courseblockcredits">1 credit.</p> <p class="courseblockdesc noindent"> Provides an understanding of the commonly used statistical language R. Learn to combine R with high performance computing tools to do scientific computing.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20304" title="STAT 304" class="bubblelink code" onclick="return showCourse(this, 'STAT 304');">STAT 304</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Intermediate<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​MATH  309</span> — INTRODUCTION TO PROBABILITY AND MATHEMATICAL STATISTICS I</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Probability and combinatorial methods, discrete and continuous, univariate and multivariate distributions, expected values, moments, normal distribution and derived distributions, estimation.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=MATH%20234" title="MATH 234" class="bubblelink code" onclick="return showCourse(this, 'MATH 234');">MATH 234</a>, <a href="/search/?P=MATH%20376" title="MATH 376" class="bubblelink code" onclick="return showCourse(this, 'MATH 376');">376</a>, or concurrent enrollment. Not open to students with credit for <a href="/search/?P=STAT%20431" title="STAT/​MATH  431" class="bubblelink code" onclick="return showCourse(this, 'STAT 431');">STAT/​MATH  431</a> or <a href="/search/?P=STAT%20311" title="STAT 311" class="bubblelink code" onclick="return showCourse(this, 'STAT 311');">STAT 311</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Recall the definitions of fundamental objects and concepts underlying probability theory (e.g. sample spaces and events, the axioms of probability, the notions of conditional probability and independence, random variables and their probability distributions, mathematical expectation, and the joint distribution of one or more random variables) and demonstrate understanding of their properties<br/>Audience: Undergraduate<br/><br/>2. Perform important operations in probability (e.g. calculate the probabilities of events, derive the probability distributions of random variables, compute moments and the expectation of functions of random variables, calculate covariances and correlations, and obtain conditional distributions and conditional expectations) and interpret the results<br/>Audience: Undergraduate<br/><br/>3. Explain the meaning of key results in probability theory that are especially important in mathematical statistics (e.g. Bayes’ Theorem, probabilistic tail inequalities such as Markov’s and Chebyshev’s inequalities, the Law of Large Numbers, and the Central Limit Theorem)<br/>Audience: Undergraduate<br/><br/>4. Identify, utilize, and understand the key properties of, probability distributions that are especially important in statistics, including discrete families of distributions (e.g. the binomial, Poisson, geometric, and negative binomial distributions) and continuous families of distributions (e.g. the uniform, exponential, gamma, and normal distributions)<br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​MATH  310</span> — INTRODUCTION TO PROBABILITY AND MATHEMATICAL STATISTICS II</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Mathematical statistical inference aims at providing an understanding of likelihood's central role to statistical inference, using the language of mathematical statistics to analyze statistical procedures, and using the computer as a tool for understanding statistics. Specific topics include: samples and populations, estimation, hypothesis testing, and theoretical properties of statistical inference.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">(<a href="/search/?P=STAT%20309" title="STAT/​MATH  309" class="bubblelink code" onclick="return showCourse(this, 'STAT 309');">STAT/​MATH  309</a>, <a href="/search/?P=STAT%20311" title="STAT 311" class="bubblelink code" onclick="return showCourse(this, 'STAT 311');">STAT 311</a>, <a href="/search/?P=STAT%20431" title="STAT/​MATH  431" class="bubblelink code" onclick="return showCourse(this, 'STAT 431');">STAT/​MATH  431</a>, or <a href="/search/?P=MATH%20531" title="MATH 531" class="bubblelink code" onclick="return showCourse(this, 'MATH 531');">MATH 531</a>) and (<a href="/search/?P=STAT%20240" title="STAT 240" class="bubblelink code" onclick="return showCourse(this, 'STAT 240');">STAT 240</a>, <a href="/search/?P=STAT%20301" title="STAT 301" class="bubblelink code" onclick="return showCourse(this, 'STAT 301');">STAT 301</a>, STAT 302, <a href="/search/?P=STAT%20324" title="STAT 324" class="bubblelink code" onclick="return showCourse(this, 'STAT 324');">STAT 324</a>, <a href="/search/?P=STAT%20371" title="STAT 371" class="bubblelink code" onclick="return showCourse(this, 'STAT 371');">STAT 371</a>, or <a href="/search/?P=ECON%20310" title="ECON 310" class="bubblelink code" onclick="return showCourse(this, 'ECON 310');">ECON 310</a>), or graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Construct point estimators including maximum likelihood estimators, understand the theoretical properties of point estimation methods, and evaluate their performance<br/>Audience: Undergraduate<br/><br/>2. Construct hypothesis tests including likelihood ratio tests, interpret their results, evaluate their performance, and understand the theoretical properties of hypothesis testing methods<br/>Audience: Undergraduate<br/><br/>3. Construct interval estimators to quantify uncertainty, understand the theoretical properties of interval estimation methods, and interpret their results<br/>Audience: Undergraduate<br/><br/>4. Mathematically derive key quantities required for statistical inference methods and be familiar with simulation-based techniques for obtaining those quantities<br/>Audience: Undergraduate<br/><br/>5. Describe the Bayesian approach to inference and contrast it with the frequentist approach<br/>Audience: Undergraduate<br/><br/>6. Identify and describe the assumptions underlying methods of statistical inference and explain their importance<br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 311</span> — INTRODUCTION TO THEORY AND METHODS OF MATHEMATICAL STATISTICS I</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Elements of probability, important discrete distributions, acceptance sampling by attributes, sample characteristics, probability distributions and population characteristics, the normal distribution, acceptance sampling plans based on sample means and variances, sampling from the normal, the central limit theorem, point and interval estimation.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=MATH%20234" title="MATH 234" class="bubblelink code" onclick="return showCourse(this, 'MATH 234');">MATH 234</a>, <a href="/search/?P=MATH%20376" title="MATH 376" class="bubblelink code" onclick="return showCourse(this, 'MATH 376');">376</a>, or concurrent enrollment or graduate/professsional standing. Not open to students with credit for <a href="/search/?P=STAT%20309" title="STAT/​MATH  309" class="bubblelink code" onclick="return showCourse(this, 'STAT 309');">STAT/​MATH  309</a> or <a href="/search/?P=STAT%20431" title="STAT/​MATH  431" class="bubblelink code" onclick="return showCourse(this, 'STAT 431');">STAT/​MATH  431</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 312</span> — INTRODUCTION TO THEORY AND METHODS OF MATHEMATICAL STATISTICS II</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Unbiased estimation, maximum likelihood estimation, confidence intervals, tests of hypotheses, Neyman-Pearson lemma, likelihood ratio test, regression, analysis of variance with applications.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20309" title="STAT/​MATH  309" class="bubblelink code" onclick="return showCourse(this, 'STAT 309');">STAT/​MATH  309</a>, <a href="/search/?P=STAT%20311" title="STAT 311" class="bubblelink code" onclick="return showCourse(this, 'STAT 311');">STAT 311</a>, <a href="/search/?P=STAT%20431" title="STAT/​MATH  431" class="bubblelink code" onclick="return showCourse(this, 'STAT 431');">STAT/​MATH  431</a>, <a href="/search/?P=MATH%20531" title="MATH 531" class="bubblelink code" onclick="return showCourse(this, 'MATH 531');">MATH 531</a>, or graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Be able to use probability theory to understand and utilize three principal tools of statistical inference: point estimators, confidence intervals, and hypothesis tests.<br/>Audience: Undergraduate<br/><br/>2. Understand and be able to use standard statistical procedures for analyzing numerical data in certain contexts. These include inference for the mean based on a single random sample; comparing two means based on two random samples; Analysis of Variance; simple linear regression.<br/>Audience: Undergraduate<br/><br/>3. Understand and be able to use standard statistical procedures for analyzing binary and categorical data in certain contexts. These include one- and two-sample inference for proportions, and the analysis of one- and two-way contingency tables for multi-category data. <br/>Audience: Undergraduate<br/><br/>4. Identify the assumptions behind statistical procedures and understand their importance. Be able to recognize when techniques based on standard reference distributions (normal, chi-square, T- and F-distribution) are valid or not, and be able to utilize certain alternatives such as exact or nonparametric methods when they are required or preferable.<br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 324</span> — INTRODUCTORY APPLIED STATISTICS FOR ENGINEERS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Descriptive statistics, probability concepts and distributions, random variables. Hypothesis tests and confidence intervals for one- and two-sample problems. Linear regression, model checking, and inference. Analysis of variance and basic ideas in experimental design. Utilizes the R programming language.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=MATH%20211" title="MATH 211" class="bubblelink code" onclick="return showCourse(this, 'MATH 211');">MATH 211</a>, <a href="/search/?P=MATH%20217" title="MATH 217" class="bubblelink code" onclick="return showCourse(this, 'MATH 217');">217</a>, or <a href="/search/?P=MATH%20221" title="MATH 221" class="bubblelink code" onclick="return showCourse(this, 'MATH 221');">221</a>. Not open to students with credit for STAT 302 or <a href="/search/?P=STAT%20371" title="STAT 371" class="bubblelink code" onclick="return showCourse(this, 'STAT 371');">371</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Intermediate<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Articulate the basics of probability and statistics.<br/>Audience: Undergraduate<br/><br/>2. Make numeric and graphical summaries of simple data<br/>Audience: Undergraduate<br/><br/>3. Produce appropriate statistical analyses of simple data sets<br/>Audience: Undergraduate<br/><br/>4. Design simple experiments with data that will suit basic statistical analysis<br/>Audience: Undergraduate<br/><br/>5. Use R for statistical computations and graphs<br/>Audience: Undergraduate<br/><br/>6. Learn additional statistical methods<br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock gradcap "> <p class="courseblocktitle noindent"><strong><i class="fa fa-graduation-cap" aria-hidden="false"></i> <span class="courseblockcode">STAT 333</span> — APPLIED REGRESSION ANALYSIS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> An introduction to regression with emphasis on the practical aspects. Topics include: straight-line model, role of assumptions, residual analysis, transformations, multiple regression (with some use of matrix notation), multicollinearity, subset selection, and a brief introduction to mixed models.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">(<a href="/search/?P=STAT%20240" title="STAT 240" class="bubblelink code" onclick="return showCourse(this, 'STAT 240');">STAT 240</a>, <a href="/search/?P=STAT%20301" title="STAT 301" class="bubblelink code" onclick="return showCourse(this, 'STAT 301');">301</a>, 302, <a href="/search/?P=STAT%20312" title="STAT 312" class="bubblelink code" onclick="return showCourse(this, 'STAT 312');">312</a>, <a href="/search/?P=STAT%20324" title="STAT 324" class="bubblelink code" onclick="return showCourse(this, 'STAT 324');">324</a>, <a href="/search/?P=STAT%20371" title="STAT 371" class="bubblelink code" onclick="return showCourse(this, 'STAT 371');">371</a>, <a href="/search/?P=ECON%20310" title="ECON 310" class="bubblelink code" onclick="return showCourse(this, 'ECON 310');">ECON 310</a>, <a href="/search/?P=B%20M%20E%20325" title="B M E 325" class="bubblelink code" onclick="return showCourse(this, 'B M E 325');">B M E 325</a>, or <a href="/search/?P=I%20SY%20E%20210" title="I SY E 210" class="bubblelink code" onclick="return showCourse(this, 'I SY E 210');">I SY E 210</a>) and (STAT 327 or <a href="/search/?P=STAT%20303" title="STAT 303" class="bubblelink code" onclick="return showCourse(this, 'STAT 303');">303</a>, or concurrent enrollment)</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Gen Ed - Quantitative Reasoning Part B<br/> Breadth - Natural Science<br/> Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Correctly choose and apply common regression methods that are used in practice to analyze data, including simple and multiple linear regressions, ANOVAs/ANCOVAs, generalized linear models (e.g. logistic and Poisson) and fixed/random/mixed effect models<br/>Audience: Undergraduate<br/><br/>2. Identify the underlying assumptions behind common regression methods and utilize diagnostic tools to detect violations of said assumptions<br/>Audience: Undergraduate<br/><br/>3. Correctly interpret and explain results from regression methods, including interpretation of the coefficients, the p-values, R-squared, and other statistical summaries from regression<br/>Audience: Undergraduate<br/><br/>4. Apply these methods to real data using the free statistical software R <br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 340</span> — DATA SCIENCE MODELING II</strong></p> <p class="courseblockcredits">4 credits.</p> <p class="courseblockdesc noindent"> Teaches how to explore, model, and analyze data using R. Topics include basic probability models; the central limit theorem; Monte Carlo simulation; one- and two-sample hypothesis testing; Bayesian inference; linear and logistic regression; ANOVA; the bootstrap; random forests and cross-validation. Features the analysis of real-world data sets and the communication of findings in a clear and reproducible manner within a project setting.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">(<a href="/search/?P=MATH%20211" title="MATH 211" class="bubblelink code" onclick="return showCourse(this, 'MATH 211');">MATH 211</a>, <a href="/search/?P=MATH%20217" title="MATH 217" class="bubblelink code" onclick="return showCourse(this, 'MATH 217');">217</a>, or <a href="/search/?P=MATH%20221" title="MATH 221" class="bubblelink code" onclick="return showCourse(this, 'MATH 221');">221</a>) and <a href="/search/?P=STAT%20240" title="STAT 240" class="bubblelink code" onclick="return showCourse(this, 'STAT 240');">STAT 240</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Intermediate<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Understand and apply basic concepts in probability; combine basic probability models to build more complicated ones; and critique models and their assumptions<br/>Audience: Undergraduate<br/><br/>2. Formulate statistical hypotheses for different kinds of research questions and test those hypotheses using both classical and Monte Carlo methods.<br/>Audience: Undergraduate<br/><br/>3. Understand and apply principles of statistical estimation and prediction, including fitting models and assessing model quality, in the context of both linear and logistic regression.<br/>Audience: Undergraduate<br/><br/>4. Apply statistical tools to answer research questions using real-world data and present these findings clearly in both spoken and written form to non-experts.<br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 349</span> — INTRODUCTION TO TIME SERIES</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Autocorrelation; stationarity and non-stationarity; heteroscedasticity; dynamic models; auto-regressive and moving average models; identification and fitting; forecasting; seasonal adjustment; applications for financial time series, social sciences and environmental studies.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20333" title="STAT 333" class="bubblelink code" onclick="return showCourse(this, 'STAT 333');">STAT 333</a>, <a href="/search/?P=STAT%20340" title="STAT 340" class="bubblelink code" onclick="return showCourse(this, 'STAT 340');">340</a>, graduate/professional standing, or declared in Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 351</span> — INTRODUCTORY NONPARAMETRIC STATISTICS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Distribution free statistical procedures or methods valid under nonrestrictive assumptions: basic tools; counting methods; order statistics, ranks, empirical distribution functions; distribution free tests and associated interval and point estimators; sign test; signed rank tests; rank tests; Mann Whitney Wilcoxon procedures; Kolmogorov Smirnov tests; permutation methods; kernel density estimation; kernel and spline regression estimation; computer techniques and programs; discussion and comparison with parametric methods.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20333" title="STAT 333" class="bubblelink code" onclick="return showCourse(this, 'STAT 333');">STAT 333</a>, <a href="/search/?P=STAT%20340" title="STAT 340" class="bubblelink code" onclick="return showCourse(this, 'STAT 340');">340</a>, graduate/professional standing, or declared in Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 360</span> — TOPICS IN STATISTICS STUDY ABROAD</strong></p> <p class="courseblockcredits">1-3 credits.</p> <p class="courseblockdesc noindent"> Credit is awarded for students having completed an advanced statistics course in a study abroad program for which there is no direct equivalence to the statistics department course offerings. The study abroad course must be pre-approved by the statistics department. Enrollment in a UW-Madison resident study abroad program.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">None</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">Yes, unlimited number of completions</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock gradcap "> <p class="courseblocktitle noindent"><strong><i class="fa fa-graduation-cap" aria-hidden="false"></i> <span class="courseblockcode">STAT 371</span> — INTRODUCTORY APPLIED STATISTICS FOR THE LIFE SCIENCES</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Introduction to modern statistical practice in the life sciences, using the R programming language. Topics include: exploratory data analysis, probability and random variables; one-sample testing and confidence intervals, role of assumptions, sample size determination, two-sample inference; basic ideas in experimental design, analysis of variance, linear regression, goodness-of fit; biological applications.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">(<a href="/search/?P=MATH%20112" title="MATH 112" class="bubblelink code" onclick="return showCourse(this, 'MATH 112');">MATH 112</a> and placed out of <a href="/search/?P=MATH%20113" title="MATH 113" class="bubblelink code" onclick="return showCourse(this, 'MATH 113');">MATH 113</a>), (<a href="/search/?P=MATH%20113" title="MATH 113" class="bubblelink code" onclick="return showCourse(this, 'MATH 113');">MATH 113</a> and placed out of <a href="/search/?P=MATH%20112" title="MATH 112" class="bubblelink code" onclick="return showCourse(this, 'MATH 112');">MATH 112</a>), (<a href="/search/?P=MATH%20112" title="MATH 112" class="bubblelink code" onclick="return showCourse(this, 'MATH 112');">MATH 112</a> and <a href="/search/?P=MATH%20113" title="MATH 113" class="bubblelink code" onclick="return showCourse(this, 'MATH 113');">113</a>), <a href="/search/?P=MATH%20114" title="MATH 114" class="bubblelink code" onclick="return showCourse(this, 'MATH 114');">MATH 114</a>, <a href="/search/?P=MATH%20171" title="MATH 171" class="bubblelink code" onclick="return showCourse(this, 'MATH 171');">171</a>, <a href="/search/?P=MATH%20211" title="MATH 211" class="bubblelink code" onclick="return showCourse(this, 'MATH 211');">211</a> or <a href="/search/?P=MATH%20221" title="MATH 221" class="bubblelink code" onclick="return showCourse(this, 'MATH 221');">221</a> or placement in <a href="/search/?P=MATH%20221" title="MATH 221" class="bubblelink code" onclick="return showCourse(this, 'MATH 221');">MATH 221</a>. Not open to students with credit for STAT 302 or <a href="/search/?P=STAT%20324" title="STAT 324" class="bubblelink code" onclick="return showCourse(this, 'STAT 324');">324</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Gen Ed - Quantitative Reasoning Part B<br/> Breadth - Natural Science<br/> Level - Intermediate<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Articulate the basics of probability and statistics<br/>Audience: Undergraduate<br/><br/>2. Make numeric and graphical summaries of simple data<br/>Audience: Undergraduate<br/><br/>3. Produce appropriate statistical analyses of simple data sets<br/>Audience: Undergraduate<br/><br/>4. Design simple experiments whose data will suit basic statistical analysis<br/>Audience: Undergraduate<br/><br/>5. Use RStudio, a free statistical software package, for statistical computations and graphs<br/>Audience: Undergraduate<br/><br/>6. Study and learn additional statistical methods<br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​COMP SCI  403</span> — INTERNSHIP COURSE IN COMP SCI AND DATA SCIENCE</strong></p> <p class="courseblockcredits">1 credit.</p> <p class="courseblockdesc noindent"> Enables students with outside internships to earn academic credit connected to their work experience related to the Computer Sciences or Data Science programs.