CINXE.COM
Set (mathematics) - Wikipedia
<!DOCTYPE html> <html class="client-nojs skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Set (mathematics) - Wikipedia</title> <script>(function(){var className="client-js skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"3b7ca57a-e302-410f-9a8b-c7200e2dd3ad","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Set_(mathematics)","wgTitle":"Set (mathematics)","wgCurRevisionId":1262021503,"wgRevisionId":1262021503,"wgArticleId":26691 ,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Set_(mathematics)","wgRelevantArticleId":26691,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"", "wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym":"अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ban" ,"autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy","autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir": "ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym" :"Fulfulde","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym": "客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"} ,{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang": "mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir": "ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps", "autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si", "autonym":"සිංහල","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang": "to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym": "粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi", "krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff", "fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q36161","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":true,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":true},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready", "skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","skins.minerva.amc.styles":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.quicksurveys.init", "ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.amc.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&only=styles&skin=minerva"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.6"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/37/Example_of_a_set.svg/1200px-Example_of_a_set.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1067"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/37/Example_of_a_set.svg/800px-Example_of_a_set.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="711"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/37/Example_of_a_set.svg/640px-Example_of_a_set.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="569"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Set (mathematics) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Set_(mathematics)&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Set_(mathematics)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Set_mathematics rootpage-Set_mathematics stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"><div id="mw-mf-viewport"> <div id="mw-mf-page-center"> <a class="mw-mf-page-center__mask" href="#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"> <input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--home" href="/wiki/Main_Page" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Home</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--random" href="/wiki/Special:Random" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Random</span> </a> </li> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--nearby" href="/wiki/Special:Nearby" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Nearby</span> </a> </li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--login" href="/w/index.php?title=Special:UserLogin&returnto=Set+%28mathematics%29" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Log in</span> </a> </li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--settings" href="/w/index.php?title=Special:MobileOptions&returnto=Set+%28mathematics%29" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Settings</span> </a> </li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--donate" href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en&wmf_key=minerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Donate</span> </a> </li> </ul> <ul class="hlist"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--about" href="/wiki/Wikipedia:About" data-mw="interface"> <span class="toggle-list-item__label">About Wikipedia</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--disclaimers" href="/wiki/Wikipedia:General_disclaimer" data-mw="interface"> <span class="toggle-list-item__label">Disclaimers</span> </a> </li> </ul> </div> <label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"> <a href="/wiki/Main_Page"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"> <input type="hidden" name="title" value="Special:Search"/> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div> <button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Search</span> </button> </form> <nav class="minerva-user-navigation" aria-label="User navigation"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Set (mathematics)</span></h1> <div class="tagline"></div> </div> <ul id="p-associated-pages" class="minerva__tab-container"> <li class="minerva__tab selected"> <a class="minerva__tab-text" href="/wiki/Set_(mathematics)" rel="" data-event-name="tabs.subject">Article</a> </li> <li class="minerva__tab "> <a class="minerva__tab-text" href="/wiki/Talk:Set_(mathematics)" rel="discussion" data-event-name="tabs.talk">Talk</a> </li> </ul> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"> <a role="button" href="#p-lang" data-mw="interface" data-event-name="menu.languages" title="Language" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Language</span> </a> </li> <li id="page-actions-watch" class="page-actions-menu__list-item"> <a role="button" id="ca-watch" href="/w/index.php?title=Special:UserLogin&returnto=Set+%28mathematics%29" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Watch</span> </a> </li> <li id="page-actions-edit" class="page-actions-menu__list-item"> <a role="button" id="ca-edit" href="/w/index.php?title=Set_(mathematics)&action=edit" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Edit</span> </a> </li> </ul> </nav> <!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"><script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><section class="mf-section-0" id="mf-section-0"><style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about what mathematicians call "intuitive" or "naive" set theory. For a more detailed account, see <a href="/wiki/Naive_set_theory" title="Naive set theory">Naive set theory</a>. For a rigorous modern axiomatic treatment of sets, see <a href="/wiki/Set_theory" title="Set theory">Set theory</a>.</div> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, a <b>set</b> is a collection of different<sup id="cite_ref-Cantor_1-0" class="reference"><a href="#cite_note-Cantor-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> things;<sup id="cite_ref-JainAhmad1995_2-0" class="reference"><a href="#cite_note-JainAhmad1995-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Goldberg1986_3-0" class="reference"><a href="#cite_note-Goldberg1986-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-CormenCormen2001_4-0" class="reference"><a href="#cite_note-CormenCormen2001-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> these things are called <i><a href="/wiki/Element_(mathematics)" title="Element (mathematics)">elements</a></i> or <i>members</i> of the set and are typically <a href="/wiki/Mathematical_object" title="Mathematical object">mathematical objects</a> of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets.<sup id="cite_ref-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpagen11mode2up_1]_5-0" class="reference"><a href="#cite_note-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpagen11mode2up_1%5D-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> A set may have a finite number of elements or be an <a href="/wiki/Infinite_set" title="Infinite set">infinite set</a>. There is a unique set with no elements, called the <a href="/wiki/Empty_set" title="Empty set">empty set</a>; a set with a single element is a <a href="/wiki/Singleton_(mathematics)" title="Singleton (mathematics)">singleton</a>. </p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Example_of_a_set.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/Example_of_a_set.svg/220px-Example_of_a_set.svg.png" decoding="async" width="220" height="196" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/Example_of_a_set.svg/330px-Example_of_a_set.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/37/Example_of_a_set.svg/440px-Example_of_a_set.svg.png 2x" data-file-width="450" data-file-height="400"></a><figcaption>A set of polygons in an <a href="/wiki/Euler_diagram" title="Euler diagram">Euler diagram</a></figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Example_of_a_set_rearranged.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/05/Example_of_a_set_rearranged.svg/220px-Example_of_a_set_rearranged.svg.png" decoding="async" width="220" height="196" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/05/Example_of_a_set_rearranged.svg/330px-Example_of_a_set_rearranged.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/05/Example_of_a_set_rearranged.svg/440px-Example_of_a_set_rearranged.svg.png 2x" data-file-width="450" data-file-height="400"></a><figcaption>This set equals the one depicted above since both have the very same elements.</figcaption></figure> <p>Sets are uniquely characterized by their elements; this means that two sets that have precisely the same elements are <a href="/wiki/Equality_(mathematics)" title="Equality (mathematics)">equal</a> (they are the same set).<sup id="cite_ref-Stoll_6-0" class="reference"><a href="#cite_note-Stoll-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> This property is called <a href="/wiki/Axiom_of_extensionality" title="Axiom of extensionality">extensionality</a>. In particular, this implies that there is only one empty set. </p><p>Sets are ubiquitous in modern mathematics. Indeed, <a href="/wiki/Set_theory" title="Set theory">set theory</a>, more specifically <a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="Zermelo–Fraenkel set theory">Zermelo–Fraenkel set theory</a>, has been the standard way to provide rigorous <a href="/wiki/Foundations_of_mathematics" title="Foundations of mathematics">foundations</a> for all branches of mathematics since the first half of the 20th century.<sup id="cite_ref-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpagen11mode2up_1]_5-1" class="reference"><a href="#cite_note-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpagen11mode2up_1%5D-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Definition_and_notation"><span class="tocnumber">1</span> <span class="toctext">Definition and notation</span></a> <ul> <li class="toclevel-2 tocsection-2"><a href="#Roster_notation"><span class="tocnumber">1.1</span> <span class="toctext">Roster notation</span></a> <ul> <li class="toclevel-3 tocsection-3"><a href="#Infinite_sets_in_roster_notation"><span class="tocnumber">1.1.1</span> <span class="toctext">Infinite sets in roster notation</span></a></li> </ul> </li> <li class="toclevel-2 tocsection-4"><a href="#Semantic_definition"><span class="tocnumber">1.2</span> <span class="toctext">Semantic definition</span></a></li> <li class="toclevel-2 tocsection-5"><a href="#Set-builder_notation"><span class="tocnumber">1.3</span> <span class="toctext">Set-builder notation</span></a></li> <li class="toclevel-2 tocsection-6"><a href="#Classifying_methods_of_definition"><span class="tocnumber">1.4</span> <span class="toctext">Classifying methods of definition</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-7"><a href="#Membership"><span class="tocnumber">2</span> <span class="toctext">Membership</span></a></li> <li class="toclevel-1 tocsection-8"><a href="#The_empty_set"><span class="tocnumber">3</span> <span class="toctext">The empty set</span></a></li> <li class="toclevel-1 tocsection-9"><a href="#Singleton_sets"><span class="tocnumber">4</span> <span class="toctext">Singleton sets</span></a></li> <li class="toclevel-1 tocsection-10"><a href="#Subsets"><span class="tocnumber">5</span> <span class="toctext">Subsets</span></a></li> <li class="toclevel-1 tocsection-11"><a href="#Euler_and_Venn_diagrams"><span class="tocnumber">6</span> <span class="toctext">Euler and Venn diagrams</span></a></li> <li class="toclevel-1 tocsection-12"><a href="#Special_sets_of_numbers_in_mathematics"><span class="tocnumber">7</span> <span class="toctext">Special sets of numbers in mathematics</span></a></li> <li class="toclevel-1 tocsection-13"><a href="#Functions"><span class="tocnumber">8</span> <span class="toctext">Functions</span></a></li> <li class="toclevel-1 tocsection-14"><a href="#Cardinality"><span class="tocnumber">9</span> <span class="toctext">Cardinality</span></a> <ul> <li class="toclevel-2 tocsection-15"><a href="#Infinite_sets_and_infinite_cardinality"><span class="tocnumber">9.1</span> <span class="toctext">Infinite sets and infinite cardinality</span></a></li> <li class="toclevel-2 tocsection-16"><a href="#The_continuum_hypothesis"><span class="tocnumber">9.2</span> <span class="toctext">The continuum hypothesis</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-17"><a href="#Power_sets"><span class="tocnumber">10</span> <span class="toctext">Power sets</span></a></li> <li class="toclevel-1 tocsection-18"><a href="#Partitions"><span class="tocnumber">11</span> <span class="toctext">Partitions</span></a></li> <li class="toclevel-1 tocsection-19"><a href="#Basic_operations"><span class="tocnumber">12</span> <span class="toctext">Basic operations</span></a></li> <li class="toclevel-1 tocsection-20"><a href="#Applications"><span class="tocnumber">13</span> <span class="toctext">Applications</span></a></li> <li class="toclevel-1 tocsection-21"><a href="#Principle_of_inclusion_and_exclusion"><span class="tocnumber">14</span> <span class="toctext">Principle of inclusion and exclusion</span></a></li> <li class="toclevel-1 tocsection-22"><a href="#History"><span class="tocnumber">15</span> <span class="toctext">History</span></a> <ul> <li class="toclevel-2 tocsection-23"><a href="#Naive_set_theory"><span class="tocnumber">15.1</span> <span class="toctext">Naive set theory</span></a></li> <li class="toclevel-2 tocsection-24"><a href="#Axiomatic_set_theory"><span class="tocnumber">15.2</span> <span class="toctext">Axiomatic set theory</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-25"><a href="#See_also"><span class="tocnumber">16</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-26"><a href="#Notes"><span class="tocnumber">17</span> <span class="toctext">Notes</span></a></li> <li class="toclevel-1 tocsection-27"><a href="#References"><span class="tocnumber">18</span> <span class="toctext">References</span></a></li> <li class="toclevel-1 tocsection-28"><a href="#External_links"><span class="tocnumber">19</span> <span class="toctext">External links</span></a></li> </ul> </div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Definition_and_notation">Definition and notation <span class="anchor" id="Definition"></span><span class="anchor" id="Notation"></span></h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=1" title="Edit section: Definition and notation" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-1 collapsible-block" id="mf-section-1"> <p>Mathematical texts commonly denote sets by <a href="/wiki/Capital_letters" class="mw-redirect" title="Capital letters">capital letters</a><sup id="cite_ref-LipschutzLipson1997_7-0" class="reference"><a href="#cite_note-LipschutzLipson1997-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpagen11mode2up_1]_5-2" class="reference"><a href="#cite_note-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpagen11mode2up_1%5D-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> in <a href="/wiki/Italic_type" title="Italic type">italic</a>, such as <span class="texhtml mvar" style="font-style:italic;">A</span>, <span class="texhtml mvar" style="font-style:italic;">B</span>, <span class="texhtml mvar" style="font-style:italic;">C</span>.<sup id="cite_ref-:1_8-0" class="reference"><a href="#cite_note-:1-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> A set may also be called a <i>collection</i> or <i>family</i>, especially when its elements are themselves sets. </p> <div class="mw-heading mw-heading3"><h3 id="Roster_notation">Roster notation</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=2" title="Edit section: Roster notation" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p><b>Roster</b> or <b>enumeration notation</b> defines a set by listing its elements between <a href="/wiki/Curly_bracket" class="mw-redirect" title="Curly bracket">curly brackets</a>, separated by commas:<sup id="cite_ref-Roberts2009_9-0" class="reference"><a href="#cite_note-Roberts2009-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-JohnsonJohnson2004_10-0" class="reference"><a href="#cite_note-JohnsonJohnson2004-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-BelloKaul2013_11-0" class="reference"><a href="#cite_note-BelloKaul2013-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Epp2010_12-0" class="reference"><a href="#cite_note-Epp2010-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r996643573">.mw-parser-output .block-indent{padding-left:3em;padding-right:0;overflow:hidden}</style><div class="block-indent"><span class="texhtml"><i>A</i> = {4, 2, 1, 3}</span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent"><span class="texhtml"><i>B</i> = {blue, white, red}</span>.</div> <p>This notation was introduced by <a href="/wiki/Ernst_Zermelo" title="Ernst Zermelo">Ernst Zermelo</a> in 1908.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> In a set, all that matters is whether each element is in it or not, so the ordering of the elements in roster notation is irrelevant (in contrast, in a <a href="/wiki/Sequence" title="Sequence">sequence</a>, a <a href="/wiki/Tuple" title="Tuple">tuple</a>, or a <a href="/wiki/Permutation" title="Permutation">permutation</a> of a set, the ordering of the terms matters). For example, <span class="texhtml">{2, 4, 6}</span> and <span class="texhtml">{4, 6, 4, 2}</span> represent the same set.<sup id="cite_ref-MaurerRalston2005_14-0" class="reference"><a href="#cite_note-MaurerRalston2005-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:1_8-1" class="reference"><a href="#cite_note-:1-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-DalenDoets2014_15-0" class="reference"><a href="#cite_note-DalenDoets2014-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p><p>For sets with many elements, especially those following an implicit pattern, the list of members can be abbreviated using an <a href="/wiki/Ellipsis#In_mathematical_notation" title="Ellipsis">ellipsis</a> '<span class="texhtml">...</span>'.<sup id="cite_ref-BastaDeLong2013_16-0" class="reference"><a href="#cite_note-BastaDeLong2013-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-BrackenMiller2013_17-0" class="reference"><a href="#cite_note-BrackenMiller2013-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> For instance, the set of the first thousand positive integers may be specified in roster notation as </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent"><span class="texhtml">{1, 2, 3, ..., 1000}</span>.</div> <div class="mw-heading mw-heading4"><h4 id="Infinite_sets_in_roster_notation">Infinite sets in roster notation</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=3" title="Edit section: Infinite sets in roster notation" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>An <a href="/wiki/Infinite_set" title="Infinite set">infinite set</a> is a set with an infinite number of elements. If the pattern of its elements is obvious, an infinite set can be given in roster notation, with an ellipsis placed at the end of the list, or at both ends, to indicate that the list continues forever. For example, the set of <a href="/wiki/Nonnegative_integer" class="mw-redirect" title="Nonnegative integer">nonnegative integers</a> is </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent"><span class="nowrap"><span class="texhtml">{0, 1, 2, 3, 4, ...}</span>,</span></div> <p>and the set of all <a href="/wiki/Integer" title="Integer">integers</a> is </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent"><span class="nowrap"><span class="texhtml">{..., −3, −2, −1, 0, 1, 2, 3, ...}</span>.</span></div> <div class="mw-heading mw-heading3"><h3 id="Semantic_definition">Semantic definition</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=4" title="Edit section: Semantic definition" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Another way to define a set is to use a rule to determine what the elements are: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent">Let <span class="texhtml mvar" style="font-style:italic;">A</span> be the set whose members are the first four positive <a href="/wiki/Integer" title="Integer">integers</a>.