CINXE.COM
Search results for: neuroplasticity
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: neuroplasticity</title> <meta name="description" content="Search results for: neuroplasticity"> <meta name="keywords" content="neuroplasticity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="neuroplasticity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="neuroplasticity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 26</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: neuroplasticity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Neuroplasticity: A Fresh Beginning for Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Maleki">Leila Maleki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezatollah%20Ahmadi"> Ezatollah Ahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neuroplasticity or the flexibility of the neural system is the ability of the brain to adapt to the lack or deterioration of sense and the capability of the neural system to modify itself through changing shape and function. Not only have studies revealed that neuroplasticity does not end in childhood, but also they have proven that it continues till the end of life and is not limited to the neural system and covers the cognitive system as well. In the field of cognition, neuroplasticity is defined as the ability to change old thoughts according to new conditions and the individuals' differences in using various styles of cognitive regulation inducing several social, emotional and cognitive outcomes. On the other hand, complexities of daily life necessitates cognitive neuroplasticity in order to adapt to different circumstances. The. present paper attempts to discuss and define major theories and principles of neuroplasticity and elaborate on nature or nurture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neuroplasticity" title="neuroplasticity">neuroplasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20plasticity" title=" cognitive plasticity"> cognitive plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20theories" title=" plasticity theories"> plasticity theories</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20mechanisms" title=" plasticity mechanisms"> plasticity mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/26751/neuroplasticity-a-fresh-beginning-for-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Neuroplasticity: A Fresh Begining for Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Maleki">Leila Maleki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezatollah%20Ahmadi"> Ezatollah Ahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neuroplasticity or the flexibility of the neural system is the ability of the brain to adapt to the lack or deterioration of sense and the capability of the neural system to modify itself through changing shape and function. Not only have studies revealed that neuroplasticity does not end in childhood, but also they have proven that it continues till the end of life and is not limited to the neural system and covers the cognitive system as well. In the field of cognition, neuroplasticity is defined as the ability to change old thoughts according to new conditions and the individuals' differences in using various styles of cognitive regulation inducing several social, emotional and cognitive outcomes. On the other hand, complexities of daily life necessitates cognitive neuroplasticity in order to adapt to different circumstances. The present paper attempts to discuss and define major theories and principles of neuroplasticity and elaborate on nature or nurture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neuroplasticity" title="neuroplasticity">neuroplasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20plasticity" title=" cognitive plasticity"> cognitive plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20theories" title=" plasticity theories"> plasticity theories</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20mechanisms" title=" plasticity mechanisms"> plasticity mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/11412/neuroplasticity-a-fresh-begining-for-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Neuroplasticity in Language Acquisition in English as Foreign Language Classrooms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabitha%20Rahim">Sabitha Rahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the context of teaching vocabulary of English as Foreign Language (EFL), the confluence of memory and retention is one of the most significant factors in students' language acquisition. The progress of students engaged in foreign language acquisition is often stymied by vocabulary attrition, which leads to learners' lack of confidence and motivation. However, among other factors, little research has investigated the importance of neuroplasticity in Foreign Language acquisition and how underused neural pathways lead to the loss of plasticity, thereby affecting the learners’ vocabulary retention and motivation. This research explored the effect of enhancing vocabulary acquisition of EFL students in the Foundation Year at King Abdulaziz University through various methods and neuroplasticity exercises that reinforced their attention, motivation, and engagement. It analyzed the results to determine if stimulating the brain of EFL learners by various physical and mental activities led to the improvement in short and long term memory in vocabulary retention. The main data collection methods were student surveys, assessment records of teachers, student achievement test results, and students' follow-up interviews. A key implication of this research is for the institutions to consider having multiple varieties of student activities promoting brain plasticity within the classrooms as an effective tool for foreign language acquisition. Building awareness among the faculty and adapting the curriculum to include activities that promote brain plasticity ensures an enhanced learning environment and effective language acquisition in EFL classrooms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=language%20acquisition" title="language acquisition">language acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20paths" title=" neural paths"> neural paths</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroplasticity" title=" neuroplasticity"> neuroplasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=vocabulary%20attrition" title=" vocabulary attrition"> vocabulary attrition</a> </p> <a href="https://publications.waset.org/abstracts/124459/neuroplasticity-in-language-acquisition-in-english-as-foreign-language-classrooms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Screening for Non-hallucinogenic Neuroplastogens as Drug Candidates for the Treatment of Anxiety, Depression, and Posttraumatic Stress Disorder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jillian%20M.