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Consent of instructor</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Intermediate<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">Yes, for 3 number of completions</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Understand the challenges and opportunities in Computer Sciences and Data Science professions<br/>Audience: Undergraduate<br/><br/>2. Be prepared to find, apply and interview for a job and/or additional education<br/>Audience: Undergraduate<br/><br/>3. Articulate your career goals and long-term trajectory<br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 405</span> — DATA SCIENCE COMPUTING PROJECT</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> The development of tools necessary for collecting, managing, and analyzing large data sets. Examples of techniques and programs used include Linux, R, distributed computing, text editor(s), git/github, and other related tools. Work in teams to research, develop, write, and make presentations related to a variety of data analysis projects.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">(<a href="/search/?P=STAT%20240" title="STAT 240" class="bubblelink code" onclick="return showCourse(this, 'STAT 240');">STAT 240</a> or <a href="/search/?P=STAT%20303" title="STAT 303" class="bubblelink code" onclick="return showCourse(this, 'STAT 303');">303</a>) and (<a href="/search/?P=COMP%20SCI%20200" title="COMP SCI 200" class="bubblelink code" onclick="return showCourse(this, 'COMP SCI 200');">COMP SCI 200</a>, <a href="/search/?P=COMP%20SCI%20220" title="COMP SCI 220" class="bubblelink code" onclick="return showCourse(this, 'COMP SCI 220');">220</a>, <a href="/search/?P=COMP%20SCI%20300" title="COMP SCI 300" class="bubblelink code" onclick="return showCourse(this, 'COMP SCI 300');">300</a>, or placement into <a href="/search/?P=COMP%20SCI%20300" title="COMP SCI 300" class="bubblelink code" onclick="return showCourse(this, 'COMP SCI 300');">COMP SCI 300</a>), or graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Intermediate<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Collect and manage data and write programs and documentation viatools suited to large computations including an operating system, aneditor, and a version control system.<br/>Audience: Undergraduate<br/><br/>2. Run analyses too large for a laptop on cluster, grid, and/or cloudcomputing environments.<br/>Audience: Undergraduate<br/><br/>3. Work in teams to research, develop, write, and make presentations ona data analysis proposal, a draft data analysis, and a revised dataanalysis.<br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 411</span> — AN INTRODUCTION TO SAMPLE SURVEY THEORY AND METHODS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> An introduction to the methods used to design sample surveys and analyze the results. Topics covered include: basic tools, simple random sampling, ratio and regression estimation, stratification, systematic sampling, cluster (area) sampling, two-stage sampling, unequal probability sampling, non-sampling errors, and missing data. For illustration and clarification, examples are drawn from diverse areas of application.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20333" title="STAT 333" class="bubblelink code" onclick="return showCourse(this, 'STAT 333');">STAT 333</a>, <a href="/search/?P=STAT%20340" title="STAT 340" class="bubblelink code" onclick="return showCourse(this, 'STAT 340');">340</a>, graduate/professional standing, or declared in Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Intermediate<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2023</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 421</span> — APPLIED CATEGORICAL DATA ANALYSIS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Analysis of multidimensional contingency tables, Poisson regression, and logistic regression, with emphasis on practical applications. Use of computer programs for such analyses. Model selection, testing goodness of fit, estimation of parameters, measures of association and methods for detecting sources of significance.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20333" title="STAT 333" class="bubblelink code" onclick="return showCourse(this, 'STAT 333');">STAT 333</a>, <a href="/search/?P=STAT%20340" title="STAT 340" class="bubblelink code" onclick="return showCourse(this, 'STAT 340');">340</a>, graduate/professional standing, or declared in Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​M E  424</span> — STATISTICAL EXPERIMENTAL DESIGN</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Introduction to statistical design and analysis of experiments. Topics include: principles of randomization, blocking and replication, randomized blocking designs, Latin square designs, full factorial and fractional factorial designs and response surface methodology. Substantial focus will be devoted to engineering applications.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20240" title="STAT 240" class="bubblelink code" onclick="return showCourse(this, 'STAT 240');">STAT 240</a>, <a href="/search/?P=STAT%20301" title="STAT 301" class="bubblelink code" onclick="return showCourse(this, 'STAT 301');">301</a>, 302, <a href="/search/?P=STAT%20312" title="STAT 312" class="bubblelink code" onclick="return showCourse(this, 'STAT 312');">312</a>, <a href="/search/?P=STAT%20324" title="STAT 324" class="bubblelink code" onclick="return showCourse(this, 'STAT 324');">324</a>, <a href="/search/?P=STAT%20371" title="STAT 371" class="bubblelink code" onclick="return showCourse(this, 'STAT 371');">371</a>, or <a href="/search/?P=MATH%20310" title="MATH/​STAT  310" class="bubblelink code" onclick="return showCourse(this, 'MATH 310');">MATH/​STAT  310</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​MATH  431</span> — INTRODUCTION TO THE THEORY OF PROBABILITY</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Topics covered include axioms of probability, random variables, the most important discrete and continuous probability distributions, expectation and variance, moment generating functions, conditional probability and conditional expectations, multivariate distributions, Markov's and Chebyshev's inequalities, laws of large numbers, and the central limit theorem.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=MATH%20234" title="MATH 234" class="bubblelink code" onclick="return showCourse(this, 'MATH 234');">MATH 234</a> or <a href="/search/?P=MATH%20376" title="MATH 376" class="bubblelink code" onclick="return showCourse(this, 'MATH 376');">376</a> or graduate/professional standing or member of the Pre-Masters Mathematics (Visiting International) Program</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Recall and state the formal definitions of the mathematical objects and their properties used in probability theory (e.g., probability spaces, random variables and random vectors and their probability distributions, named distributions, conditional probability, independence, linearity of expectation, etc.).<br/>Audience: Undergraduate<br/><br/>2. Use such definitions to argue that a mathematical object does or does not have the condition of being a particular type or having a particular property (e.g., whether certain events or random variables are independent or not, whether a random variable has one of the named distributions, whether or not a sequence of random variables is exchangeable, etc.).<br/>Audience: Undergraduate<br/><br/>3. Recall and state the standard theorems of probability theory. (e.g., Bayes' theorem, the law of large numbers, the central limit theorem, etc.), and apply these theorems to solve problems in probability theory.<br/>Audience: Undergraduate<br/><br/>4. Use multiple approaches to compute and estimate probabilities and expectations (e.g., using the indicator method, using conditioning, estimating probabilities using normal or Poisson approximation etc.).<br/>Audience: Undergraduate<br/><br/>5. Construct mathematical arguments related to the above definitions, properties, and theorems, including the construction of examples and counterexamples.<br/>Audience: Undergraduate<br/><br/>6. Convey his or her arguments in oral and written forms using English and appropriate mathematical terminology and notation (and grammar).<br/>Audience: Undergraduate<br/><br/>7. Model simple real-life situations using techniques in probability theory and calculate probabilities and expectations associated with those models.<br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 433</span> — DATA SCIENCE WITH R</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Perform Data Science as an iterative (back and forth) process of four different types of activities (data collection, data wrangling, data analysis, communication). Traverse through the five requisite stances (scientist, coder, mathematician, methodologist, skeptic). Develop and hone a broad set of computational tools in R (but not the broadest) and a broad set of statistical/machine learning tools (but not the broadest). Focus on doing these with agility to make the coding &quot;transparent&quot; and serve the large goals of the project.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">(<a href="/search/?P=STAT%20333" title="STAT 333" class="bubblelink code" onclick="return showCourse(this, 'STAT 333');">STAT 333</a> or <a href="/search/?P=STAT%20340" title="STAT 340" class="bubblelink code" onclick="return showCourse(this, 'STAT 340');">340</a>) and (<a href="/search/?P=MATH%20320" title="MATH 320" class="bubblelink code" onclick="return showCourse(this, 'MATH 320');">MATH 320</a>, <a href="/search/?P=MATH%20340" title="MATH 340" class="bubblelink code" onclick="return showCourse(this, 'MATH 340');">340</a>, <a href="/search/?P=MATH%20341" title="MATH 341" class="bubblelink code" onclick="return showCourse(this, 'MATH 341');">341</a>, or <a href="/search/?P=MATH%20375" title="MATH 375" class="bubblelink code" onclick="return showCourse(this, 'MATH 375');">375</a>), graduate/professional standing, or declared in Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Intermediate<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2022</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Describe and apply the key steps taken in most data science projects and how these steps fit into a coherent whole<br/>Audience: Undergraduate<br/><br/>2. Identify how a data set can be used for a specific purpose<br/>Audience: Undergraduate<br/><br/>3. Clean and analyze data<br/>Audience: Undergraduate<br/><br/>4. Communicate the results of data analysis<br/>Audience: Undergraduate<br/><br/>5. Develop agile and reproducible code that enables iterative development of a data science project using the tools in the tidyverse<br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 436</span> — STATISTICAL DATA VISUALIZATION</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Techniques for visualization within data science workflows. Topics include data preparation; exploratory data analysis; spatial, tabular, and graph structured data; dimensionality reduction; model visualization and interpretability; interactive queries and navigation.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">(<a href="/search/?P=STAT%20240" title="STAT 240" class="bubblelink code" onclick="return showCourse(this, 'STAT 240');">STAT 240</a> or <a href="/search/?P=STAT%20303" title="STAT 303" class="bubblelink code" onclick="return showCourse(this, 'STAT 303');">303</a>), graduate professional/standing, or declared in Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Intermediate<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Apply preprocessing strategies, including outlier removal, missing data imputation, and tidying, in a way that supports downstream visualization<br/>Audience: Undergraduate<br/><br/>2. Develop a vocabulary of visual encoding that support exploration of geospatial, temporal, tree-structured, and network data, and demonstrate facility implementing them using packages in the R programming language<br/>Audience: Undergraduate<br/><br/>3. Design dynamic queries that support interactive visualization of heterogenous data and demonstrate facility implementing them using the shiny package in the R programming language<br/>Audience: Undergraduate<br/><br/>4. Design effective visualizations to summarize the results of dimensionality reduction and clustering algorithms<br/>Audience: Undergraduate<br/><br/>5. Use visual artifacts derived from complex statistical machine learning models to discuss the patterns they learn and mistakes they make<br/>Audience: Undergraduate<br/><br/>6. Recognize chart junk in real-word visualizations and propose improved alternatives<br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 443</span> — CLASSIFICATION AND REGRESSION TREES</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Introduction to algorithms and applications of classification and regression trees. Recursive partitioning, pruning, and cross-validation estimation of prediction error. Class priors and misclassification costs. Univariate and linear splits. Linear and kernel discriminant analysis and nearest-neighbor classification. Unbiased variable selection and importance scoring of variables. Least-squares, quantile, Poisson, logistic, and proportional hazards regression tree models. Tree ensembles. Subgroup identification of differential treatment effects. Multiple and longitudinal response variables. Missing values and multiple missing value codes. Comparisons with neural networks, support vector machines, and other methods. Bootstrap calibration and post-selection inference. Applications to business, social science, engineering, biology, medicine, and other fields.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20333" title="STAT 333" class="bubblelink code" onclick="return showCourse(this, 'STAT 333');">STAT 333</a>, <a href="/search/?P=STAT%20340" title="STAT 340" class="bubblelink code" onclick="return showCourse(this, 'STAT 340');">340</a>, graduate/professional standing, or declared in Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Either Social Science or Natural Science<br/> Level - Intermediate<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2022</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Know the weaknesses and limitations of traditional statistical modeling methods<br/>Audience: Undergraduate<br/><br/>2. Understand the strengths and capabilities of the classification and regression tree approach<br/>Audience: Undergraduate<br/><br/>3. Learn to analyze data with missing values without missing value imputation<br/>Audience: Undergraduate<br/><br/>4. Learn to analyze data containing circular or periodic variables, such as angle of impact, time of day, day of week, and month of year<br/>Audience: Undergraduate<br/><br/>5. Learn how to build regression tree models for least squares regression, logistic regression, Poisson regression, quantile regression, and proportional hazards regression<br/>Audience: Undergraduate<br/><br/>6. Learn how to build prediction models for univariate, multivariate, longitudinal, and censored dependent variables<br/>Audience: Undergraduate<br/><br/>7. Learn to use GUIDE and R software for algorithms such as AMELIA and MICE (for missing value imputation), and RPART, MOB, random Forest (for tree and forest models)<br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 451</span> — INTRODUCTION TO MACHINE LEARNING AND STATISTICAL PATTERN CLASSIFICATION</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Pattern classification, regression analysis, clustering, and dimensionality reduction. For each category, covers fundamental algorithms and selections of contemporary, current state-of-the-art algorithms. Focus on evaluation of machine learning models using statistical methods. Statistical pattern classification approaches, including maximum likelihood estimation and Bayesian decision theory, algorithmic and nonparametric approaches. Practical use of machine learning algorithms using open source libraries from the Python programming ecosystem.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=MATH%20320" title="MATH 320" class="bubblelink code" onclick="return showCourse(this, 'MATH 320');">MATH 320</a>, <a href="/search/?P=MATH%20321" title="MATH 321" class="bubblelink code" onclick="return showCourse(this, 'MATH 321');">321</a>, <a href="/search/?P=MATH%20340" title="MATH 340" class="bubblelink code" onclick="return showCourse(this, 'MATH 340');">340</a>, <a href="/search/?P=MATH%20341" title="MATH 341" class="bubblelink code" onclick="return showCourse(this, 'MATH 341');">341</a>, <a href="/search/?P=MATH%20375" title="MATH 375" class="bubblelink code" onclick="return showCourse(this, 'MATH 375');">375</a>, graduate/professional standing, or declared in Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Understand the different subfields of machine learning, such as supervised and unsupervised learning and being familiar with essential algorithms from each subfield.<br/>Audience: Undergraduate<br/><br/>2. Identify whether machine learning is appropriate for solving a given problem task and which class of algorithms is best suited for real-world problem solving.<br/>Audience: Undergraduate<br/><br/>3. Use statistical learning theory to combine multiple machine learning models via ensemble methods.<br/>Audience: Undergraduate<br/><br/>4. Apply best-practices for statistical model evaluation, model selection and algorithm comparisons including suitable statistical hypothesis tests.<br/>Audience: Undergraduate<br/><br/>5. Use contemporary programming languages and machine learning libraries for implementing machine learning algorithms such that they can be readily applied for practical problem solving.<br/>Audience: Undergraduate<br/><br/>6. Connect concepts from probability theory with supervised learning by implementing models based on Bayes' theorem.<br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 453</span> — INTRODUCTION TO DEEP LEARNING AND GENERATIVE MODELS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Deep learning is a field that specializes in discovering and extracting intricate structures in large, unstructured datasets for parameterizing artificial neural networks with many layers. Since deep learning has pushed the state-of-the-art in many research and application areas, it's become indispensable for modern technology. Focuses on a understanding deep, artificial neural networks by connecting it to related concepts in statistics. Beyond covering deep learning models for predictive modeling, focus on deep generative models. Besides explanations on a mathematical and conceptual level, emphasize the practical aspects of deep learning. Open-source computing provides hands-on experience for implementing deep neural nets, working on supervised learning tasks, and applying generative models for dataset synthesis.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=MATH%20320" title="MATH 320" class="bubblelink code" onclick="return showCourse(this, 'MATH 320');">MATH 320</a>, <a href="/search/?P=MATH%20321" title="MATH 321" class="bubblelink code" onclick="return showCourse(this, 'MATH 321');">321</a>, <a href="/search/?P=MATH%20340" title="MATH 340" class="bubblelink code" onclick="return showCourse(this, 'MATH 340');">340</a>, <a href="/search/?P=MATH%20341" title="MATH 341" class="bubblelink code" onclick="return showCourse(this, 'MATH 341');">341</a>, <a href="/search/?P=MATH%20375" title="MATH 375" class="bubblelink code" onclick="return showCourse(this, 'MATH 375');">375</a>, graduate/professional standing, or declared in Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Develop an advanced understanding of deep learning and generative models, which represent state-of-the-art approaches for predictive modeling in today’s data-driven world.<br/>Audience: Undergraduate<br/><br/>2. Identify scenarios where it makes sense to deep learning for real-world problem-solving.<br/>Audience: Undergraduate<br/><br/>3. Build a repertoire of different algorithms and approaches to deep learning and understanding their various strengths and weaknesses.<br/>Audience: Undergraduate<br/><br/>4. Employ the Python programming language and Python’s scientific computing stack for implementing deep learning algorithms to 1) enhance the learning experience, 2) conduct research and be able to develop novel algorithms, and 3) apply deep learning to problem-solving in various fields and application areas.<br/>Audience: Undergraduate<br/><br/>5. Apply both the theoretical and practical concepts taught in this class to creative, real-world problem solving and communicating the outcome professionally in form of a scientific paper and a formal oral presentation.<br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 456</span> — APPLIED MULTIVARIATE ANALYSIS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Theory and applications of multivariate statistical methods. Basic concepts and statistical reasoning which underlie the techniques of multivariate analysis. Ideas rather than derivations stressed although basic models discussed to give the student some feeling for their adequacy in particular situations. Acquaintance with and use of existing computer programs in the multivariate analysis area.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">(<a href="/search/?P=STAT%20333" title="STAT 333" class="bubblelink code" onclick="return showCourse(this, 'STAT 333');">STAT 333</a> or <a href="/search/?P=STAT%20340" title="STAT 340" class="bubblelink code" onclick="return showCourse(this, 'STAT 340');">340</a>) and (<a href="/search/?P=MATH%20320" title="MATH 320" class="bubblelink code" onclick="return showCourse(this, 'MATH 320');">MATH 320</a>, <a href="/search/?P=MATH%20340" title="MATH 340" class="bubblelink code" onclick="return showCourse(this, 'MATH 340');">340</a>, <a href="/search/?P=MATH%20341" title="MATH 341" class="bubblelink code" onclick="return showCourse(this, 'MATH 341');">341</a>, or <a href="/search/?P=MATH%20375" title="MATH 375" class="bubblelink code" onclick="return showCourse(this, 'MATH 375');">375</a>), graduate/professional standing, or declared in Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 461</span> — FINANCIAL STATISTICS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Stochastic models and statistical methodologies are widely employed in modern finance. The models and their inferences are very important for academic research and financial practices. Financial stochastic models and their statistical inferences with applications to volatility analysis and risk management, introduction to discrete models such as binomial trees and GARCH and stochastic volatility models as well as simple continuous models like the Black-Scholes model. The focus will be on statistical inference, data analysis and risk management regarding these models.