</div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent">Let <span class="texhtml mvar" style="font-style:italic;">B</span> be the set of colors of the <a href="/wiki/Flag_of_France" title="Flag of France">French flag</a>.</div> <p>Such a definition is called a <i>semantic description</i>.<sup id="cite_ref-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpage4mode2up_4]_18-0" class="reference"><a href="#cite_note-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage4mode2up_4%5D-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Ruda2011_19-0" class="reference"><a href="#cite_note-Ruda2011-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Set-builder_notation">Set-builder notation</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=5" title="Edit section: Set-builder notation" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Set-builder_notation" title="Set-builder notation">Set-builder notation</a></div> <p>Set-builder notation specifies a set as a selection from a larger set, determined by a condition on the elements.<sup id="cite_ref-Ruda2011_19-1" class="reference"><a href="#cite_note-Ruda2011-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Lucas1990_20-0" class="reference"><a href="#cite_note-Lucas1990-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> For example, a set <span class="texhtml mvar" style="font-style:italic;">F</span> can be defined as follows: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F=\{n\mid n{\text{ is an integer, and }}0\leq n\leq 19\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>n</mi> <mo>∣<!-- ∣ --></mo> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> is an integer, and </mtext> </mrow> <mn>0</mn> <mo>≤<!-- ≤ --></mo> <mi>n</mi> <mo>≤<!-- ≤ --></mo> <mn>19</mn> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F=\{n\mid n{\text{ is an integer, and }}0\leq n\leq 19\}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/477b3e7e7d57f892acaf78f63ced9e376cca5f55" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.915ex; height:2.843ex;" alt="{\displaystyle F=\{n\mid n{\text{ is an integer, and }}0\leq n\leq 19\}.}"></noscript><span class="lazy-image-placeholder" style="width: 41.915ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/477b3e7e7d57f892acaf78f63ced9e376cca5f55" data-alt="{\displaystyle F=\{n\mid n{\text{ is an integer, and }}0\leq n\leq 19\}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> </p><p>In this notation, the <a href="/wiki/Vertical_bar" title="Vertical bar">vertical bar</a> "|" means "such that", and the description can be interpreted as "<span class="texhtml mvar" style="font-style:italic;">F</span> is the set of all numbers <span class="texhtml mvar" style="font-style:italic;">n</span> such that <span class="texhtml mvar" style="font-style:italic;">n</span> is an integer in the range from 0 to 19 inclusive". Some authors use a <a href="/wiki/Colon_(punctuation)" title="Colon (punctuation)">colon</a> ":" instead of the vertical bar.<sup id="cite_ref-Steinlage1987_22-0" class="reference"><a href="#cite_note-Steinlage1987-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Classifying_methods_of_definition">Classifying methods of definition</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=6" title="Edit section: Classifying methods of definition" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p><a href="/wiki/Philosophy" title="Philosophy">Philosophy</a> uses specific terms to classify types of definitions: </p> <ul><li>An <i><a href="/wiki/Intensional_definition" class="mw-redirect" title="Intensional definition">intensional definition</a></i> uses a <i>rule</i> to determine membership. Semantic definitions and definitions using set-builder notation are examples.</li> <li>An <i><a href="/wiki/Extensional_definition" class="mw-redirect" title="Extensional definition">extensional definition</a></i> describes a set by <i>listing all its elements</i>.<sup id="cite_ref-Ruda2011_19-2" class="reference"><a href="#cite_note-Ruda2011-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> Such definitions are also called <i><a href="/wiki/Enumerative_definition" title="Enumerative definition">enumerative</a></i>.</li> <li>An <i><a href="/wiki/Ostensive_definition" title="Ostensive definition">ostensive definition</a></i> is one that describes a set by giving <i>examples</i> of elements; a roster involving an ellipsis would be an example.</li></ul> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Membership">Membership</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=7" title="Edit section: Membership" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-2 collapsible-block" id="mf-section-2"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Element_(mathematics)" title="Element (mathematics)">Element (mathematics)</a></div> <p>If <span class="texhtml mvar" style="font-style:italic;">B</span> is a set and <span class="texhtml mvar" style="font-style:italic;">x</span> is an element of <span class="texhtml mvar" style="font-style:italic;">B</span>, this is written in shorthand as <span class="texhtml"><i>x</i> ∈ <i>B</i></span>, which can also be read as "<i>x</i> belongs to <i>B</i>", or "<i>x</i> is in <i>B</i>".<sup id="cite_ref-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpage2mode2up_2]_23-0" class="reference"><a href="#cite_note-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage2mode2up_2%5D-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> The statement "<i>y</i> is not an element of <i>B</i>" is written as <span class="texhtml"><i>y</i> ∉ <i>B</i></span>, which can also be read as "<i>y</i> is not in <i>B</i>".<sup id="cite_ref-CapinskiKopp2004_24-0" class="reference"><a href="#cite_note-CapinskiKopp2004-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p><p>For example, with respect to the sets <span class="texhtml"><i>A</i> = {1, 2, 3, 4}</span>, <span class="texhtml"><i>B</i> = {blue, white, red}</span>, and <span class="texhtml"><i>F</i> = {<i>n</i> | <i>n</i> is an integer, and 0 ≤ <i>n</i> ≤ 19}</span>, </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent"><span class="texhtml">4 ∈ <i>A</i></span> and <span class="texhtml">12 ∈ <i>F</i></span>; and</div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent"><span class="texhtml">20 ∉ <i>F</i></span> and <span class="texhtml">green ∉ <i>B</i></span>.</div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="The_empty_set">The empty set</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=8" title="Edit section: The empty set" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-3 collapsible-block" id="mf-section-3"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Empty_set" title="Empty set">Empty set</a></div> <p>The <i>empty set</i> (or <i>null set</i>) is the unique set that has no members. It is denoted <span class="texhtml">∅</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \emptyset }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∅<!-- ∅ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \emptyset }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6af50205f42bb2ec3c666b7b847d2c7f96e464c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.162ex; height:2.509ex;" alt="{\displaystyle \emptyset }"></noscript><span class="lazy-image-placeholder" style="width: 1.162ex;height: 2.509ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6af50205f42bb2ec3c666b7b847d2c7f96e464c7" data-alt="{\displaystyle \emptyset }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, { },<sup id="cite_ref-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpage8mode2up_8]_26-0" class="reference"><a href="#cite_note-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage8mode2up_8%5D-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-LeungChen1992_27-0" class="reference"><a href="#cite_note-LeungChen1992-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> <span class="texhtml">ϕ</span>,<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> or <span class="texhtml mvar" style="font-style:italic;">ϕ</span>.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Singleton_sets">Singleton sets</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=9" title="Edit section: Singleton sets" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-4 collapsible-block" id="mf-section-4"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Singleton_(mathematics)" title="Singleton (mathematics)">Singleton (mathematics)</a></div> <p>A <i>singleton set</i> is a set with exactly one element; such a set may also be called a <i>unit set</i>.<sup id="cite_ref-Stoll_6-1" class="reference"><a href="#cite_note-Stoll-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Any such set can be written as {<i>x</i>}, where <i>x</i> is the element. The set {<i>x</i>} and the element <i>x</i> mean different things; Halmos<sup id="cite_ref-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpage4mode2up_Sect.2]_30-0" class="reference"><a href="#cite_note-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage4mode2up_Sect.2%5D-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> draws the analogy that a box containing a hat is not the same as the hat. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Subsets">Subsets</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=10" title="Edit section: Subsets" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-5 collapsible-block" id="mf-section-5"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Subset" title="Subset">Subset</a></div> <p>If every element of set <i>A</i> is also in <i>B</i>, then <i>A</i> is described as being a <i>subset of B</i>, or <i>contained in B</i>, written <span class="texhtml"><i>A</i> ⊆ <i>B</i></span>,<sup id="cite_ref-Hausdorff2005_31-0" class="reference"><a href="#cite_note-Hausdorff2005-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> or <span class="texhtml"><i>B</i> ⊇ <i>A</i></span>.<sup id="cite_ref-Comninos2010_32-0" class="reference"><a href="#cite_note-Comninos2010-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> The latter notation may be read <i>B contains A</i>, <i>B includes A</i>, or <i>B is a superset of A</i>. The <a href="/wiki/Relation_(mathematics)" title="Relation (mathematics)">relationship</a> between sets established by ⊆ is called <i>inclusion</i> or <i>containment</i>. Two sets are equal if they contain each other: <span class="texhtml"><i>A</i> ⊆ <i>B</i></span> and <span class="texhtml"><i>B</i> ⊆ <i>A</i></span> is equivalent to <i>A</i> = <i>B</i>.<sup id="cite_ref-Lucas1990_20-1" class="reference"><a href="#cite_note-Lucas1990-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p><p>If <i>A</i> is a subset of <i>B</i>, but <i>A</i> is not equal to <i>B</i>, then <i>A</i> is called a <i>proper subset</i> of <i>B</i>. This can be written <span class="texhtml"><i>A</i> ⊊ <i>B</i></span>. Likewise, <span class="texhtml"><i>B</i> ⊋ <i>A</i></span> means <i>B is a proper superset of A</i>, i.e. <i>B</i> contains <i>A</i>, and is not equal to <i>A</i>. </p><p>A third pair of operators ⊂ and ⊃ are used differently by different authors: some authors use <span class="texhtml"><i>A</i> ⊂ <i>B</i></span> and <span class="texhtml"><i>B</i> ⊃ <i>A</i></span> to mean <i>A</i> is any subset of <i>B</i> (and not necessarily a proper subset),<sup id="cite_ref-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpage2mode2up_3]_33-0" class="reference"><a href="#cite_note-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage2mode2up_3%5D-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-CapinskiKopp2004_24-1" class="reference"><a href="#cite_note-CapinskiKopp2004-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> while others reserve <span class="texhtml"><i>A</i> ⊂ <i>B</i></span> and <span class="texhtml"><i>B</i> ⊃ <i>A</i></span> for cases where <i>A</i> is a proper subset of <i>B</i>.<sup id="cite_ref-Hausdorff2005_31-1" class="reference"><a href="#cite_note-Hausdorff2005-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> </p><p>Examples: </p> <ul><li>The set of all humans is a proper subset of the set of all mammals.</li> <li><span class="texhtml">{1, 3} ⊂ {1, 2, 3, 4}</span>.</li> <li><span class="texhtml">{1, 2, 3, 4} ⊆ {1, 2, 3, 4}</span>.</li></ul> <p>The empty set is a subset of every set,<sup id="cite_ref-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpage8mode2up_8]_26-1" class="reference"><a href="#cite_note-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage8mode2up_8%5D-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> and every set is a subset of itself:<sup id="cite_ref-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpage2mode2up_3]_33-1" class="reference"><a href="#cite_note-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage2mode2up_3%5D-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p> <ul><li><span class="texhtml">∅ ⊆ <i>A</i></span>.</li> <li><span class="texhtml"><i>A</i> ⊆ <i>A</i></span>.</li></ul> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Euler_and_Venn_diagrams">Euler and Venn diagrams</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=11" title="Edit section: Euler and Venn diagrams" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-6 collapsible-block" id="mf-section-6"> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Venn_A_subset_B.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Venn_A_subset_B.svg/150px-Venn_A_subset_B.svg.png" decoding="async" width="150" height="150" class="mw-file-element" data-file-width="155" data-file-height="155"></noscript><span class="lazy-image-placeholder" style="width: 150px;height: 150px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Venn_A_subset_B.svg/150px-Venn_A_subset_B.svg.png" data-width="150" data-height="150" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Venn_A_subset_B.svg/225px-Venn_A_subset_B.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Venn_A_subset_B.svg/300px-Venn_A_subset_B.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption><i>A</i> is a subset of <i>B</i>.<br><i>B</i> is a superset of <i>A</i>.</figcaption></figure> <p>An <a href="/wiki/Euler_diagram" title="Euler diagram">Euler diagram</a> is a graphical representation of a collection of sets; each set is depicted as a planar region enclosed by a loop, with its elements inside. If <span class="texhtml mvar" style="font-style:italic;">A</span> is a subset of <span class="texhtml mvar" style="font-style:italic;">B</span>, then the region representing <span class="texhtml mvar" style="font-style:italic;">A</span> is completely inside the region representing <span class="texhtml mvar" style="font-style:italic;">B</span>. If two sets have no elements in common, the regions do not overlap. </p><p>A <a href="/wiki/Venn_diagram" title="Venn diagram">Venn diagram</a>, in contrast, is a graphical representation of <span class="texhtml mvar" style="font-style:italic;">n</span> sets in which the <span class="texhtml mvar" style="font-style:italic;">n</span> loops divide the plane into <span class="texhtml">2<sup><i>n</i></sup></span> zones such that for each way of selecting some of the <span class="texhtml mvar" style="font-style:italic;">n</span> sets (possibly all or none), there is a zone for the elements that belong to all the selected sets and none of the others. For example, if the sets are <span class="texhtml mvar" style="font-style:italic;">A</span>, <span class="texhtml mvar" style="font-style:italic;">B</span>, and <span class="texhtml mvar" style="font-style:italic;">C</span>, there should be a zone for the elements that are inside <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">C</span> and outside <span class="texhtml mvar" style="font-style:italic;">B</span> (even if such elements do not exist). </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(7)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Special_sets_of_numbers_in_mathematics">Special sets of numbers in mathematics</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=12" title="Edit section: Special sets of numbers in mathematics" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-7 collapsible-block" id="mf-section-7"> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:NumberSetinC.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/NumberSetinC.svg/220px-NumberSetinC.svg.png" decoding="async" width="220" height="172" class="mw-file-element" data-file-width="600" data-file-height="470"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 172px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/NumberSetinC.svg/220px-NumberSetinC.svg.png" data-width="220" data-height="172" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/NumberSetinC.svg/330px-NumberSetinC.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a0/NumberSetinC.svg/440px-NumberSetinC.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption>The <a href="/wiki/Natural_numbers" class="mw-redirect" title="Natural numbers">natural numbers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {N} }"></noscript><span class="lazy-image-placeholder" style="width: 1.678ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" data-alt="{\displaystyle \mathbb {N} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> are contained in the <a href="/wiki/Integers" class="mw-redirect" title="Integers">integers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></noscript><span class="lazy-image-placeholder" style="width: 1.55ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" data-alt="{\displaystyle \mathbb {Z} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, which are contained in the <a href="/wiki/Rational_numbers" class="mw-redirect" title="Rational numbers">rational numbers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></noscript><span class="lazy-image-placeholder" style="width: 1.808ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" data-alt="{\displaystyle \mathbb {Q} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, which are contained in the <a href="/wiki/Real_numbers" class="mw-redirect" title="Real numbers">real numbers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></noscript><span class="lazy-image-placeholder" style="width: 1.678ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" data-alt="{\displaystyle \mathbb {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, which are contained in the <a href="/wiki/Complex_numbers" class="mw-redirect" title="Complex numbers">complex numbers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></noscript><span class="lazy-image-placeholder" style="width: 1.678ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" data-alt="{\displaystyle \mathbb {C} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></figcaption></figure> <p>There are sets of such mathematical importance, to which mathematicians refer so frequently, that they have acquired special names and notational conventions to identify them. </p><p>Many of these important sets are represented in mathematical texts using bold (e.g. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Z} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b776aaf12c2da4b78ca777cb8295c2000bfd51f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.634ex; height:2.176ex;" alt="{\displaystyle \mathbf {Z} }"></noscript><span class="lazy-image-placeholder" style="width: 1.634ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b776aaf12c2da4b78ca777cb8295c2000bfd51f5" data-alt="{\displaystyle \mathbf {Z} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>) or <a href="/wiki/Blackboard_bold" title="Blackboard bold">blackboard bold</a> (e.g. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></noscript><span class="lazy-image-placeholder" style="width: 1.55ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" data-alt="{\displaystyle \mathbb {Z} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>) typeface.<sup id="cite_ref-Tourlakis2003_34-0" class="reference"><a href="#cite_note-Tourlakis2003-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> These include </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {N} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2f63b6cd6d63ee9b7be0b7e4d14099d7153bd43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.091ex; height:2.176ex;" alt="{\displaystyle \mathbf {N} }"></noscript><span class="lazy-image-placeholder" style="width: 2.091ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2f63b6cd6d63ee9b7be0b7e4d14099d7153bd43" data-alt="{\displaystyle \mathbf {N} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {N} }"></noscript><span class="lazy-image-placeholder" style="width: 1.678ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" data-alt="{\displaystyle \mathbb {N} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, the set of all <a href="/wiki/Natural_number" title="Natural number">natural numbers</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {N} =\{0,1,2,3,...\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">N</mi> </mrow> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {N} =\{0,1,2,3,...\}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4e56e443c36d1169793ec83704be5b091096fba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.402ex; height:2.843ex;" alt="{\displaystyle \mathbf {N} =\{0,1,2,3,...