%20Hagel">Jillian M. Hagel</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20E.%20Tucker"> Joseph E. Tucker</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20J.%20Facchini"> Peter J. Facchini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the aim of establishing a holistic approach for the treatment of central nervous system (CNS) disorders, we are pursuing a drug development program rapidly progressing through discovery and characterization phases. The drug candidates identified in this program are referred to as neuroplastogens owing to their ability to mediate neuroplasticity, which can be beneficial to patients suffering from anxiety, depression, or posttraumatic stress disorder. These and other related neuropsychiatric conditions are associated with the onset of neuronal atrophy, which is defined as a reduction in the number and/or productivity of neurons. The stimulation of neuroplasticity results in an increase in the connectivity between neurons and promotes the restoration of healthy brain function. We have synthesized a substantial catalogue of proprietary indolethylamine derivatives based on the general structures of serotonin (5-hydroxytryptamine) and psychedelic molecules such as N,N-dimethyltryptamine (DMT) and psilocin (4-hydroxy-DMT) that function as neuroplastogens. A primary objective in our screening protocol is the identification of derivatives associated with a significant reduction in hallucination, which will allow administration of the drug at a dose that induces neuroplasticity and triggers other efficacious outcomes in the treatment of targeted CNS disorders but which does not cause a psychedelic response in the patient. Both neuroplasticity and hallucination are associated with engagement of the 5HT2A receptor, requiring drug candidates differentially coupled to these two outcomes at a molecular level. We use novel and proprietary artificial intelligence algorithms to predict the mode of binding to the 5HT2A receptor, which has been shown to correlate with the hallucinogenic response. Hallucination is tested using the mouse head-twitch response model, whereas mouse marble-burying and sucrose preference assays are used to evaluate anxiolytic and anti-depressive potential. Neuroplasticity is assays using dendritic outgrowth assays and cell-based ELISA analysis. Pharmacokinetics and additional receptor-binding analyses also contribute the selection of lead candidates. A summary of the program is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neuroplastogen" title="neuroplastogen">neuroplastogen</a>, <a href="https://publications.waset.org/abstracts/search?q=non-hallucinogenic" title=" non-hallucinogenic"> non-hallucinogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20development" title=" drug development"> drug development</a>, <a href="https://publications.waset.org/abstracts/search?q=anxiety" title=" anxiety"> anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=depression" title=" depression"> depression</a>, <a href="https://publications.waset.org/abstracts/search?q=PTSD" title=" PTSD"> PTSD</a>, <a href="https://publications.waset.org/abstracts/search?q=indolethylamine%20derivatives" title=" indolethylamine derivatives"> indolethylamine derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=psychedelic-inspired" title=" psychedelic-inspired"> psychedelic-inspired</a>, <a href="https://publications.waset.org/abstracts/search?q=5-HT2A%20receptor" title=" 5-HT2A receptor"> 5-HT2A receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20chemistry" title=" computational chemistry"> computational chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=head-twitch%20response%20behavioural%20model" title=" head-twitch response behavioural model"> head-twitch response behavioural model</a>, <a href="https://publications.waset.org/abstracts/search?q=neurite%20outgrowth%20assay" title=" neurite outgrowth assay"> neurite outgrowth assay</a> </p> <a href="https://publications.waset.org/abstracts/170906/screening-for-non-hallucinogenic-neuroplastogens-as-drug-candidates-for-the-treatment-of-anxiety-depression-and-posttraumatic-stress-disorder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Quantification of Learned Non-Use of the Upper-Limb After a Stroke</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20A.%20Bakhti">K. K. A. Bakhti</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Mottet"> D. Mottet</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Froger"> J. Froger</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Laffont"> I. Laffont</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: After a cerebrovascular accident (or stroke), many patients use excessive trunk movements to move their paretic hand towards a target (while the elbow is maintained flexed) even though they can use the upper-limb when the trunk is restrained. This phenomenon is labelled learned non-use and is known to be detrimental to neuroplasticity and recovery. Objective: The aim of this study is to quantify learned non-use of the paretic upper limb during a hand reaching task using 3D movement analysis. Methods: Thirty-four participants post supratentorial stroke were asked to reach a cone placed in front of them at 80% of their arm length. The reaching movement was repeated 5 times with the paretic hand, and then 5 times with the less-impaired hand. This sequence was first performed with the trunk free, then with the trunk restrained. Learned non-use of the upper-limb (LNUUL) was obtained from the difference of the amount of trunk compensation between the free trunk condition and the restrained trunk condition. Results: LNUUL was significantly higher for the paretic hand, with individual values ranging from 1% to 43%, and one-half of the patients with an LNUUL higher than 15%. Conclusions: Quantification of LNUUL can be used to objectively diagnose patients who need trunk rehabilitation. It can be also used for monitoring the rehabilitation progress. Quantification of LNUUL may guide upper-limb