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">(<a href="/search/?P=STAT%20333" title="STAT 333" class="bubblelink code" onclick="return showCourse(this, 'STAT 333');">STAT 333</a>, <a href="/search/?P=STAT%20340" title="STAT 340" class="bubblelink code" onclick="return showCourse(this, 'STAT 340');">340</a>, or <a href="/search/?P=ECON%20410" title="ECON 410" class="bubblelink code" onclick="return showCourse(this, 'ECON 410');">ECON 410</a>) and (<a href="/search/?P=MATH%20309" title="MATH/​STAT  309" class="bubblelink code" onclick="return showCourse(this, 'MATH 309');">MATH/​STAT  309</a>, <a href="/search/?P=STAT%20311" title="STAT 311" class="bubblelink code" onclick="return showCourse(this, 'STAT 311');">STAT 311</a>, <a href="/search/?P=MATH%20331" title="MATH 331" class="bubblelink code" onclick="return showCourse(this, 'MATH 331');">MATH 331</a>, <a href="/search/?P=MATH%20431" title="MATH/​STAT  431" class="bubblelink code" onclick="return showCourse(this, 'MATH 431');">MATH/​STAT  431</a>, or <a href="/search/?P=MATH%20531" title="MATH 531" class="bubblelink code" onclick="return showCourse(this, 'MATH 531');">MATH 531</a>), graduate/professional standing, or declared in Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Understand basic stochastic models used in pricing financial instruments. <br/>Audience: Undergraduate<br/><br/>2. Develop statistical inferences for financial applications to volatility analysis and risk management. <br/>Audience: Undergraduate<br/><br/>3. Use computer packages to perform statistical analysis of financial data. <br/>Audience: Undergraduate<br/><br/>4. Interpret statistical analysis in the context of financial applications<br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​COMP SCI  471</span> — INTRODUCTION TO COMPUTATIONAL STATISTICS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Classical statistical procedures arise where closed-form mathematical expressions are available for various inference summaries (e.g. linear regression; analysis of variance). A major emphasis of modern statistics is the development of inference principles in cases where both more complex data structures are involved and where more elaborate computations are required. Topics from numerical linear algebra, optimization, Monte Carlo (including Markov chain Monte Carlo), and graph theory are developed, especially as they relate to statistical inference (e.g., bootstrapping, permutation, Bayesian inference, EM algorithm, multivariate analysis).<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20310" title="STAT/​MATH  310" class="bubblelink code" onclick="return showCourse(this, 'STAT 310');">STAT/​MATH  310</a> and (<a href="/search/?P=STAT%20333" title="STAT 333" class="bubblelink code" onclick="return showCourse(this, 'STAT 333');">STAT 333</a> or <a href="/search/?P=STAT%20340" title="STAT 340" class="bubblelink code" onclick="return showCourse(this, 'STAT 340');">340</a>), graduate/professional standing, or declared in Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Intermediate<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2020</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Use computational tools (alongside mathematical ones) to extract information from (a) the likelihood function, the central object of interest in frequentist statistics, and (b) the posterior distribution, the central object of interest in Bayesian statistics<br/>Audience: Undergraduate<br/><br/>2. Describe, understand the theoretical properties of, and implement basic algorithms for optimizing likelihood functions, including least squares and the IRLS algorithm, and the EM algorithm<br/>Audience: Undergraduate<br/><br/>3. Understand random numbers and pseudorandom numbers and how to distinguish them, and utilize a variety of techniques for generating random variates from a probability distribution<br/>Audience: Undergraduate<br/><br/>4. Use Monte Carlo methodology for such purposes as (a) carrying out a simulation study to study the properties of a statistical method, or (b) performing statistical inference via the bootstrap, or MCMC<br/>Audience: Undergraduate<br/><br/>5. Understand the use of graphical models for representing the structure of complex joint distributions, and be able to use computational tools to extract information from graphical models<br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​COMP SCI/​MATH  475</span> — INTRODUCTION TO COMBINATORICS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Problems of enumeration, distribution, and arrangement. Inclusion-exclusion principle. Generating functions and linear recurrence relations. Combinatorial identities. Graph coloring problems. Finite designs. Systems of distinct representatives and matching problems in graphs. Potential applications in the social, biological, and physical sciences. Puzzles. Problem solving.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">(<a href="/search/?P=MATH%20320" title="MATH 320" class="bubblelink code" onclick="return showCourse(this, 'MATH 320');">MATH 320</a>, <a href="/search/?P=MATH%20340" title="MATH 340" class="bubblelink code" onclick="return showCourse(this, 'MATH 340');">340</a>, <a href="/search/?P=MATH%20341" title="MATH 341" class="bubblelink code" onclick="return showCourse(this, 'MATH 341');">341</a>, or <a href="/search/?P=MATH%20375" title="MATH 375" class="bubblelink code" onclick="return showCourse(this, 'MATH 375');">375</a>) or graduate/professional standing or member of the Pre-Masters Mathematics (Visiting International) Program</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Understand basic counting strategies, such as staged thought-experiments, inclusion/exclusion, generating functions, and recurrence relations, and apply these strategies to solve a wide variety of counting problems.<br/>Audience: Undergraduate<br/><br/>2. Recall basic objects that are used in combinatorics, such as permutations and combinations of sets and multisets, binomial and multinomial coefficients, the Catalan numbers, the Stirling numbers, and the partition numbers.<br/>Audience: Undergraduate<br/><br/>3. Analyze a given combinatorial problem using the standard theorems of combinatorics, such as the pigeonhole principle, the Newton binomial theorem, the multinomial theorem, the Ramsey theorem, the Dilworth theorem, the Burnside theorem, and the Polya counting theorem.<br/>Audience: Undergraduate<br/><br/>4. Construct mathematical arguments related to combinatorial problems using the above definitions, properties, theorems, and counting strategies; including the construction of examples and counterexamples.<br/>Audience: Undergraduate<br/><br/>5. Convey his or her arguments in oral and written form in English, using appropriate mathematical terminology, notation, and grammar.<br/>Audience: Undergraduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 479</span> — SPECIAL TOPICS IN STATISTICS</strong></p> <p class="courseblockcredits">1-3 credits.</p> <p class="courseblockdesc noindent"> Special topics of interest in undergraduate students.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">None</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">Yes, unlimited number of completions</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​COMP SCI/​I SY E/​MATH  525</span> — LINEAR OPTIMIZATION</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Introduces optimization problems whose constraints are expressed by linear inequalities. Develops geometric and algebraic insights into the structure of the problem, with an emphasis on formal proofs. Presents the theory behind the simplex method, the main algorithm used to solve linear optimization problems. Explores duality theory and theorems of the alternatives.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=MATH%20320" title="MATH 320" class="bubblelink code" onclick="return showCourse(this, 'MATH 320');">MATH 320</a>, <a href="/search/?P=MATH%20340" title="MATH 340" class="bubblelink code" onclick="return showCourse(this, 'MATH 340');">340</a>, <a href="/search/?P=MATH%20341" title="MATH 341" class="bubblelink code" onclick="return showCourse(this, 'MATH 341');">341</a>, <a href="/search/?P=MATH%20375" title="MATH 375" class="bubblelink code" onclick="return showCourse(this, 'MATH 375');">375</a>, or <a href="/search/?P=MATH%20443" title="MATH 443" class="bubblelink code" onclick="return showCourse(this, 'MATH 443');">443</a> or graduate/professional standing or member of the Pre-Masters Mathematics (Visiting International) Program</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S<br/> Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Use linear programming to formulate real world decision problems.<br/>Audience: Both Grad &amp; Undergrad<br/><br/>2. Apply algorithms to solve linear programming problems and demonstrate their correctness.<br/>Audience: Both Grad &amp; Undergrad<br/><br/>3. Combine different proving techniques explored in class in an original way to show new results.<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​B M I  541</span> — INTRODUCTION TO BIOSTATISTICS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Course designed for the biomedical researcher. Topics include: descriptive statistics, hypothesis testing, estimation, confidence intervals, t-tests, chi-squared tests, analysis of variance, linear regression, correlation, nonparametric tests, survival analysis and odds ratio. Biomedical applications used for each topic.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing. Not open to students with credit for STAT 511 or <a href="/search/?P=POP%20HLTH%20551" title="POP HLTH/​B M I  551" class="bubblelink code" onclick="return showCourse(this, 'POP HLTH 551');">POP HLTH/​B M I  551</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Intermediate<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S<br/> Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Understand building blocks and fundamentals that support core themes of Biostatistics in the application of biomedicine and public health<br/>Audience: Both Grad &amp; Undergrad<br/><br/>2. Conduct basic statistical analyses of biomedical data<br/>Audience: Both Grad &amp; Undergrad<br/><br/>3. Use R for statistical computing<br/>Audience: Both Grad &amp; Undergrad<br/><br/>4. Critique methods and evidence from others' studies<br/>Audience: Graduate<br/><br/>5. Collaborate effectively with biostatisticians<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​B M I  542</span> — INTRODUCTION TO CLINICAL TRIALS I</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Intended for biomedical researchers interested in the design and analysis of clinical trials. Topics include definition of hypotheses, measures of effectiveness, sample size, randomization, data collection and monitoring, and issues in statistical analysis.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=B%20M%20I%20541" title="B M I/​STAT  541" class="bubblelink code" onclick="return showCourse(this, 'B M I 541');">B M I/​STAT  541</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Intermediate<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S<br/> Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Develop skills to critically review clinical trials literature<br/>Audience: Graduate<br/><br/>2. Formulate focused research questions, specific aims, and key outcomes<br/>Audience: Graduate<br/><br/>3. Recognize the strengths and weaknesses of alternative clinical trials designs and design components<br/>Audience: Graduate<br/><br/>4. Develop related technical skills, including basic sample size calculations and survival analysis<br/>Audience: Graduate<br/><br/>5. Write a clinical trial protocol with all its core components<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​F&amp;W ECOL  571</span> — STATISTICAL METHODS FOR BIOSCIENCE I</strong></p> <p class="courseblockcredits">4 credits.</p> <p class="courseblockdesc noindent"> Descriptive statistics, distributions, one- and two-sample normal inference, power, one-way ANOVA, simple linear regression, categorical data, non-parametric methods; underlying assumptions and diagnostic work.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Intermediate<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S<br/> Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​F&amp;W ECOL  572</span> — STATISTICAL METHODS FOR BIOSCIENCE II</strong></p> <p class="courseblockcredits">4 credits.</p> <p class="courseblockdesc noindent"> Polynomial regression, multiple regression, two-way ANOVA with and without interaction, split-plot design, subsampling, analysis of covariance, elementary sampling, introduction to bioassay.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20571" title="STAT/​F&amp;W ECOL  571" class="bubblelink code" onclick="return showCourse(this, 'STAT 571');">STAT/​F&amp;W ECOL  571</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Intermediate<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S<br/> Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 575</span> — STATISTICAL METHODS FOR SPATIAL DATA</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Detecting, quantifying, and modeling spatial patterns and structure in data. Variograms and covariance functions, linear predictions with uncertainty qualification, and conditional simulations. Spectral domain models and spectral densities. Spatial point processes. Contemporary applications and Gaussian process model fitting at scale.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">(<a href="/search/?P=STAT%20333" title="STAT 333" class="bubblelink code" onclick="return showCourse(this, 'STAT 333');">STAT 333</a> or <a href="/search/?P=STAT%20340" title="STAT 340" class="bubblelink code" onclick="return showCourse(this, 'STAT 340');">340</a>) and (<a href="/search/?P=MATH%20320" title="MATH 320" class="bubblelink code" onclick="return showCourse(this, 'MATH 320');">MATH 320</a>, <a href="/search/?P=MATH%20340" title="MATH 340" class="bubblelink code" onclick="return showCourse(this, 'MATH 340');">340</a>, <a href="/search/?P=MATH%20341" title="MATH 341" class="bubblelink code" onclick="return showCourse(this, 'MATH 341');">341</a>, or <a href="/search/?P=MATH%20375" title="MATH 375" class="bubblelink code" onclick="return showCourse(this, 'MATH 375');">375</a>), graduate/professional standing, or declared in Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S<br/> Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Undertake exploratory analysis of spatial and spatio-temporal data with nonparametric estimators like empirical variograms.<br/>Audience: Both Grad &amp; Undergrad<br/><br/>2. Fit parametric and semi-parametric mean and covariance models to spatial and spatio-temporal data for the purposes of prediction and uncertainty quantification.<br/>Audience: Both Grad &amp; Undergrad<br/><br/>3. Understand important differences between interpolation and extrapolation and how to choose and design models more effectively for each application.<br/>Audience: Both Grad &amp; Undergrad<br/><br/>4. Use the R programming language to load, manipulate, and effectively work with spatial data in popular file formats like CSV, NetCDF, HDF5.<br/>Audience: Undergraduate<br/><br/>5. Use several popular software libraries and modeling paradigms for spatial and spatio-temporal problems like estimation and prediction.<br/>Audience: Both Grad &amp; Undergrad<br/><br/>6. Understand problems of identifiability and consistency in popular modeling paradigms.<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 601</span> — STATISTICAL METHODS I</strong></p> <p class="courseblockcredits">4 credits.</p> <p class="courseblockdesc noindent"> Provides a thorough grounding in modern statistical methods. The specific learning outcomes for the course are to understand data collection in context (how/why data were collected, key questions under study); explore data by effective graphical and numerical summaries; understand probability concepts and models as tools for studying random phenomena and for statistical inference; analyze data using appropriate, modern statistical models, methods, and software; understand the statistical concepts underlying methods; develop the ability to interpret results and critically evaluate the methods used; communicate data analysis and key findings in context.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing or declared in Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S<br/> Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 602</span> — STATISTICAL METHODS II</strong></p> <p class="courseblockcredits">4 credits.</p> <p class="courseblockdesc noindent"> Provides a thorough grounding in modern statistical methods. The specific learning outcomes for the course are to understand data collection in context (how/why data were collected, key questions under study); explore data by effective graphical and numerical summaries; understand probability concepts and models as tools for studying random phenomena and for statistical inference; analyze data using appropriate, modern statistical models, methods, and software; understand the statistical concepts underlying methods; develop the ability to interpret results and critically evaluate the methods used; communicate data analysis and key findings in context.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20601" title="STAT 601" class="bubblelink code" onclick="return showCourse(this, 'STAT 601');">STAT 601</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2022</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 605</span> — DATA SCIENCE COMPUTING PROJECT</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> The development of tools necessary for collecting, managing, and analyzing large data sets. Examples of techniques and programs utilized include Linux, R, distributed computing, powerful editor(s), git/github, and other related tools. Work in the class will be done in teams to research, develop, write, and make presentations related to a variety of data analysis projects.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Declared in Statistics MS or Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Collect and manage data and write programs and documentation via tools suited to large computations. Use the Linux operating system and write shell scripts. Use an editor to write and manage local and remote files. Use the git/github version control system to track changes and manage collaboration. <br/>Audience: Graduate<br/><br/>2. Be able to use Linux, R, and the Slurm job scheduler to run tens of parallel jobs on the Statistics High Performance Computing (HPC) Cluster. Use Linux, R, and distributed high-throughput computing via HTCondor to run thousands of parallel jobs at UW's Center for High-Throughput Computing (CHTC). <br/>Audience: Graduate<br/><br/>3. Work in teams to research, develop, write, and make three presentations including one on a data analysis proposal consisting of data, a question, and a suggested analysis; one on a draft data analysis; and one on a revised data analysis. <br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 606</span> — COMPUTING IN DATA SCIENCE AND STATISTICS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> A survey of some of the tools and frameworks that are currently popular among data scientists and statisticians working in both academia and industry. Begins with an accelerated introduction to the Python programming language and brief introductions to object-oriented and functional programming. Covers some of the scientific computing platforms available in Python, including tools for numerical and scientific computing; training basic machine learning models; and data visualization. Discusses collecting data from the web both by scraping and using APIs. Concludes with a brief survey of distributed computing platforms, focusing on the MapReduce framework.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Declared in Statistics MS or Statistics VISP (undergraduate)</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Understand and apply the basics of the Python programming language and basic programming patterns in both the object-oriented and functional programming frameworks<br/>Audience: Graduate<br/><br/>2. Collect and clean data from a variety of data sources including markup languages from the web, databases, and by using APIs<br/>Audience: Graduate<br/><br/>3. Understand the MapReduce framework and apply it to large-scale data sets in a distributed environment using modern cloud computing platforms<br/>Audience: Graduate<br/><br/>4. Use numerical and scientific computing libraries to build and fit statistical models on large datasets<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 609</span> — MATHEMATICAL STATISTICS I</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Review of probability, random variables and vectors and their distributions, moments and inequalities, generating functions, transformations of random variables, sampling and distribution theory, convergence concepts for sequences of random variables, laws of large numbers, central limit and other limit theorems.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing or declared in Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S<br/> Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">Yes, unlimited number of completions</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 610</span> — INTRODUCTION TO STATISTICAL INFERENCE</strong></p> <p class="courseblockcredits">4 credits.</p> <p class="courseblockdesc noindent"> Conditioning, distribution theory, approximation to distributions, modes of convergence, limit theorems, statistical models, parameter estimation, comparision of estimators, confidence sets, theory of hypothesis tests, introduction to Bayesian inference and nonparametric estimation.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing or declared in Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Physical Sci. Counts toward the Natural Sci req<br/> Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S<br/> Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 611</span> — STATISTICAL MODELS FOR DATA SCIENCE</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Probability, random variables and their distributions, joint and conditional distributions, moments and inequalities, generating functions, transformations of random variables, sampling and distribution theory, convergence concepts and limit theorems for sequences of random variables.