\}}"></noscript><span class="lazy-image-placeholder" style="width: 19.402ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4e56e443c36d1169793ec83704be5b091096fba" data-alt="{\displaystyle \mathbf {N} =\{0,1,2,3,...\}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> (often, authors exclude <span class="texhtml">0</span>);<sup id="cite_ref-Tourlakis2003_34-1" class="reference"><a href="#cite_note-Tourlakis2003-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Z} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b776aaf12c2da4b78ca777cb8295c2000bfd51f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.634ex; height:2.176ex;" alt="{\displaystyle \mathbf {Z} }"></noscript><span class="lazy-image-placeholder" style="width: 1.634ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b776aaf12c2da4b78ca777cb8295c2000bfd51f5" data-alt="{\displaystyle \mathbf {Z} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></noscript><span class="lazy-image-placeholder" style="width: 1.55ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" data-alt="{\displaystyle \mathbb {Z} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, the set of all <a href="/wiki/Integer" title="Integer">integers</a> (whether positive, negative or zero): <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Z} =\{...,-2,-1,0,1,2,3,...\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mo>,</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Z} =\{...,-2,-1,0,1,2,3,...\}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc04b5e7bcf1d9a5b99026491b203989de97b6f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.09ex; height:2.843ex;" alt="{\displaystyle \mathbf {Z} =\{...,-2,-1,0,1,2,3,...\}}"></noscript><span class="lazy-image-placeholder" style="width: 31.09ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc04b5e7bcf1d9a5b99026491b203989de97b6f0" data-alt="{\displaystyle \mathbf {Z} =\{...,-2,-1,0,1,2,3,...\}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>;<sup id="cite_ref-Tourlakis2003_34-2" class="reference"><a href="#cite_note-Tourlakis2003-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Q} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132d0144479d6f47c30ad82a65d458966ccbe928" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.008ex; height:2.509ex;" alt="{\displaystyle \mathbf {Q} }"></noscript><span class="lazy-image-placeholder" style="width: 2.008ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132d0144479d6f47c30ad82a65d458966ccbe928" data-alt="{\displaystyle \mathbf {Q} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></noscript><span class="lazy-image-placeholder" style="width: 1.808ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" data-alt="{\displaystyle \mathbb {Q} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, the set of all <a href="/wiki/Rational_number" title="Rational number">rational numbers</a> (that is, the set of all <a href="/wiki/Proper_fraction" class="mw-redirect" title="Proper fraction">proper</a> and <a href="/wiki/Improper_fraction" class="mw-redirect" title="Improper fraction">improper fractions</a>): <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Q} =\left\{{\frac {a}{b}}\mid a,b\in \mathbf {Z} ,b\neq 0\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mi>b</mi> </mfrac> </mrow> <mo>∣<!-- ∣ --></mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mo>,</mo> <mi>b</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Q} =\left\{{\frac {a}{b}}\mid a,b\in \mathbf {Z} ,b\neq 0\right\}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5dd8d6f8bfd25dc94c7f5819bc780c74715d211" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:26.238ex; height:5.009ex;" alt="{\displaystyle \mathbf {Q} =\left\{{\frac {a}{b}}\mid a,b\in \mathbf {Z} ,b\neq 0\right\}}"></noscript><span class="lazy-image-placeholder" style="width: 26.238ex;height: 5.009ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5dd8d6f8bfd25dc94c7f5819bc780c74715d211" data-alt="{\displaystyle \mathbf {Q} =\left\{{\frac {a}{b}}\mid a,b\in \mathbf {Z} ,b\neq 0\right\}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. For example, <span class="texhtml">−<style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac"><span class="tion"><span class="num">7</span><span class="sr-only">/</span><span class="den">4</span></span></span> ∈ <b>Q</b></span> and <span class="texhtml">5 = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">1</span></span></span> ∈ <b>Q</b></span>;<sup id="cite_ref-Tourlakis2003_34-3" class="reference"><a href="#cite_note-Tourlakis2003-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {R} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle \mathbf {R} }"></noscript><span class="lazy-image-placeholder" style="width: 2.003ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" data-alt="{\displaystyle \mathbf {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></noscript><span class="lazy-image-placeholder" style="width: 1.678ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" data-alt="{\displaystyle \mathbb {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, the set of all <a href="/wiki/Real_number" title="Real number">real numbers</a>, including all rational numbers and all <a href="/wiki/Irrational_number" title="Irrational number">irrational</a> numbers (which include <a href="/wiki/Algebraic_number" title="Algebraic number">algebraic numbers</a> such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4afc1e27d418021bf10898eb44a7f5f315735ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\displaystyle {\sqrt {2}}}"></noscript><span class="lazy-image-placeholder" style="width: 3.098ex;height: 3.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4afc1e27d418021bf10898eb44a7f5f315735ff" data-alt="{\displaystyle {\sqrt {2}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> that cannot be rewritten as fractions, as well as <a href="/wiki/Transcendental_numbers" class="mw-redirect" title="Transcendental numbers">transcendental numbers</a> such as <a href="/wiki/Pi" title="Pi"><span class="texhtml mvar" style="font-style:italic;">π</span></a> and <a href="/wiki/E_(mathematical_constant)" title="E (mathematical constant)"><span class="texhtml"><i>e</i></span></a>);<sup id="cite_ref-Tourlakis2003_34-4" class="reference"><a href="#cite_note-Tourlakis2003-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {C} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:2.176ex;" alt="{\displaystyle \mathbf {C} }"></noscript><span class="lazy-image-placeholder" style="width: 1.931ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" data-alt="{\displaystyle \mathbf {C} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></noscript><span class="lazy-image-placeholder" style="width: 1.678ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" data-alt="{\displaystyle \mathbb {C} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, the set of all <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>: <span class="texhtml"><b>C</b> = {<i>a</i> + <i>bi</i> | <i>a</i>, <i>b</i> ∈ <b>R</b>}</span>, for example, <span class="texhtml">1 + 2<i>i</i> ∈ <b>C</b></span>.<sup id="cite_ref-Tourlakis2003_34-5" class="reference"><a href="#cite_note-Tourlakis2003-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup></li></ul> <p>Each of the above sets of numbers has an infinite number of elements. Each is a subset of the sets listed below it. </p><p>Sets of positive or negative numbers are sometimes denoted by superscript plus and minus signs, respectively. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Q} ^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Q} ^{+}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9fafdbdb9efd367bcb05e6e310a9c85326281bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.519ex; height:2.843ex;" alt="{\displaystyle \mathbf {Q} ^{+}}"></noscript><span class="lazy-image-placeholder" style="width: 3.519ex;height: 2.843ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9fafdbdb9efd367bcb05e6e310a9c85326281bb" data-alt="{\displaystyle \mathbf {Q} ^{+}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> represents the set of positive rational numbers. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(8)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Functions">Functions</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=13" title="Edit section: Functions" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-8 collapsible-block" id="mf-section-8"> <p>A <i><a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a></i> (or <i><a href="/wiki/Map_(mathematics)" title="Map (mathematics)">mapping</a></i>) from a set <span class="texhtml mvar" style="font-style:italic;">A</span> to a set <span class="texhtml mvar" style="font-style:italic;">B</span> is a rule that assigns to each "input" element of <span class="texhtml mvar" style="font-style:italic;">A</span> an "output" that is an element of <span class="texhtml mvar" style="font-style:italic;">B</span>; more formally, a function is a special kind of <a href="/wiki/Relation_(mathematics)" title="Relation (mathematics)">relation</a>, one that relates each element of <span class="texhtml mvar" style="font-style:italic;">A</span> to <i>exactly one</i> element of <span class="texhtml mvar" style="font-style:italic;">B</span>. A function is called </p> <ul><li><a href="/wiki/Injective" class="mw-redirect" title="Injective">injective</a> (or one-to-one) if it maps any two different elements of <span class="texhtml mvar" style="font-style:italic;">A</span> to <i>different</i> elements of <span class="texhtml mvar" style="font-style:italic;">B</span>,</li> <li><a href="/wiki/Surjective" class="mw-redirect" title="Surjective">surjective</a> (or onto) if for every element of <span class="texhtml mvar" style="font-style:italic;">B</span>, there is at least one element of <span class="texhtml mvar" style="font-style:italic;">A</span> that maps to it, and</li> <li><a href="/wiki/Bijective" class="mw-redirect" title="Bijective">bijective</a> (or a one-to-one correspondence) if the function is both injective and surjective — in this case, each element of <span class="texhtml mvar" style="font-style:italic;">A</span> is paired with a unique element of <span class="texhtml mvar" style="font-style:italic;">B</span>, and each element of <span class="texhtml mvar" style="font-style:italic;">B</span> is paired with a unique element of <span class="texhtml mvar" style="font-style:italic;">A</span>, so that there are no unpaired elements.</li></ul> <p>An injective function is called an <i>injection</i>, a surjective function is called a <i>surjection</i>, and a bijective function is called a <i>bijection</i> or <i>one-to-one correspondence</i>. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(9)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Cardinality">Cardinality</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=14" title="Edit section: Cardinality" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-9 collapsible-block" id="mf-section-9"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Cardinality" title="Cardinality">Cardinality</a></div> <p>The cardinality of a set <span class="texhtml"><i>S</i></span>, denoted <span class="texhtml">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>S</i></span>|</span>, is the number of members of <span class="texhtml"><i>S</i></span>.<sup id="cite_ref-Moschovakis1994_35-0" class="reference"><a href="#cite_note-Moschovakis1994-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> For example, if <span class="texhtml"><i>B</i> = {blue, white, red}</span>, then <span class="texhtml">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;">B</span>| = 3</span>. Repeated members in roster notation are not counted,<sup id="cite_ref-Fleck2001_36-0" class="reference"><a href="#cite_note-Fleck2001-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Johnston2015_37-0" class="reference"><a href="#cite_note-Johnston2015-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> so <span class="texhtml">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;">{blue, white, red, blue, white}</span>| = 3</span>, too. </p><p>More formally, two sets share the same cardinality if there exists a bijection between them. </p><p>The cardinality of the empty set is zero.<sup id="cite_ref-Smith2008_38-0" class="reference"><a href="#cite_note-Smith2008-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Infinite_sets_and_infinite_cardinality">Infinite sets and infinite cardinality</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=15" title="Edit section: Infinite sets and infinite cardinality" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The list of elements of some sets is endless, or <i><a href="/wiki/Infinite_set" title="Infinite set">infinite</a></i>. For example, the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {N} }"></noscript><span class="lazy-image-placeholder" style="width: 1.678ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" data-alt="{\displaystyle \mathbb {N} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> of <a href="/wiki/Natural_number" title="Natural number">natural numbers</a> is infinite.<sup id="cite_ref-Lucas1990_20-2" class="reference"><a href="#cite_note-Lucas1990-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> In fact, all the special sets of numbers mentioned in the section above are infinite. Infinite sets have <i>infinite cardinality</i>. </p><p>Some infinite cardinalities are greater than others. Arguably one of the most significant results from set theory is that the set of <a href="/wiki/Real_number" title="Real number">real numbers</a> has greater cardinality than the set of natural numbers.<sup id="cite_ref-Stillwell2013_39-0" class="reference"><a href="#cite_note-Stillwell2013-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> Sets with cardinality less than or equal to that of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {N} }"></noscript><span class="lazy-image-placeholder" style="width: 1.678ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" data-alt="{\displaystyle \mathbb {N} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> are called <i><a href="/wiki/Countable_set" title="Countable set">countable sets</a></i>; these are either finite sets or <i><a href="/wiki/Countably_infinite_set" class="mw-redirect" title="Countably infinite set">countably infinite sets</a></i> (sets of the same cardinality as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {N} }"></noscript><span class="lazy-image-placeholder" style="width: 1.678ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" data-alt="{\displaystyle \mathbb {N} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>); some authors use "countable" to mean "countably infinite". Sets with cardinality strictly greater than that of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {N} }"></noscript><span class="lazy-image-placeholder" style="width: 1.678ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" data-alt="{\displaystyle \mathbb {N} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> are called <i><a href="/wiki/Uncountable_set" title="Uncountable set">uncountable sets</a></i>. </p><p>However, it can be shown that the cardinality of a <a href="/wiki/Straight_line" class="mw-redirect" title="Straight line">straight line</a> (i.e., the number of points on a line) is the same as the cardinality of any <a href="/wiki/Line_segment" title="Line segment">segment</a> of that line, of the entire <a href="/wiki/Plane_(mathematics)" title="Plane (mathematics)">plane</a>, and indeed of any <a href="/wiki/Dimension_(mathematics)" class="mw-redirect" title="Dimension (mathematics)">finite-dimensional</a> <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>.<sup id="cite_ref-Tall2006_40-0" class="reference"><a href="#cite_note-Tall2006-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="The_continuum_hypothesis">The continuum hypothesis</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=16" title="Edit section: The continuum hypothesis" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Continuum_hypothesis" title="Continuum hypothesis">Continuum hypothesis</a></div> <p>The continuum hypothesis, formulated by Georg Cantor in 1878, is the statement that there is no set with cardinality strictly between the <a href="/wiki/Aleph-nought" class="mw-redirect" title="Aleph-nought">cardinality of the natural numbers</a> and the cardinality of a straight line.<sup id="cite_ref-Cantor1878_41-0" class="reference"><a href="#cite_note-Cantor1878-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> In 1963, <a href="/wiki/Paul_Cohen" title="Paul Cohen">Paul Cohen</a> proved that the continuum hypothesis is <a href="/wiki/Independence_(mathematical_logic)" title="Independence (mathematical logic)">independent</a> of the axiom system ZFC consisting of <a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="Zermelo–Fraenkel set theory">Zermelo–Fraenkel set theory</a> with the <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a>.<sup id="cite_ref-Cohen1963_42-0" class="reference"><a href="#cite_note-Cohen1963-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> (ZFC is the most widely-studied version of axiomatic set theory.) </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(10)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Power_sets">Power sets</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=17" title="Edit section: Power sets" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-10 collapsible-block" id="mf-section-10"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Power_set" title="Power set">Power set</a></div> <p>The power set of a set <span class="texhtml"><i>S</i></span> is the set of all subsets of <span class="texhtml"><i>S</i></span>.<sup id="cite_ref-Lucas1990_20-3" class="reference"><a href="#cite_note-Lucas1990-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/Empty_set" title="Empty set">empty set</a> and <span class="texhtml"><i>S</i></span> itself are elements of the power set of <span class="texhtml"><i>S</i></span>, because these are both subsets of <span class="texhtml"><i>S</i></span>. For example, the power set of <span class="texhtml">{1, 2, 3}</span> is <span class="texhtml">{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}</span>. The power set of a set <span class="texhtml"><i>S</i></span> is commonly written as <span class="texhtml"><i>P</i>(<i>S</i>)</span> or <span class="texhtml">2<sup><i>S</i></sup></span>.<sup id="cite_ref-Lucas1990_20-4" class="reference"><a href="#cite_note-Lucas1990-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpage18mode2up_19]_43-0" class="reference"><a href="#cite_note-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage18mode2up_19%5D-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:1_8-2" class="reference"><a href="#cite_note-:1-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p>If <span class="texhtml"><i>S</i></span> has <span class="texhtml"><i>n</i></span> elements, then <span class="texhtml"><i>P</i>(<i>S</i>)</span> has <span class="texhtml">2<sup><i>n</i></sup></span> elements.<sup id="cite_ref-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpage20mode2up_20]_44-0" class="reference"><a href="#cite_note-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage20mode2up_20%5D-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> For example, <span class="texhtml">{1, 2, 3}</span> has three elements, and its power set has <span class="texhtml">2<sup>3</sup> = 8</span> elements, as shown above. </p><p>If <span class="texhtml"><i>S</i></span> is infinite (whether <a href="/wiki/Countable" class="mw-redirect" title="Countable">countable</a> or <a href="/wiki/Uncountable" class="mw-redirect" title="Uncountable">uncountable</a>), then <span class="texhtml"><i>P</i>(<i>S</i>)</span> is uncountable. Moreover, the power set is always strictly "bigger" than the original set, in the sense that any attempt to pair up the elements of <span class="texhtml"><i>S</i></span> with the elements of <span class="texhtml"><i>P</i>(<i>S</i>)</span> will leave some elements of <span class="texhtml"><i>P</i>(<i>S</i>)</span> unpaired. (There is never a <a href="/wiki/Bijection" title="Bijection">bijection</a> from <span class="texhtml"><i>S</i></span> onto <span class="texhtml"><i>P</i>(<i>S</i>)</span>.)<sup id="cite_ref-BurgerStarbird2004_45-0" class="reference"><a href="#cite_note-BurgerStarbird2004-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(11)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Partitions">Partitions</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=18" title="Edit section: Partitions" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-11 collapsible-block" id="mf-section-11"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Partition_of_a_set" title="Partition of a set">Partition of a set</a></div> <p>A <a href="/wiki/Partition_of_a_set" title="Partition of a set">partition of a set</a> <i>S</i> is a set of nonempty subsets of <i>S</i>, such that every element <i>x</i> in <i>S</i> is in exactly one of these subsets. That is, the subsets are <a href="/wiki/Pairwise_disjoint" class="mw-redirect" title="Pairwise disjoint">pairwise disjoint</a> (meaning any two sets of the partition contain no element in common), and the <a href="/wiki/Union_(set_theory)" title="Union (set theory)">union</a> of all the subsets of the partition is <i>S</i>.<sup id="cite_ref-Mansour2012_46-0" class="reference"><a href="#cite_note-Mansour2012-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpage28mode2up_28]_47-0" class="reference"><a href="#cite_note-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage28mode2up_28%5D-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(12)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Basic_operations">Basic operations</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=19" title="Edit section: Basic operations" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-12 collapsible-block" id="mf-section-12"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Algebra_of_sets" title="Algebra of sets">Algebra of sets</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Venn1010.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Venn1010.svg/220px-Venn1010.svg.png" decoding="async" width="220" height="162" class="mw-file-element" data-file-width="380" data-file-height="280"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 162px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Venn1010.svg/220px-Venn1010.svg.png" data-width="220" data-height="162" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Venn1010.svg/330px-Venn1010.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Venn1010.svg/440px-Venn1010.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption><div class="center">The <b>complement</b> of <i>A</i> in <i>U</i></div></figcaption></figure> <p>Suppose that a <a href="/wiki/Universe_(mathematics)" title="Universe (mathematics)">universal set</a> <span class="texhtml mvar" style="font-style:italic;">U</span> (a set containing all elements being discussed) has been fixed, and that <span class="texhtml mvar" style="font-style:italic;">A</span> is a subset of <span class="texhtml mvar" style="font-style:italic;">U</span>. </p> <ul><li>The <a href="/wiki/Complement_(set_theory)" title="Complement (set theory)">complement</a> of <span class="texhtml mvar" style="font-style:italic;">A</span> is the set of all elements (of <span class="texhtml mvar" style="font-style:italic;">U</span>) that do <i>not</i> belong to <span class="texhtml mvar" style="font-style:italic;">A</span>. It may be denoted <span class="texhtml"><i>A</i><sup>c</sup></span> or <span class="texhtml"><i>A</i>′</span>. In set-builder notation, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\text{c}}=\{a\in U:a\notin A\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>c</mtext> </mrow> </msup> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo>∈<!-- ∈ --></mo> <mi>U</mi> <mo>:</mo> <mi>a</mi> <mo>∉<!-- ∉ --></mo> <mi>A</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\text{c}}=\{a\in U:a\notin A\}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0701aea496ff8e874e2498f71b03935b469c9071" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.733ex; height:2.843ex;" alt="{\displaystyle A^{\text{c}}=\{a\in U:a\notin A\}}"></noscript><span class="lazy-image-placeholder" style="width: 21.733ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0701aea496ff8e874e2498f71b03935b469c9071" data-alt="{\displaystyle A^{\text{c}}=\{a\in U:a\notin A\}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. The complement may also be called the <i>absolute complement</i> to distinguish it from the relative complement below. Example: If the universal set is taken to be the set of integers, then the complement of the set of even integers is the set of odd integers.</li></ul> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Venn0111.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/220px-Venn0111.svg.png" decoding="async" width="220" height="162" class="mw-file-element" data-file-width="380" data-file-height="280"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 162px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/220px-Venn0111.svg.png" data-width="220" data-height="162" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/330px-Venn0111.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/440px-Venn0111.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption><div class="center">The <b>union</b> of <span class="texhtml"><i>A</i></span> and <span class="texhtml"><i>B</i></span>, denoted <span class="texhtml"><i>A</i> ∪ <i>B</i></span></div></figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Venn0001.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/220px-Venn0001.svg.png" decoding="async" width="220" height="160" class="mw-file-element" data-file-width="410" data-file-height="299"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 160px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/220px-Venn0001.svg.png" data-width="220" data-height="160" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/330px-Venn0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/440px-Venn0001.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption><div class="center">The <b>intersection</b> of <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span>, denoted <span class="texhtml"><i>A</i> ∩ <i>B</i></span></div></figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Venn0100.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Venn0100.svg/220px-Venn0100.svg.png" decoding="async" width="220" height="162" class="mw-file-element" data-file-width="380" data-file-height="280"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 162px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Venn0100.svg/220px-Venn0100.svg.png" data-width="220" data-height="162" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Venn0100.svg/330px-Venn0100.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Venn0100.svg/440px-Venn0100.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption><div class="center">The <b>set difference</b> <span class="texhtml"><i>A</i> \ <i>B</i></span></div></figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Venn0110.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/46/Venn0110.svg/220px-Venn0110.svg.png" decoding="async" width="220" height="160" class="mw-file-element" data-file-width="410" data-file-height="299"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 160px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/4/46/Venn0110.svg/220px-Venn0110.svg.png" data-width="220" data-height="160" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/46/Venn0110.svg/330px-Venn0110.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/46/Venn0110.svg/440px-Venn0110.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption><div class="center">The <b>symmetric difference</b> of <i>A</i> and <i>B</i></div></figcaption></figure> <p>Given any two sets <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span>, </p> <ul><li>their <a href="/wiki/Union_(set_theory)" title="Union (set theory)">union</a> <span class="texhtml"><i>A</i> ∪ <i>B</i></span> is the set of all things that are members of <i>A</i> or <i>B</i> or both.</li> <li>their <a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">intersection</a> <span class="texhtml"><i>A</i> ∩ <i>B</i></span> is the set of all things that are members of both <i>A</i> and <i>B</i>. If <span class="texhtml"><i>A</i> ∩ <i>B</i> = ∅</span>, then <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> are said to be <i>disjoint</i>.</li> <li>the <a href="/wiki/Set_difference" class="mw-redirect" title="Set difference">set difference</a> <span class="texhtml"><i>A</i> \ <i>B</i></span> (also written <span class="texhtml"><i>A</i> − <i>B</i></span>) is the set of all things that belong to <span class="texhtml mvar" style="font-style:italic;">A</span> but not <span class="texhtml mvar" style="font-style:italic;">B</span>. Especially when <span class="texhtml mvar" style="font-style:italic;">B</span> is a subset of <span class="texhtml mvar" style="font-style:italic;">A</span>, it is also called the <a href="/wiki/Complement_(set_theory)" title="Complement (set theory)">relative complement</a> of <span class="texhtml mvar" style="font-style:italic;">B</span> in <span class="texhtml mvar" style="font-style:italic;">A</span>. With <span class="texhtml"><i>B</i><sup>c</sup></span> as the absolute complement of <i>B</i> (in the universal set <span class="texhtml mvar" style="font-style:italic;">U</span>), <span class="texhtml"><i>A</i> \ <i>B</i> = <i>A</i> ∩ <i>B</i><sup>c</sup></span> .</li> <li>their <a href="/wiki/Symmetric_difference" title="Symmetric difference">symmetric difference</a> <span class="texhtml"><i>A</i> Δ <i>B</i></span> is the set of all things that belong to <span class="texhtml mvar" style="font-style:italic;">A</span> or <span class="texhtml mvar" style="font-style:italic;">B</span> but not both. One has <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\,\Delta \,B=(A\setminus B)\cup (B\setminus A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mspace width="thinmathspace"></mspace> <mi>B</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo class="MJX-variant">∖<!-- ∖ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>∪<!-- ∪ --></mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo class="MJX-variant">∖<!-- ∖ --></mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\,\Delta \,B=(A\setminus B)\cup (B\setminus A)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fde641f23775b76a25efd5aa3536c4f520770d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.92ex; height:2.843ex;" alt="{\displaystyle A\,\Delta \,B=(A\setminus B)\cup (B\setminus A)}"></noscript><span class="lazy-image-placeholder" style="width: 26.92ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fde641f23775b76a25efd5aa3536c4f520770d3f" data-alt="{\displaystyle A\,\Delta \,B=(A\setminus B)\cup (B\setminus A)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</li> <li>their <a href="/wiki/Cartesian_product" title="Cartesian product">cartesian product</a> <span class="texhtml"><i>A</i> × <i>B</i></span> is the set of all <a href="/wiki/Ordered_pairs" class="mw-redirect" title="Ordered pairs">ordered pairs</a> <span class="texhtml">(<i>a</i>,<i>b</i>)</span> such that <span class="texhtml mvar" style="font-style:italic;">a</span> is an element of <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> is an element of <span class="texhtml mvar" style="font-style:italic;">B</span>.</li></ul> <p>Examples: </p> <ul><li><span class="texhtml">{1, 2, 3} ∪ {3, 4, 5} = {1, 2, 3, 4, 5</span>}.</li> <li><span class="texhtml">{1, 2, 3} ∩ {3, 4, 5} = {3</span>}.</li> <li><span class="texhtml">{1, 2, 3} − {3, 4, 5} = {1, 2</span>}.</li> <li><span class="texhtml">{1, 2, 3} Δ {3, 4, 5} = {1, 2, 4, 5</span>}.</li> <li><span class="texhtml">{<i>a</i>, <i>b</i>} × {1, 2, 3} = {(<i>a</i>,1), (<i>a</i>,2), (<i>a</i>,3), (<i>b</i>,1), (<i>b</i>,2), (<i>b</i>,3)</span>}.</li></ul> <p>The operations above satisfy many identities. For example, one of <a href="/wiki/De_Morgan%27s_laws" title="De Morgan's laws">De Morgan's laws</a> states that <b><span class="texhtml">(<i>A</i> ∪ <i>B</i>)′ = <i>A</i>′ ∩ <i>B</i>′</span></b> (that is, the elements outside the union of <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> are the elements that are outside <span class="texhtml mvar" style="font-style:italic;">A</span> <i>and</i> outside <span class="texhtml mvar" style="font-style:italic;">B</span>). </p><p>The cardinality of <span class="texhtml"><i>A</i> × <i>B</i></span> is the product of the cardinalities of <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span>. This is an elementary fact when <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> are finite. When one or both are infinite, multiplication of cardinal numbers is defined to make this true. </p><p>The power set of any set becomes a <a href="/wiki/Boolean_ring" title="Boolean ring">Boolean ring</a> with symmetric difference as the addition of the ring and intersection as the multiplication of the ring. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(13)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Applications">Applications</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=20" title="Edit section: Applications" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-13 collapsible-block" id="mf-section-13"> <p>Sets are ubiquitous in modern mathematics. For example, <a href="/wiki/Algebraic_structure" title="Algebraic structure">structures</a> in <a href="/wiki/Abstract_algebra" title="Abstract algebra">abstract algebra</a>, such as <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">groups</a>, <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">fields</a> and <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">rings</a>, are sets <a href="/wiki/Closure_(mathematics)" title="Closure (mathematics)">closed</a> under one or more operations. </p><p>One of the main applications of naive set theory is in the construction of <a href="/wiki/Relation_(mathematics)" title="Relation (mathematics)">relations</a>. A relation from a <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a> <span class="texhtml"><i>A</i></span> to a <a href="/wiki/Codomain" title="Codomain">codomain</a> <span class="texhtml"><i>B</i></span> is a subset of the Cartesian product <span class="texhtml"><i>A</i> × <i>B</i></span>. For example, considering the set <span class="texhtml"><i>S</i> = {rock, paper, scissors}</span> of shapes in the <a href="/wiki/Rock_paper_scissors" title="Rock paper scissors">game</a> of the same name, the relation "beats" from <span class="texhtml"><i>S</i></span> to <span class="texhtml"><i>S</i></span> is the set <span class="texhtml"><i>B</i> = {(scissors,paper), (paper,rock), (rock,scissors)}</span>; thus <span class="texhtml"><i>x</i></span> beats <span class="texhtml"><i>y</i></span> in the game if the pair <span class="texhtml">(<i>x</i>,<i>y</i>)</span> is a member of <span class="texhtml"><i>B</i></span>. Another example is the set <span class="texhtml"><i>F</i></span> of all pairs <span class="texhtml">(<i>x</i>, <i>x</i><sup>2</sup>)</span>, where <span class="texhtml"><i>x</i></span> is real. This relation is a subset of <span class="texhtml"><b>R</b> × <b>R</b></span>, because the set of all squares is subset of the set of all real numbers. Since for every <span class="texhtml"><i>x</i></span> in <span class="texhtml"><b>R</b></span>, one and only one pair <span class="texhtml">(<i>x</i>,...)</span> is found in <span class="texhtml"><i>F</i></span>, it is called a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a>. In functional notation, this relation can be written as <span class="texhtml"><i>F</i>(<i>x</i>) = <i>x</i><sup>2</sup></span>. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(14)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Principle_of_inclusion_and_exclusion">Principle of inclusion and exclusion</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=21" title="Edit section: Principle of inclusion and exclusion" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-14 collapsible-block" id="mf-section-14"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Inclusion%E2%80%93exclusion_principle" title="Inclusion–exclusion principle">Inclusion–exclusion principle</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:A_union_B.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/86/A_union_B.svg/220px-A_union_B.svg.png" decoding="async" width="220" height="164" class="mw-file-element" data-file-width="226" data-file-height="168"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 164px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/8/86/A_union_B.svg/220px-A_union_B.svg.png" data-width="220" data-height="164" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/86/A_union_B.svg/330px-A_union_B.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/86/A_union_B.svg/440px-A_union_B.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption>The inclusion-exclusion principle for two finite sets states that the size of their union is the sum of the sizes of the sets minus the size of their intersection.</figcaption></figure> <p>The inclusion–exclusion principle is a technique for counting the elements in a union of two finite sets in terms of the sizes of the two sets and their intersection. It can be expressed symbolically as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |A\cup B|=|A|+|B|-|A\cap B|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mo>∪<!-- ∪ --></mo> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mo>∩<!-- ∩ --></mo> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |A\cup B|=|A|+|B|-|A\cap B|.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0bbdac1eb429befc47b8dca8180078642af9592" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.287ex; height:2.843ex;" alt="{\displaystyle |A\cup B|=|A|+|B|-|A\cap B|.}"></noscript><span class="lazy-image-placeholder" style="width: 30.287ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0bbdac1eb429befc47b8dca8180078642af9592" data-alt="{\displaystyle |A\cup B|=|A|+|B|-|A\cap B|.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> </p><p>A more general form of the principle gives the cardinality of any finite union of finite sets: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left|A_{1}\cup A_{2}\cup A_{3}\cup \ldots \cup A_{n}\right|=&\left(\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|+\ldots \left|A_{n}\right|\right)\\&{}-\left(\left|A_{1}\cap A_{2}\right|+\left|A_{1}\cap A_{3}\right|+\ldots \left|A_{n-1}\cap A_{n}\right|\right)\\&{}+\ldots \\&{}+\left(-1\right)^{n-1}\left(\left|A_{1}\cap A_{2}\cap A_{3}\cap \ldots \cap A_{n}\right|\right).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow> <mo>|</mo> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>∪<!-- ∪ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>∪<!-- ∪ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>∪<!-- ∪ --></mo> <mo>…<!-- … --></mo> <mo>∪<!-- ∪ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo>=</mo> </mtd> <mtd> <mrow> <mo>(</mo> <mrow> <mrow> <mo>|</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>|</mo> </mrow> <mo>+</mo> <mrow> <mo>|</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>|</mo> </mrow> <mo>+</mo> <mrow> <mo>|</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>|</mo> </mrow> <mo>+</mo> <mo>…<!-- … --></mo> <mrow> <mo>|</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>|</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>−<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>∩<!-- ∩ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mrow> <mo>|</mo> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>∩<!-- ∩ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mo>…<!-- … --></mo> <mrow> <mo>|</mo> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>∩<!-- ∩ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>|</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <mo>…<!-- … --></mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mo>|</mo> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>∩<!-- ∩ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>∩<!-- ∩ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>∩<!-- ∩ --></mo> <mo>…<!-- … --></mo> <mo>∩<!-- ∩ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\left|A_{1}\cup A_{2}\cup A_{3}\cup \ldots \cup A_{n}\right|=&\left(\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|+\ldots \left|A_{n}\right|\right)\\&{}-\left(\left|A_{1}\cap A_{2}\right|+\left|A_{1}\cap A_{3}\right|+\ldots \left|A_{n-1}\cap A_{n}\right|\right)\\&{}+\ldots \\&{}+\left(-1\right)^{n-1}\left(\left|A_{1}\cap A_{2}\cap A_{3}\cap \ldots \cap A_{n}\right|\right).\end{aligned}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/784bb31a02981a4f1854676abd7cdf7094bfa196" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:73.188ex; height:12.509ex;" alt="{\displaystyle {\begin{aligned}\left|A_{1}\cup A_{2}\cup A_{3}\cup \ldots \cup A_{n}\right|=&\left(\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|+\ldots \left|A_{n}\right|\right)\\&{}-\left(\left|A_{1}\cap A_{2}\right|+\left|A_{1}\cap A_{3}\right|+\ldots \left|A_{n-1}\cap A_{n}\right|\right)\\&{}+\ldots \\&{}+\left(-1\right)^{n-1}\left(\left|A_{1}\cap A_{2}\cap A_{3}\cap \ldots \cap A_{n}\right|\right).\end{aligned}}}"></noscript><span class="lazy-image-placeholder" style="width: 73.188ex;height: 12.509ex;vertical-align: -5.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/784bb31a02981a4f1854676abd7cdf7094bfa196" data-alt="{\displaystyle {\begin{aligned}\left|A_{1}\cup A_{2}\cup A_{3}\cup \ldots \cup A_{n}\right|=&\left(\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|+\ldots \left|A_{n}\right|\right)\\&{}-\left(\left|A_{1}\cap A_{2}\right|+\left|A_{1}\cap A_{3}\right|+\ldots \left|A_{n-1}\cap A_{n}\right|\right)\\&{}+\ldots \\&{}+\left(-1\right)^{n-1}\left(\left|A_{1}\cap A_{2}\cap A_{3}\cap \ldots \cap A_{n}\right|\right).