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Declared in Data Science MS or Data Engineering MS</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Describe the foundations of probability theory, including: the axioms of probability, the concepts of sample space and probability measure, events and their probabilities, and the notions of conditional probabilityand independence<br/>Audience: Graduate<br/><br/>2. Explain the concepts of random variables and probability distributions, and calculate or otherwise utilize key mathematical objects and results related to them, including: random number generation, expected values and moments, moment-based probabilistic inequalities, moment generating functions, joint probability distributions of multiple random variables<br/>Audience: Graduate<br/><br/>3. Identify the most important probability distributions used in Statistics, cite their properties, create computer visualizations of them, and simulate random variates from these distributions. This includes the normal distribution, the binomial distribution, the exponential distribution, the Poisson distribution, and more<br/>Audience: Graduate<br/><br/>4. Apply, and explain the significance of, key results related to the limits of sequences of random variables, including laws of large numbers, the Central Limit Theorem, and the delta method<br/>Audience: Graduate<br/><br/>5. Grasp important elements of sampling theory, including: random samples and how to generate them; statistics, such as the sample mean and sample variance, and how to derive or simulate their sampling distributions; and the distributions that arise from a normal random sample, namely the chi-square,T, and F distributions.<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 612</span> — STATISTICAL INFERENCE FOR DATA SCIENCE</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Statistical models, methods and theory for parameter estimation, Bayesian approach to parameter estimation, methods and theory for hypothesis tests, confidence sets, two-sample testing and ANOVA, categorical data analysis, linear regression.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20611" title="STAT 611" class="bubblelink code" onclick="return showCourse(this, 'STAT 611');">STAT 611</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Construct point estimators including maximum likelihood estimators, understand the theoretical properties of point estimation methods, evaluate their performance using mathematical derivations and simulation-based techniques, and identify optimal point estimators<br/>Audience: Graduate<br/><br/>2. Describe the Bayesian approach to point estimation and contrast it with the frequentist approach<br/>Audience: Graduate<br/><br/>3. Construct and evaluate hypothesis tests (such as likelihood ratio tests) using mathematical derivations or simulation-based techniques, interpret their results, understand theoretical properties of hypothesis testing methods, and identify optimal hypothesis tests<br/>Audience: Graduate<br/><br/>4. Construct and evaluate interval estimators using mathematical and simulation-based techniques, understand the theoretical properties of interval estimation methods, and interpret their results<br/>Audience: Graduate<br/><br/>5. Identify and describe the assumptions underlying methods of statistical inference and explain their importance<br/>Audience: Graduate<br/><br/>6. Fit models and carry out statistical inference in classical situations: namely: the comparison of two or more samples (ANOVA), the analysis of categorical data, linear regression, generalized linear models, and random and mixed effects models<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 613</span> — STATISTICAL METHODS FOR DATA SCIENCE</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Provides a thorough grounding in modern statistical methods. Introduces statistical techniques and methods of data analysis, including data description, linear regression models, diagnostic tools, prediction and model selection, and experimental design.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Declared in Data Science MS or Data Engineering MS</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Strategize and select a regression equation, examine residuals, transform data, recognize biases due to excluded variables and measurement error<br/>Audience: Graduate<br/><br/>2. Conduct general linear modeling for exponential family data and specifically models for binary, count, and categorical data, perform model fitting and inference<br/>Audience: Graduate<br/><br/>3. Develop the concepts and relevant methodology and ability to design and analyze experiments<br/>Audience: Graduate<br/><br/>4. Use and interpret computer package for regression programs<br/>Audience: Graduate<br/><br/>5. Present clear data structure and analysis in the context of data drawn from real-world applications<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 615</span> — STATISTICAL LEARNING</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> The development of a variety of mathematical theories and statistical concepts (1) to understand the properties of those models and methods used for the purpose of prediction from data or decision making from data, and (2) to criticize such models, methods and their consequences. Specifically, the theories and tools that will be developed will include complexity theory, Hilbert spaces, Gaussian processes, Variational Analysis, and concentration inequalities.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Declared in Statistics: Statistics and Data Science MS, Data Science MS, Data Engineering MS, or Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Demonstrate understanding of statistical theories, methodologies, and applications as tools in scientific inquiries.<br/>Audience: Graduate<br/><br/>2. Select and utilize the most appropriate statistical methodologies and practices.<br/>Audience: Graduate<br/><br/>3. Synthesize information pertaining to questions in empirical studies.<br/>Audience: Graduate<br/><br/>4. Communicate data concepts and analysis results clearly.<br/>Audience: Graduate<br/><br/>5. Recognize and apply principles of ethical and professional conduct.<br/>Audience: Graduate<br/><br/>6. Demonstrate knowledge of theoretical properties of many procedures used in machine learning for the purposes of classification, regression, and beyond.<br/>Audience: Graduate<br/><br/>7. Demonstrate knowledge of classical and modern notions in statistical learning theory including concentration inequalities, measures of statistical complexity, kernel methods for learning, Gaussian processes, and basics of variational inference.<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​B M I  620</span> — STATISTICS IN HUMAN GENETICS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Provides a comprehensive survey of statistical methods in human genetics research. Covered topics include linkage analysis, genome-wide association study, rare variant association analysis, meta-analysis, genome and variant annotation, heritability estimation, multi-trait modeling techniques, multi-omic data integration, and genetic risk prediction.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20333" title="STAT 333" class="bubblelink code" onclick="return showCourse(this, 'STAT 333');">STAT 333</a>, <a href="/search/?P=STAT%20340" title="STAT 340" class="bubblelink code" onclick="return showCourse(this, 'STAT 340');">340</a>, or graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S<br/> Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Recognize problems in human genetics that are appropriate for statistical modeling<br/>Audience: Both Grad &amp; Undergrad<br/><br/>2. Identify appropriate statistical procedures and computational algorithms for different tasks<br/>Audience: Both Grad &amp; Undergrad<br/><br/>3. Gain practical experience in applying a select set of statistical methods on real data and evaluate its outputs<br/>Audience: Both Grad &amp; Undergrad<br/><br/>4. Evaluate the strengths and weaknesses of different statistical and computational approaches designed for a specific biological problem<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 627</span> — PROFESSIONAL SKILLS IN DATA SCIENCE</strong></p> <p class="courseblockcredits">1-3 credits.</p> <p class="courseblockdesc noindent"> Covers important aspects of professional development in statistics, including skills with internet tools, sophisticated use of statistical languages (such as R) and other emerging topics.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">Yes, unlimited number of completions</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 628</span> — DATA SCIENCE PRACTICUM</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Provides an understanding of and experience with turning statistics concepts into practice through data science practicums inspired by realistic projects. Combine theory and methods expertise with communications skills to translate from a vaguely stated project description and complex data set into a concisely summarized analysis, including both written and graphical interpretation that can be used by decision makers in an organization.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Declared in Statistics: Statistics and Data Science MS</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Frame real-world data problems into testable and solvable statistical problems.<br/>Audience: Graduate<br/><br/>2. Develop analysis/solutions that are fast, scalable, and robust<br/>Audience: Graduate<br/><br/>3. Communicate solutions concisely and clearly, creating understandable and accurate visual/tabular summaries of the data analysis, and responding to audience questions clearly<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​I SY E/​MATH/​OTM  632</span> — INTRODUCTION TO STOCHASTIC PROCESSES</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Topics include discrete-time Markov chains, Poisson point processes, continuous-time Markov chains, and renewal processes. Applications to queueing, branching, and other models in science, engineering and business.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">(<a href="/search/?P=STAT%20431" title="STAT/​MATH  431" class="bubblelink code" onclick="return showCourse(this, 'STAT 431');">STAT/​MATH  431</a>, <a href="/search/?P=STAT%20309" title="STAT/​MATH  309" class="bubblelink code" onclick="return showCourse(this, 'STAT 309');">309</a>, <a href="/search/?P=STAT%20311" title="STAT 311" class="bubblelink code" onclick="return showCourse(this, 'STAT 311');">STAT 311</a> or <a href="/search/?P=MATH%20531" title="MATH 531" class="bubblelink code" onclick="return showCourse(this, 'MATH 531');">MATH 531</a>) and (<a href="/search/?P=MATH%20320" title="MATH 320" class="bubblelink code" onclick="return showCourse(this, 'MATH 320');">MATH 320</a>, <a href="/search/?P=MATH%20340" title="MATH 340" class="bubblelink code" onclick="return showCourse(this, 'MATH 340');">340</a>, <a href="/search/?P=MATH%20341" title="MATH 341" class="bubblelink code" onclick="return showCourse(this, 'MATH 341');">341</a>, <a href="/search/?P=MATH%20375" title="MATH 375" class="bubblelink code" onclick="return showCourse(this, 'MATH 375');">375</a>, <a href="/search/?P=MATH%20421" title="MATH 421" class="bubblelink code" onclick="return showCourse(this, 'MATH 421');">421</a> or <a href="/search/?P=MATH%20531" title="MATH 531" class="bubblelink code" onclick="return showCourse(this, 'MATH 531');">531</a>) or graduate/professional standing or member of the Pre-Masters Mathematics (Visiting International) Program</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S<br/> Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Recall and state the formal definitions of the mathematical objects and their properties for stochastic processes (e.g., discrete space Markov chains, Poisson processes, renewal processes, branching processes, etc.).<br/>Audience: Both Grad &amp; Undergrad<br/><br/>2. Use such definitions to argue that a mathematical object does or does not have the condition of being a particular type or having a particular property (e.g., irreducibility, aperiodicity, recurrence, transience, the Markov property, etc.).<br/>Audience: Both Grad &amp; Undergrad<br/><br/>3. Recall and state the standard theorems of stochastic processes. (e.g., laws of large numbers for Markov chains, existence of limiting/stationary distributions, law of large numbers for renewal processes, etc.) and recall the arguments for these theorems and the underlying logic of their proofs.<br/>Audience: Both Grad &amp; Undergrad<br/><br/>4. Construct mathematical arguments related to the above definitions, properties, and theorems, including the construction of examples and counterexamples.<br/>Audience: Both Grad &amp; Undergrad<br/><br/>5. Convey arguments in oral and written forms using English and appropriate mathematical terminology, notation and grammar.<br/>Audience: Both Grad &amp; Undergrad<br/><br/>6. Model simple real life situations by means of discrete-space stochastic processes and calculate probabilities associated with those processes.<br/>Audience: Both Grad &amp; Undergrad<br/><br/>7. Identify applications of course content in current areas of research.<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​B M I  641</span> — STATISTICAL METHODS FOR CLINICAL TRIALS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Statistical issues in the design of clinical trials, basic survival analysis, data collection and sequential monitoring.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20310" title="STAT/​MATH  310" class="bubblelink code" onclick="return showCourse(this, 'STAT 310');">STAT/​MATH  310</a> or graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Breadth - Natural Science<br/> Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S<br/> Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​B M I  642</span> — STATISTICAL METHODS FOR EPIDEMIOLOGY</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Methods for analysis of case-control, cross sectional, and cohort studies. Covers epidemiologic study design, measures of association, rates, classical contingency table methods, and logistic and Poisson regression.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20310" title="STAT/​MATH  310" class="bubblelink code" onclick="return showCourse(this, 'STAT 310');">STAT/​MATH  310</a> or graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S<br/> Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2023</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Summarize key concepts of statistical methods in epidemiology study: study design, association, causation<br/>Audience: Both Grad &amp; Undergrad<br/><br/>2. Build parametric or semiparametric model for analyzing categorical data and survival data<br/>Audience: Both Grad &amp; Undergrad<br/><br/>3. Utilize model design tools for model performance assessment<br/>Audience: Both Grad &amp; Undergrad<br/><br/>4. Build semiparametric model for analyzing categorical data and survival data<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​B M I  643</span> — CLINICAL TRIAL DESIGN, IMPLEMENTATION, AND ANALYSIS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Gain an understanding of fundamental elements of clinical trials (such as objectives, endpoints, surrogate endpoints, and statistical decisions) and statistical design considerations (such as randomization and blinding). Designs of clinical trials for Phase I, II, and III studies including single-arm, two-arm, and drug combination trials. Introduction to adaptive designs for precision medicine and master protocol designs such as umbrella trials and basket trials.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20609" title="STAT 609" class="bubblelink code" onclick="return showCourse(this, 'STAT 609');">STAT 609</a>, <a href="/search/?P=STAT%20610" title="STAT 610" class="bubblelink code" onclick="return showCourse(this, 'STAT 610');">610</a>, <a href="/search/?P=B%20M%20I%20641" title="B M I/​STAT  641" class="bubblelink code" onclick="return showCourse(this, 'B M I 641');">B M I/​STAT  641</a>, or graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S<br/> Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Summarize the objectives of clinical trials and key statistical design components<br/>Audience: Both Grad &amp; Undergrad<br/><br/>2. Design the clinical trials and investigate the operating characteristics of the design to implement clinical trials<br/>Audience: Both Grad &amp; Undergrad<br/><br/>3. Write the protocol section of statistical considerations and communicate the design of clinical trials to both statisticians and clinicians<br/>Audience: Both Grad &amp; Undergrad<br/><br/>4. Build sequential and adaptive methods for clinical trials <br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 678</span> — INTRODUCTION TO STATISTICAL CONSULTING</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Develop statistical consulting skills to be able to communicate design and analysis to non-technical research collaborators. Provides a supportive environment to experiment with statistical consulting in practice, which will sometimes be uncomfortable and strange. Consulting problems typically do not have a &quot;right&quot; answer, and mistakes are encouraged. Take risks in sharing developing ideas in class. Connections with external organizations, such as the private sector and government agencies, will be made through possible internship experiences.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Declared in Statistics MS</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. summarize findings with graphs and non-technical writing<br/>Audience: Graduate<br/><br/>2. ask questions to reveal problem design and study details<br/>Audience: Graduate<br/><br/>3. present design, analysis approach and findings orally in plain language<br/>Audience: Graduate<br/><br/>4. manage time and project workflow effectively<br/>Audience: Graduate<br/><br/>5. contribute as an active member of a research team<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 679</span> — SPECIAL TOPICS IN STATISTICS</strong></p> <p class="courseblockcredits">1-3 credits.</p> <p class="courseblockdesc noindent"> Special topics in statistics at the master's level. Subject matter varies.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing or declared in Statistics VISP</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S<br/> Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">Yes, unlimited number of completions</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 681</span> — SENIOR HONORS THESIS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Mentored individual study for students writing honors thesis, as arranged with a faculty member.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Consent of instructor</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S<br/>Honors - Honors Only Courses (H)</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 682</span> — SENIOR HONORS THESIS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Mentored individual study for students writing honors thesis, as arranged with a faculty member.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Consent of instructor</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S<br/>Honors - Honors Only Courses (H)</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 698</span> — DIRECTED STUDY</strong></p> <p class="courseblockcredits">1-6 credits.</p> <p class="courseblockdesc noindent"> Directed study projects as arranged with a faculty member.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Consent of instructor</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S<br/> Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">Yes, unlimited number of completions</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 699</span> — DIRECTED STUDY</strong></p> <p class="courseblockcredits">1-6 credits.</p> <p class="courseblockdesc noindent"> Directed study projects as arranged with a faculty member.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Consent of instructor</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Level - Advanced<br/> L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S<br/> Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">Yes, unlimited number of completions</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 701</span> — APPLIED TIME SERIES ANALYSIS, FORECASTING AND CONTROL I</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Theory and application of discrete time series models illustrated with forecasting problems. Principles of iterative model building. Representation of dynamic relations by difference equations. Autoregressive integrated Moving Average models. Identification, fitting, diagnostic checking of models. Seasonal model application to forecasting in business, economics, ecology, and engineering used at each stage, which the student analyzes using computer programs which have been specially written and extensively tested.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2023</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​MATH  709</span> — MATHEMATICAL STATISTICS</strong></p> <p class="courseblockcredits">4 credits.</p> <p class="courseblockdesc noindent"> Introduction to measure theoretic probability; derivation and transformation of probability distributions; generating functions and characteristic functions; conditional expectation, sufficiency, and unbiased estimation; methods of large sample theory including laws of large numbers and central limit theorems; order statistics.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Understand foundations of mathematical statistics, including key notations, important concepts, and basic definitions<br/>Audience: Graduate<br/><br/>2. Develop proof-based theoretical skills for analyzing statistical problems<br/>Audience: Graduate<br/><br/>3. Familiarize various theoretical tools relevant to statistical research, including modern probability theory, optimization, and information theory<br/>Audience: Graduate<br/><br/>4. Prepare for statistical research by learning recent development in high-dimensional statistics and shrinkage estimation<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​MATH  710</span> — MATHEMATICAL STATISTICS</strong></p> <p class="courseblockcredits">4 credits.