\end{aligned}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(15)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="History">History</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=22" title="Edit section: History" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-15 collapsible-block" id="mf-section-15"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Set_theory" title="Set theory">Set theory</a></div><p> The concept of a set emerged in mathematics at the end of the 19th century.<sup id="cite_ref-Ferreirós2007_48-0" class="reference"><a href="#cite_note-Ferreir%C3%B3s2007-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> The German word for set, <i>Menge</i>, was coined by <a href="/wiki/Bernard_Bolzano" title="Bernard Bolzano">Bernard Bolzano</a> in his work <i><a href="/wiki/Paradoxes_of_the_Infinite" title="Paradoxes of the Infinite">Paradoxes of the Infinite</a></i>.<sup id="cite_ref-Russ2004_49-0" class="reference"><a href="#cite_note-Russ2004-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-EwaldEwald1996_50-0" class="reference"><a href="#cite_note-EwaldEwald1996-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-RusnockSebestík2019_51-0" class="reference"><a href="#cite_note-RusnockSebest%C3%ADk2019-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup></p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Passage_with_the_set_definition_of_Georg_Cantor.png" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Passage_with_the_set_definition_of_Georg_Cantor.png/220px-Passage_with_the_set_definition_of_Georg_Cantor.png" decoding="async" width="220" height="93" class="mw-file-element" data-file-width="1401" data-file-height="594"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 93px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Passage_with_the_set_definition_of_Georg_Cantor.png/220px-Passage_with_the_set_definition_of_Georg_Cantor.png" data-width="220" data-height="93" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Passage_with_the_set_definition_of_Georg_Cantor.png/330px-Passage_with_the_set_definition_of_Georg_Cantor.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Passage_with_the_set_definition_of_Georg_Cantor.png/440px-Passage_with_the_set_definition_of_Georg_Cantor.png 2x" data-class="mw-file-element"> </span></a><figcaption>Passage with a translation of the original set definition of Georg Cantor. The German word <i>Menge</i> for <i>set</i> is translated with <i>aggregate</i> here.</figcaption></figure> <p><a href="/wiki/Georg_Cantor" title="Georg Cantor">Georg Cantor</a>, one of the founders of set theory, gave the following definition at the beginning of his <i>Beiträge zur Begründung der transfiniten Mengenlehre</i>:<sup id="cite_ref-Cantor.1895_52-0" class="reference"><a href="#cite_note-Cantor.1895-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Cantor_1-1" class="reference"><a href="#cite_note-Cantor-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style></p><blockquote class="templatequote"><p>A set is a gathering together into a whole of definite, distinct objects of our perception or our thought—which are called elements of the set.</p></blockquote> <p><a href="/wiki/Bertrand_Russell" title="Bertrand Russell">Bertrand Russell</a> introduced the distinction between a set and a <a href="/wiki/Class_(mathematics)" class="mw-redirect" title="Class (mathematics)">class</a> (a set is a class, but some classes, such as the class of all sets, are not sets; see <a href="/wiki/Russell%27s_paradox" title="Russell's paradox">Russell's paradox</a>):<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>When mathematicians deal with what they call a manifold, aggregate, <i>Menge</i>, <i>ensemble</i>, or some equivalent name, it is common, especially where the number of terms involved is finite, to regard the object in question (which is in fact a class) as defined by the enumeration of its terms, and as consisting possibly of a single term, which in that case <i>is</i> the class.</p></blockquote> <div class="mw-heading mw-heading3"><h3 id="Naive_set_theory">Naive set theory</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=23" title="Edit section: Naive set theory" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Naive_set_theory" title="Naive set theory">Naive set theory</a></div> <p>The foremost property of a set is that it can have elements, also called <i>members</i>. Two sets are <a href="/wiki/Equality_(mathematics)" title="Equality (mathematics)">equal</a> when they have the same elements. More precisely, sets <i>A</i> and <i>B</i> are equal if every element of <i>A</i> is an element of <i>B</i>, and every element of <i>B</i> is an element of <i>A</i>; this property is called the <i><a href="/wiki/Extensionality#In_mathematics" title="Extensionality">extensionality</a> of sets</i>.<sup id="cite_ref-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpage2mode2up_2]_23-1" class="reference"><a href="#cite_note-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage2mode2up_2%5D-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> As a consequence, e.g. <span class="texhtml">{2, 4, 6}</span> and <span class="texhtml">{4, 6, 4, 2}</span> represent the same set. Unlike sets, <a href="/wiki/Multiset" title="Multiset">multisets</a> can be distinguished by the number of occurrences of an element; e.g. <span class="texhtml">[2, 4, 6]</span> and <span class="texhtml">[4, 6, 4, 2]</span> represent different multisets, while <span class="texhtml">[2, 4, 6]</span> and <span class="texhtml">[6, 4, 2]</span> are equal. <a href="/wiki/Tuple" title="Tuple">Tuples</a> can even be distinguished by element order; e.g. <span class="texhtml">(2, 4, 6)</span> and <span class="texhtml">(6, 4, 2)</span> represent different tuples. </p><p>The simple concept of a set has proved enormously useful in mathematics, but <a href="/wiki/Category:Paradoxes_of_naive_set_theory" title="Category:Paradoxes of naive set theory">paradoxes</a> arise if no restrictions are placed on how sets can be constructed: </p> <ul><li><a href="/wiki/Russell%27s_paradox" title="Russell's paradox">Russell's paradox</a> shows that the "set of all sets that <i>do not contain themselves</i>", i.e., {<i>x</i> | <i>x</i> is a set and <i>x</i> ∉ <i>x</i>}, cannot exist.</li> <li><a href="/wiki/Cantor%27s_paradox" title="Cantor's paradox">Cantor's paradox</a> shows that "the set of all sets" cannot exist.</li></ul> <p><a href="/wiki/Naive_set_theory" title="Naive set theory">Naïve set theory</a> defines a set as any <i><a href="/wiki/Well-defined" class="mw-redirect" title="Well-defined">well-defined</a></i> collection of distinct elements, but problems arise from the vagueness of the term <i>well-defined</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Axiomatic_set_theory">Axiomatic set theory</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=24" title="Edit section: Axiomatic set theory" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>In subsequent efforts to resolve these paradoxes since the time of the original formulation of naïve set theory, the properties of sets have been defined by <a href="/wiki/Axioms" class="mw-redirect" title="Axioms">axioms</a>. <a href="/wiki/Axiomatic_set_theory" class="mw-redirect" title="Axiomatic set theory">Axiomatic set theory</a> takes the concept of a set as a <a href="/wiki/Primitive_notion" title="Primitive notion">primitive notion</a>.<sup id="cite_ref-Ferreiros2001_54-0" class="reference"><a href="#cite_note-Ferreiros2001-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> The purpose of the axioms is to provide a basic framework from which to deduce the truth or falsity of particular <a href="/wiki/Proposition_(mathematics)" class="mw-redirect" title="Proposition (mathematics)">mathematical propositions</a> (statements) about sets, using <a href="/wiki/First-order_logic" title="First-order logic">first-order logic</a>. According to <a href="/wiki/G%C3%B6del%27s_incompleteness_theorems" title="Gödel's incompleteness theorems">Gödel's incompleteness theorems</a> however, it is not possible to use first-order logic to prove any such particular axiomatic set theory is free from paradox.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(16)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="See_also">See also</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=25" title="Edit section: See also" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-16 collapsible-block" id="mf-section-16"> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 20em;"> <ul><li><a href="/wiki/Algebra_of_sets" title="Algebra of sets">Algebra of sets</a></li> <li><a href="/wiki/Alternative_set_theory" class="mw-redirect" title="Alternative set theory">Alternative set theory</a></li> <li><a href="/wiki/Category_of_sets" title="Category of sets">Category of sets</a></li> <li><a href="/wiki/Class_(set_theory)" title="Class (set theory)">Class (set theory)</a></li> <li><a href="/wiki/Family_of_sets" title="Family of sets">Family of sets</a></li> <li><a href="/wiki/Fuzzy_set" title="Fuzzy set">Fuzzy set</a></li> <li><a href="/wiki/Mereology" title="Mereology">Mereology</a></li> <li><a href="/wiki/Principia_Mathematica" title="Principia Mathematica">Principia Mathematica</a></li></ul> </div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(17)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Notes">Notes</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=26" title="Edit section: Notes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-17 collapsible-block" id="mf-section-17"> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Cantor-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Cantor_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Cantor_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFCantorJourdain1915" class="citation book cs1">Cantor, Georg; Jourdain, Philip E.B. (Translator) (1915). <i>Contributions to the founding of the theory of transfinite numbers</i>. New York Dover Publications (1954 English translation). <q>By an 'aggregate' (Menge) we are to understand any collection into a whole (Zusammenfassung zu einem Ganzen) <i>M</i> of definite and separate objects <i>m</i> of our intuition or our thought.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Contributions+to+the+founding+of+the+theory+of+transfinite+numbers&rft.pub=New+York+Dover+Publications+%281954+English+translation%29&rft.date=1915&rft.aulast=Cantor&rft.aufirst=Georg&rft.au=Jourdain%2C+Philip+E.B.+%28Translator%29&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span> Here: p.85</span> </li> <li id="cite_note-JainAhmad1995-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-JainAhmad1995_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFP._K._JainKhalil_AhmadOm_P._Ahuja1995" class="citation book cs1">P. K. Jain; Khalil Ahmad; Om P. Ahuja (1995). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=yZ68h97pnAkC&pg=PA1"><i>Functional Analysis</i></a>. New Age International. p. 1. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-81-224-0801-0" title="Special:BookSources/978-81-224-0801-0"><bdi>978-81-224-0801-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Functional+Analysis&rft.pages=1&rft.pub=New+Age+International&rft.date=1995&rft.isbn=978-81-224-0801-0&rft.au=P.+K.+Jain&rft.au=Khalil+Ahmad&rft.au=Om+P.+Ahuja&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DyZ68h97pnAkC%26pg%3DPA1&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-Goldberg1986-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-Goldberg1986_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSamuel_Goldberg1986" class="citation book cs1">Samuel Goldberg (1 January 1986). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=CmzFx9rB_FcC&pg=PA2"><i>Probability: An Introduction</i></a>. Courier Corporation. p. 2. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-65252-8" title="Special:BookSources/978-0-486-65252-8"><bdi>978-0-486-65252-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Probability%3A+An+Introduction&rft.pages=2&rft.pub=Courier+Corporation&rft.date=1986-01-01&rft.isbn=978-0-486-65252-8&rft.au=Samuel+Goldberg&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DCmzFx9rB_FcC%26pg%3DPA2&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-CormenCormen2001-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-CormenCormen2001_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomas_H._CormenCharles_E_LeisersonRonald_L_RivestClifford_Stein2001" class="citation book cs1">Thomas H. Cormen; Charles E Leiserson; Ronald L Rivest; Clifford Stein (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=NLngYyWFl_YC&pg=PA1070"><i>Introduction To Algorithms</i></a>. MIT Press. p. 1070. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-262-03293-3" title="Special:BookSources/978-0-262-03293-3"><bdi>978-0-262-03293-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+To+Algorithms&rft.pages=1070&rft.pub=MIT+Press&rft.date=2001&rft.isbn=978-0-262-03293-3&rft.au=Thomas+H.+Cormen&rft.au=Charles+E+Leiserson&rft.au=Ronald+L+Rivest&rft.au=Clifford+Stein&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNLngYyWFl_YC%26pg%3DPA1070&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpagen11mode2up_1]-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpagen11mode2up_1%5D_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpagen11mode2up_1%5D_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpagen11mode2up_1%5D_5-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFHalmos1960">Halmos 1960</a>, p. <a rel="nofollow" class="external text" href="https://archive.org/details/naivesettheory00halm/page/n11/mode/2up">1</a>.</span> </li> <li id="cite_note-Stoll-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-Stoll_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Stoll_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStoll1974" class="citation book cs1">Stoll, Robert (1974). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/setslogicaxiomat0000stol"><i>Sets, Logic and Axiomatic Theories</i></a></span>. W. H. Freeman and Company. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/setslogicaxiomat0000stol/page/5">5</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780716704577" title="Special:BookSources/9780716704577"><bdi>9780716704577</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Sets%2C+Logic+and+Axiomatic+Theories&rft.pages=5&rft.pub=W.+H.+Freeman+and+Company&rft.date=1974&rft.isbn=9780716704577&rft.aulast=Stoll&rft.aufirst=Robert&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fsetslogicaxiomat0000stol&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-LipschutzLipson1997-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-LipschutzLipson1997_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSeymor_LipschutzMarc_Lipson1997" class="citation book cs1">Seymor Lipschutz; Marc Lipson (22 June 1997). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6A5g3RiYiBUC&pg=PA1"><i>Schaum's Outline of Discrete Mathematics</i></a>. McGraw Hill Professional. p. 1. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-136841-4" title="Special:BookSources/978-0-07-136841-4"><bdi>978-0-07-136841-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Schaum%27s+Outline+of+Discrete+Mathematics&rft.pages=1&rft.pub=McGraw+Hill+Professional&rft.date=1997-06-22&rft.isbn=978-0-07-136841-4&rft.au=Seymor+Lipschutz&rft.au=Marc+Lipson&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6A5g3RiYiBUC%26pg%3DPA1&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-:1-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_8-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:1_8-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mathsisfun.com/sets/sets-introduction.html">"Introduction to Sets"</a>. <i>www.mathsisfun.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-19</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.mathsisfun.com&rft.atitle=Introduction+to+Sets&rft_id=https%3A%2F%2Fwww.mathsisfun.com%2Fsets%2Fsets-introduction.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-Roberts2009-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-Roberts2009_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCharles_Roberts2009" class="citation book cs1">Charles Roberts (24 June 2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=NjBLnLyE4jAC&pg=PA45"><i>Introduction to Mathematical Proofs: A Transition</i></a>. CRC Press. p. 45. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4200-6956-3" title="Special:BookSources/978-1-4200-6956-3"><bdi>978-1-4200-6956-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Mathematical+Proofs%3A+A+Transition&rft.pages=45&rft.pub=CRC+Press&rft.date=2009-06-24&rft.isbn=978-1-4200-6956-3&rft.au=Charles+Roberts&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNjBLnLyE4jAC%26pg%3DPA45&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-JohnsonJohnson2004-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-JohnsonJohnson2004_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_JohnsonDavid_B._JohnsonThomas_A._Mowry2004" class="citation book cs1">David Johnson; David B. Johnson; Thomas A. Mowry (June 2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ZQAqzxLFXhoC&pg=PA220"><i>Finite Mathematics: Practical Applications (Docutech Version)</i></a>. W. H. Freeman. p. 220. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7167-6297-3" title="Special:BookSources/978-0-7167-6297-3"><bdi>978-0-7167-6297-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Finite+Mathematics%3A+Practical+Applications+%28Docutech+Version%29&rft.pages=220&rft.pub=W.+H.+Freeman&rft.date=2004-06&rft.isbn=978-0-7167-6297-3&rft.au=David+Johnson&rft.au=David+B.+Johnson&rft.au=Thomas+A.+Mowry&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZQAqzxLFXhoC%26pg%3DPA220&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-BelloKaul2013-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-BelloKaul2013_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIgnacio_BelloAnton_KaulJack_R._Britton2013" class="citation book cs1">Ignacio Bello; Anton Kaul; Jack R. Britton (29 January 2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=d8Se_8DWTQ4C&pg=PA47"><i>Topics in Contemporary Mathematics</i></a>. Cengage Learning. p. 47. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-133-10742-2" title="Special:BookSources/978-1-133-10742-2"><bdi>978-1-133-10742-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Topics+in+Contemporary+Mathematics&rft.pages=47&rft.pub=Cengage+Learning&rft.date=2013-01-29&rft.isbn=978-1-133-10742-2&rft.au=Ignacio+Bello&rft.au=Anton+Kaul&rft.au=Jack+R.+Britton&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dd8Se_8DWTQ4C%26pg%3DPA47&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-Epp2010-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-Epp2010_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSusanna_S._Epp2010" class="citation book cs1">Susanna S. Epp (4 August 2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=PPc_2qUhXrAC&pg=PA13"><i>Discrete Mathematics with Applications</i></a>. Cengage Learning. p. 13. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-495-39132-6" title="Special:BookSources/978-0-495-39132-6"><bdi>978-0-495-39132-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Discrete+Mathematics+with+Applications&rft.pages=13&rft.pub=Cengage+Learning&rft.date=2010-08-04&rft.isbn=978-0-495-39132-6&rft.au=Susanna+S.+Epp&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DPPc_2qUhXrAC%26pg%3DPA13&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">A. Kanamori, "<a rel="nofollow" class="external text" href="https://math.bu.edu/people/aki/8.pdf">The Empty Set, the Singleton, and the Ordered Pair</a>", p.278. Bulletin of Symbolic Logic vol. 9, no. 3, (2003). Accessed 21 August 2023.</span> </li> <li id="cite_note-MaurerRalston2005-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-MaurerRalston2005_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStephen_B._MaurerAnthony_Ralston2005" class="citation book cs1">Stephen B. Maurer; Anthony Ralston (21 January 2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=_0vNBQAAQBAJ&pg=PA11"><i>Discrete Algorithmic Mathematics</i></a>. CRC Press. p. 11. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4398-6375-6" title="Special:BookSources/978-1-4398-6375-6"><bdi>978-1-4398-6375-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Discrete+Algorithmic+Mathematics&rft.pages=11&rft.pub=CRC+Press&rft.date=2005-01-21&rft.isbn=978-1-4398-6375-6&rft.au=Stephen+B.+Maurer&rft.au=Anthony+Ralston&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D_0vNBQAAQBAJ%26pg%3DPA11&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-DalenDoets2014-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-DalenDoets2014_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD._Van_DalenH._C._DoetsH._De_Swart2014" class="citation book cs1">D. Van Dalen; H. C. Doets; H. De Swart (9 May 2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=PfbiBQAAQBAJ&pg=PA1"><i>Sets: Naïve, Axiomatic and Applied: A Basic Compendium with Exercises for Use in Set Theory for Non Logicians, Working and Teaching Mathematicians and Students</i></a>. Elsevier Science. p. 1. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4831-5039-0" title="Special:BookSources/978-1-4831-5039-0"><bdi>978-1-4831-5039-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Sets%3A+Na%C3%AFve%2C+Axiomatic+and+Applied%3A+A+Basic+Compendium+with+Exercises+for+Use+in+Set+Theory+for+Non+Logicians%2C+Working+and+Teaching+Mathematicians+and+Students&rft.pages=1&rft.pub=Elsevier+Science&rft.date=2014-05-09&rft.isbn=978-1-4831-5039-0&rft.au=D.+Van+Dalen&rft.au=H.+C.+Doets&rft.au=H.+De+Swart&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DPfbiBQAAQBAJ%26pg%3DPA1&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-BastaDeLong2013-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-BastaDeLong2013_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlfred_BastaStephan_DeLongNadine_Basta2013" class="citation book cs1">Alfred Basta; Stephan DeLong; Nadine Basta (1 January 2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VUYLAAAAQBAJ&pg=PA3"><i>Mathematics for Information Technology</i></a>. Cengage Learning. p. 3. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-285-60843-3" title="Special:BookSources/978-1-285-60843-3"><bdi>978-1-285-60843-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematics+for+Information+Technology&rft.pages=3&rft.pub=Cengage+Learning&rft.date=2013-01-01&rft.isbn=978-1-285-60843-3&rft.au=Alfred+Basta&rft.au=Stephan+DeLong&rft.au=Nadine+Basta&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVUYLAAAAQBAJ%26pg%3DPA3&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-BrackenMiller2013-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-BrackenMiller2013_17-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLaura_BrackenEd_Miller2013" class="citation book cs1">Laura Bracken; Ed Miller (15 February 2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=nFkrl_kDiTAC&pg=PA36"><i>Elementary Algebra</i></a>. Cengage Learning. p. 36. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-618-95134-5" title="Special:BookSources/978-0-618-95134-5"><bdi>978-0-618-95134-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elementary+Algebra&rft.pages=36&rft.pub=Cengage+Learning&rft.date=2013-02-15&rft.isbn=978-0-618-95134-5&rft.au=Laura+Bracken&rft.au=Ed+Miller&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DnFkrl_kDiTAC%26pg%3DPA36&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpage4mode2up_4]-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage4mode2up_4%5D_18-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHalmos1960">Halmos 1960</a>, p. <a rel="nofollow" class="external text" href="https://archive.org/details/naivesettheory00halm/page/4/mode/2up">4</a>.</span> </li> <li id="cite_note-Ruda2011-19"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ruda2011_19-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ruda2011_19-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Ruda2011_19-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrank_Ruda2011" class="citation book cs1">Frank Ruda (6 October 2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VV0SBwAAQBAJ&pg=PA151"><i>Hegel's Rabble: An Investigation into Hegel's Philosophy of Right</i></a>. Bloomsbury Publishing. p. 151. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4411-7413-0" title="Special:BookSources/978-1-4411-7413-0"><bdi>978-1-4411-7413-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Hegel%27s+Rabble%3A+An+Investigation+into+Hegel%27s+Philosophy+of+Right&rft.pages=151&rft.pub=Bloomsbury+Publishing&rft.date=2011-10-06&rft.isbn=978-1-4411-7413-0&rft.au=Frank+Ruda&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVV0SBwAAQBAJ%26pg%3DPA151&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-Lucas1990-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lucas1990_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lucas1990_20-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Lucas1990_20-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Lucas1990_20-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Lucas1990_20-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_F._Lucas1990" class="citation book cs1">John F. Lucas (1990). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jklsb5JUgoQC&pg=PA108"><i>Introduction to Abstract Mathematics</i></a>. Rowman & Littlefield. p. 108. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-912675-73-2" title="Special:BookSources/978-0-912675-73-2"><bdi>978-0-912675-73-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Abstract+Mathematics&rft.pages=108&rft.pub=Rowman+%26+Littlefield&rft.date=1990&rft.isbn=978-0-912675-73-2&rft.au=John+F.+Lucas&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Djklsb5JUgoQC%26pg%3DPA108&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Set.html">"Set"</a>. <i>Wolfram MathWorld</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-19</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Wolfram+MathWorld&rft.atitle=Set&rft.aulast=Weisstein&rft.aufirst=Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FSet.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-Steinlage1987-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-Steinlage1987_22-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRalph_C._Steinlage1987" class="citation book cs1">Ralph C. Steinlage (1987). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=lcg3gY3444IC"><i>College Algebra</i></a>. West Publishing Company. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-314-29531-6" title="Special:BookSources/978-0-314-29531-6"><bdi>978-0-314-29531-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=College+Algebra&rft.pub=West+Publishing+Company&rft.date=1987&rft.isbn=978-0-314-29531-6&rft.au=Ralph+C.+Steinlage&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dlcg3gY3444IC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpage2mode2up_2]-23"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage2mode2up_2%5D_23-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage2mode2up_2%5D_23-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFHalmos1960">Halmos 1960</a>, p. <a rel="nofollow" class="external text" href="https://archive.org/details/naivesettheory00halm/page/2/mode/2up">2</a>.</span> </li> <li id="cite_note-CapinskiKopp2004-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-CapinskiKopp2004_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-CapinskiKopp2004_24-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarek_CapinskiPeter_E._Kopp2004" class="citation book cs1">Marek Capinski; Peter E. Kopp (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jdnGYuh58YUC&pg=PA2"><i>Measure, Integral and Probability</i></a>. Springer Science & Business Media. p. 2. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-85233-781-0" title="Special:BookSources/978-1-85233-781-0"><bdi>978-1-85233-781-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Measure%2C+Integral+and+Probability&rft.pages=2&rft.pub=Springer+Science+%26+Business+Media&rft.date=2004&rft.isbn=978-1-85233-781-0&rft.au=Marek+Capinski&rft.au=Peter+E.+Kopp&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DjdnGYuh58YUC%26pg%3DPA2&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mathsisfun.com/sets/symbols.html">"Set Symbols"</a>. <i>www.mathsisfun.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-19</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.mathsisfun.com&rft.atitle=Set+Symbols&rft_id=https%3A%2F%2Fwww.mathsisfun.com%2Fsets%2Fsymbols.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpage8mode2up_8]-26"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage8mode2up_8%5D_26-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage8mode2up_8%5D_26-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFHalmos1960">Halmos 1960</a>, p. <a rel="nofollow" class="external text" href="https://archive.org/details/naivesettheory00halm/page/8/mode/2up">8</a>.</span> </li> <li id="cite_note-LeungChen1992-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-LeungChen1992_27-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFK.T._LeungDoris_Lai-chue_Chen1992" class="citation book cs1">K.T. Leung; Doris Lai-chue Chen (1 July 1992). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=cdmy2eOhJdkC&pg=PA27"><i>Elementary Set Theory, Part I/II</i></a>. Hong Kong University Press. p. 27. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-962-209-026-2" title="Special:BookSources/978-962-209-026-2"><bdi>978-962-209-026-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elementary+Set+Theory%2C+Part+I%2FII&rft.pages=27&rft.pub=Hong+Kong+University+Press&rft.date=1992-07-01&rft.isbn=978-962-209-026-2&rft.au=K.T.+Leung&rft.au=Doris+Lai-chue+Chen&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dcdmy2eOhJdkC%26pg%3DPA27&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAggarwal2021" class="citation book cs1">Aggarwal, M.L. (2021). "1. Sets". <i>Understanding ISC Mathematics Class XI</i>. Vol. 1. Arya Publications (Avichal Publishing Company). p. A=3.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=1.+Sets&rft.btitle=Understanding+ISC+Mathematics+Class+XI&rft.pages=A%3D3&rft.pub=Arya+Publications+%28Avichal+Publishing+Company%29&rft.date=2021&rft.aulast=Aggarwal&rft.aufirst=M.L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSourendra_Nath2015" class="citation book cs1">Sourendra Nath, De (January 2015). "Unit-1 Sets and Functions: 1. Set Theory". <i>Chhaya Ganit (Ekadash Shreni)</i>. Scholar Books Pvt. Ltd. p. 5.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Unit-1+Sets+and+Functions%3A+1.+Set+Theory&rft.btitle=Chhaya+Ganit+%28Ekadash+Shreni%29&rft.pages=5&rft.pub=Scholar+Books+Pvt.+Ltd.&rft.date=2015-01&rft.aulast=Sourendra+Nath&rft.aufirst=De&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpage4mode2up_Sect.2]-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage4mode2up_Sect.2%5D_30-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHalmos1960">Halmos 1960</a>, <a rel="nofollow" class="external text" href="https://archive.org/details/naivesettheory00halm/page/4/mode/2up">Sect.2</a>.</span> </li> <li id="cite_note-Hausdorff2005-31"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hausdorff2005_31-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hausdorff2005_31-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFelix_Hausdorff2005" class="citation book cs1">Felix Hausdorff (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=yvVIdH16k0YC&pg=PA30"><i>Set Theory</i></a>. American Mathematical Soc. p. 30. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-3835-8" title="Special:BookSources/978-0-8218-3835-8"><bdi>978-0-8218-3835-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Set+Theory&rft.pages=30&rft.pub=American+Mathematical+Soc.&rft.date=2005&rft.isbn=978-0-8218-3835-8&rft.au=Felix+Hausdorff&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DyvVIdH16k0YC%26pg%3DPA30&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-Comninos2010-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-Comninos2010_32-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeter_Comninos2010" class="citation book cs1">Peter Comninos (6 April 2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Kdb7-YnnOVwC&pg=PA7"><i>Mathematical and Computer Programming Techniques for Computer Graphics</i></a>. Springer Science & Business Media. p. 7. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-84628-292-8" title="Special:BookSources/978-1-84628-292-8"><bdi>978-1-84628-292-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematical+and+Computer+Programming+Techniques+for+Computer+Graphics&rft.pages=7&rft.pub=Springer+Science+%26+Business+Media&rft.date=2010-04-06&rft.isbn=978-1-84628-292-8&rft.au=Peter+Comninos&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DKdb7-YnnOVwC%26pg%3DPA7&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpage2mode2up_3]-33"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage2mode2up_3%5D_33-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage2mode2up_3%5D_33-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFHalmos1960">Halmos 1960</a>, p. <a rel="nofollow" class="external text" href="https://archive.org/details/naivesettheory00halm/page/2/mode/2up">3</a>.</span> </li> <li id="cite_note-Tourlakis2003-34"><span class="mw-cite-backlink">^ <a href="#cite_ref-Tourlakis2003_34-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Tourlakis2003_34-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Tourlakis2003_34-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Tourlakis2003_34-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Tourlakis2003_34-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Tourlakis2003_34-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGeorge_Tourlakis2003" class="citation book cs1">George Tourlakis (13 February 2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=nparMXao59QC&pg=PA137"><i>Lectures in Logic and Set Theory: Volume 2, Set Theory</i></a>. Cambridge University Press. p. 137. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-139-43943-5" title="Special:BookSources/978-1-139-43943-5"><bdi>978-1-139-43943-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lectures+in+Logic+and+Set+Theory%3A+Volume+2%2C+Set+Theory&rft.pages=137&rft.pub=Cambridge+University+Press&rft.date=2003-02-13&rft.isbn=978-1-139-43943-5&rft.au=George+Tourlakis&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DnparMXao59QC%26pg%3DPA137&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-Moschovakis1994-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-Moschovakis1994_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYiannis_N._Moschovakis1994" class="citation book cs1">Yiannis N. Moschovakis (1994). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ndx0_6VCypcC"><i>Notes on Set Theory</i></a>. Springer Science & Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-94180-4" title="Special:BookSources/978-3-540-94180-4"><bdi>978-3-540-94180-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Notes+on+Set+Theory&rft.pub=Springer+Science+%26+Business+Media&rft.date=1994&rft.isbn=978-3-540-94180-4&rft.au=Yiannis+N.+Moschovakis&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dndx0_6VCypcC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-Fleck2001-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-Fleck2001_36-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArthur_Charles_Fleck2001" class="citation book cs1">Arthur Charles Fleck (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=c42oYf4zBzMC&pg=PA3"><i>Formal Models of Computation: The Ultimate Limits of Computing</i></a>. World Scientific. p. 3. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-02-4500-9" title="Special:BookSources/978-981-02-4500-9"><bdi>978-981-02-4500-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Formal+Models+of+Computation%3A+The+Ultimate+Limits+of+Computing&rft.pages=3&rft.pub=World+Scientific&rft.date=2001&rft.isbn=978-981-02-4500-9&rft.au=Arthur+Charles+Fleck&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dc42oYf4zBzMC%26pg%3DPA3&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-Johnston2015-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-Johnston2015_37-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliam_Johnston2015" class="citation book cs1">William Johnston (25 September 2015). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=v4ueCgAAQBAJ&pg=PA7"><i>The Lebesgue Integral for Undergraduates</i></a>. The Mathematical Association of America. p. 7. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-939512-07-9" title="Special:BookSources/978-1-939512-07-9"><bdi>978-1-939512-07-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Lebesgue+Integral+for+Undergraduates&rft.pages=7&rft.pub=The+Mathematical+Association+of+America&rft.date=2015-09-25&rft.isbn=978-1-939512-07-9&rft.au=William+Johnston&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dv4ueCgAAQBAJ%26pg%3DPA7&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-Smith2008-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-Smith2008_38-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKarl_J._Smith2008" class="citation book cs1">Karl J. Smith (7 January 2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=-0x2JszrkooC&pg=PA401"><i>Mathematics: Its Power and Utility</i></a>. Cengage Learning. p. 401. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-495-38913-2" title="Special:BookSources/978-0-495-38913-2"><bdi>978-0-495-38913-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematics%3A+Its+Power+and+Utility&rft.pages=401&rft.pub=Cengage+Learning&rft.date=2008-01-07&rft.isbn=978-0-495-38913-2&rft.au=Karl+J.+Smith&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D-0x2JszrkooC%26pg%3DPA401&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-Stillwell2013-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-Stillwell2013_39-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_Stillwell2013" class="citation book cs1">John Stillwell (16 October 2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VPe8BAAAQBAJ"><i>The Real Numbers: An Introduction to Set Theory and Analysis</i></a>. Springer Science & Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-01577-4" title="Special:BookSources/978-3-319-01577-4"><bdi>978-3-319-01577-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Real+Numbers%3A+An+Introduction+to+Set+Theory+and+Analysis&rft.pub=Springer+Science+%26+Business+Media&rft.date=2013-10-16&rft.isbn=978-3-319-01577-4&rft.au=John+Stillwell&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVPe8BAAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-Tall2006-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-Tall2006_40-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_Tall2006" class="citation book cs1">David Tall (11 April 2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=czKqBgAAQBAJ&pg=PA212"><i>Advanced Mathematical Thinking</i></a>. Springer Science & Business Media. p. 211. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-306-47203-9" title="Special:BookSources/978-0-306-47203-9"><bdi>978-0-306-47203-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Advanced+Mathematical+Thinking&rft.pages=211&rft.pub=Springer+Science+%26+Business+Media&rft.date=2006-04-11&rft.isbn=978-0-306-47203-9&rft.au=David+Tall&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DczKqBgAAQBAJ%26pg%3DPA212&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-Cantor1878-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-Cantor1878_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCantor1878" class="citation journal cs1">Cantor, Georg (1878). <a rel="nofollow" class="external text" href="http://www.digizeitschriften.de/dms/img/?PPN=PPN243919689_0084&DMDID=dmdlog15">"Ein Beitrag zur Mannigfaltigkeitslehre"</a>. <i><a href="/wiki/Journal_f%C3%BCr_die_Reine_und_Angewandte_Mathematik" class="mw-redirect" title="Journal für die Reine und Angewandte Mathematik">Journal für die Reine und Angewandte Mathematik</a></i>. <b>1878</b> (84): 242–258. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Fcrll.1878.84.242">10.1515/crll.1878.84.242</a> (inactive 1 November 2024).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+f%C3%BCr+die+Reine+und+Angewandte+Mathematik&rft.atitle=Ein+Beitrag+zur+Mannigfaltigkeitslehre&rft.volume=1878&rft.issue=84&rft.pages=242-258&rft.date=1878&rft_id=info%3Adoi%2F10.1515%2Fcrll.1878.84.242&rft.aulast=Cantor&rft.aufirst=Georg&rft_id=http%3A%2F%2Fwww.digizeitschriften.de%2Fdms%2Fimg%2F%3FPPN%3DPPN243919689_0084%26DMDID%3Ddmdlog15&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: DOI inactive as of November 2024 (<a href="/wiki/Category:CS1_maint:_DOI_inactive_as_of_November_2024" title="Category:CS1 maint: DOI inactive as of November 2024">link</a>)</span></span> </li> <li id="cite_note-Cohen1963-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-Cohen1963_42-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohen1963" class="citation journal cs1">Cohen, Paul J. (December 15, 1963). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC221287">"The Independence of the Continuum Hypothesis"</a>. <i>Proceedings of the National Academy of Sciences of the United States of America</i>. <b>50</b> (6): 1143–1148. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1963PNAS...50.1143C">1963PNAS...50.1143C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.50.6.1143">10.1073/pnas.50.6.1143</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/71858">71858</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC221287">221287</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16578557">16578557</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+of+the+United+States+of+America&rft.atitle=The+Independence+of+the+Continuum+Hypothesis&rft.volume=50&rft.issue=6&rft.pages=1143-1148&rft.date=1963-12-15&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC221287%23id-name%3DPMC&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F71858%23id-name%3DJSTOR&rft_id=info%3Abibcode%2F1963PNAS...50.1143C&rft_id=info%3Apmid%2F16578557&rft_id=info%3Adoi%2F10.1073%2Fpnas.50.6.1143&rft.aulast=Cohen&rft.aufirst=Paul+J.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC221287&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpage18mode2up_19]-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage18mode2up_19%5D_43-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHalmos1960">Halmos 1960</a>, p. <a rel="nofollow" class="external text" href="https://archive.org/details/naivesettheory00halm/page/18/mode/2up">19</a>.