</p> <p class="courseblockdesc noindent"> Estimation, efficiency, Neyman-Pearson theory of hypothesis testing, confidence regions, decision theory, analysis of variance, and distribution of quadratic forms.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20709" title="STAT/​MATH  709" class="bubblelink code" onclick="return showCourse(this, 'STAT 709');">STAT/​MATH  709</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​COMP SCI/​I SY E/​MATH  726</span> — NONLINEAR OPTIMIZATION I</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Theory and algorithms for nonlinear optimization, focusing on unconstrained optimization. Line-search and trust-region methods; quasi-Newton methods; conjugate-gradient and limited-memory methods for large-scale problems; derivative-free optimization; algorithms for least-squares problems and nonlinear equations; gradient projection algorithms for bound-constrained problems; and simple penalty methods for nonlinearly constrained optimization. Students are strongly encouraged to have knowledge of linear algebra and familiarity with basic mathematical analysis.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​B M I  727</span> — THEORY AND METHODS OF LONGITUDINAL DATA ANALYSIS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Theory and methods of fundamental statistical models for the analysis of longitudinal data, including repeated measures analysis of variance, linear mixed models, generalized linear mixed models, and generalized estimating equations. Introduction of how to implement these methods in statistical softwares such as in R and/or SAS, within the context of appropriate statistical models and carry out and interpret analyses.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20610" title="STAT 610" class="bubblelink code" onclick="return showCourse(this, 'STAT 610');">STAT 610</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2023</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Analyze longitudinal data in a variety of settings and with a variety of outcome variables<br/>Audience: Graduate<br/><br/>2. Apply statistical methods in fitting longitudinal data models for addressing scientific questions<br/>Audience: Graduate<br/><br/>3. Perform longitudinal data analyses in statistical softwares such as R and/or SAS<br/>Audience: Graduate<br/><br/>4. Interpret and communicate the scientific meanings of the results to both statisticians and non-statisticians (such as clinicians and scientists)<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 732</span> — LARGE SAMPLE THEORY OF STATISTICAL INFERENCE</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Stochastic modes of convergence. Asymptotic theory of normed sums of random variables with applications to asymptotic normality of estimators. Methods for deriving limit distributions of nonlinear statistics. Asymptotic relative efficiencies. Asymptotic confidence regions and tests of hypotheses. Models of non-identically distributed or dependent random variables.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20610" title="STAT 610" class="bubblelink code" onclick="return showCourse(this, 'STAT 610');">STAT 610</a> or <a href="/search/?P=MATH%20709" title="MATH/​STAT  709" class="bubblelink code" onclick="return showCourse(this, 'MATH 709');">MATH/​STAT  709</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2020</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​MATH  733</span> — THEORY OF PROBABILITY I</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> An introduction to measure theoretic probability and stochastic processes.Topics include foundations, independence, zero-one laws, laws of large numbers, convergence in distribution, characteristic functions, central limit theorems, random walks, conditional expectations. Familiarity with basic measure theory (e.g. <a href="/search/?P=MATH%20629" title="MATH 629" class="bubblelink code" onclick="return showCourse(this, 'MATH 629');">MATH 629</a> or <a href="/search/?P=MATH%20721" title="MATH 721" class="bubblelink code" onclick="return showCourse(this, 'MATH 721');">721</a>) or concurrent registration in <a href="/search/?P=MATH%20721" title="MATH 721" class="bubblelink code" onclick="return showCourse(this, 'MATH 721');">MATH 721</a> is strongly recommended.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing or member of the Pre-Masters Mathematics (Visiting International) Program</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">Yes, unlimited number of completions</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​MATH  734</span> — THEORY OF PROBABILITY II</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Possible topics include martingales, weak convergence of measures, introduction to Brownian motion.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">Yes, unlimited number of completions</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​B M I  741</span> — SURVIVAL ANALYSIS THEORY AND METHODS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Theory and practice of analytic methods for censored survival data, including nonparametric and parametric methods, the proportional hazards regression model, and a review of current topics in survival analysis.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Summarize the features of censored data and their implications in drawing inference<br/>Audience: Graduate<br/><br/>2. Implement proper non- and semi-parametric methods for analysis of various types of data<br/>Audience: Graduate<br/><br/>3. Recognize and check the assumptions needed for estimation and inference<br/>Audience: Graduate<br/><br/>4. Implement the inference procedures to solve real-world problems using statistical packages such as R (or SAS)<br/>Audience: Graduate<br/><br/>5. Interpret and present the analytic results in a clear and coherent way to answer substantive questions<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 760</span> — MULTIVARIATE ANALYSIS I</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Multivariate normal distribution, estimation of mean and covariance matrix; Wishart distribution; distribution of partial and multiple correlation coefficients; Hotelling's T-squared, principal components.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20610" title="STAT 610" class="bubblelink code" onclick="return showCourse(this, 'STAT 610');">STAT 610</a> or <a href="/search/?P=MATH%20710" title="MATH/​STAT  710" class="bubblelink code" onclick="return showCourse(this, 'MATH 710');">MATH/​STAT  710</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2023</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 761</span> — DECISION TREES FOR MULTIVARIATE ANALYSIS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Tree construction, including finding splits, tree-pruning and error estimation. Categorical predictor variables, missing or censored data, prior class-probabilities, and unequal misclassification costs. Selection bias. Comparison with other statistics and machine-learning methods. Extensions to piecewise linear and non-least squares regression models.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​B M I  768</span> — STATISTICAL METHODS FOR MEDICAL IMAGE ANALYSIS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Introduce key statistical methods and concepts for analyzing various medical images. Analyze publicly available and student/instructor supplied imaging data using the most up-to-date methods and tools.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2023</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Implement the key concepts of biomedical image processing and analysis<br/>Audience: Graduate<br/><br/>2. Describe the key concepts of statistical inference procedures for single and multiple images<br/>Audience: Graduate<br/><br/>3. Apply scalable computation in breaking bigger imaging problems into smaller computable problems<br/>Audience: Graduate<br/><br/>4. Describe functional data analysis (FA), geometric data analysis (GDA) and topological data analysis (TDA) methods in analyzing biomedical images<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 771</span> — STATISTICAL COMPUTING</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> The design of statistical software including special techniques for probability distributions, methods of simulation of random processes, numerical methods for linear models and multivariate analysis, and methods for nonlinear models.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 772</span> — LINEAR RANDOMIZED ALGORITHMS FOR DATA SCIENCE</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Introduce new algorithms that leverage randomization to address the scale, speed, and sensitivity needs of modern data science. Develop the mathematical foundations of such randomized algorithms. Criticize these algorithms through the lens of computational resource utilization. Implement these algorithms to address linear problems in data science.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Consent of instructor</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Apply common (constructive and inductive) thinking and reasoning patterns used in randomized algorithms for deriving solutions to linear problems arising in data science<br/>Audience: Graduate<br/><br/>2. Transform constructive mathematical reasoning patterns into numerical algorithms, and criticize the computational resource utilization of these algorithms<br/>Audience: Graduate<br/><br/>3. Implement numerical algorithms using the Julia programming language, and become familiar with assistive tools such as debuggers and profilers<br/>Audience: Graduate<br/><br/>4. Create and implement rigorous numerical experiments to test and compare different algorithms and implementations, and draw appropriate conclusions from the results of these experiments<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​ECON/​GEN BUS  775</span> — BAYESIAN STATISTICS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Introduces the theory, methods, and computational procedures needed to perform advanced Bayesian data analyses. Predictive and decision-theoretic motivations including subjective probability, risk, admissibility, and exchangeability; highlights key components of Bayesian analysis (i.e., prior, likelihood, posterior, and predictive distributions) within standard parametric models and advanced hierarchical and multilevel models; demonstrates the iterative process of model specification, implementation, criticism, and revision with applied case studies; implements computational techniques (e.g., Markov chain Monte Carlo, variational inference) in modern probabilistic programming languages.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20609" title="STAT 609" class="bubblelink code" onclick="return showCourse(this, 'STAT 609');">STAT 609</a>, <a href="/search/?P=STAT%20610" title="STAT 610" class="bubblelink code" onclick="return showCourse(this, 'STAT 610');">610</a>, <a href="/search/?P=STAT%20611" title="STAT 611" class="bubblelink code" onclick="return showCourse(this, 'STAT 611');">611</a>, <a href="/search/?P=STAT%20709" title="STAT/​MATH  709" class="bubblelink code" onclick="return showCourse(this, 'STAT 709');">STAT/​MATH  709</a>, <a href="/search/?P=ECON%20709" title="ECON 709" class="bubblelink code" onclick="return showCourse(this, 'ECON 709');">ECON 709</a>, <a href="/search/?P=POLI%20SCI%20818" title="POLI SCI 818" class="bubblelink code" onclick="return showCourse(this, 'POLI SCI 818');">POLI SCI 818</a>, or <a href="/search/?P=COMP%20SCI%20761" title="COMP SCI/​E C E  761" class="bubblelink code" onclick="return showCourse(this, 'COMP SCI 761');">COMP SCI/​E C E  761</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Justify the use of probability for coherent uncertainty quantification<br/>Audience: Graduate<br/><br/>2. Explain how Bayesian updating occurs in conjugate models and hierarchical models<br/>Audience: Graduate<br/><br/>3. Compare and contrast the conceptual and practical benefits and challenges of different posterior approximation strategies like MCMC and variational inference<br/>Audience: Graduate<br/><br/>4. Implement posterior approximation algorithms in modern statistical and probabilistic programming languages such as R or Stan<br/>Audience: Graduate<br/><br/>5. Specify, fit, criticize, and revise Bayesian models in practice<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 780</span> — INTRODUCTION TO QUANTUM DATA SCIENCE</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Quantum computation issues, including probability, statistics, sensing, information, machine learning, and applying data science to quantum information science.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20601" title="STAT 601" class="bubblelink code" onclick="return showCourse(this, 'STAT 601');">STAT 601</a>, (<a href="/search/?P=STAT%20609" title="STAT 609" class="bubblelink code" onclick="return showCourse(this, 'STAT 609');">STAT 609</a> and <a href="/search/?P=STAT%20610" title="STAT 610" class="bubblelink code" onclick="return showCourse(this, 'STAT 610');">610</a>), or (<a href="/search/?P=STAT%20611" title="STAT 611" class="bubblelink code" onclick="return showCourse(this, 'STAT 611');">STAT 611</a> and <a href="/search/?P=STAT%20612" title="STAT 612" class="bubblelink code" onclick="return showCourse(this, 'STAT 612');">612</a>)</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Demonstrate understanding of quantum probability, including axioms, observable, outcome, expectation, and distribution.<br/>Audience: Graduate<br/><br/>2. Master quantum statistics methods such as likelihood, information inequality, quantum hypothesis test, and quantum tomography (quantum sensing).<br/>Audience: Graduate<br/><br/>3. Comprehend concept of quantum computation and quantum information, including qubit and its properties, quantum entropy, and quantum cryptography.<br/>Audience: Graduate<br/><br/>4. Understand essential elements of quantum algorithms and quantum machine learning.<br/>Audience: Graduate<br/><br/>5. Understand statistics in quantum computational advantage (supremacy) studies.<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 801</span> — ADVANCED FINANCIAL STATISTICS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Statistical theory and methodology for modern financial data. Topics include financial stochastic models based on time series and stochastic calculus, modern statistical inference, and statistical learning for financial data as well as their applications to financial problems.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20601" title="STAT 601" class="bubblelink code" onclick="return showCourse(this, 'STAT 601');">STAT 601</a> or <a href="/search/?P=STAT%20701" title="STAT 701" class="bubblelink code" onclick="return showCourse(this, 'STAT 701');">701</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2020</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​MATH  803</span> — EXPERIMENTAL DESIGN I</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Summary of matrix algebra required, theory of estimable functions, incomplete blocks, balanced incomplete block designs, partially balanced incomplete block designs.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing or member of the Pre-Masters Mathematics (Visiting International) Program</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 809</span> — NON PARAMETRIC STATISTICS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Statistical procedures valid under unrestrictive assumptions; sign test; confidence intervals; efficiency comparisons; signed rank procedures; Walsh sums; point estimators; two sample rank tests; zeros, ties, and other problems of discrete data; order statistics; Winsorized and truncated point estimators and connection with gross error models; permutation procedures; combinatorial problems, and computer applications.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20610" title="STAT 610" class="bubblelink code" onclick="return showCourse(this, 'STAT 610');">STAT 610</a> or <a href="/search/?P=MATH%20710" title="MATH/​STAT  710" class="bubblelink code" onclick="return showCourse(this, 'MATH 710');">MATH/​STAT  710</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2019</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 811</span> — SAMPLE SURVEY THEORY AND METHOD</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Simple random sampling; systematic sampling; probability sampling; stratified sampling; subsampling with units of equal and unequal size; double sampling; multi-stage and multi-phase sampling; ratio and regression estimates; model-based and model-assisted approaches; variance estimation; non-response.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20610" title="STAT 610" class="bubblelink code" onclick="return showCourse(this, 'STAT 610');">STAT 610</a> or <a href="/search/?P=MATH%20710" title="MATH/​STAT  710" class="bubblelink code" onclick="return showCourse(this, 'MATH 710');">MATH/​STAT  710</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2017</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​B M I  828</span> — SEMIPARAMETRIC METHODS IN DATA SCIENCE</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Review of statistical convergence modes, M-estimation, and basics of Hilbert space. Introduction of how to derive the nuisance tangent space, its complement, and the corresponding efficient influence function, from the geometric perspective of semiparametric models. Introduction of how to estimate nuisance functions using machine learning methods, and their implementations in R and/or Python. Introduction of a variety of semiparametric models in missing data analysis, causal inference, dimension reduction, precision medicine, semi-supervised learning, transfer learning and domain adaptation.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Derive the nuisance tangent space, its complement, and the corresponding efficient influence function in semiparametric models<br/>Audience: Graduate<br/><br/>2. Apply a variety of semiparametric methods and models in applications ranging from biomedical studies to social sciences<br/>Audience: Graduate<br/><br/>3. Perform machine learning algorithms for estimating nuisance functions in software such as R and/or Python<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​MATH  833</span> — TOPICS IN THE THEORY OF PROBABILITY</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Advanced topics in probability and stochastic processes.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing or member of the Pre-Masters Mathematics (Visiting International) Program</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">Yes, unlimited number of completions</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2023</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 834</span> — EMPIRICAL PROCESSES AND SEMIPARAMETRIC INFERENCE</strong></p> <p class="courseblockcredits">1-3 credits.</p> <p class="courseblockdesc noindent"> Empirical process methods in statistics; semiparametric models; stochastic convergence in metric spaces; Glivenko-Cantelli and Donsker theorems; entropy calculations; bootstrapped empirical processes; functional delta method; Z-estimators; M-estimators; rates of convergence; semiparametric efficiency; semiparametric estimating equations; nonparametric maximum likelihood.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20610" title="STAT 610" class="bubblelink code" onclick="return showCourse(this, 'STAT 610');">STAT 610</a> or <a href="/search/?P=MATH%20710" title="MATH/​STAT  710" class="bubblelink code" onclick="return showCourse(this, 'MATH 710');">MATH/​STAT  710</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2019</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 840</span> — STATISTICAL MODEL BUILDING AND LEARNING</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Theory of reproducing kernel Hilbert spaces in statistical model building; bounded linear functionals and representer theory; smoothing splines; ANOVA spines; degees of freedom for signal and the bias-variance tradeoff; Bayesian confidence intervals; model selection.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20610" title="STAT 610" class="bubblelink code" onclick="return showCourse(this, 'STAT 610');">STAT 610</a> or <a href="/search/?P=MATH%20710" title="MATH/​STAT  710" class="bubblelink code" onclick="return showCourse(this, 'MATH 710');">MATH/​STAT  710</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2015</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 841</span> — NONPARAMETRIC STATISTICS AND MACHINE LEARNING METHODS</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Statistical function estimation and classification; reproducing kernel machines, support vector machines; high dimensional model selection and estimation; Bayesian, empirical Bayesian interpretation of nonparametric learning methods; log density ANOVA and graphical models; tree ensemble methods including bagging, boosting, and random forest.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20610" title="STAT 610" class="bubblelink code" onclick="return showCourse(this, 'STAT 610');">STAT 610</a> or <a href="/search/?P=MATH%20710" title="MATH/​STAT  710" class="bubblelink code" onclick="return showCourse(this, 'MATH 710');">MATH/​STAT  710</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2019</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 849</span> — THEORY AND APPLICATION OF REGRESSION AND ANALYSIS OF VARIANCE I</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Theory and applications of the general linear model; graphical methods; simultaneous inference; regression diagnostics; analysis of variance of fixed, random and mixed effects models; ANCOVA: violations of assumptions.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 850</span> — THEORY AND APPLICATION OF REGRESSION AND ANALYSIS OF VARIANCE II</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Theory and applications of the general linear model; graphical methods; simultaneous inference; regression diagnostics; analysis of variance of fixed, random and mixed effects models; ANCOVA: violations of assumptions.