</span> </li> <li id="cite_note-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpage20mode2up_20]-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage20mode2up_20%5D_44-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHalmos1960">Halmos 1960</a>, p. <a rel="nofollow" class="external text" href="https://archive.org/details/naivesettheory00halm/page/20/mode/2up">20</a>.</span> </li> <li id="cite_note-BurgerStarbird2004-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-BurgerStarbird2004_45-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEdward_B._BurgerMichael_Starbird2004" class="citation book cs1">Edward B. Burger; Michael Starbird (18 August 2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=M-qK8anbZmwC&pg=PA183"><i>The Heart of Mathematics: An invitation to effective thinking</i></a>. Springer Science & Business Media. p. 183. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-931914-41-3" title="Special:BookSources/978-1-931914-41-3"><bdi>978-1-931914-41-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Heart+of+Mathematics%3A+An+invitation+to+effective+thinking&rft.pages=183&rft.pub=Springer+Science+%26+Business+Media&rft.date=2004-08-18&rft.isbn=978-1-931914-41-3&rft.au=Edward+B.+Burger&rft.au=Michael+Starbird&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DM-qK8anbZmwC%26pg%3DPA183&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-Mansour2012-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-Mansour2012_46-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFToufik_Mansour2012" class="citation book cs1">Toufik Mansour (27 July 2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=5NvrH4w8WGsC"><i>Combinatorics of Set Partitions</i></a>. CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4398-6333-6" title="Special:BookSources/978-1-4398-6333-6"><bdi>978-1-4398-6333-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Combinatorics+of+Set+Partitions&rft.pub=CRC+Press&rft.date=2012-07-27&rft.isbn=978-1-4398-6333-6&rft.au=Toufik+Mansour&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D5NvrH4w8WGsC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEHalmos1960[httpsarchiveorgdetailsnaivesettheory00halmpage28mode2up_28]-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHalmos1960%5Bhttpsarchiveorgdetailsnaivesettheory00halmpage28mode2up_28%5D_47-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHalmos1960">Halmos 1960</a>, p. <a rel="nofollow" class="external text" href="https://archive.org/details/naivesettheory00halm/page/28/mode/2up">28</a>.</span> </li> <li id="cite_note-Ferreirós2007-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ferreir%C3%B3s2007_48-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJosé_Ferreirós2007" class="citation book cs1">José Ferreirós (16 August 2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=TXRBwwEACAAJ"><i>Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics</i></a>. Birkhäuser Basel. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-7643-8349-7" title="Special:BookSources/978-3-7643-8349-7"><bdi>978-3-7643-8349-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Labyrinth+of+Thought%3A+A+History+of+Set+Theory+and+Its+Role+in+Modern+Mathematics&rft.pub=Birkh%C3%A4user+Basel&rft.date=2007-08-16&rft.isbn=978-3-7643-8349-7&rft.au=Jos%C3%A9+Ferreir%C3%B3s&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DTXRBwwEACAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-Russ2004-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-Russ2004_49-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteve_Russ2004" class="citation book cs1">Steve Russ (9 December 2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=zp7cLQn0x3gC&pg=PR28"><i>The Mathematical Works of Bernard Bolzano</i></a>. OUP Oxford. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-151370-1" title="Special:BookSources/978-0-19-151370-1"><bdi>978-0-19-151370-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Mathematical+Works+of+Bernard+Bolzano&rft.pub=OUP+Oxford&rft.date=2004-12-09&rft.isbn=978-0-19-151370-1&rft.au=Steve+Russ&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dzp7cLQn0x3gC%26pg%3DPR28&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-EwaldEwald1996-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-EwaldEwald1996_50-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliam_EwaldWilliam_Bragg_Ewald1996" class="citation book cs1">William Ewald; William Bragg Ewald (1996). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=rykSDAAAQBAJ&pg=PA249"><i>From Kant to Hilbert Volume 1: A Source Book in the Foundations of Mathematics</i></a>. OUP Oxford. p. 249. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-850535-8" title="Special:BookSources/978-0-19-850535-8"><bdi>978-0-19-850535-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=From+Kant+to+Hilbert+Volume+1%3A+A+Source+Book+in+the+Foundations+of+Mathematics&rft.pages=249&rft.pub=OUP+Oxford&rft.date=1996&rft.isbn=978-0-19-850535-8&rft.au=William+Ewald&rft.au=William+Bragg+Ewald&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DrykSDAAAQBAJ%26pg%3DPA249&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-RusnockSebestík2019-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-RusnockSebest%C3%ADk2019_51-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPaul_RusnockJan_Sebestík2019" class="citation book cs1">Paul Rusnock; Jan Sebestík (25 April 2019). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=-hqJDwAAQBAJ&pg=PA430"><i>Bernard Bolzano: His Life and Work</i></a>. OUP Oxford. p. 430. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-255683-7" title="Special:BookSources/978-0-19-255683-7"><bdi>978-0-19-255683-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Bernard+Bolzano%3A+His+Life+and+Work&rft.pages=430&rft.pub=OUP+Oxford&rft.date=2019-04-25&rft.isbn=978-0-19-255683-7&rft.au=Paul+Rusnock&rft.au=Jan+Sebest%C3%ADk&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D-hqJDwAAQBAJ%26pg%3DPA430&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-Cantor.1895-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-Cantor.1895_52-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGeorg_Cantor1895" class="citation journal cs1 cs1-prop-foreign-lang-source">Georg Cantor (Nov 1895). <a rel="nofollow" class="external text" href="http://www.digizeitschriften.de/dms/resolveppn/?PID=GDZPPN00225557X">"Beiträge zur Begründung der transfiniten Mengenlehre (1)"</a>. <i>Mathematische Annalen</i> (in German). <b>46</b> (4): 481–512.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematische+Annalen&rft.atitle=Beitr%C3%A4ge+zur+Begr%C3%BCndung+der+transfiniten+Mengenlehre+%281%29&rft.volume=46&rft.issue=4&rft.pages=481-512&rft.date=1895-11&rft.au=Georg+Cantor&rft_id=http%3A%2F%2Fwww.digizeitschriften.de%2Fdms%2Fresolveppn%2F%3FPID%3DGDZPPN00225557X&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><a href="/wiki/Bertrand_Russell" title="Bertrand Russell">Bertrand Russell</a> (1903) <i><a href="/wiki/The_Principles_of_Mathematics" title="The Principles of Mathematics">The Principles of Mathematics</a></i>, chapter VI: Classes</span> </li> <li id="cite_note-Ferreiros2001-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ferreiros2001_54-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJose_Ferreiros2001" class="citation book cs1">Jose Ferreiros (1 November 2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=DITy0nsYQQoC"><i>Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics</i></a>. Springer Science & Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-7643-5749-8" title="Special:BookSources/978-3-7643-5749-8"><bdi>978-3-7643-5749-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Labyrinth+of+Thought%3A+A+History+of+Set+Theory+and+Its+Role+in+Modern+Mathematics&rft.pub=Springer+Science+%26+Business+Media&rft.date=2001-11-01&rft.isbn=978-3-7643-5749-8&rft.au=Jose+Ferreiros&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DDITy0nsYQQoC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRaatikainen2022" class="citation web cs1">Raatikainen, Panu (2022). Zalta, Edward N. (ed.). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/archives/spr2022/entries/goedel-incompleteness/">"Gödel's Incompleteness Theorems"</a>. <i>Stanford Encyclopedia of Philosophy</i>. Metaphysics Research Lab, Stanford University<span class="reference-accessdate">. Retrieved <span class="nowrap">2024-06-03</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Stanford+Encyclopedia+of+Philosophy&rft.atitle=G%C3%B6del%27s+Incompleteness+Theorems&rft.date=2022&rft.aulast=Raatikainen&rft.aufirst=Panu&rft_id=https%3A%2F%2Fplato.stanford.edu%2Farchives%2Fspr2022%2Fentries%2Fgoedel-incompleteness%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></span> </li> </ol></div></div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(18)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="References">References</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=27" title="Edit section: References" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-18 collapsible-block" id="mf-section-18"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDauben1979" class="citation book cs1"><a href="/wiki/Joseph_Dauben" title="Joseph Dauben">Dauben, Joseph W.</a> (1979). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/georgcantorhisma0000daub"><i>Georg Cantor: His Mathematics and Philosophy of the Infinite</i></a></span>. Boston: <a href="/wiki/Harvard_University_Press" title="Harvard University Press">Harvard University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-691-02447-2" title="Special:BookSources/0-691-02447-2"><bdi>0-691-02447-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Georg+Cantor%3A+His+Mathematics+and+Philosophy+of+the+Infinite&rft.place=Boston&rft.pub=Harvard+University+Press&rft.date=1979&rft.isbn=0-691-02447-2&rft.aulast=Dauben&rft.aufirst=Joseph+W.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgeorgcantorhisma0000daub&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalmos1960" class="citation book cs1"><a href="/wiki/Paul_Halmos" title="Paul Halmos">Halmos, Paul R.</a> (1960). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/naivesettheory00halm"><i>Naive Set Theory</i></a></span>. Princeton, N.J.: Van Nostrand. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-90092-6" title="Special:BookSources/0-387-90092-6"><bdi>0-387-90092-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Naive+Set+Theory&rft.place=Princeton%2C+N.J.&rft.pub=Van+Nostrand&rft.date=1960&rft.isbn=0-387-90092-6&rft.aulast=Halmos&rft.aufirst=Paul+R.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fnaivesettheory00halm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStoll1979" class="citation book cs1">Stoll, Robert R. (1979). <i>Set Theory and Logic</i>. Mineola, N.Y.: <a href="/wiki/Dover_Publications" title="Dover Publications">Dover Publications</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-63829-4" title="Special:BookSources/0-486-63829-4"><bdi>0-486-63829-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Set+Theory+and+Logic&rft.place=Mineola%2C+N.Y.&rft.pub=Dover+Publications&rft.date=1979&rft.isbn=0-486-63829-4&rft.aulast=Stoll&rft.aufirst=Robert+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVelleman2006" class="citation book cs1">Velleman, Daniel (2006). <i>How To Prove It: A Structured Approach</i>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-67599-5" title="Special:BookSources/0-521-67599-5"><bdi>0-521-67599-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=How+To+Prove+It%3A+A+Structured+Approach&rft.pub=Cambridge+University+Press&rft.date=2006&rft.isbn=0-521-67599-5&rft.aulast=Velleman&rft.aufirst=Daniel&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASet+%28mathematics%29" class="Z3988"></span></li></ul> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(19)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="External_links">External links</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Set_(mathematics)&action=edit&section=28" title="Edit section: External links" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-19 collapsible-block" id="mf-section-19"> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wiktionary-logo-en-v2.svg" class="mw-file-description"><noscript><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/16px-Wiktionary-logo-en-v2.svg.png" decoding="async" width="16" height="16" class="mw-file-element" data-file-width="512" data-file-height="512"></noscript><span class="lazy-image-placeholder" style="width: 16px;height: 16px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/16px-Wiktionary-logo-en-v2.svg.png" data-alt="" data-width="16" data-height="16" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/24px-Wiktionary-logo-en-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/32px-Wiktionary-logo-en-v2.svg.png 2x" data-class="mw-file-element"> </span></a></span> The dictionary definition of <a href="https://en.wiktionary.org/wiki/set" class="extiw" title="wiktionary:set"><i>set</i></a> at Wiktionary</li> <li><a rel="nofollow" class="external text" href="https://gdz.sub.uni-goettingen.de/download/pdf/PPN235181684_0046/LOG_0044.pdf">Cantor's "Beiträge zur Begründung der transfiniten Mengenlehre"</a> <span class="languageicon">(in German)</span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div> <style data-mw-deduplicate="TemplateStyles:r1130092004">.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;justify-content:center;align-items:baseline}.mw-parser-output .portal-bar-bordered{padding:0 2em;background-color:#fdfdfd;border:1px solid #a2a9b1;clear:both;margin:1em auto 0}.mw-parser-output .portal-bar-related{font-size:100%;justify-content:flex-start}.mw-parser-output .portal-bar-unbordered{padding:0 1.7em;margin-left:0}.mw-parser-output .portal-bar-header{margin:0 1em 0 0.5em;flex:0 0 auto;min-height:24px}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;flex:0 1 auto;padding:0.15em 0;column-gap:1em;align-items:baseline;margin:0;list-style:none}.mw-parser-output .portal-bar-content-related{margin:0;list-style:none}.mw-parser-output .portal-bar-item{display:inline-block;margin:0.15em 0.2em;min-height:24px;line-height:24px}@media screen and (max-width:768px){.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;flex-flow:column wrap;align-items:baseline}.mw-parser-output .portal-bar-header{text-align:center;flex:0;padding-left:0.5em;margin:0 auto}.mw-parser-output .portal-bar-related{font-size:100%;align-items:flex-start}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;align-items:center;flex:0;column-gap:1em;border-top:1px solid #a2a9b1;margin:0 auto;list-style:none}.mw-parser-output .portal-bar-content-related{border-top:none;margin:0;list-style:none}}.mw-parser-output .navbox+link+.portal-bar,.mw-parser-output .navbox+style+.portal-bar,.mw-parser-output .navbox+link+.portal-bar-bordered,.mw-parser-output .navbox+style+.portal-bar-bordered,.mw-parser-output .sister-bar+link+.portal-bar,.mw-parser-output .sister-bar+style+.portal-bar,.mw-parser-output .portal-bar+.navbox-styles+.navbox,.mw-parser-output .portal-bar+.navbox-styles+.sister-bar{margin-top:-1px}</style><div class="portal-bar noprint metadata noviewer portal-bar-bordered" role="navigation" aria-label="Portals"><span class="portal-bar-header"><a href="/wiki/Wikipedia:Contents/Portals" title="Wikipedia:Contents/Portals">Portals</a>:</span><ul class="portal-bar-content"><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><noscript><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/19px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="19" height="19" class="mw-file-element" data-file-width="128" data-file-height="128"></noscript><span class="lazy-image-placeholder" style="width: 19px;height: 19px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/19px-Nuvola_apps_edu_mathematics_blue-p.svg.png" data-alt="icon" data-width="19" data-height="19" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/29px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/38px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-class="mw-file-element"> </span></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><noscript><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Arithmetic_symbols.svg/19px-Arithmetic_symbols.svg.png" decoding="async" width="19" height="19" class="mw-file-element" data-file-width="210" data-file-height="210"></noscript><span class="lazy-image-placeholder" style="width: 19px;height: 19px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Arithmetic_symbols.svg/19px-Arithmetic_symbols.svg.png" data-alt="" data-width="19" data-height="19" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Arithmetic_symbols.svg/29px-Arithmetic_symbols.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Arithmetic_symbols.svg/38px-Arithmetic_symbols.svg.png 2x" data-class="mw-file-element"> </span></span></span> </span><a href="/wiki/Portal:Arithmetic" title="Portal:Arithmetic">Arithmetic</a></li></ul></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐65c957f8cf‐x4sw6 Cached time: 20241209052521 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.018 seconds Real time usage: 1.757 seconds Preprocessor visited node count: 11365/1000000 Post‐expand include size: 217289/2097152 bytes Template argument size: 14617/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 16/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 227028/5000000 bytes Lua time usage: 0.563/10.000 seconds Lua memory usage: 19309611/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 982.922 1 -total 29.07% 285.779 1 Template:Reflist 23.12% 227.209 41 Template:Cite_book 14.92% 146.611 121 Template:Math 11.04% 108.509 6 Template:Navbox 9.66% 94.933 1 Template:In_lang 7.64% 75.047 1 Template:Set_theory 6.90% 67.790 14 Template:Sfn 5.94% 58.412 1 Template:About 3.68% 36.185 1 Template:Short_description --> <!-- Saved in parser cache with key enwiki:pcache:26691:|#|:idhash:canonical and timestamp 20241209052521 and revision id 1262021503. Rendering was triggered because: api-parse --> </section></div> <!