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20849" title="STAT 849" class="bubblelink code" onclick="return showCourse(this, 'STAT 849');">STAT 849</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 860</span> — ESTIMATION OF FUNCTIONS FROM DATA</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Statistical and appoximation theoretic methods of estimating functions and values of functionals from experimental data; experimental design and data analysis problems that arise as problems in approximation theory; convergence theorems; ill-posed inverse problems; Banach and Hilbert space penalty functionals.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=STAT%20610" title="STAT 610" class="bubblelink code" onclick="return showCourse(this, 'STAT 610');">STAT 610</a> or <a href="/search/?P=MATH%20710" title="MATH/​STAT  710" class="bubblelink code" onclick="return showCourse(this, 'MATH 710');">MATH/​STAT  710</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2016</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​COMP SCI/​E C E  861</span> — THEORETICAL FOUNDATIONS OF MACHINE LEARNING</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Advanced mathematical theory and methods of machine learning. Statistical learning theory, Vapnik-Chevronenkis Theory, model selection, high-dimensional models, nonparametric methods, probabilistic analysis, optimization, learning paradigms.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data"><a href="/search/?P=E%20C%20E%20761" title="E C E/​COMP SCI  761" class="bubblelink code" onclick="return showCourse(this, 'E C E 761');">E C E/​COMP SCI  761</a> or <a href="/search/?P=E%20C%20E%20830" title="E C E 830" class="bubblelink code" onclick="return showCourse(this, 'E C E 830');">E C E 830</a></span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​B M I  877</span> — STATISTICAL METHODS FOR MOLECULAR BIOLOGY</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Statistical and computational methods in statistical genomics for human and experimental populations. Review methods for quality control, experimental design, clustering, network analysis, and other downstream analysis of next-generation sequencing studies along with methods for genome wide association studies.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Spring 2024</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Understand the statistical and computational background underlying many state-of-the-art techniques for the pre-processing and analysis of high-throughput genomics datasets<br/>Audience: Graduate<br/><br/>2. Identify the appropriateness and limitations of such methods in a variety of settings. <br/>Audience: Graduate<br/><br/>3. Discuss scientific problems and identify the statistical and computational aspects embedded in the processing and analysis of genomics datasets. <br/>Audience: Graduate<br/><br/>4. Become proficient in select software packages commonly used in analysis of next-generation sequencing data. <br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT/​E C E/​MATH  888</span> — TOPICS IN MATHEMATICAL DATA SCIENCE</strong></p> <p class="courseblockcredits">1-3 credits.</p> <p class="courseblockdesc noindent"> Advanced topics in the mathematical foundations of data science<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing or member of the Pre-Masters Mathematics (Visiting International) Program</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">Yes, unlimited number of completions</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2023</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong></strong></span><span class="cbextra-data"><div class="bubblehide"><p class="courseblockextra noindent clearfix"><span class="cbextra-label"><strong>Learning Outcomes: </strong></span><span class="cbextra-data">1. Apply advanced mathematical concepts to solve a variety of data science problems<br/>Audience: Graduate<br/><br/>2. Analyze rigorously the mathematical properties of methods used in data science<br/>Audience: Graduate</span></p></div></span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 990</span> — RESEARCH</strong></p> <p class="courseblockcredits">1-12 credits.</p> <p class="courseblockdesc noindent"> Independent research and writing for graduate students under the supervision of a faculty member.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Consent of instructor</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">Yes, unlimited number of completions</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 992</span> — SEMINAR</strong></p> <p class="courseblockcredits">1-3 credits.</p> <p class="courseblockdesc noindent"> Special topics in statistics at the graduate level. Subject matter varies.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">Yes, unlimited number of completions</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div><style>.lfjsbubblemain .bubblehide {display: none !important;}.searchresult .bubblehide {display: none !important;}</style><div class="courseblock "> <p class="courseblocktitle noindent"><strong><span class="courseblockcode">STAT 998</span> — STATISTICAL CONSULTING</strong></p> <p class="courseblockcredits">3 credits.</p> <p class="courseblockdesc noindent"> Consulting apprenticeship.<br/> </p> <button class="notinpdf cb-extras-toggle" aria-expanded="false" onclick="toggleCourseBlockInfo(this); return false;"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg>View details</button><div class="cb-extras" aria-hidden="true"><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Requisites: </strong></span></strong></span><span class="cbextra-data">Graduate/professional standing</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Course Designation: </strong></span></strong></span><span class="cbextra-data">Grad 50% - Counts toward 50% graduate coursework requirement</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Repeatable for Credit: </strong></span></strong></span><span class="cbextra-data">No</span></p><p class="courseblockextra noindent clearfix"><span class="cbextra=label"><strong><span class="cbextra-label"><strong>Last Taught: </strong></span></strong></span><span class="cbextra-data">Fall 2024</span></p></div></div></div> </div><!--end #textcontainer --> </div> <!-- end #content --> </div> <!-- left-col --> <div id="right-col"> <button class="tabs-expand" onclick="toggleTabs();"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-caret-down"></use></svg> Select a section…</button> <div id="print-options-box"> <button aria-expanded="false" aria-controls="print-options-list" data-toggle="#print-options-list"> <svg class="main-printer" viewBox="0 0 24 24" aria-hidden="true"> <path d="M18 3v3.984h-12v-3.984h12zM18.984 12c0.563 0 1.031-0.422 1.031-0.984s-0.469-1.031-1.031-1.031-0.984 0.469-0.984 1.031 0.422 0.984 0.984 0.984zM15.984 18.984v-4.969h-7.969v4.969h7.969zM18.984 8.016c1.641 0 3 1.359 3 3v6h-3.984v3.984h-12v-3.984h-3.984v-6c0-1.641 1.359-3 3-3h13.969z"></path> </svg> <span><span class="sr-only">Show </span>Print Options</span> <svg class="main-plus" viewBox="0 0 22 28" aria-hidden="true"> <path d="M22 11.5v3c0 0.828-0.672 1.5-1.5 1.5h-6.5v6.5c0 0.828-0.672 1.5-1.5 1.5h-3c-0.828 0-1.5-0.672-1.5-1.5v-6.5h-6.5c-0.828 0-1.5-0.672-1.5-1.5v-3c0-0.828 0.672-1.5 1.5-1.5h6.5v-6.5c0-0.828 0.672-1.5 1.5-1.5h3c0.828 0 1.5 0.672 1.5 1.5v6.5h6.5c0.828 0 1.5 0.672 1.5 1.5z"></path> </svg> <svg class="main-minus" viewBox="0 0 22 28" aria-hidden="true"> <path d="M22 11.5v3c0 0.828-0.672 1.5-1.5 1.5h-19c-0.828 0-1.5-0.672-1.5-1.5v-3c0-0.828 0.672-1.5 1.5-1.5h19c0.828 0 1.5 0.672 1.5 1.5z"></path> </svg> </button> <div id="options-wrap"> <ul id="print-options-list" aria-hidden="true"> <li> <a href="#" onclick="window.print();return false;"> <svg class="print-page" viewBox="0 0 24 24" aria-hidden="true"> <path d="M18 3v3.984h-12v-3.984h12zM18.984 12c0.563 0 1.031-0.422 1.031-0.984s-0.469-1.031-1.031-1.031-0.984 0.469-0.984 1.031 0.422 0.984 0.984 0.984zM15.984 18.984v-4.969h-7.969v4.969h7.969zM18.984 8.016c1.641 0 3 1.359 3 3v6h-3.984v3.984h-12v-3.984h-3.984v-6c0-1.641 1.359-3 3-3h13.969z"></path> </svg> <span>Print page</span> </a> </li> <li><a href="/courses/stat/stat.pdf" role="button" target="_blank"><svg class="download-page" viewBox="0 0 646 669" aria-hidden="true"><polygon id="SVGID_1_" points="625.9,490.5 555.7,490.5 555.6,573.4 90.2,573.1 90.3,490.2 20,490.1 19.9,649 625.8,649.4 625.9,490.5"></polygon><polygon id="SVGID_3_" points="218.4,19.1 218.6,283.9 106,284 323.7,524 541,283.7 428.4,283.8 428.2,19 218.4,19.1"></polygon></svg><span>Download page</span></a></li> <li><a href="/pdf/2024-2025-spring-courses.pdf" target="_blank"><svg class="download-page" viewBox="0 0 646 669" aria-hidden="true"><polygon id="SVGID_1_" points="625.9,490.5 555.7,490.5 555.6,573.4 90.2,573.1 90.3,490.2 20,490.1 19.9,649 625.8,649.4 625.9,490.5"></polygon><polygon id="SVGID_3_" points="218.4,19.1 218.6,283.9 106,284 323.7,524 541,283.7 428.4,283.8 428.2,19 218.4,19.1"></polygon></svg><span>Download all Courses pages</span></a></li> </ul> </div> </div> </div> <!-- end right col --> </div> <!-- end wrap --> </div> <!-- end column-wrapper --> </main> <!--htdig_noindex--> <footer id="footer" role="contentinfo"> <div class="uw-footer-content"> <div class="uw-logo"> <a href="http://www.wisc.edu" target="_blank"> <svg> <title>University logo that links to home page</title> <use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-crest-footer"></use> </svg> </a> </div> <div class="uw-footer-menu" role="complementary"> <h3 class="uw-footer-header">Resources</h3> <ul> <li><a href="http://www.uwalumni.com/" data-external="true" target="_blank">Alumni</a></li> <li><a href="https://working.wisc.edu" data-external="true" target="_blank">Working at UW</a></li> <li><a href="https://ocr.wisc.edu/" data-external="true" target="_blank">Business &amp; Industry</a></li> <li><a href="http://international.wisc.edu/" data-external="true" target="_blank">International</a></li> <li><a href="https://parent.wisc.edu/" data-external="true" target="_blank">Parents</a></li> <li><a href="https://students.wisc.edu/" data-external="true" target="_blank">Students</a></li> </ul> </div> <div class="uw-footer-menu" role="complementary"> <h3 class="uw-footer-header">Quick Links</h3> <ul> <li><a href="http://www.wisc.edu/accessibility/" target="_blank">Accessibility</a></li> <li><a href="https://diversity.wisc.edu/" data-external="true" target="_blank">Diversity</a></li> <li><a href="http://www.wisc.edu/governance/" target="_blank">Governance</a></li> <li><a href="http://www.wisc.edu/policies/" target="_blank">Policies</a></li> <li><a href="http://uwpd.wisc.edu/" data-external="true" target="_blank">Safety</a></li> <li><a href="https://compliance.wisc.edu/titleix/" data-external="true" target="_blank">Title IX</a></li> </ul> </div> <div class="uw-footer-contact"> <h3 class="uw-footer-header"> <a href="http://www.wisc.edu/contact-us/" target="_blank"> <svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-envelope"></use></svg> Contact Us </a> </h3> <h3 class="uw-footer-header"> <a href="http://www.visitmadison.com/" target="_blank"> <svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-map-marker"></use></svg> Madison, WI </a> </h3> <h3 class="uw-footer-header" id="uw-footer-ask-bucky"> <a href="https://info.wisc.edu/ask-bucky/" target="_blank"> <svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-bucky"></use></svg> Ask Bucky </a> </h3> <h3 class="sr-only">Social Media</h3> <ul id="uw-social-icons"> <li id="uw-icon-facebook"><a aria-label="facebook" href="https://facebook.com/uwmadison" data-external="true" target="_blank"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-facebook"></use></svg><span class="sr-only">Facebook</span></a></li> <li id="uw-icon-twitter"><a aria-label="twitter" href="https://twitter.com/uwmadison" data-external="true" target="_blank"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-twitter"></use></svg><span class="sr-only">Facebook</span></a></li> <li id="uw-icon-youtube" class="last"><a aria-label="youtube" href="https://www.youtube.com/user/uwmadison" data-external="true" target="_blank"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-youtube"></use></svg><span class="sr-only">Facebook</span></a></li> <li id="uw-icon-pinterest"><a aria-label="pinterest" href="https://www.pinterest.com/uwmadison/" data-external="true" target="_blank"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-pinterest"></use></svg><span class="sr-only">Facebook</span></a></li> <li id="uw-icon-instagram"><a aria-label="instagram" href="https://www.instagram.com/uwmadison/" data-external="true" target="_blank"><svg aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#uw-symbol-instagram"></use></svg><span class="sr-only">Facebook</span></a></li> </ul> </div> </div> <div class="uw-copyright"> <p><span class="piece">© 2024-2025 Board of Regents of the <a href="http://www.wisconsin.edu" target="_blank" title="University of Wisconsin System">University of Wisconsin System</a></span><span class="joiner"> &nbsp;•&nbsp; </span><span class="piece">Feedback, questions or accessibility issues: <a href="mailto:guideeditor@office365.wisc.edu">guideeditor@office365.wisc.edu</a></span></p> </div> </footer><!-- end #footer --> <!--/htdig_noindex--> <a href="#" id="toggle-headers">Expand Headers</a> <a href="#header" id="totop">Back to Top</a> <svg aria-hidden="true" style="display: inline; height: 0; position: absolute;" xmlns:xlink="http://www.w3.org/1999/xlink"> <title>Site icons</title> <defs> <symbol id="uw-symbol-more" viewBox="0,0,1792,1792"> <title id="title">More</title> <path d="M979 960q0 13-10 23l-466 466q-10 10-23 10t-23-10l-50-50q-10-10-10-23t10-23l393-393-393-393q-10-10-10-23t10-23l50-50q10-10 23-10t23 10l466 466q10 10 10 23zm384 0q0 13-10 23l-466 466q-10 10-23 10t-23-10l-50-50q-10-10-10-23t10-23l393-393-393-393q-10-10-10-23t10-23l50-50q10-10 23-10t23 10l466 466q10 10 10 23z"></path> </symbol> <symbol id="uw-symbol-menu" viewBox="0 0 1024 1024"> <title id="svg-menu">open menu</title> <path class="path1" d="M128 256h768v86h-768v-86zM128 554v-84h768v84h-768zM128 768v-86h768v86h-768z"></path> </symbol> <symbol id="uw-symbol-close" viewBox="0 0 805 1024"> <title>close</title> <path class="path1" d="M741.714 755.429q0 22.857-16 38.857l-77.714 77.714q-16 16-38.857 16t-38.857-16l-168-168-168 168q-16 16-38.857 16t-38.857-16l-77.714-77.714q-16-16-16-38.857t16-38.857l168-168-168-168q-16-16-16-38.857t16-38.857l77.714-77.714q16-16 38.857-16t38.857 16l168 168 168-168q16-16 38.857-16t38.857 16l77.714 77.714q16 16 16 38.857t-16 38.857l-168 168 168 168q16 16 16 38.857z"></path> </symbol> <symbol id="uw-symbol-search" viewBox="0 0 951 1024"> <title>search</title> <path class="path1" d="M658.286 475.429q0-105.714-75.143-180.857t-180.857-75.143-180.857 75.143-75.143 180.857 75.143 180.857 180.857 75.143 180.857-75.143 75.143-180.857zM950.857 950.857q0 29.714-21.714 51.429t-51.429 21.714q-30.857 0-51.429-21.714l-196-195.429q-102.286 70.857-228 70.857-81.714 0-156.286-31.714t-128.571-85.714-85.714-128.571-31.714-156.286 31.714-156.286 85.714-128.571 128.571-85.714 156.286-31.714 156.286 31.714 128.571 85.714 85.714 128.571 31.714 156.286q0 125.714-70.857 228l196 196q21.143 21.143 21.143 51.429z"></path> </symbol> <symbol id="uw-symbol-search-gray" viewBox="0 0 951 1024"> <title>search</title> <path class="path1" d="M658.286 475.429q0-105.714-75.143-180.857t-180.857-75.143-180.857 75.143-75.143 180.857 75.143 180.857 180.857 75.143 180.857-75.143 75.143-180.857zM950.857 950.857q0 29.714-21.714 51.429t-51.429 21.714q-30.857 0-51.429-21.714l-196-195.429q-102.286 70.857-228 70.857-81.714 0-156.286-31.714t-128.571-85.714-85.714-128.571-31.714-156.286 31.714-156.286 85.714-128.571 128.571-85.714 156.286-31.714 156.286 31.714 128.571 85.714 85.714 128.571 31.714 156.286q0 125.714-70.857 228l196 196q21.143 21.143 21.143 51.429z"></path> </symbol> <symbol id="uw-symbol-search-in-blank" viewBox="0 0 951 1024"> <title>search</title> <path class="path1" d="M658.286 475.429q0-105.714-75.143-180.857t-180.857-75.143-180.857 75.143-75.143 180.857 75.143 180.857 180.857 75.143 180.857-75.143 75.143-180.857zM950.857 950.857q0 29.714-21.714 51.429t-51.429 21.714q-30.857 0-51.429-21.714l-196-195.429q-102.286 70.857-228 70.857-81.714 0-156.286-31.714t-128.571-85.714-85.714-128.571-31.714-156.286 31.714-156.286 85.714-128.571 128.571-85.714 156.286-31.714 156.286 31.714 128.571 85.714 85.714 128.571 31.714 156.286q0 125.714-70.857 228l196 196q21.143 21.143 21.143 51.429z"></path> </symbol> <symbol id="uw-symbol-envelope" viewBox="0 0 1024 1024"> <title>envelope</title> <path class="path1" d="M1024 405.714v453.714q0 37.714-26.857 64.571t-64.571 26.857h-841.143q-37.714 0-64.571-26.857t-26.857-64.571v-453.714q25.143 28 57.714 49.714 206.857 140.571 284 197.143 32.571 24 52.857 37.429t54 27.429 62.857 14h1.143q29.143 0 62.857-14t54-27.429 52.857-37.429q97.143-70.286 284.571-197.143 32.571-22.286 57.143-49.714zM1024 237.714q0 45.143-28 86.286t-69.714 70.286q-214.857 149.143-267.429 185.714-5.714 4-24.286 17.429t-30.857 21.714-29.714 18.571-32.857 15.429-28.571 5.143h-1.143q-13.143 0-28.571-5.143t-32.857-15.429-29.714-18.571-30.857-21.714-24.286-17.429q-52-36.571-149.714-104.286t-117.143-81.429q-35.429-24-66.857-66t-31.429-78q0-44.571 23.714-74.286t67.714-29.714h841.143q37.143 0 64.286 26.857t27.143 64.571z"></path> </symbol> <symbol id="uw-symbol-pinterest" class="uw-social-symbols" viewBox="0 0 731 1024"> <title>pinterest-p</title> <path class="path1" d="M0 341.143q0-61.714 21.429-116.286t59.143-95.143 86.857-70.286 105.714-44.571 115.429-14.857q90.286 0 168 38t126.286 110.571 48.571 164q0 54.857-10.857 107.429t-34.286 101.143-57.143 85.429-82.857 58.857-108 22q-38.857 0-77.143-18.286t-54.857-50.286q-5.714 22.286-16 64.286t-13.429 54.286-11.714 40.571-14.857 40.571-18.286 35.714-26.286 44.286-35.429 49.429l-8 2.857-5.143-5.714q-8.571-89.714-8.571-107.429 0-52.571 12.286-118t38-164.286 29.714-116q-18.286-37.143-18.286-96.571 0-47.429 29.714-89.143t75.429-41.714q34.857 0 54.286 23.143t19.429 58.571q0 37.714-25.143 109.143t-25.143 106.857q0 36 25.714 59.714t62.286 23.714q31.429 0 58.286-14.286t44.857-38.857 32-54.286 21.714-63.143 11.429-63.429 3.714-56.857q0-98.857-62.571-154t-163.143-55.143q-114.286 0-190.857 74t-76.571 187.714q0 25.143 7.143 48.571t15.429 37.143 15.429 26 7.143 17.429q0 16-8.571 41.714t-21.143 25.714q-1.143 0-9.714-1.714-29.143-8.571-51.714-32t-34.857-54-18.571-61.714-6.286-60.857z"></path> </symbol> <symbol id="uw-symbol-twitter" class="uw-social-symbols" viewBox="0 0 951 1024"> <title>twitter</title> <path class="path1" d="M925.714 233.143q-38.286 56-92.571 95.429 0.571 8 0.571 24 0 74.286-21.714 148.286t-66 142-105.429 120.286-147.429 83.429-184.571 31.143q-154.857 0-283.429-82.857 20 2.286 44.571 2.286 128.571 0 229.143-78.857-60-1.143-107.429-36.857t-65.143-91.143q18.857 2.857 34.857 2.857 24.571 0 48.571-6.286-64-13.143-106-63.714t-42-117.429v-2.286q38.857 21.714 83.429 23.429-37.714-25.143-60-65.714t-22.286-88q0-50.286 25.143-93.143 69.143 85.143 168.286 136.286t212.286 56.857q-4.571-21.714-4.571-42.286 0-76.571 54-130.571t130.571-54q80 0 134.857 58.286 62.286-12 117.143-44.571-21.143 65.714-81.143 101.714 53.143-5.714 106.286-28.571z"></path> </symbol> <symbol id="uw-symbol-youtube" class="uw-social-symbols" viewBox="0 0 878 1024"> <title>youtube</title> <path class="path1" d="M554.857 710.857v120.571q0 38.286-22.286 38.286-13.143 0-25.714-12.571v-172q12.571-12.571 25.714-12.571 22.286 0 22.286 38.286zM748 711.429v26.286h-51.429v-26.286q0-38.857 25.714-38.857t25.714 38.857zM196 586.857h61.143v-53.714h-178.286v53.714h60v325.143h57.143v-325.143zM360.571 912h50.857v-282.286h-50.857v216q-17.143 24-32.571 24-10.286 0-12-12-0.571-1.714-0.571-20v-208h-50.857v223.429q0 28 4.571 41.714 6.857 21.143 33.143 21.143 27.429 0 58.286-34.857v30.857zM605.714 827.429v-112.571q0-41.714-5.143-56.571-9.714-32-40.571-32-28.571 0-53.143 30.857v-124h-50.857v378.857h50.857v-27.429q25.714 31.429 53.143 31.429 30.857 0 40.571-31.429 5.143-15.429 5.143-57.143zM798.857 821.714v-7.429h-52q0 29.143-1.143 34.857-4 20.571-22.857 20.571-26.286 0-26.286-39.429v-49.714h102.286v-58.857q0-45.143-15.429-66.286-22.286-29.143-60.571-29.143-38.857 0-61.143 29.143-16 21.143-16 66.286v98.857q0 45.143 16.571 66.286 22.286 29.143 61.714 29.143 41.143 0 61.714-30.286 10.286-15.429 12-30.857 1.143-5.143 1.143-33.143zM451.429 300v-120q0-39.429-24.571-39.429t-24.571 39.429v120q0 40 24.571 40t24.571-40zM862.286 729.143q0 133.714-14.857 200-8 33.714-33.143 56.571t-58.286 26.286q-105.143 12-317.143 12t-317.143-12q-33.143-3.429-58.571-26.286t-32.857-56.571q-14.857-64-14.857-200 0-133.714 14.857-200 8-33.714 33.143-56.571t58.857-26.857q104.571-11.429 316.571-11.429t317.143 11.429q33.143 4 58.571 26.857t32.857 56.571q14.857 64 14.857 200zM292 0h58.286l-69.143 228v154.857h-57.143v-154.857q-8-42.286-34.857-121.143-21.143-58.857-37.143-106.857h60.571l40.571 150.286zM503.429 190.286v100q0 46.286-16 67.429-21.143 29.143-60.571 29.143-38.286 0-60-29.143-16-21.714-16-67.429v-100q0-45.714 16-66.857 21.714-29.143 60-29.143 39.429 0 60.571 29.143 16 21.143 16 66.857zM694.857 97.714v285.143h-52v-31.429q-30.286 35.429-58.857 35.429-26.286 0-33.714-21.143-4.571-13.714-4.571-42.857v-225.143h52v209.714q0 18.857 0.571 20 1.714 12.571 12 12.571 15.429 0 32.571-24.571v-217.714h52z"></path> </symbol> <symbol id="uw-symbol-facebook" class="uw-social-symbols" viewBox="0 0 602 1024"> <title>facebook</title> <path class="path1" d="M548 6.857v150.857h-89.714q-49.143 0-66.286 20.571t-17.143 61.714v108h167.429l-22.286 169.143h-145.143v433.714h-174.857v-433.714h-145.714v-169.143h145.714v-124.571q0-106.286 59.429-164.857t158.286-58.571q84 0 130.286 6.857z"></path> </symbol> <symbol id="uw-symbol-instagram" class="uw-social-symbols" viewBox="0 0 878 1024"> <title>instagram</title> <path class="path1" d="M778.286 814.857v-370.286h-77.143q11.429 36 11.429 74.857 0 72-36.571 132.857t-99.429 96.286-137.143 35.429q-112.571 0-192.571-77.429t-80-187.143q0-38.857 11.429-74.857h-80.571v370.286q0 14.857 10 24.857t24.857 10h610.857q14.286 0 24.571-10t10.286-24.857zM616 510.286q0-70.857-51.714-120.857t-124.857-50q-72.571 0-124.286 50t-51.714 120.857 51.714 120.857 124.286 50q73.143 0 124.857-50t51.714-120.857zM778.286 304.571v-94.286q0-16-11.429-27.714t-28-11.714h-99.429q-16.571 0-28 11.714t-11.429 27.714v94.286q0 16.571 11.429 28t28 11.429h99.429q16.571 0 28-11.429t11.429-28zM877.714 185.714v652.571q0 46.286-33.143 79.429t-79.429 33.143h-652.571q-46.286 0-79.429-33.143t-33.143-79.429v-652.571q0-46.286 33.143-79.429t79.429-33.143h652.571q46.286 0 79.429 33.143t33.143 79.429z"></path> </symbol> <symbol id="uw-symbol-caret-up" viewBox="0 0 1792 1792"> <title>Collapse</title> <path d="M1395 1184q0 13-10 23l-50 50q-10 10-23 10t-23-10l-393-393-393 393q-10 10-23 