-- MobileFormatter took 0.037 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=mobile&type=1x1&usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Set_(mathematics)&oldid=1262021503">https://en.wikipedia.org/w/index.php?title=Set_(mathematics)&oldid=1262021503</a>"</div></div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"> <a class="last-modified-bar" href="/w/index.php?title=Set_(mathematics)&action=history"> <div class="post-content last-modified-bar__content"> <span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="Jonesey95" data-user-gender="unknown" data-timestamp="1733721907"> <span>Last edited on 9 December 2024, at 05:25</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div> </a> <div class="post-content footer-content"> <div id='mw-data-after-content'> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Languages</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Menge_(Mathematik)" title="Menge (Mathematik) – Alemannic" lang="gsw" hreflang="gsw" data-title="Menge (Mathematik)" data-language-autonym="Alemannisch" data-language-local-name="Alemannic" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%88%B5%E1%89%A5%E1%88%B5%E1%89%A5" title="ስብስብ – Amharic" lang="am" hreflang="am" data-title="ስብስብ" data-language-autonym="አማርኛ" data-language-local-name="Amharic" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%AC%D9%85%D9%88%D8%B9%D8%A9_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)" title="مجموعة (رياضيات) – Arabic" lang="ar" hreflang="ar" data-title="مجموعة (رياضيات)" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Conxuntu" title="Conxuntu – Asturian" lang="ast" hreflang="ast" data-title="Conxuntu" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/%C3%87oxluqlar" title="Çoxluqlar – Azerbaijani" lang="az" hreflang="az" data-title="Çoxluqlar" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B8%E0%A7%87%E0%A6%9F" title="সেট – Bangla" lang="bn" hreflang="bn" data-title="সেট" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Chi%CC%8Dp-ha%CC%8Dp" title="Chi̍p-ha̍p – Minnan" lang="nan" hreflang="nan" data-title="Chi̍p-ha̍p" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%9A%D2%AF%D0%BC%D3%99%D0%BA%D0%BB%D0%B5%D0%BA" title="Күмәклек – Bashkir" lang="ba" hreflang="ba" data-title="Күмәклек" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9C%D0%BD%D0%BE%D1%81%D1%82%D0%B2%D0%B0" title="Мноства – Belarusian" lang="be" hreflang="be" data-title="Мноства" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%9C%D0%BD%D0%BE%D1%81%D1%82%D0%B2%D0%B0" title="Мноства – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Мноства" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9C%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%BE" title="Множество – Bulgarian" lang="bg" hreflang="bg" data-title="Множество" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Skup_(matematika)" title="Skup (matematika) – Bosnian" lang="bs" hreflang="bs" data-title="Skup (matematika)" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Conjunt" title="Conjunt – Catalan" lang="ca" hreflang="ca" data-title="Conjunt" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%99%D1%8B%D1%88" title="Йыш – Chuvash" lang="cv" hreflang="cv" data-title="Йыш" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Mno%C5%BEina" title="Množina – Czech" lang="cs" hreflang="cs" data-title="Množina" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Set_(mathemateg)" title="Set (mathemateg) – Welsh" lang="cy" hreflang="cy" data-title="Set (mathemateg)" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/M%C3%A6ngde" title="Mængde – Danish" lang="da" hreflang="da" data-title="Mængde" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Menge_(Mathematik)" title="Menge (Mathematik) – German" lang="de" hreflang="de" data-title="Menge (Mathematik)" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Hulk" title="Hulk – Estonian" lang="et" hreflang="et" data-title="Hulk" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A3%CF%8D%CE%BD%CE%BF%CE%BB%CE%BF" title="Σύνολο – Greek" lang="el" hreflang="el" data-title="Σύνολο" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-myv mw-list-item"><a href="https://myv.wikipedia.org/wiki/%D0%92%D0%B5%D0%B9%D1%81%D1%81%D0%B0%D0%B5%D0%B2%D0%BA%D1%81" title="Вейссаевкс – Erzya" lang="myv" hreflang="myv" data-title="Вейссаевкс" data-language-autonym="Эрзянь" data-language-local-name="Erzya" class="interlanguage-link-target"><span>Эрзянь</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Conjunto" title="Conjunto – Spanish" lang="es" hreflang="es" data-title="Conjunto" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Aro_(matematiko)" title="Aro (matematiko) – Esperanto" lang="eo" hreflang="eo" data-title="Aro (matematiko)" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Multzo" title="Multzo – Basque" lang="eu" hreflang="eu" data-title="Multzo" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%AC%D9%85%D9%88%D8%B9%D9%87_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C%D8%A7%D8%AA)" title="مجموعه (ریاضیات) – Persian" lang="fa" hreflang="fa" data-title="مجموعه (ریاضیات)" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Ensemble" title="Ensemble – French" lang="fr" hreflang="fr" data-title="Ensemble" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-fur mw-list-item"><a href="https://fur.wikipedia.org/wiki/Insiemi" title="Insiemi – Friulian" lang="fur" hreflang="fur" data-title="Insiemi" data-language-autonym="Furlan" data-language-local-name="Friulian" class="interlanguage-link-target"><span>Furlan</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Tacar" title="Tacar – Irish" lang="ga" hreflang="ga" data-title="Tacar" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gd mw-list-item"><a href="https://gd.wikipedia.org/wiki/Seata" title="Seata – Scottish Gaelic" lang="gd" hreflang="gd" data-title="Seata" data-language-autonym="Gàidhlig" data-language-local-name="Scottish Gaelic" class="interlanguage-link-target"><span>Gàidhlig</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Conxunto" title="Conxunto – Galician" lang="gl" hreflang="gl" data-title="Conxunto" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E9%9B%86%E5%90%88" title="集合 – Gan" lang="gan" hreflang="gan" data-title="集合" data-language-autonym="贛語" data-language-local-name="Gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-xal mw-list-item"><a href="https://xal.wikipedia.org/wiki/%D0%9E%D0%BB%D0%BD" title="Олн – Kalmyk" lang="xal" hreflang="xal" data-title="Олн" data-language-autonym="Хальмг" data-language-local-name="Kalmyk" class="interlanguage-link-target"><span>Хальмг</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%A7%91%ED%95%A9" title="집합 – Korean" lang="ko" hreflang="ko" data-title="집합" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B2%D5%A1%D5%A6%D5%B4%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Բազմություն – Armenian" lang="hy" hreflang="hy" data-title="Բազմություն" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%AE%E0%A5%81%E0%A4%9A%E0%A5%8D%E0%A4%9A%E0%A4%AF_(%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4)" title="समुच्चय (गणित) – Hindi" lang="hi" hreflang="hi" data-title="समुच्चय (गणित)" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Skup" title="Skup – Croatian" lang="hr" hreflang="hr" data-title="Skup" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Ensemblo" title="Ensemblo – Ido" lang="io" hreflang="io" data-title="Ensemblo" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Himpunan_(matematika)" title="Himpunan (matematika) – Indonesian" lang="id" hreflang="id" data-title="Himpunan (matematika)" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Insimul" title="Insimul – Interlingua" lang="ia" hreflang="ia" data-title="Insimul" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Mengi" title="Mengi – Icelandic" lang="is" hreflang="is" data-title="Mengi" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Insieme" title="Insieme – Italian" lang="it" hreflang="it" data-title="Insieme" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A7%D7%91%D7%95%D7%A6%D7%94_(%D7%9E%D7%AA%D7%9E%D7%98%D7%99%D7%A7%D7%94)" title="קבוצה (מתמטיקה) – Hebrew" lang="he" hreflang="he" data-title="קבוצה (מתמטיקה)" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%97%E0%B2%A3_(%E0%B2%97%E0%B2%A3%E0%B2%BF%E0%B2%A4)" title="ಗಣ (ಗಣಿತ) – Kannada" lang="kn" hreflang="kn" data-title="ಗಣ (ಗಣಿತ)" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A1%E1%83%98%E1%83%9B%E1%83%A0%E1%83%90%E1%83%95%E1%83%9A%E1%83%94" title="სიმრავლე – Georgian" lang="ka" hreflang="ka" data-title="სიმრავლე" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%91%D3%A9%D0%BB%D1%96%D0%BA" title="Бөлік – Kazakh" lang="kk" hreflang="kk" data-title="Бөлік" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Ansanm" title="Ansanm – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Ansanm" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/Kom" title="Kom – Kurdish" lang="ku" hreflang="ku" data-title="Kom" data-language-autonym="Kurdî" data-language-local-name="Kurdish" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Copia" title="Copia – Latin" lang="la" hreflang="la" data-title="Copia" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Kopa" title="Kopa – Latvian" lang="lv" hreflang="lv" data-title="Kopa" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Aib%C4%97" title="Aibė – Lithuanian" lang="lt" hreflang="lt" data-title="Aibė" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-ln mw-list-item"><a href="https://ln.wikipedia.org/wiki/El%C9%94ng%C9%94%CC%81t%C9%9B%CC%82_lisang%C3%A1" title="Elɔngɔ́tɛ̂ lisangá – Lingala" lang="ln" hreflang="ln" data-title="Elɔngɔ́tɛ̂ lisangá" data-language-autonym="Lingála" data-language-local-name="Lingala" class="interlanguage-link-target"><span>Lingála</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Insemma" title="Insemma – Lombard" lang="lmo" hreflang="lmo" data-title="Insemma" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Halmaz_(matematika)" title="Halmaz (matematika) – Hungarian" lang="hu" hreflang="hu" data-title="Halmaz (matematika)" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9C%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%BE" title="Множество – Macedonian" lang="mk" hreflang="mk" data-title="Множество" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%97%E0%B4%A3%E0%B4%82_(%E0%B4%97%E0%B4%A3%E0%B4%BF%E0%B4%A4%E0%B4%82)" title="ഗണം (ഗണിതം) – Malayalam" lang="ml" hreflang="ml" data-title="ഗണം (ഗണിതം)" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-xmf mw-list-item"><a href="https://xmf.wikipedia.org/wiki/%E1%83%9B%E1%83%98%E1%83%90%E1%83%A0%E1%83%94" title="მიარე – Mingrelian" lang="xmf" hreflang="xmf" data-title="მიარე" data-language-autonym="მარგალური" data-language-local-name="Mingrelian" class="interlanguage-link-target"><span>მარგალური</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Set" title="Set – Malay" lang="ms" hreflang="ms" data-title="Set" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%9E%D0%BB%D0%BE%D0%BD%D0%BB%D0%BE%D0%B3" title="Олонлог – Mongolian" lang="mn" hreflang="mn" data-title="Олонлог" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%A1%E1%80%85%E1%80%AF" title="အစု – Burmese" lang="my" hreflang="my" data-title="အစု" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burmese" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Verzameling_(wiskunde)" title="Verzameling (wiskunde) – Dutch" lang="nl" hreflang="nl" data-title="Verzameling (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E9%9B%86%E5%90%88" title="集合 – Japanese" lang="ja" hreflang="ja" data-title="集合" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Mengde" title="Mengde – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Mengde" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Mengd" title="Mengd – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Mengd" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-nov mw-list-item"><a href="https://nov.wikipedia.org/wiki/Ensemble" title="Ensemble – Novial" lang="nov" hreflang="nov" data-title="Ensemble" data-language-autonym="Novial" data-language-local-name="Novial" class="interlanguage-link-target"><span>Novial</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Ensemble" title="Ensemble – Occitan" lang="oc" hreflang="oc" data-title="Ensemble" data-language-autonym="Occitan" data-language-local-name="Occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/To%CA%BBplam_(matematika)" title="Toʻplam (matematika) – Uzbek" lang="uz" hreflang="uz" data-title="Toʻplam (matematika)" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B8%E0%A9%88%E0%A9%B1%E0%A8%9F_(%E0%A8%97%E0%A8%A3%E0%A8%BF%E0%A8%A4)" title="ਸੈੱਟ (ਗਣਿਤ) – Punjabi" lang="pa" hreflang="pa" data-title="ਸੈੱਟ (ਗਣਿਤ)" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Set_(matimatix)" title="Set (matimatix) – Jamaican Creole English" lang="jam" hreflang="jam" data-title="Set (matimatix)" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Ansem" title="Ansem – Piedmontese" lang="pms" hreflang="pms" data-title="Ansem" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Koppel_(Mathematik)" title="Koppel (Mathematik) – Low German" lang="nds" hreflang="nds" data-title="Koppel (Mathematik)" data-language-autonym="Plattdüütsch" data-language-local-name="Low German" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Zbi%C3%B3r" title="Zbiór – Polish" lang="pl" hreflang="pl" data-title="Zbiór" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Conjunto" title="Conjunto – Portuguese" lang="pt" hreflang="pt" data-title="Conjunto" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Mul%C8%9Bime" title="Mulțime – Romanian" lang="ro" hreflang="ro" data-title="Mulțime" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/Tantachisqa" title="Tantachisqa – Quechua" lang="qu" hreflang="qu" data-title="Tantachisqa" data-language-autonym="Runa Simi" data-language-local-name="Quechua" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9C%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%BE" title="Множество – Russian" lang="ru" hreflang="ru" data-title="Множество" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Bashk%C3%ABsit%C3%AB" title="Bashkësitë – Albanian" lang="sq" hreflang="sq" data-title="Bashkësitë" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Nzemi" title="Nzemi – Sicilian" lang="scn" hreflang="scn" data-title="Nzemi" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Set" title="Set – Simple English" lang="en-simple" hreflang="en-simple" data-title="Set" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Mno%C5%BEina" title="Množina – Slovak" lang="sk" hreflang="sk" data-title="Množina" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Mno%C5%BEica" title="Množica – Slovenian" lang="sl" hreflang="sl" data-title="Množica" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://szl.wikipedia.org/wiki/Mynga_(matymatyka)" title="Mynga (matymatyka) – Silesian" lang="szl" hreflang="szl" data-title="Mynga (matymatyka)" data-language-autonym="Ślůnski" data-language-local-name="Silesian" class="interlanguage-link-target"><span>Ślůnski</span></a></li><li class="interlanguage-link interwiki-so mw-list-item"><a href="https://so.wikipedia.org/wiki/Qaybta_(xisaab)" title="Qaybta (xisaab) – Somali" lang="so" hreflang="so" data-title="Qaybta (xisaab)" data-language-autonym="Soomaaliga" data-language-local-name="Somali" class="interlanguage-link-target"><span>Soomaaliga</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%A9%DB%86%D9%85%DB%95%DA%B5%DB%95_(%D9%85%D8%A7%D8%AA%D9%85%D8%A7%D8%AA%DB%8C%DA%A9)" title="کۆمەڵە (ماتماتیک) – Central Kurdish" lang="ckb" hreflang="ckb" data-title="کۆمەڵە (ماتماتیک)" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A1%D0%BA%D1%83%D0%BF" title="Скуп – Serbian" lang="sr" hreflang="sr" data-title="Скуп" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Skup" title="Skup – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Skup" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Joukko" title="Joukko – Finnish" lang="fi" hreflang="fi" data-title="Joukko" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/M%C3%A4ngd" title="Mängd – Swedish" lang="sv" hreflang="sv" data-title="Mängd" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Pangkat_(matematika)" title="Pangkat (matematika) – Tagalog" lang="tl" hreflang="tl" data-title="Pangkat (matematika)" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%95%E0%AE%A3%E0%AE%AE%E0%AF%8D_(%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%A4%E0%AE%AE%E0%AF%8D)" title="கணம் (கணிதம்) – Tamil" lang="ta" hreflang="ta" data-title="கணம் (கணிதம்)" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%B8%E0%B0%AE%E0%B0%BF%E0%B0%A4%E0%B1%81%E0%B0%B2%E0%B1%81" title="సమితులు – Telugu" lang="te" hreflang="te" data-title="సమితులు" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%80%E0%B8%8B%E0%B8%95_(%E0%B8%84%E0%B8%93%E0%B8%B4%E0%B8%95%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C)" title="เซต (คณิตศาสตร์) – Thai" lang="th" hreflang="th" data-title="เซต (คณิตศาสตร์)" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/K%C3%BCme" title="Küme – Turkish" lang="tr" hreflang="tr" data-title="Küme" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9C%D0%BD%D0%BE%D0%B6%D0%B8%D0%BD%D0%B0" title="Множина – Ukrainian" lang="uk" hreflang="uk" data-title="Множина" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%B7%D8%A7%D9%82%D9%85_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C)" title="طاقم (ریاضی) – Urdu" lang="ur" hreflang="ur" data-title="طاقم (ریاضی)" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/T%E1%BA%ADp_h%E1%BB%A3p_(to%C3%A1n_h%E1%BB%8Dc)" title="Tập hợp (toán học) – Vietnamese" lang="vi" hreflang="vi" data-title="Tập hợp (toán học)" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Hulk" title="Hulk – Võro" lang="vro" hreflang="vro" data-title="Hulk" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E9%9B%86" title="集 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="集" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-vls mw-list-item"><a href="https://vls.wikipedia.org/wiki/Verzoamelienge" title="Verzoamelienge – West Flemish" lang="vls" hreflang="vls" data-title="Verzoamelienge" data-language-autonym="West-Vlams" data-language-local-name="West Flemish" class="interlanguage-link-target"><span>West-Vlams</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E9%9B%86%E5%90%88%EF%BC%88%E6%95%B0%E5%AD%A6%EF%BC%89" title="集合(数学) – Wu" lang="wuu" hreflang="wuu" data-title="集合(数学)" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%92%D7%A2%D7%96%D7%A2%D7%9E%D7%9C_(%D7%9E%D7%90%D7%98%D7%A2%D7%9E%D7%90%D7%98%D7%99%D7%A7)" title="געזעמל (מאטעמאטיק) – Yiddish" lang="yi" hreflang="yi" data-title="געזעמל (מאטעמאטיק)" data-language-autonym="ייִדיש" data-language-local-name="Yiddish" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%9B%86%E5%90%88" title="集合 – Cantonese" lang="yue" hreflang="yue" data-title="集合" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%9B%86%E5%90%88_(%E6%95%B0%E5%AD%A6)" title="集合 (数学) – Chinese" lang="zh" hreflang="zh" data-title="集合 (数学)" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li></ul> </section> </div> <div class="minerva-footer-logo"><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod"> This page was last edited on 9 December 2024, at 05:25<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Content is available under <a class="external" rel="nofollow" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en">CC BY-SA 4.0</a> unless otherwise noted.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-terms-use"><a href="https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="//en.wikipedia.org/w/index.php?title=Set_(mathematics)&mobileaction=toggle_view_desktop" data-event-name="switch_to_desktop">Desktop</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div> <!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-7fd659d96c-sqhqj","wgBackendResponseTime":225,"wgPageParseReport":{"limitreport":{"cputime":"1.018","walltime":"1.757","ppvisitednodes":{"value":11365,"limit":1000000},"postexpandincludesize":{"value":217289,"limit":2097152},"templateargumentsize":{"value":14617,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":16,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":227028,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 982.922 1 -total"," 29.07% 285.779 1 Template:Reflist"," 23.12% 227.209 41 Template:Cite_book"," 14.92% 146.611 121 Template:Math"," 11.04% 108.509 6 Template:Navbox"," 9.66% 94.933 1 Template:In_lang"," 7.64% 75.047 1 Template:Set_theory"," 6.90% 67.790 14 Template:Sfn"," 5.94% 58.412 1 Template:About"," 3.68% 36.185 1 Template:Short_description"]},"scribunto":{"limitreport-timeusage":{"value":"0.563","limit":"10.000"},"limitreport-memusage":{"value":19309611,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAggarwal2021\"] = 1,\n [\"CITEREFAlfred_BastaStephan_DeLongNadine_Basta2013\"] = 1,\n [\"CITEREFArthur_Charles_Fleck2001\"] = 1,\n [\"CITEREFCantor1878\"] = 1,\n [\"CITEREFCantorJourdain1915\"] = 1,\n [\"CITEREFCharles_Roberts2009\"] = 1,\n [\"CITEREFCohen1963\"] = 1,\n [\"CITEREFD._Van_DalenH._C._DoetsH._De_Swart2014\"] = 1,\n [\"CITEREFDauben1979\"] = 1,\n [\"CITEREFDavid_JohnsonDavid_B._JohnsonThomas_A._Mowry2004\"] = 1,\n [\"CITEREFDavid_Tall2006\"] = 1,\n [\"CITEREFEdward_B._BurgerMichael_Starbird2004\"] = 1,\n [\"CITEREFFelix_Hausdorff2005\"] = 1,\n [\"CITEREFFrank_Ruda2011\"] = 1,\n [\"CITEREFGeorg_Cantor1895\"] = 1,\n [\"CITEREFGeorge_Tourlakis2003\"] = 1,\n [\"CITEREFHalmos1960\"] = 1,\n [\"CITEREFIgnacio_BelloAnton_KaulJack_R._Britton2013\"] = 1,\n [\"CITEREFJohn_F._Lucas1990\"] = 1,\n [\"CITEREFJohn_Stillwell2013\"] = 1,\n [\"CITEREFJose_Ferreiros2001\"] = 1,\n [\"CITEREFJosé_Ferreirós2007\"] = 1,\n [\"CITEREFK.T._LeungDoris_Lai-chue_Chen1992\"] = 1,\n [\"CITEREFKarl_J._Smith2008\"] = 1,\n [\"CITEREFLaura_BrackenEd_Miller2013\"] = 1,\n [\"CITEREFMarek_CapinskiPeter_E._Kopp2004\"] = 1,\n [\"CITEREFP._K._JainKhalil_AhmadOm_P._Ahuja1995\"] = 1,\n [\"CITEREFPaul_RusnockJan_Sebestík2019\"] = 1,\n [\"CITEREFPeter_Comninos2010\"] = 1,\n [\"CITEREFRaatikainen2022\"] = 1,\n [\"CITEREFRalph_C._Steinlage1987\"] = 1,\n [\"CITEREFSamuel_Goldberg1986\"] = 1,\n [\"CITEREFSeymor_LipschutzMarc_Lipson1997\"] = 1,\n [\"CITEREFSourendra_Nath2015\"] = 1,\n [\"CITEREFStephen_B._MaurerAnthony_Ralston2005\"] = 1,\n [\"CITEREFSteve_Russ2004\"] = 1,\n [\"CITEREFStoll1974\"] = 1,\n [\"CITEREFStoll1979\"] = 1,\n [\"CITEREFSusanna_S._Epp2010\"] = 1,\n [\"CITEREFThomas_H._CormenCharles_E_LeisersonRonald_L_RivestClifford_Stein2001\"] = 1,\n [\"CITEREFToufik_Mansour2012\"] = 1,\n [\"CITEREFVelleman2006\"] = 1,\n [\"CITEREFWeisstein\"] = 1,\n [\"CITEREFWilliam_EwaldWilliam_Bragg_Ewald1996\"] = 1,\n [\"CITEREFWilliam_Johnston2015\"] = 1,\n [\"CITEREFYiannis_N._Moschovakis1994\"] = 1,\n [\"Definition\"] = 1,\n [\"Notation\"] = 1,\n}\ntemplate_list = table#1 {\n [\"=\"] = 7,\n [\"About\"] = 1,\n [\"Anchor\"] = 1,\n [\"Authority control\"] = 1,\n [\"Block indent\"] = 9,\n [\"Blockquote\"] = 2,\n [\"Cite book\"] = 41,\n [\"Cite journal\"] = 3,\n [\"Cite web\"] = 4,\n [\"Div col\"] = 1,\n [\"Div col end\"] = 1,\n [\"Foundations-footer\"] = 1,\n [\"In lang\"] = 1,\n [\"Mabs\"] = 3,\n [\"Main\"] = 13,\n [\"Math\"] = 121,\n [\"Mathematical logic\"] = 1,\n [\"Mset\"] = 35,\n [\"Mvar\"] = 74,\n [\"Nowrap\"] = 2,\n [\"Portal bar\"] = 1,\n [\"Reflist\"] = 1,\n [\"Set theory\"] = 1,\n [\"Sfn\"] = 14,\n [\"Sfrac\"] = 2,\n [\"Short description\"] = 1,\n [\"Sup\"] = 9,\n [\"Wiktionaryinline\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\ntable#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-api-int.codfw.main-65c957f8cf-x4sw6","timestamp":"20241209052521","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Set (mathematics)","url":"https:\/\/en.wikipedia.org\/wiki\/Set_(mathematics)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q36161","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q36161","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-08-09T16:02:23Z","dateModified":"2024-12-09T05:25:07Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/3\/37\/Example_of_a_set.svg","headline":"well-defined mathematical collection of distinct objects"}</script><script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> </body> </html>