10t-23-10l-50-50q-10-10-10-23t10-23l466-466q10-10 23-10t23 10l466 466q10 10 10 23z"></path> </symbol> <symbol id="uw-symbol-caret-down" viewBox="0 0 1792 1792"> <title>Expand</title> <path d="M1395 736q0 13-10 23l-466 466q-10 10-23 10t-23-10l-466-466q-10-10-10-23t10-23l50-50q10-10 23-10t23 10l393 393 393-393q10-10 23-10t23 10l50 50q10 10 10 23z"></path> </symbol> <symbol id="uw-symbol-chevron-right" viewBox="0 0 695 1024"> <title id="svg-next-slide">next slide</title> <path class="path1" d="M632.571 501.143l-424 424q-10.857 10.857-25.714 10.857t-25.714-10.857l-94.857-94.857q-10.857-10.857-10.857-25.714t10.857-25.714l303.429-303.429-303.429-303.429q-10.857-10.857-10.857-25.714t10.857-25.714l94.857-94.857q10.857-10.857 25.714-10.857t25.714 10.857l424 424q10.857 10.857 10.857 25.714t-10.857 25.714z"></path> </symbol> <symbol id="uw-symbol-chevron-left" viewBox="0 0 768 1024"> <title id="svg-previous">previous slide</title> <path class="path1" d="M669.143 172l-303.429 303.429 303.429 303.429q10.857 10.857 10.857 25.714t-10.857 25.714l-94.857 94.857q-10.857 10.857-25.714 10.857t-25.714-10.857l-424-424q-10.857-10.857-10.857-25.714t10.857-25.714l424-424q10.857-10.857 25.714-10.857t25.714 10.857l94.857 94.857q10.857 10.857 10.857 25.714t-10.857 25.714z"></path> </symbol> <symbol id="uw-symbol-list" viewBox="0 0 1792 1792"> <title id="svg-list">list</title> <path d="M256 1312v192q0 13-9.5 22.5t-22.5 9.5h-192q-13 0-22.5-9.5t-9.5-22.5v-192q0-13 9.5-22.5t22.5-9.5h192q13 0 22.5 9.5t9.5 22.5zm0-384v192q0 13-9.5 22.5t-22.5 9.5h-192q-13 0-22.5-9.5t-9.5-22.5v-192q0-13 9.5-22.5t22.5-9.5h192q13 0 22.5 9.5t9.5 22.5zm0-384v192q0 13-9.5 22.5t-22.5 9.5h-192q-13 0-22.5-9.5t-9.5-22.5v-192q0-13 9.5-22.5t22.5-9.5h192q13 0 22.5 9.5t9.5 22.5zm1536 768v192q0 13-9.5 22.5t-22.5 9.5h-1344q-13 0-22.5-9.5t-9.5-22.5v-192q0-13 9.5-22.5t22.5-9.5h1344q13 0 22.5 9.5t9.5 22.5zm-1536-1152v192q0 13-9.5 22.5t-22.5 9.5h-192q-13 0-22.5-9.5t-9.5-22.5v-192q0-13 9.5-22.5t22.5-9.5h192q13 0 22.5 9.5t9.5 22.5zm1536 768v192q0 13-9.5 22.5t-22.5 9.5h-1344q-13 0-22.5-9.5t-9.5-22.5v-192q0-13 9.5-22.5t22.5-9.5h1344q13 0 22.5 9.5t9.5 22.5zm0-384v192q0 13-9.5 22.5t-22.5 9.5h-1344q-13 0-22.5-9.5t-9.5-22.5v-192q0-13 9.5-22.5t22.5-9.5h1344q13 0 22.5 9.5t9.5 22.5zm0-384v192q0 13-9.5 22.5t-22.5 9.5h-1344q-13 0-22.5-9.5t-9.5-22.5v-192q0-13 9.5-22.5t22.5-9.5h1344q13 0 22.5 9.5t9.5 22.5z"></path> </symbol> <symbol id="uw-symbol-grid" viewBox="0 0 1792 1792"> <title id="svg-grid">grid</title> <path d="M512 1248v192q0 40-28 68t-68 28h-320q-40 0-68-28t-28-68v-192q0-40 28-68t68-28h320q40 0 68 28t28 68zm0-512v192q0 40-28 68t-68 28h-320q-40 0-68-28t-28-68v-192q0-40 28-68t68-28h320q40 0 68 28t28 68zm640 512v192q0 40-28 68t-68 28h-320q-40 0-68-28t-28-68v-192q0-40 28-68t68-28h320q40 0 68 28t28 68zm-640-1024v192q0 40-28 68t-68 28h-320q-40 0-68-28t-28-68v-192q0-40 28-68t68-28h320q40 0 68 28t28 68zm640 512v192q0 40-28 68t-68 28h-320q-40 0-68-28t-28-68v-192q0-40 28-68t68-28h320q40 0 68 28t28 68zm640 512v192q0 40-28 68t-68 28h-320q-40 0-68-28t-28-68v-192q0-40 28-68t68-28h320q40 0 68 28t28 68zm-640-1024v192q0 40-28 68t-68 28h-320q-40 0-68-28t-28-68v-192q0-40 28-68t68-28h320q40 0 68 28t28 68zm640 512v192q0 40-28 68t-68 28h-320q-40 0-68-28t-28-68v-192q0-40 28-68t68-28h320q40 0 68 28t28 68zm0-512v192q0 40-28 68t-68 28h-320q-40 0-68-28t-28-68v-192q0-40 28-68t68-28h320q40 0 68 28t28 68z"></path> </symbol> <symbol id="uw-symbol-undo" viewBox="0 0 1792 1792"> <title id="svg-undo">undo</title> <path d="M1664 896q0 156-61 298t-164 245-245 164-298 61q-172 0-327-72.5t-264-204.5q-7-10-6.5-22.5t8.5-20.5l137-138q10-9 25-9 16 2 23 12 73 95 179 147t225 52q104 0 198.5-40.5t163.5-109.5 109.5-163.5 40.5-198.5-40.5-198.5-109.5-163.5-163.5-109.5-198.5-40.5q-98 0-188 35.5t-160 101.5l137 138q31 30 14 69-17 40-59 40h-448q-26 0-45-19t-19-45v-448q0-42 40-59 39-17 69 14l130 129q107-101 244.5-156.5t284.5-55.5q156 0 298 61t245 164 164 245 61 298z"></path> </symbol> <symbol id="uw-symbol-crest-footer" viewBox="0 0 200 132.78"> <title id="svg-crest-footer">Footer Crest</title> <path d="M31.65,93.63c3,1.09,1.75,4.35,1,6.65L28.31,115l-5.4-17.44a8.47,8.47,0,0,1-.58-4.07H16.85v0.12c2.14,1.13,1.36,3.75.62,6.2l-4.55,15.31L7.14,96.41a7.23,7.23,0,0,1-.47-2.9H1v0.12c1.94,1.37,2.53,4,3.23,6.2l4.58,14.86c1.28,4.15,1.63,3.87,5.16,6.53L20,100.88l4.27,13.86c1.29,4.15,1.56,3.95,5.13,6.49l8.19-27.71h-6v0.12Z" transform="translate(-1 -0.61)" /> <path d="M38.95,93.63c2,0.77,1.71,3.71,1.71,5.56v15.18c0,1.81.23,4.8-1.71,5.52V120h7.38v-0.12c-1.94-.77-1.71-3.71-1.71-5.52V99.19c0-1.81-.23-4.79,1.71-5.56V93.51H38.95v0.12Z" transform="translate(-1 -0.61)" /> <path d="M53.12,99.43c0-2.78,2.8-3.67,5-3.67a8.68,8.68,0,0,1,6.1,2.54V93.75a18.9,18.9,0,0,0-5.79-.89c-4.74,0-9.75,1.94-9.75,7,0,8.54,13.36,7.41,13.36,13.7,0,2.82-3.34,4.19-5.55,4.19A13.17,13.17,0,0,1,48,114.41l1.13,5a19.44,19.44,0,0,0,7,1.21c6.06,0,10.41-4,10.41-8.34C66.49,104.87,53.12,104.95,53.12,99.43Z" transform="translate(-1 -0.61)" /> <path d="M82.23,117.32c-6,0-9.87-5.28-9.87-11.2s3.73-9.91,9.09-9.91a13.15,13.15,0,0,1,7.19,2.3V93.87a30,30,0,0,0-7.07-1c-8,0-13.64,5.52-13.64,13.86,0,8.62,5.67,13.94,14.84,13.94a13.31,13.31,0,0,0,5.86-1.21l2-4.67H90.5A16.7,16.7,0,0,1,82.23,117.32Z" transform="translate(-1 -0.61)" /> <path d="M104.63,92.83a14,14,0,0,0-14.57,13.85,13.83,13.83,0,0,0,14.18,14,14.09,14.09,0,0,0,14.29-14.18A13.63,13.63,0,0,0,104.63,92.83Zm-0.19,24.93c-6.1,0-9.95-5.8-9.95-11.44,0-6.08,3.85-10.59,9.87-10.59s9.75,5.68,9.75,11.56S110.34,117.75,104.44,117.75Z" transform="translate(-1 -0.61)" /> <path d="M138.49,93.63c2.06,1.21,2,2.82,2,5.08V114L126.29,95.36l-0.55-.81a2.48,2.48,0,0,1-.58-1v0H119.5v0.12c2,1.21,2,2.82,2,5.08v16.07c0,2.25,0,3.86-2.06,5.11V120h6.88v-0.12c-2.06-1.25-2-2.86-2-5.11V99.19l13.32,17.52c1.71,2.3,2.91,3.63,5.67,4.6V98.7c0-2.25,0-3.87,2-5.08V93.51h-6.84v0.12Z" transform="translate(-1 -0.61)" /> <path d="M151,99.43c0-2.78,2.8-3.67,5-3.67a8.68,8.68,0,0,1,6.1,2.54V93.75a18.86,18.86,0,0,0-5.79-.89c-4.73,0-9.75,1.94-9.75,7,0,8.54,13.36,7.41,13.36,13.7,0,2.82-3.34,4.19-5.56,4.19a13.18,13.18,0,0,1-8.51-3.34l1.13,5a19.46,19.46,0,0,0,7,1.21c6.06,0,10.41-4,10.41-8.34C164.37,104.87,151,104.95,151,99.43Z" transform="translate(-1 -0.61)" /> <path d="M165.84,93.63c2,0.77,1.71,3.71,1.71,5.56v15.18c0,1.81.24,4.8-1.71,5.52V120h7.38v-0.12c-1.94-.77-1.71-3.71-1.71-5.52V99.19c0-1.81-.24-4.79,1.71-5.56V93.51h-7.38v0.12Z" transform="translate(-1 -0.61)" /> <path d="M194.16,93.51v0.12c2.06,1.21,2,2.82,2,5.08V114L182,95.36l-0.55-.81a2.6,2.6,0,0,1-.58-1v0h-5.67v0.12c2,1.21,2,2.82,2,5.08v16.07c0,2.25,0,3.86-2.06,5.11V120H182v-0.12c-2.06-1.25-2-2.86-2-5.11V99.19l13.32,17.52c1.71,2.3,2.92,3.63,5.67,4.6V98.7c0-2.25,0-3.87,2-5.08V93.51h-6.84Z" transform="translate(-1 -0.61)" /> <path d="M12.72,126.16v4.62a2.75,2.75,0,0,1-.34,1.38,2.27,2.27,0,0,1-1,.91,3.4,3.4,0,0,1-1.54.32,2.87,2.87,0,0,1-2.07-.7,2.55,2.55,0,0,1-.74-1.93v-4.6H8.24v4.52a1.81,1.81,0,0,0,.41,1.3,1.69,1.69,0,0,0,1.26.42,1.5,1.5,0,0,0,1.65-1.73v-4.51h1.17Z" transform="translate(-1 -0.61)" /> <path d="M20.74,133.29H19.31l-3.51-5.69h0l0,0.32q0.07,0.91.07,1.66v3.71H14.79v-7.14h1.42l3.5,5.66h0c0-.08,0-0.35,0-0.82s0-.84,0-1.1v-3.74h1.07v7.14Z" transform="translate(-1 -0.61)" /> <path d="M23,133.29v-7.14h1.17v7.14H23Z" transform="translate(-1 -0.61)" /> <path d="M30.42,126.16h1.21l-2.5,7.14H27.9l-2.49-7.14h1.2l1.49,4.44c0.08,0.21.16,0.48,0.25,0.82s0.14,0.58.17,0.75c0-.25.11-0.53,0.2-0.86s0.16-.57.21-0.72Z" transform="translate(-1 -0.61)" /> <path d="M37,133.29h-4v-7.14h4v1H34.08v1.94h2.69v1H34.08v2.24H37v1Z" transform="translate(-1 -0.61)" /> <path d="M40,130.44v2.85H38.84v-7.14h2a3.32,3.32,0,0,1,2,.52,1.86,1.86,0,0,1,.66,1.56,2,2,0,0,1-1.39,1.9l2,3.16H42.86l-1.71-2.85H40Zm0-1h0.81a1.85,1.85,0,0,0,1.18-.3,1.1,1.1,0,0,0,.37-0.9,1,1,0,0,0-.4-0.87,2.17,2.17,0,0,0-1.19-.26H40v2.33Z" transform="translate(-1 -0.61)" /> <path d="M49.68,131.36a1.8,1.8,0,0,1-.69,1.49,3,3,0,0,1-1.9.54,4.53,4.53,0,0,1-2-.38v-1.1a5.34,5.34,0,0,0,1,.36,4.39,4.39,0,0,0,1,.13,1.62,1.62,0,0,0,1-.26,0.86,0.86,0,0,0,.33-0.71,0.89,0.89,0,0,0-.3-0.68A4.57,4.57,0,0,0,47,130.1a3.31,3.31,0,0,1-1.38-.9,1.91,1.91,0,0,1-.4-1.22,1.71,1.71,0,0,1,.63-1.41,2.63,2.63,0,0,1,1.7-.51,5,5,0,0,1,2,.45l-0.37,1a4.47,4.47,0,0,0-1.7-.4,1.31,1.31,0,0,0-.86.25,0.81,0.81,0,0,0-.29.65,0.92,0.92,0,0,0,.12.48,1.2,1.2,0,0,0,.39.37,6.52,6.52,0,0,0,1,.46,5.31,5.31,0,0,1,1.15.61,1.8,1.8,0,0,1,.54.64A1.93,1.93,0,0,1,49.68,131.36Z" transform="translate(-1 -0.61)" /> <path d="M51.41,133.29v-7.14h1.17v7.14H51.41Z" transform="translate(-1 -0.61)" /> <path d="M57.26,133.29H56.1v-6.14H54v-1h5.37v1h-2.1v6.14Z" transform="translate(-1 -0.61)" /> <path d="M62.81,129.41l1.69-3.26h1.27l-2.38,4.37v2.77H62.22v-2.73l-2.37-4.41h1.27Z" transform="translate(-1 -0.61)" /> <path d="M76.33,129.71a3.9,3.9,0,0,1-.87,2.71,3.66,3.66,0,0,1-5,0,3.93,3.93,0,0,1-.87-2.73,3.86,3.86,0,0,1,.87-2.71A3.21,3.21,0,0,1,73,126a3.14,3.14,0,0,1,2.46,1A3.9,3.9,0,0,1,76.33,129.71Zm-5.45,0a3.19,3.19,0,0,0,.53,2,2.16,2.16,0,0,0,3.15,0,4.05,4.05,0,0,0,0-4A1.86,1.86,0,0,0,73,127a1.9,1.9,0,0,0-1.58.68A3.18,3.18,0,0,0,70.88,129.71Z" transform="translate(-1 -0.61)" /> <path d="M79.36,133.29H78.2v-7.14h4v1H79.36v2.23h2.69v1H79.36v2.93Z" transform="translate(-1 -0.61)" /> <path d="M93.39,133.29H92.12L90.91,129c-0.05-.19-0.12-0.45-0.2-0.8s-0.12-.59-0.14-0.73q0,0.31-.16.81c-0.07.33-.13,0.58-0.18,0.74L89,133.29H87.78l-0.92-3.57-0.94-3.56h1.19l1,4.16q0.24,1,.34,1.77c0-.28.09-0.59,0.16-0.93s0.14-.62.2-0.83L90,126.16h1.16l1.19,4.19a15.38,15.38,0,0,1,.36,1.74,12.74,12.74,0,0,1,.35-1.78l1-4.15h1.18Z" transform="translate(-1 -0.61)" /> <path d="M96.6,133.29v-7.14h1.17v7.14H96.6Z" transform="translate(-1 -0.61)" /> <path d="M104.11,131.36a1.8,1.8,0,0,1-.69,1.49,3,3,0,0,1-1.9.54,4.53,4.53,0,0,1-2-.38v-1.1a5.4,5.4,0,0,0,1,.36,4.42,4.42,0,0,0,1,.13,1.63,1.63,0,0,0,1-.26,0.86,0.86,0,0,0,.33-0.71,0.89,0.89,0,0,0-.3-0.68,4.59,4.59,0,0,0-1.25-.66,3.29,3.29,0,0,1-1.38-.9,1.91,1.91,0,0,1-.4-1.22,1.71,1.71,0,0,1,.63-1.41,2.63,2.63,0,0,1,1.7-.51,5,5,0,0,1,2,.45l-0.37,1a4.47,4.47,0,0,0-1.7-.4,1.31,1.31,0,0,0-.86.25,0.81,0.81,0,0,0-.29.65,0.92,0.92,0,0,0,.12.48,1.2,1.2,0,0,0,.39.37,6.43,6.43,0,0,0,1,.46,5.31,5.31,0,0,1,1.15.61,1.81,1.81,0,0,1,.54.64A1.93,1.93,0,0,1,104.11,131.36Z" transform="translate(-1 -0.61)" /> <path d="M108.87,127.05a1.92,1.92,0,0,0-1.58.71,3.75,3.75,0,0,0,0,4,2,2,0,0,0,1.61.67,4.26,4.26,0,0,0,.88-0.09c0.28-.06.58-0.14,0.88-0.23v1a5.34,5.34,0,0,1-1.9.32,3,3,0,0,1-2.41-.95,4,4,0,0,1-.84-2.72,4.4,4.4,0,0,1,.41-1.95,2.92,2.92,0,0,1,1.18-1.28,3.58,3.58,0,0,1,1.81-.44,4.5,4.5,0,0,1,2,.46l-0.42,1a6.37,6.37,0,0,0-.77-0.3A2.75,2.75,0,0,0,108.87,127.05Z" transform="translate(-1 -0.61)" /> <path d="M118.85,129.71a3.9,3.9,0,0,1-.87,2.71,3.15,3.15,0,0,1-2.47,1,3.18,3.18,0,0,1-2.48-1,3.94,3.94,0,0,1-.87-2.73A3.86,3.86,0,0,1,113,127a3.21,3.21,0,0,1,2.49-.95,3.15,3.15,0,0,1,2.46,1A3.91,3.91,0,0,1,118.85,129.71Zm-5.45,0a3.21,3.21,0,0,0,.53,2,2.16,2.16,0,0,0,3.15,0,4,4,0,0,0,0-4,1.86,1.86,0,0,0-1.56-.68,1.9,1.9,0,0,0-1.59.68A3.18,3.18,0,0,0,113.4,129.71Z" transform="translate(-1 -0.61)" /> <path d="M126.67,133.29h-1.43l-3.51-5.69h0l0,0.32q0.07,0.91.07,1.66v3.71h-1.06v-7.14h1.42l3.5,5.66h0c0-.08,0-0.35,0-0.82s0-.84,0-1.1v-3.74h1.07v7.14Z" transform="translate(-1 -0.61)" /> <path d="M133,131.36a1.8,1.8,0,0,1-.69,1.49,3,3,0,0,1-1.9.54,4.52,4.52,0,0,1-2-.38v-1.1a5.31,5.31,0,0,0,1,.36,4.39,4.39,0,0,0,1,.13,1.62,1.62,0,0,0,1-.26,0.86,0.86,0,0,0,.33-0.71,0.88,0.88,0,0,0-.3-0.68,4.53,4.53,0,0,0-1.25-.66,3.31,3.31,0,0,1-1.38-.9,1.92,1.92,0,0,1-.4-1.22,1.71,1.71,0,0,1,.63-1.41,2.64,2.64,0,0,1,1.71-.51,5,5,0,0,1,2,.45l-0.37,1a4.47,4.47,0,0,0-1.7-.4,1.3,1.3,0,0,0-.86.25,0.81,0.81,0,0,0-.29.65,0.92,0.92,0,0,0,.12.48,1.22,1.22,0,0,0,.38.37,6.63,6.63,0,0,0,1,.46,5.26,5.26,0,0,1,1.15.61,1.79,1.79,0,0,1,.54.64A1.9,1.9,0,0,1,133,131.36Z" transform="translate(-1 -0.61)" /> <path d="M134.73,133.29v-7.14h1.17v7.14h-1.17Z" transform="translate(-1 -0.61)" /> <path d="M144.07,133.29h-1.43l-3.51-5.69h0l0,0.32c0,0.61.07,1.16,0.07,1.66v3.71h-1.06v-7.14h1.42l3.5,5.66h0c0-.08,0-0.35,0-0.82s0-.84,0-1.1v-3.74h1.07v7.14Z" transform="translate(-1 -0.61)" /> <path d="M145.75,131.07v-0.93h4.2v0.93h-4.2Z" transform="translate(-1 -0.61)" /> <path d="M154.72,133.29l-2.07-6h0q0.08,1.33.08,2.49v3.47h-1.06v-7.14h1.64l2,5.68h0l2-5.68H159v7.14h-1.12v-3.53q0-.53,0-1.39c0-.57,0-0.92,0-1h0l-2.14,6h-1Z" transform="translate(-1 -0.61)" /> <path d="M165.63,133.29l-0.71-2h-2.73l-0.7,2h-1.23l2.67-7.17h1.27l2.67,7.17h-1.24Zm-1-3-0.67-1.94c0-.13-0.12-0.33-0.2-0.62s-0.14-.49-0.18-0.62a11.19,11.19,0,0,1-.38,1.31l-0.64,1.86h2.08Z" transform="translate(-1 -0.61)" /> <path d="M174,129.66a3.56,3.56,0,0,1-1,2.7,3.94,3.94,0,0,1-2.83.94h-2v-7.14h2.21a3.65,3.65,0,0,1,2.65.92A3.43,3.43,0,0,1,174,129.66Zm-1.23,0q0-2.56-2.4-2.56h-1v5.18h0.83A2.3,2.3,0,0,0,172.73,129.7Z" transform="translate(-1 -0.61)" /> <path d="M175.83,133.29v-7.14H177v7.14h-1.17Z" transform="translate(-1 -0.61)" /> <path d="M183.34,131.36a1.8,1.8,0,0,1-.69,1.49,3,3,0,0,1-1.9.54,4.52,4.52,0,0,1-2-.38v-1.1a5.31,5.31,0,0,0,1,.36,4.39,4.39,0,0,0,1,.13,1.62,1.62,0,0,0,1-.26,0.86,0.86,0,0,0,.33-0.71,0.88,0.88,0,0,0-.3-0.68,4.53,4.53,0,0,0-1.25-.66,3.31,3.31,0,0,1-1.38-.9,1.92,1.92,0,0,1-.4-1.22,1.71,1.71,0,0,1,.63-1.41,2.64,2.64,0,0,1,1.71-.51,5,5,0,0,1,2,.45l-0.37,1a4.47,4.47,0,0,0-1.7-.4,1.3,1.3,0,0,0-.86.25,0.81,0.81,0,0,0-.29.65,0.92,0.92,0,0,0,.12.48,1.22,1.22,0,0,0,.38.37,6.63,6.63,0,0,0,1,.46,5.26,5.26,0,0,1,1.15.61,1.79,1.79,0,0,1,.54.64A1.9,1.9,0,0,1,183.34,131.36Z" transform="translate(-1 -0.61)" /> <path d="M191.4,129.71a3.91,3.91,0,0,1-.87,2.71,3.66,3.66,0,0,1-5,0,3.93,3.93,0,0,1-.87-2.73,3.87,3.87,0,0,1,.87-2.71,3.21,3.21,0,0,1,2.49-.95,3.14,3.14,0,0,1,2.46,1A3.9,3.9,0,0,1,191.4,129.71Zm-5.45,0a3.19,3.19,0,0,0,.53,2,2.16,2.16,0,0,0,3.15,0,4.05,4.05,0,0,0,0-4,1.86,1.86,0,0,0-1.56-.68,1.89,1.89,0,0,0-1.58.68A3.16,3.16,0,0,0,185.95,129.71Z" transform="translate(-1 -0.61)" /> <path d="M199.22,133.29h-1.43l-3.51-5.69h0l0,0.32q0.07,0.91.07,1.66v3.71h-1.06v-7.14h1.42l3.5,5.66h0c0-.08,0-0.35,0-0.82s0-.84,0-1.1v-3.74h1.07v7.14Z" transform="translate(-1 -0.61)" /> <path d="M131.41,31.93a49.5,49.5,0,0,0-.86-5.5,39.81,39.81,0,0,0-1.39-4.93,31.28,31.28,0,0,0-2.23-4.93,22.63,22.63,0,0,0-3-4.1,14.94,14.94,0,0,0-11-5.23h-0.09a5.77,5.77,0,0,0-4.16-2.91,4.93,4.93,0,0,0-9.56,0A5.77,5.77,0,0,0,95,7.25H95a14.94,14.94,0,0,0-11,5.23,22.63,22.63,0,0,0-3,4.1,31.28,31.28,0,0,0-2.23,4.93,39.81,39.81,0,0,0-1.39,4.93,49.49,49.49,0,0,0-.86,5.5c-2.3,22.62,7.87,50.42,26.16,54.68A3.17,3.17,0,0,0,104,87.89a3.17,3.17,0,0,0,1.27-1.28C123.54,82.35,133.71,54.55,131.41,31.93ZM104,1.48a3.9,3.9,0,0,1,3.93,2.76,4.86,4.86,0,0,0-3.86,2.47,0.17,0.17,0,0,1-.07.09,0.15,0.15,0,0,1-.07-0.09,4.86,4.86,0,0,0-3.86-2.47A3.9,3.9,0,0,1,104,1.48Zm-1.86,4.29a3.51,3.51,0,0,1,1.59,2.11,0.29,0.29,0,1,0,.53,0,3.51,3.51,0,0,1,1.59-2.11,4.19,4.19,0,0,1,6,1.58,13.38,13.38,0,0,0-1.67.42,6.6,6.6,0,0,0-2.38,1.32,9.4,9.4,0,0,0-3,6.1c-0.67,7.31,7.72,6.16,8.14,6.13,1.08,0,1.9-1.71,1.9-4s-0.84-4-1.9-4c-0.65,0-1.77.52-1.88,2.55-0.07,1.42.62,3.32,1.52,3.44,0.47,0.06.89-.76,1-1.6s0.06-1.87-.59-2a0.38,0.38,0,0,0-.46.28,3.83,3.83,0,0,1,.39,1.34c0,1.25-1.28.63-1.12-1.36,0.15-1.76,1.05-1.65,1.09-1.65,0.5,0,1.26,1,1.26,3,0,1.75-.84,3.63-2.46,2.65-1.36-1-1.89-3.28-1.52-5,0.17-.81.87-3,3.13-3,3.26,0,6.3,1.71,8.72,4.9-0.27.85-1.95,4.1-7.28,7.21l-0.29.15a11,11,0,0,0-4.93-1,27.08,27.08,0,0,0-4.64.74,2.89,2.89,0,0,1-1.84,0,27.08,27.08,0,0,0-4.64-.74,11,11,0,0,0-4.93,1L93.2,24c-5.34-3.11-7-6.36-7.28-7.21,2.42-3.19,5.46-4.9,8.72-4.9,2.26,0,3,2.21,3.13,3,0.38,1.77-.16,4.05-1.52,5-1.61,1-2.46-.9-2.46-2.65,0-2,.76-3,1.26-3,0,0,.94-0.11,1.09,1.65C96.31,18,95,18.6,95,17.35A3.83,3.83,0,0,1,95.41,16a0.38,0.38,0,0,0-.46-0.28c-0.65.16-.71,1.3-0.59,2s0.56,1.66,1,1.6c0.9-.12,1.6-2,1.52-3.44-0.1-2-1.23-2.55-1.88-2.55-1.06,0-1.9,1.71-1.9,4s0.82,4,1.9,4c0.42,0,8.81,1.18,8.14-6.13a9.4,9.4,0,0,0-3-6.1,6.6,6.6,0,0,0-2.38-1.32,13.38,13.38,0,0,0-1.67-.42A4.19,4.19,0,0,1,102.12,5.77ZM86.34,35.9a15.81,15.81,0,0,1-5.8-1.67c0.44-7.31,2.29-13.05,5-16.87,0.48,1.24,2.57,4.35,7.39,7.18C88.82,27,87,32.1,86.34,35.9Zm7.08-10.48a9.35,9.35,0,0,1,4.37-1.21c2.74-.18,4.79.87,6.16,0.91H104c1.37,0,3.4-1.09,6.14-.91a9.41,9.41,0,0,1,4.39,1.21c5.58,3.56,6.37,11.77,6.48,14.46a43.53,43.53,0,0,1-3.54,19c-3.86,8.51-8.53,14.53-13.14,16.57L104,75.6l-0.37-.16c-4.61-2-9.27-8.06-13.14-16.57a43.52,43.52,0,0,1-3.54-19C87,37.19,87.83,29,93.42,25.42Zm-7.16,11a32.49,32.49,0,0,0-.32,3.31A44.42,44.42,0,0,0,88,55a49.48,49.48,0,0,0,4.13,9.32A11.48,11.48,0,0,1,87,66.64a66.66,66.66,0,0,1-6.47-31.82A16.13,16.13,0,0,0,86.26,36.43Zm6.14,28.35c3.08,5.3,6.12,8.46,8.45,10.14a11.54,11.54,0,0,1-3.54,4.36c-4-2.7-7.4-7-10.07-12.13A11.81,11.81,0,0,0,92.39,64.78Zm8.91,10.46A12.19,12.19,0,0,0,104,76.71a12.2,12.2,0,0,0,2.67-1.47,12,12,0,0,0,3.53,4.34,18.69,18.69,0,0,1-3.58,1.78s0-.09,0-0.13c-0.26-1.32-2-1.59-2.61-1.59s-2.35.27-2.61,1.59c0,0,0,.09,0,0.13a18.69,18.69,0,0,1-3.58-1.78A12,12,0,0,0,101.31,75.24Zm5.81-.32c2.33-1.67,5.37-4.83,8.45-10.14a11.81,11.81,0,0,0,5.16,2.36c-2.67,5.16-6.06,9.43-10.07,12.13A11.54,11.54,0,0,1,107.12,74.91Zm8.72-10.61A49.48,49.48,0,0,0,120,55a44.42,44.42,0,0,0,2-15.25,32.48,32.48,0,0,0-.32-3.31,16.13,16.13,0,0,0,5.75-1.61A66.66,66.66,0,0,1,121,66.64,11.48,11.48,0,0,1,115.84,64.3Zm5.78-28.4c-0.62-3.8-2.5-8.8-6.58-11.36,4.82-2.83,6.92-5.94,7.39-7.18,2.69,3.82,4.55,9.56,5,16.87A15.81,15.81,0,0,1,121.62,35.9ZM101,85a23.29,23.29,0,0,1-5.87-2.93,27.5,27.5,0,0,1-3.25-2.62A31.1,31.1,0,0,1,89.53,77q-0.76-.88-1.46-1.81a47.49,47.49,0,0,1-5.58-9.69,63.91,63.91,0,0,1-3.42-10.2,70.46,70.46,0,0,1-1.79-10.85,64.57,64.57,0,0,1-.07-10.84c0.16-1.93.39-3.86,0.74-5.77a39.32,39.32,0,0,1,1.43-5.61,31,31,0,0,1,2.1-4.86,20.93,20.93,0,0,1,3.15-4.44,16.19,16.19,0,0,1,4-3.1A13.93,13.93,0,0,1,90.53,9q0.51-.18,1-0.32a4.35,4.35,0,0,1,1-.24,14,14,0,0,1,2.56-.23,7.58,7.58,0,0,1,3.88,1,8,8,0,0,1,3.34,6c0.39,4.52-4.21,5.23-5.11,5.22-0.14,0-.21-0.13.24-0.59a6.53,6.53,0,0,0,1-5.1c-0.44-2.07-1.9-3.69-4-3.69A11.16,11.16,0,0,0,86.41,15a22.78,22.78,0,0,0-4.47,7.87,42.69,42.69,0,0,0-2.2,11.38A62.43,62.43,0,0,0,80,44.88a68.71,68.71,0,0,0,1.95,10.59,60.82,60.82,0,0,0,3.53,9.85,43.36,43.36,0,0,0,5.48,9,25.89,25.89,0,0,0,8.13,6.87,18.15,18.15,0,0,0,2.21,1,6.71,6.71,0,0,0,.67,3.1A6.63,6.63,0,0,1,101,85Zm3.29,1.55a0.34,0.34,0,0,1-.62,0,6.49,6.49,0,0,1-1.51-5.17c0.12-.64,1.2-0.93,1.82-0.94s1.7,0.3,1.82.94A6.49,6.49,0,0,1,104.29,86.55Zm26.38-42.11a70.46,70.46,0,0,1-1.79,10.85,63.9,63.9,0,0,1-3.42,10.2,47.49,47.49,0,0,1-5.58,9.69q-0.7.93-1.46,1.81a31.1,31.1,0,0,1-2.35,2.47,27.5,27.5,0,0,1-3.25,2.62A23.29,23.29,0,0,1,107,85a6.63,6.63,0,0,1-.93.28,6.71,6.71,0,0,0,.67-3.1,18.15,18.15,0,0,0,2.21-1A25.89,25.89,0,0,0,117,74.35a43.36,43.36,0,0,0,5.48-9A60.82,60.82,0,0,0,126,55.47,68.71,68.71,0,0,0,128,44.88a62.43,62.43,0,0,0,.23-10.64A42.69,42.69,0,0,0,126,22.86,22.78,22.78,0,0,0,121.55,15a11.16,11.16,0,0,0-8.12-3.89c-2.12,0-3.58,1.62-4,3.69a6.53,6.53,0,0,0,1,5.1c0.45,0.46.38,0.59,0.24,0.59-0.9,0-5.51-.71-5.11-5.22a8,8,0,0,1,3.34-6,7.58,7.58,0,0,1,3.88-1,14,14,0,0,1,2.56.23,4.35,4.35,0,0,1,1,.24q0.52,0.14,1,.32a13.93,13.93,0,0,1,1.93.87,16.19,16.19,0,0,1,4,3.1,20.93,20.93,0,0,1,3.15,4.44,31,31,0,0,1,2.1,4.86A39.33,39.33,0,0,1,130,27.84c0.35,1.91.58,3.84,0.74,5.77A64.57,64.57,0,0,1,130.68,44.45Z" transform="translate(-1 -0.61)" /> <path d="M112.28,33.43v1.86l0.38-.06h0.18a1.17,1.17,0,0,1,.82.28,1.27,1.27,0,0,1,.21,1.11s-3.74,16.19-4.45,19.27c-0.82-3.9-5.26-25.18-5.26-25.18l0-.09h-0.88v0.1L99.38,55.57,95,36.62a2.7,2.7,0,0,1,0-.28,1.27,1.27,0,0,1,.31-1A1,1,0,0,1,96,35.17l0.37,0v-1.8H90.11v1.76l0.28,0a1.16,1.16,0,0,1,.95.83l7.61,32.67,0,0.09h1.1v-0.1l3.56-23.3,4.53,23.31,0,0.09h1L116.41,36a1,1,0,0,1,1-.75h0.07l0.36,0V33.43h-5.58Z" transform="translate(-1 -0.61)" /> </symbol> <symbol id="uw-symbol-map-marker" viewBox="0 0 585 1024"> <title id="svg-map-marker">map-marker</title> <path class="path1" d="M438.857 365.714q0-60.571-42.857-103.429t-103.429-42.857-103.429 42.857-42.857 103.429 42.857 103.429 103.429 42.857 103.429-42.857 42.857-103.429zM585.143 365.714q0 62.286-18.857 102.286l-208 442.286q-9.143 18.857-27.143 29.714t-38.571 10.857-38.571-10.857-26.571-29.714l-208.571-442.286q-18.857-40-18.857-102.286 0-121.143 85.714-206.857t206.857-85.714 206.857 85.714 85.714 206.857z"></path> </symbol> <symbol id="uw-symbol-bucky" viewBox="0 0 290.2 194.4"> <title id="svg-bucky-head">Bucky Head</title> <g id="Foreground"> <g> <path class="st0" d="M243.8,130.3v12.9h-12.2c20.6,38.3-51.2,50.3-72.8,49.5c-17.9-0.6-93.5-6.7-75.6-44.9 c-9.3-1.3-17.5-2.4-26.9-2.9l1.8-6.3c-15.1-4.8-27.7-11.2-41.4-19.2l4.3-5.2c-8.7-6.6-15.3-13.4-20.6-23c2.4-2.8,4.8-5.6,7.4-8.3 l-4.5-4c3.9-4.5,7.8-8.9,11.9-13.2C-4.4,35,14.6,8,50.2,15.4c23.4,4.9,17.9,5.9,40.4-1.3c32.6-10.4,60.5-8.1,93.1-2.5 c20.5,3.5,44.9-23.6,64.6-3.2c5.7,5.9,6.1,13.6,6.1,17.3c0,4.2-0.7,8.4-1.6,11.8c7,3.1,13.6,6.8,20.3,10.5l-2.7,4.4 c6.8,4.5,12.5,10.5,19,15.4c-3.7,6.4-6.6,13.3-10.7,19.4l4,3c0,0-6.2,8.5-8.3,11.1c-4.9,6.1-10,11.1-16.2,15.8l3.5,5.7 C255.6,125.2,249.7,127.8,243.8,130.3z"/> <path class="st1" d="M208.5,129.1l0.5,2.4c0.3-0.2,0.5-0.3,0.6-0.3L208.5,129.1z M94,136.9c0.4-0.8,1-1.8,1.8-3 c1.6-2.2,4.8-5.6,10.1-6.2c11.9-1.3,37.6-2,60.6-2.5c11.6-0.2,51.2,2.3,51.9,2.9c1,0.9,2.3,2.1,3.3,3.8c1,1.6,2.3,4.4,1.7,7.9 c-0.4,2.3-0.3,3.6-0.2,4.3c0.1,0.5,0.2,0.8,0.5,1.4c0.3,0.5,0.6,1,0.9,1.6c0.5,0.9,0.9,1.8,1.2,2.8c0.9,2.5,1.1,5.2,0.6,8.3 c-1.1,6.9-7.1,11.2-11.4,13.7c-5,2.9-11.3,5.2-17.8,7.1c-12.8,3.7-28,6-38.1,5.6c-32.1-1.1-55.7-9.9-64.6-15.4 c-8.1-5-6.1-13-4.8-16.3c0.5-1.3,1.2-2.6,1.8-3.9l0.1-0.1l0.4-7.7L94,136.9z"/> <g> <defs> <path id="SVGID_1_" d="M218.6,148.4c0.3,0.5,0.6,1,0.9,1.5c0.3,0.6,0.6,1.2,0.9,1.9c0.5,1.5,0.7,3.3,0.3,5.5 c-2.2,13.7-44.3,22.1-61.4,21.5c-31.3-1.1-53.9-9.7-61.8-14.5c-4.2-2.6-3.5-6.5-2.4-9.2c0.5-1.2,1.1-2.5,1.7-3.7 c0.5-1.2,0.8-2,0.8-2.6c0.1-3.7-0.1-5.1-0.1-5.9c0-0.7,0.2-1.4,0.7-2.1c0.1-0.2,0.3-0.3,0.5-0.6l0.3-0.3 c0.1-0.2,0.2-0.4,0.3-0.6c0.3-0.6,0.7-1.3,1.3-2.1c1.1-1.5,3.1-3.5,6-3.8c11.8-1.3,37.3-2,60.1-2.4c11.3-0.2,22-0.4,30-0.6 c4.1-0.1,7.4-0.2,9.6-0.2c1.1,0,2-0.1,2.5-0.1l0.7,0l1.1-0.4c0,0,1.4,0.8,2,1.2c0.6,0.4,1.4,1,2.1,1.6c1.2,1.1,3.6,3.5,3.1,6.4 C216.7,144.6,217.7,146.7,218.6,148.4z"/> </defs> <use xlink:href="#SVGID_1_" style="overflow:visible;"/> <clipPath id="SVGID_2_"> <use xlink:href="#SVGID_1_" style="overflow:visible;"/> </clipPath> <g class="st2"> <path class="st0" d="M105,160.1c-0.4,1.1-1.5,1.3-2.3,1c-0.8-0.3-1.4-1.2-1-2.3c2.5-5.2,3.7-12.2,2.7-17.7 c-0.1-1.2,0.7-1.9,1.6-2c0.9-0.1,1.8,0.4,2,1.6C109.4,146.7,108,154,105,160.1z"/> <path class="st0" d="M113.7,164.3c-0.9-0.2-1.6-1-1.2-2.2c2.2-5.4,3.2-15.9,2.3-20.2c-0.2-1.2,0.5-1.9,1.4-2.1 c0.9-0.2,1.9,0.2,2.1,1.4c1,4.9-0.3,15.9-2.4,21.8C115.6,164.2,114.6,164.5,113.7,164.3z"/> <path class="st0" d="M126.4,166.3c-0.3,1.2-1.3,1.6-2.2,1.4c-0.9-0.2-1.6-1-1.3-2.2c2-5.8,2.5-18.7,2.5-23.4 c0-1.2,0.6-1.6,1.5-1.6c0.9,0,2,0.4,2,1.6c0,2.5,0.1,6.8-0.1,11.3C128.7,157.9,127.9,162.8,126.4,166.3z"/> <path class="st0" d="M135.2,170c-0.8-0.3-1.4-1.2-1-2.3c1.7-4.1,1.9-13.1,1.3-17.5c-0.2-1.2,0.6-1.9,1.5-2 c0.9-0.1,1.9,0.3,2,1.5c0.7,5.1,0.4,14.6-1.5,19.3C137.1,170.2,136.1,170.4,135.2,170z"/> <path class="st0" d="M149.3,170.4c-0.2,1.2-1.1,1.6-2,1.5c-0.9-0.1-1.7-0.9-1.5-2c0.3-2.1,0.8-5.9,0.8-9.7c0-3.8,0.5-7.9,0.5-10 c0-1.2,0.9-1.8,1.8-1.8c0.9,0,1.8,0.6,1.8,1.8c0,2.2-0.4,6.3-0.5,10.3C150.1,164.4,149.6,168.2,149.3,170.4z"/> <path class="st0" d="M158.7,172.8c-0.9-0.1-1.7-0.7-1.7-1.9c0.3-4.3,0.5-7,0.5-11.3c0-1.2,0.9-1.8,1.8-1.8 c0.9,0,1.8,0.6,1.8,1.8c0,4.3-0.2,7.2-0.5,11.5C160.5,172.3,159.6,172.9,158.7,172.8z"/> <path class="st0" d="M170.9,173.1c-0.9,0-1.8-0.6-1.8-1.8c0-3.3-0.7-6.2-0.7-9.6c0-1.2,0.9-1.8,1.8-1.8c0.9,0,1.8,0.6,1.8,1.8 c0,3.3,0.7,6.2,0.7,9.6C172.7,172.5,171.8,173.1,170.9,173.1z"/> <path class="st0" d="M182.9,171.4c-0.9,0.3-1.9,0-2.3-1.1c-1.2-3.8-1.6-6.2-1.9-10.2c-0.1-1.2,0.7-1.8,1.6-1.9 c0.9-0.1,1.8,0.5,1.9,1.6c0.3,3.7,0.6,5.9,1.7,9.4C184.4,170.3,183.8,171.1,182.9,171.4z"/> <path class="st0" d="M193.8,168.4c-0.9,0.2-1.9-0.1-2.2-1.3c-2.1-5.3-2.7-8.6-3.1-13.4c-0.1-1.2,0.7-1.8,1.6-1.9 c0.9-0.1,1.8,0.4,1.9,1.6c0.4,4.6,1.2,7.4,3,12.8C195.4,167.4,194.7,168.2,193.8,168.4z"/> <path class="st0" d="M195.4,139c-0.1-1.2,0.6-1.9,1.5-2c0.9-0.1,2.1-0.4,2.2,0.8c0.6,4.9,3.7,18,6.1,23.8c0.4,1.1-0.2,2-1,2.3 c-0.9,0.3-1.9,0.1-2.3-1C198.6,156.7,196.1,144.2,195.4,139z"/> <path class="st0" d="M214,158.9c-0.8,0.4-1.9,0.2-2.4-0.9c-4.6-8.8-6.1-19.3-6.4-25.5c0-1.2,2-1,3-1c1,0,1.2,0,1.3,1.2 c0.2,5.6,2.6,17.2,5.3,23.8C215.4,157.6,214.9,158.5,214,158.9z"/> </g> </g> <path class="st3" d="M117.9,150.1"/> <path class="st1" d="M267.6,89l4,3c0,0-5.7,7.7-10,12c-5,4.9-14.1,11-14.1,11l2.3,3.7c-2.1,0.8-7.4,4.8-14.9,7.3 c-9.2,3.1-18.6,5.8-23.8,7c-1.4,0.3-4.1,1.3-6.8,2.3l-3.5,2.7l0.3,1.5c1,4.4-0.3,8.6-1.5,10.9c-2.4,4.5-7.4,7.1-13.2,6.2l-1-0.1 l-0.6,0.7c-0.6,0.7-1.3,1.5-1.9,2c-1.2,1-2.9,2-5.1,2.9c-4.6,1.8-10.9,2.5-19.1,0.1c-6.2-1.8-10.2-4.2-12.9-6.5 c-0.6-0.5-1.1-1-1.5-1.5l-0.7-0.7l-0.9,0.2c-3.8,0.6-8.6,0.3-12.8-3.4c-1.6-1.4-2.8-2.9-3.6-4.5l-0.4-0.7L125,145 c-2.7-0.7-7.2-1.8-12.6-2.1c-14.6-0.7-41.9-5.3-45.6-5.5l1.2-4.3c0,0-18.5-5.2-29.5-10.7c-3.8-1.9-9.5-5.2-9.5-5.2l3.7-4.5 c0,0-8.8-6-13.7-10.8c-3.7-3.5-7.5-7.5-8.8-9.8c3-3.5,9-8.8,9-8.8s-4.1-4.9-4.5-5.2c1.6-1.9,11-11.7,11-11.7l-1-1.2 c-0.9-1.1-1.8-2.4-2.7-3.8c-3.5-5.4-11.5-23.1-0.3-34.4c7.4-7.5,19.2-5.4,26.8-3.8c4.2,0.9,8.6,2,12.9,2.9 c4.2,0.8,7.6,1.3,10.5,1.2c2.9-0.1,5.8-0.7,9.2-1.7c3.6-1.1,7.5-2.4,11.9-3.8c9.3-3,21.2-6.1,38.9-6.9c12.4-0.6,21.7,0,29.6,1.1 c7.7,1,14,2.4,20.8,3.6c11.1,1.9,18.4-1.3,26.9-5.4c8.6-4.2,25.9-7.7,33.3-0.1c3.4,3.5,3.9,8.4,3.9,11.6c0,3.6-0.7,7.4-1.5,10.6 c-0.4,1.4-0.9,2.8-1.4,4.1l-0.7,1.7l1.7,0.7c2,0.8,4.8,1.9,6.3,2.7c1.5,0.8,8.2,3.9,11.2,5.6l-2.5,4c0,0,5.8,3.5,9.2,6 c2.5,1.8,8.1,7.4,10.2,9c-0.2,0.4-2.8,6.2-5,10C271.2,84.4,267.6,89,267.6,89z"/> <path class="st4" d="M134.5,132.9c0,0-3.5,1.1-5,2.4c-1.5,1.3-2.4,3.1-2.4,3.1s-4.5-2-14.1-2.3c-14.2-0.4-36.4-4.9-36.4-4.9 l0.8-3.6c0,0-12.6-2.6-26.1-7.6c-4.6-1.7-11.2-5.2-11.2-5.2l2.8-4.8c0,0-5.8-3.2-10.8-7c-10.2-7.8-11.2-10.8-11.2-10.8 s3.6-4.2,4.5-5.2c0.9-1.1,4-3.8,4-3.8s-0.1-0.5-2-2c-1.8-1.4-3.1-2.2-3.1-2.2s2.3-3.6,5.4-6.7c3.4-3.5,5.8-5.6,5.8-5.6 s-4.1-3.5-7.5-8.9c-3.6-5.6-8.4-18.7-1.2-25.9c8.7-8.9,30.9,3,45.7,2.3c14.8-0.7,26.2-10.9,60-12.5c23.8-1.1,35.6,2.3,48.9,4.6 c13.3,2.3,22.3-1.7,31-6c8.7-4.3,21.6-5.4,25.4-1.5c2.9,3,2.1,10.2,0.7,15.7c-1.5,5.5-5.6,11.1-5.6,11.1s3.8,1.4,7.4,2.7 c4.3,1.6,11.7,5.4,11.7,5.4L249,58c0,0,7.9,3.4,12.5,6.5c3.9,2.6,9.2,7.5,9.2,7.5s-1.8,3.5-5,8.8c-1.8,2.9-7.2,9.5-7.2,9.5 l3.5,2.8c0,0-1.7,3.8-15,13.5c-2.9,2.1-9.4,5.3-9.4,5.3l2.9,3.9c0,0-3.5,2.8-8.5,4.5c-2.6,0.9-16.4,5.3-23,6.8 c-3.8,0.8-11.2,4.9-11.2,4.9s-0.5-4.8-2.9-8c-2.4-3.2-6.5-5-6.5-5s4,4.2,3.6,9c-0.3,4.4-0.8,6.1-0.8,6.1s0.7,1.1,2.6,3.6 c2.3,3,2.5,7.9,0.3,10.2c-1.8,1.8-4.6,3-7.3,1.8c-4.5-2-6.5-6-16.7-7.3c-7.5-0.9-12.6,2.1-12.6,2.1s4.9-0.2,12.2,1.9 c6.6,1.9,9.7,5.1,10.6,6.2l0,0c-2.1,1.9-8.9,6.4-19.9,3.2c-10.9-3.2-12.2-7-12.2-7s0.5-0.9,0.9-2.3c0.4-1.3,0.1-2,0.1-2 s-9.1,6.1-15.2,0.8C128,139.9,134.5,132.9,134.5,132.9z"/> <path d="M106.6,90.9c0-3.8,2.4-6.9,5.8-8c0.1,1,0.3,2.5,0.6,3.5c0.5,1.8,1.7,4.4,1.7,4.4s0.6-2.5,1.5-4c0.7-1.1,1.9-2.4,1.9-2.4 s0.3,0.3,3,2.6c0.5,0.4,1.3,1.1,2.2,1.7c0.2,0.9,0.3,1.5,0.3,2.3c0,4.7-3.8,8.5-8.5,8.5C110.3,99.3,106.6,95.5,106.6,90.9z"/> <path class="st1" d="M89.5,81.7c0,0,1.2-7.5,10.6-7.7c17.5-0.2,25.9,19.7,36.3,19.9c12.8,0.3,12.6-13.7,12.6-13.7s-2.1,4.3-9.8,5 c-12.7,1.1-21.8-22.3-38.8-20.7C86.4,65.9,89.5,81.7,89.5,81.7z"/> <path class="st1" d="M143.3,80c0,0-3.2,2.7-8.6,0.4c-8.7-3.7-20.4-22-40.4-27.8c-20-5.8-26.9-1.3-42-5.6 c-16.8-4.7-21.4-12.9-21.4-12.9s4.6-1.9,12.1-0.3c10,2.1,14.6,5.4,24.8,5.2c8.9-0.1,17.6-3.9,17.6-3.9l2.3,2.1 c0,0,4.8-3.1,7.8-4.4c3-1.3,7.9-2.8,7.9-2.8l1.9,3c0,0,3.6-2,7.4-3.1c3.8-1.1,7.1-1.5,7.1-1.5s9.2,7,15.3,21.4 C142.5,67.1,143.3,80,143.3,80z"/> <path class="st1" d="M32.4,42.4c0,0,1.9,2.7,7.3,6.3c5.4,3.6,12.9,5.2,12.9,5.2s-3.8,1.6-6.3,3.5c-2.6,1.9-5.1,4.6-5.1,4.6 s-3.3-3.2-5.6-7.8C32.4,48,32.4,42.4,32.4,42.4z"/> <path class="st1" d="M69.3,57c0,0-4.5,1.5-15.5,8.8C45.1,71.4,39.6,77,39.6,77l4.5,3.5l-9.5,10.8c0,0,5.9,6.1,10.2,9.2 c3.8,2.7,10.4,6.1,10.4,6.1l-2.6,4.4c0,0,3.9,4,25,9.2c33,8.2,42.5,6,42.5,6s-53-14.8-56.5-42.5C61.3,65.7,69.3,57,69.3,57z"/> <path class="st1" d="M116.8,108.9c0,0,1,3.2,7.1,5.6c6.7,2.7,20.3,2.5,24.6,4.6c6.6,3.2,5,3.3,9.3,5.5c4.4,2.3,14.1,3.2,17.9,0.3 c3.8-3,4.2-5.5,7-7.9c5.1-4.3,9.9-3.5,14.4-6.6c3.6-2.6,4.6-4.4,4.6-4.4s-2.7,0.3-6,0.4c-2.6,0.1-7-0.7-7-0.7l1.1-2.3 c0,0-2.4-0.1-5.8-0.8c-3.1-0.6-5.1-2-5.1-2l1.2-2.3c0,0-0.9-0.4-5.9-2.6c-5.9-2.6-20.8-3.5-26.7,1.2c-3,2.4-5.4,2.7-5.4,2.7 l1.9,2.3c0,0-2.6,1.2-7,2c-4.4,0.8-7.4,1.5-7.4,1.5l1.6,2c0,0-0.7,0.5-5.4,1.3C120.9,109.5,116.8,108.9,116.8,108.9z"/> <path class="st4" d="M158,118.4c0,0-1.7-1.1-1.6-3.6c0.1-2.6,1.7-6.6,9.7-6.6c4.9,0,10.3,1.5,10.8,5.9c0.4,3.4-1.6,4.6-1.6,4.6 s0-2.6-1.2-3.8c-1.2-1.2-2.4-1.6-2.4-1.6s0.1,1.9-1.9,2.9c-2,0.9-4.6,0.8-5.8,0c-1.2-0.8-0.1-1.7-3.1-1.8 C158.5,114.3,158,118.4,158,118.4z"/> <path class="st1" d="M144.3,139.3c3.1,5.7,10.1-2.8,21.1-2.5c13.4,0.4,17.3,7.2,19.7,4.5c2.9-3.3-9.2-11-22.1-10.9 C146.4,130.7,142.2,135.5,144.3,139.3z"/> <path class="st1" d="M210.5,73.8c0,0-1.6-5.1-7.1-5.1c-9.2,0-16.5,21.2-27,21.2c-8.6,0-9.8-11.7-9.8-11.7s2.7,4.2,9.3,3.4 c7.8-1,14.4-22.4,29-20.8C212.9,61.7,210.5,73.8,210.5,73.8z"/> <path class="st1" d="M169.9,78c0,0,3.5,1.2,6.2-0.4c9-5.4,12.2-22.9,24.7-32.2c10.5-7.8,15.6-6.2,23.9-15 c5.9-5.9,6.4-10.2,6.4-10.2s-4.4-0.1-12.6,2.4c-9.8,3-16.9,8.6-25.2,8.9c-8.9,0.3-14.2-1.6-14.2-1.6l-0.4,3.1c0,0-6.2-2.8-9.3-3.9 c-3.1-1-8.2-2-8.2-2l-0.9,2.9c0,0-2.6-1.1-6.4-1.7c-3.9-0.7-7-0.8-7-0.8s7.5,5.9,14,19.3C169.6,65,169.9,78,169.9,78z"/> <path class="st1" d="M233.1,27.9c0,0-2.1,3.3-5.6,7c-3.2,3.4-7.8,6.6-7.8,6.6s1.2,0.3,3.9,0.9c3,0.8,4.4,1.7,4.4,1.7 s2.8-4.2,3.8-6.6C233.9,32.2,233.1,27.9,233.1,27.9z"/> <path class="st1" d="M215.6,49.2c0,0,22.4,13.3,17.8,34.8c-4.5,21-28,33.5-28,33.5s11.4-3.5,20.5-7.5c17.8-7.8,24.8-16,24.8-16 l-3.5-4l6.2-6.5l7-9.2c0,0-6-4.2-13.8-8.8c-3.3-1.9-10.2-5.2-10.2-5.2l3.2-4.2c0,0-5.2-2.6-13.2-4.5 C219.2,49.8,215.6,49.2,215.6,49.2z"/> <path d="M204.3,87.4c0-3.8-2.4-6.9-5.8-8c-0.1,1-0.3,2.5-0.6,3.5c-0.5,1.8-1.7,4.4-1.7,4.4s-0.6-2.5-1.5-4 c-0.7-1.1-1.9-2.4-1.9-2.4s-0.3,0.3-3,2.6c-0.5,0.4-1.3,1.1-2.2,1.7c-0.2,0.9-0.3,1.5-0.3,2.3c0,4.7,3.8,8.5,8.5,8.5 C200.5,95.8,204.3,92,204.3,87.4z"/> </g> </g> </symbol> </defs> </svg> <div class="uw-overlay"></div> <div id="cl-navigation" style="display: none;"> <ul class="nav levelzero" id="/"> <li><a href="/api/">/&#8203;api/&#8203;</a></li> <li><a href="/pdf/">/&#8203;pdf/&#8203;</a></li> <li><a href="/archive/">Archive</a></li> <li class="active isparent"><a href="/courses/">Courses</a> <ul class="nav levelone" id="/courses/"> <li><a href="/courses/acct_i_s/">Accounting and Information Systems (ACCT I S)</a></li> <li><a href="/courses/act_sci/">Actuarial Science (ACT SCI)</a></li> <li><a href="/courses/afroamer/">African American Studies (AFROAMER)</a></li> <li><a href="/courses/african/">African Cultural Studies (AFRICAN)</a></li> <li><a href="/courses/a_a_e/">Agricultural and Applied Economics (A A E)</a></li> <li><a href="/courses/agroecol/">Agroecology (AGROECOL)</a></li> <li><a href="/courses/agronomy/">Agronomy (AGRONOMY)</a></li> <li><a href="/courses/a_f_aero/">Air Force Aerospace Studies (A F AERO)</a></li> <li><a href="/courses/amer_ind/">American Indian Studies (AMER IND)</a></li> <li><a href="/courses/anat_phy/">Anatomy &amp;&#8203; Physiology (ANAT&amp;&#8203;PHY)</a></li> <li><a href="/courses/anatomy/">Anatomy (ANATOMY)</a></li> <li><a href="/courses/anesthes/">Anesthesiology (ANESTHES)</a></li> <li><a href="/courses/an_sci/">Animal Sciences (AN SCI)</a></li> <li><a href="/courses/anthro/">Anthropology (ANTHRO)</a></li> <li><a href="/courses/abt/">Applied Biotechnology (ABT)</a></li> <li><a href="/courses/art/">Art Department (ART)</a></li> <li><a href="/courses/art_ed/">Art Education (Department of Art) (ART ED)</a></li> <li><a href="/courses/art_hist/">Art History (ART HIST)</a></li> <li><a href="/courses/asian_am/">Asian American Studies (ASIAN AM)</a></li> <li><a href="/courses/asian/">Asian Languages and Cultures (ASIAN)</a></li> <li><a href="/courses/asialang/">Asian Languages and Cultures: Languages (ASIALANG)</a></li> <li><a href="/courses/astron/">Astronomy (ASTRON)</a></li> <li><a href="/courses/atm_ocn/">Atmospheric and Oceanic Sciences (ATM OCN)</a></li> <li><a href="/courses/biochem/">Biochemistry (BIOCHEM)</a></li> <li><a href="/courses/bse/">Biological Systems Engineering (BSE)</a></li> <li><a href="/courses/biology/">Biology (BIOLOGY)</a></li> <li><a href="/courses/biocore/">Biology Core Curriculum (BIOCORE)</a></li> <li><a href="/courses/b_m_e/">Biomedical Engineering (B M E)</a></li> <li><a href="/courses/biomdsci/">Biomedical Sciences and Technologies (BIOMDSCI)</a></li> <li><a href="/courses/bmolchem/">Biomolecular Chemistry (BMOLCHEM)</a></li> <li><a href="/courses/b_m_i/">Biostatistics and Medical Informatics (B M I)</a></li> <li><a href="/courses/botany/">Botany (BOTANY)</a></li> <li><a href="/courses/crb/">Cell and Regenerative Biology (CRB)</a></li> <li><a href="/courses/cbe/">Chemical and Biological Engineering (CBE)</a></li> <li><a href="/courses/chem/">Chemistry (CHEM)</a></li> <li><a href="/courses/chicla/">Chicana/&#8203;o and Latina/&#8203;o Studies (CHICLA)</a></li> <li><a href="/courses/civ_engr/">Civil and Environmental Engineering (CIV ENGR)</a></li> <li><a href="/courses/cscs/">Civil Society and Community Studies (CSCS)</a></li> <li><a href="/courses/classics/">Classics (CLASSICS)</a></li> <li><a href="/courses/cnp/">Collaborative Nursing Program (CNP)</a></li> <li><a href="/courses/com_arts/">Communication Arts (COM ARTS)</a></li> <li><a href="/courses/cs_d/">Communication Sciences and Disorders (CS&amp;&#8203;D)</a></li> <li><a href="/courses/c_e_soc/">Community and Environmental Sociology (C&amp;&#8203;E SOC)</a></li> <li><a href="/courses/comp_bio/">Comparative Biosciences (COMP BIO)</a></li> <li><a href="/courses/comp_lit/">Comparative Literature (COMP LIT)</a></li> <li><a href="/courses/comp_sci/">Computer Sciences (COMP SCI)</a></li> <li><a href="/courses/cnsr_sci/">Consumer Science (CNSR SCI)</a></li> <li><a href="/courses/coun_psy/">Counseling Psychology (COUN PSY)</a></li> <li><a href="/courses/curric/">Curriculum and Instruction (CURRIC)</a></li> <li><a href="/courses/dy_sci/">Dairy Science (DY SCI)</a></li> <li><a href="/courses/dance/">Dance (DANCE)</a></li> <li><a href="/courses/derm/">Dermatology (DERM)</a></li> <li><a href="/courses/ds/">Design Studies (DS)</a></li> <li><a href="/courses/econ/">Economics (ECON)</a></li> <li><a href="/courses/elpa/">Educational Leadership and Policy Analysis (ELPA)</a></li> <li><a href="/courses/ed_pol/">Educational Policy Studies (ED POL)</a></li> <li><a href="/courses/ed_psych/">Educational Psychology (ED PSYCH)</a></li> <li><a href="/courses/e_c_e/">Electrical and Computer Engineering (E C E)</a></li> <li><a href="/courses/emer_med/">Emergency Medicine (EMER MED)</a></li> <li><a href="/courses/e_m_a/">Engineering Mechanics and Aerospace Engineering (E M A)</a></li> <li><a href="/courses/e_p/">Engineering Physics (E P)</a></li> <li><a href="/courses/e_p_d/">Engineering Professional Development (E P D)</a></li> <li><a href="/courses/engl/">English (ENGL)</a></li> <li><a href="/courses/esl/">English as a Second Language (ESL)</a></li> <li><a href="/courses/entom/">Entomology (ENTOM)</a></li> <li><a href="/courses/envir_st/">Environmental Studies -&#8203; Gaylord Nelson Institute (ENVIR ST)</a></li> <li><a href="/courses/fam_med/">Family Medicine (FAM MED)</a></li> <li><a href="/courses/fisc/">Farm and Industry Short Course (FISC)</a></li> <li><a href="/courses/finance/">Finance, Investment and Banking (FINANCE)</a></li> <li><a href="/courses/folklore/">Folklore Program (FOLKLORE)</a></li> <li><a href="/courses/food_sci/">Food Science (FOOD SCI)</a></li> <li><a href="/courses/f_w_ecol/">Forest and Wildlife Ecology (F&amp;&#8203;W ECOL)</a></li> <li><a href="/courses/french/">French (French and Italian) (FRENCH)</a></li> <li><a href="/courses/gen_ws/">Gender and Womens Studies (GEN&amp;&#8203;WS)</a></li> <li><a href="/courses/gen_bus/">General Business (GEN BUS)</a></li> <li><a href="/courses/genecslr/">Genetic Counselor Studies (GENECSLR)</a></li> <li><a href="/courses/genetics/">Genetics (GENETICS)</a></li> <li><a href="/courses/geog/">Geography (GEOG)</a></li> <li><a href="/courses/g_l_e/">Geological Engineering (G L E)</a></li> <li><a href="/courses/geosci/">Geoscience (GEOSCI)</a></li> <li><a href="/courses/german/">German (GERMAN)</a></li> <li><a href="/courses/gns/">German, Nordic, and Slavic (GNS)</a></li> <li><a href="/courses/greek/">Greek (Classics) (GREEK)</a></li> <li><a href="/courses/hebr_bib/">Hebrew-&#8203;Biblical (HEBR-&#8203;BIB)</a></li> <li><a href="/courses/hebr_mod/">Hebrew-&#8203;Modern (HEBR-&#8203;MOD)</a></li> <li><a href="/courses/history/">History (HISTORY)</a></li> <li><a href="/courses/hist_sci/">History of Science (HIST SCI)</a></li> <li><a href="/courses/hort/">Horticulture (HORT)</a></li> <li><a href="/courses/hdfs/">Human Development and Family Studies (HDFS)</a></li> <li><a href="/courses/h_oncol/">Human Oncology (H ONCOL)</a></li> <li><a href="/courses/i_sy_e/">Industrial and Systems Engineering (I SY E)</a></li> <li><a href="/courses/info_sys/">Information Systems (INFO SYS)</a></li> <li><a href="/courses/integart/">Integrated Arts (INTEGART)</a></li> <li><a href="/courses/ils/">Integrated Liberal Studies (ILS)</a></li> <li><a href="/courses/integsci/">Integrated Science (INTEGSCI)</a></li> <li><a href="/courses/inter_ag/">Interdisciplinary Courses (C A L S) (INTER-&#8203;AG)</a></li> <li><a href="/courses/interegr/">Interdisciplinary Courses (Engineering) (INTEREGR)</a></li> <li><a href="/courses/inter_ls/">Interdisciplinary Courses (L &amp;&#8203; S) (INTER-&#8203;LS)</a></li> <li><a href="/courses/inter_he/">Interdisciplinary Courses (SOHE) (INTER-&#8203;HE)</a></li> <li><a href="/courses/stdyabrd/">International Academic Programs – Study Abroad (STDYABRD)</a></li> <li><a href="/courses/intl_bus/">International Business (INTL BUS)</a></li> <li><a href="/courses/intl_st/">International Studies (INTL ST)</a></li> <li><a href="/courses/italian/">Italian (French and Italian) (ITALIAN)</a></li> <li><a href="/courses/jewish/">Jewish Studies (JEWISH)</a></li> <li><a href="/courses/journ/">Journalism and Mass Communication (JOURN)</a></li> <li><a href="/courses/kines/">Kinesiology (KINES)</a></li> <li><a href="/courses/land_arc/">Landscape Architecture (LAND ARC)</a></li> <li><a href="/courses/latin/">Latin (Classics) (LATIN)</a></li> <li><a href="/courses/lacis/">Latin American, Caribbean, and Iberian Studies (LACIS)</a></li> <li><a href="/courses/law/">Law (LAW)</a></li> <li><a href="/courses/legal_st/">Legal Studies (LEGAL ST)</a></li> <li><a href="/courses/l_i_s/">Library and Information Studies (L I S)</a></li> <li><a href="/courses/lsc/">Life Sciences Communication (LSC)</a></li> <li><a href="/courses/linguis/">Linguistics (LINGUIS)</a></li> <li><a href="/courses/littrans/">Literature in Translation (LITTRANS)</a></li> <li><a href="/courses/m_h_r/">Management and Human Resources (M H R)</a></li> <li><a href="/courses/marketng/">Marketing (MARKETNG)</a></li> <li><a href="/courses/m_s_e/">Materials Science and Engineering (M S &amp;&#8203; E)</a></li> <li><a href="/courses/math/">Mathematics (MATH)</a></li> <li><a href="/courses/m_e/">Mechanical Engineering (M E)</a></li> <li><a href="/courses/md_genet/">Medical Genetics (MD GENET)</a></li> <li><a href="/courses/med_hist/">Medical History and Bioethics (MED HIST)</a></li> <li><a href="/courses/m_m_i/">Medical Microbiology and Immunology (M M &amp;&#8203; I)</a></li> <li><a href="/courses/med_phys/">Medical Physics (MED PHYS)</a></li> <li><a href="/courses/med_sc_m/">Medical Sciences -&#8203; Medical School (MED SC-&#8203;M)</a></li> <li><a href="/courses/med_sc_v/">Medical Sciences -&#8203; Veterinary Medicine (MED SC-&#8203;V)</a></li> <li><a href="/courses/medicine/">Medicine (MEDICINE)</a></li> <li><a href="/courses/medieval/">Medieval Studies (MEDIEVAL)</a></li> <li><a href="/courses/microbio/">Microbiology (MICROBIO)</a></li> <li><a href="/courses/mil_sci/">Military Science (MIL SCI)</a></li> <li><a href="/courses/m_envtox/">Molecular and Environmental Toxicology Center (M&amp;&#8203;ENVTOX)</a></li> <li><a href="/courses/mol_biol/">Molecular Biology (MOL BIOL)</a></li> <li><a href="/courses/music/">Music (MUSIC)</a></li> <li><a href="/courses/mus_perf/">Music-&#8203;Performance (MUS PERF)</a></li> <li><a href="/courses/nav_sci/">Naval Science (NAV SCI)</a></li> <li><a href="/courses/neursurg/">Neurological Surgery (NEURSURG)</a></li> <li><a href="/courses/neurol/">Neurology (NEUROL)</a></li> <li><a href="/courses/neurodpt/">Neuroscience (NEURODPT)</a></li> <li><a href="/courses/ntp/">Neuroscience Training Program (NTP)</a></li> <li><a href="/courses/n_e/">Nuclear Engineering (N E)</a></li> <li><a href="/courses/nursing/">Nursing (NURSING)</a></li> <li><a href="/courses/nutr_sci/">Nutritional Sciences (NUTR SCI)</a></li> <li><a href="/courses/obs_gyn/">Obstetrics and Gynecology (OBS&amp;&#8203;GYN)</a></li> <li><a href="/courses/occ_ther/">Occupational Therapy (DEPARTMENT OF KINESIOLOGY) (OCC THER)</a></li> <li><a href="/courses/oncology/">Oncology (ONCOLOGY)</a></li> <li><a href="/courses/otm/">Operations and Technology Management (OTM)</a></li> <li><a href="/courses/ophthalm/">Ophthalmology and Visual Sciences (OPHTHALM)</a></li> <li><a href="/courses/path_bio/">Patho-&#8203;Biological Sciences (PATH-&#8203;BIO)</a></li> <li><a href="/courses/path/">Pathology and Laboratory Medicine (PATH)</a></li> <li><a href="/courses/pediat/">Pediatrics (PEDIAT)</a></li> <li><a href="/courses/phm_sci/">Pharmaceutical Sciences (PHM SCI)</a></li> <li><a href="/courses/phmcol_m/">Pharmacology (PHMCOL-&#8203;M)</a></li> <li><a href="/courses/pharmacy/">Pharmacy (PHARMACY)</a></li> <li><a href="/courses/phm_prac/">Pharmacy Practice (PHM PRAC)</a></li> <li><a href="/courses/philos/">Philosophy (PHILOS)</a></li> <li><a href="/courses/phy_ther/">Physical Therapy (PHY THER)</a></li> <li><a href="/courses/phy_asst/">Physician Assistant Program (PHY ASST)</a></li> <li><a href="/courses/physics/">Physics (PHYSICS)</a></li> <li><a href="/courses/physiol/">Physiology (PHYSIOL)</a></li> <li><a href="/courses/pl_path/">Plant Pathology (PL PATH)</a></li> <li><a href="/courses/plantsci/">Plant Science (PLANTSCI)</a></li> <li><a href="/courses/poli_sci/">Political Science (POLI SCI)</a></li> <li><a href="/courses/pop_hlth/">Population Health Sciences (POP HLTH)</a></li> <li><a href="/courses/portug/">Portuguese (Spanish and Portuguese) (PORTUG)</a></li> <li><a href="/courses/psychiat/">Psychiatry (PSYCHIAT)</a></li> <li><a href="/courses/psych/">Psychology (PSYCH)</a></li> <li><a href="/courses/pub_affr/">Public Affairs and Public Policy (PUB AFFR)</a></li> <li><a href="/courses/publhlth/">Public Health (PUBLHLTH)</a></li> <li><a href="/courses/radiol/">Radiology (RADIOL)</a></li> <li><a href="/courses/real_est/">Real Estate and Urban Land Economics (REAL EST)</a></li> <li><a href="/courses/rhab_med/">Rehabilitation Medicine (RHAB MED)</a></li> <li><a href="/courses/rp_se/">Rehabilitation Psychology and Special Education (RP &amp;&#8203; SE)</a></li> <li><a href="/courses/relig_st/">Religious Studies (RELIG ST)</a></li> <li><a href="/courses/r_m_i/">Risk Management and Insurance (R M I)</a></li> <li><a href="/courses/scand_st/">Scandinavian Studies (SCAND ST)</a></li> <li><a href="/courses/sts/">Science and Technology Studies (STS)</a></li> <li><a href="/courses/sr_med/">Senior Medical Program (SR MED)</a></li> <li><a href="/courses/slavic/">Slavic (Slavic Languages) (SLAVIC)</a></li> <li><a href="/courses/s_a_phm/">Social and Administrative Pharmacy (S&amp;&#8203;A PHM)</a></li> <li><a href="/courses/soc_work/">Social Work (SOC WORK)</a></li> <li><a href="/courses/soc/">Sociology (SOC)</a></li> <li><a href="/courses/soil_sci/">Soil Science (SOIL SCI)</a></li> <li><a href="/courses/spanish/">Spanish (Spanish and Portuguese) (SPANISH)</a></li> <li class="active self"><a href="#" onclick="return false;">Statistics (STAT)</a></li> <li><a href="/courses/surgery/">Surgery (SURGERY)</a></li> <li><a href="/courses/surg_sci/">Surgical Sciences (SURG SCI)</a></li> <li><a href="/courses/theatre/">Theatre and Drama (THEATRE)</a></li> <li><a href="/courses/urb_r_pl/">Urban and Regional Planning (URB R PL)</a></li> <li><a href="/courses/zoology/">Zoology (ZOOLOGY)</a></li> </ul> </li> <li><a href="/mas/">Explore Graduate Opportunities</a></li> <li><a href="/explore-majors/">Explore UW-&#8203;Madison's Undergraduate Opportunities</a></li> <li><a href="/faculty/">Faculty</a></li> <li class="isparent"><a href="/graduate/">Graduate Guide</a></li> <li class="isparent"><a href="/law/">Law Guide</a></li> <li class="isparent"><a href="/nondegree/">Nondegree/&#8203;Visiting Student Guide</a></li> <li class="isparent"><a href="/pharmacy/">Pharmacy Guide</a></li> <li class="isparent"><a href="/medicine/">School of Medicine and Public Health Guide</a></li> <li class="isparent"><a href="/undergraduate/">Undergraduate Guide</a></li> <li class="isparent"><a href="/veterinary/">Veterinary Guide</a></li> </ul> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10