rehabilitation towards more optimal motor recovery avoiding maladaptive trunk compensation and its consequences on neuroplasticity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=learned%20non-use" title="learned non-use">learned non-use</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke" title=" stroke"> stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20limb" title=" upper limb"> upper limb</a> </p> <a href="https://publications.waset.org/abstracts/32555/quantification-of-learned-non-use-of-the-upper-limb-after-a-stroke" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> The Application of Transcranial Direct Current Stimulation (tDCS) Combined with Traditional Physical Therapy to Address Upper Limb Function in Chronic Stroke: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najmeh%20Hoseini">Najmeh Hoseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strokerecovery happens through neuroplasticity, which is highly influenced by the environment, including neuro-rehabilitation. Transcranial direct current stimulation (tDCS) may enhance recovery by modulating neuroplasticity. With tDCS, weak direct currents are applied noninvasively to modify excitability in the cortical areas under its electrodes. Combined with functional activities, this may facilitate motor recovery in neurologic disorders such as stroke. The purpose of this case study was to examine the effect of tDCS combined with 30 minutes of traditional physical therapy (PT)on arm function following a stroke. A 29-year-old male with chronic stroke involving the left middle cerebral artery territory went through the treatment protocol. Design The design included 5 weeks of treatment: 1 week of traditional PT, 2 weeks of sham tDCS combined with traditional PT, and 2 weeks of tDCS combined with traditional PT. PT included functional electrical stimulation (FES) of wrist extensors followed by task-specific functional training. Dual hemispheric tDCS with 1 mA intensity was applied on the sensorimotor cortices for the first 20 min of the treatment combined with FES. Assessments before and after each treatment block included Modified Ashworth Scale, ChedokeMcmaster Arm and Hand inventory, Action Research Arm Test (ARAT), and the Box and Blocks Test. Results showed reduced spasticity in elbow and wrist flexors only after tDCS combination weeks (+1 to 0). The patient demonstrated clinically meaningful improvements in gross motor and fine motor control over the duration of the study; however, components of the ARAT that require fine motor control improved the greatest during the experimental block. Average time improvement compared to baseline was26.29 s for tDCS combination weeks, 18.48 s for sham tDCS, and 6.83 for PT standard of care weeks. Combining dual hemispheric tDCS with the standard of care PT demonstrated improvements in hand dexterity greater than PT alone in this patient case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tDCS" title="tDCS">tDCS</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke" title=" stroke"> stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20therapy" title=" physical therapy"> physical therapy</a> </p> <a href="https://publications.waset.org/abstracts/155097/the-application-of-transcranial-direct-current-stimulation-tdcs-combined-with-traditional-physical-therapy-to-address-upper-limb-function-in-chronic-stroke-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Understanding Chronic Pain: Missing the Mark</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachid%20El%20Khoury">Rachid El Khoury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chronic pain is perhaps the most burdensome health issue facing the planet. Our understanding of the pathophysiology of chronic pain has increased substantially over the past 25 years, including but not limited to changes in the brain. However, we still do not know why chronic pain develops in some people and not in others. Most of the recent developments in pain science, that have direct relevance to clinical management, relate to our understanding of the role of the brain, the role of the immune system, or the role of cognitive and behavioral factors. Although the Biopsychosocial model of pain management was presented decades ago, the Bio-reductionist model remains, unfortunately, at the heart of many practices across professional and geographic boundaries. A large body of evidence shows that nociception is neither sufficient nor necessary for pain. Pain is a conscious experience that can certainly be, and often is, associated with nociception, however, always modulated by countless neurobiological, environmental, and cognitive factors. This study will clarify the current misconceptions of chronic pain concepts, and their misperceptions by clinicians. It will also attempt to bridge the considerable gap between what we already know on pain but somehow disregarded, the development in pain science, and clinical practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20pain" title="chronic pain">chronic pain</a>, <a href="https://publications.waset.org/abstracts/search?q=nociception" title=" nociception"> nociception</a>, <a href="https://publications.waset.org/abstracts/search?q=biopsychosocial" title=" biopsychosocial"> biopsychosocial</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroplasticity" title=" neuroplasticity"> neuroplasticity</a> </p> <a href="https://publications.waset.org/abstracts/182045/understanding-chronic-pain-missing-the-mark" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Portable Glove Controlled Video Game for Hand Rehabilitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinesh%20Janarthanan">Vinesh Janarthanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20H.%20Rahman"> Mohammad H. Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are numerous neurological conditions that may result in a loss of motor function. Such conditions may include cerebral palsy, Parkinson’s disease, stroke or multiple sclerosis. Due to impaired motor function, specifically in the hand and arm, living independently becomes tremendously more difficult. Rehabilitation programs are the main method to treat these kinds of disabled individuals. However, these programs require longtime commitment from the clinicians/therapists, demand person to person caring, and typically the treatment duration is usually very long. Aside from the treatment received from the therapist, the continuation of neuroplasticity at home is essential to maximizing development and restoring the biological function. To contribute in this area, we have researched and developed a portable and comfortable hand glove for fine motor skills rehabilitation. The glove provides interactive home-based therapy to engage the patient with simple games. The key to this treatment is the repetition of moving the hand and being capable of positioning the hand in various ways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=home%20based" title="home based">home based</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20sensors" title=" wearable sensors"> wearable sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=glove" title=" glove"> glove</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20function" title=" motor function"> motor function</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20games" title=" video games"> video games</a> </p> <a href="https://publications.waset.org/abstracts/99928/portable-glove-controlled-video-game-for-hand-rehabilitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> A Positive Neuroscience Perspective for Child Development and Special Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amedeo%20D%27Angiulli">Amedeo D'Angiulli</a>, <a href="https://publications.waset.org/abstracts/search?q=Kylie%20Schibli"> Kylie Schibli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally, children’s brain development research has emphasized the limitative aspects of disability and impairment, electing as an explanatory model the classical clinical notions of brain lesion or functional deficit. In contrast, Positive Educational Neuroscience (PEN) is a new approach that emphasizes strengths and human flourishing related to the brain by exploring how learning practices have the potential to enhance neurocognitive flexibility through neuroplastic overcompensation. This mini-review provides an overview of PEN and shows how it links to the concept of neurocognitive flexibility. We provide examples of how the present concept of neurocognitive flexibility can be applied to special education by exploring examples of neuroplasticity in the learning domain, including: (1) learning to draw in congenitally totally blind children, and (2) music training in children from disadvantaged neighborhoods. PEN encourages educators to focus on children’s strengths by recognizing the brain’s capacity for positive change and to incorporate activities that support children’s individual development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neurocognitive%20development" title="neurocognitive development">neurocognitive development</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20educational%20neuroscience" title=" positive educational neuroscience"> positive educational neuroscience</a>, <a href="https://publications.waset.org/abstracts/search?q=sociocultural%20approach" title=" sociocultural approach"> sociocultural approach</a>, <a href="https://publications.waset.org/abstracts/search?q=special%20education" title=" special education"> special education</a> </p> <a href="https://publications.waset.org/abstracts/89940/a-positive-neuroscience-perspective-for-child-development-and-special-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> The Use of Ketamine in Conjunction with Antidepressants for Treatment Resistant Depression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zumra%20Mehmedovic">Zumra Mehmedovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Susan%20Luhrmann"> Susan Luhrmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Treatment-resistant depression (TRD) is a debilitating mental health disorder for which there are very few available treatment options. Current research suggests that ketamine may be a safe and effective option for the treatment of TRD. Research utilizing a review of the literature was conducted to determine if ketamine in conjunction with antidepressants is more effective than antidepressants alone in the treatment of TRD. The literature consists of ten journal articles which include quantitative studies based on primary research. A critique of the literature was done to determine whether the findings are reliable, critiquing elements influencing the believability and robustness of the research. The research was based on the neuroplasticity theory of depression, hypothesizing that ketamine, in conjunction with antidepressants, will be more effective than antidepressants alone as they have different mechanisms of action. All the studies except one found ketamine in conjunction with antidepressants to be a more effective treatment than antidepressants alone in the treatment of TRD. Results of the studies indicate that ketamine is effective in treating TRD at various doses, settings, and routes of administration. Further research is necessary, though, to further explore and confirm the findings. Several gaps in literature were identified, including the optimal dose of ketamine, its long-term efficacy and safety, and effects of ketamine in repeated doses. The research topic is highly significant to advanced practice nursing, as based on the findings, ketamine can be utilized as a safe and effective treatment for TRD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ketamine" title="ketamine">ketamine</a>, <a href="https://publications.waset.org/abstracts/search?q=major%20depressive%20disorder" title=" major depressive disorder"> major depressive disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment-resistant%20depression" title=" treatment-resistant depression"> treatment-resistant depression</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/136902/the-use-of-ketamine-in-conjunction-with-antidepressants-for-treatment-resistant-depression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> The Effect of Using Emg-based Luna Neurorobotics for Strengthening of Affected Side in Chronic Stroke Patients - Retrospective Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surbhi%20Kaura">Surbhi Kaura</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachin%20Kandhari"> Sachin Kandhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahiduz%20Zafar"> Shahiduz Zafar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chronic stroke, characterized by persistent motor deficits, often necessitates comprehensive rehabilitation interventions to improve functional outcomes and mitigate long-term dependency. Luna neurorobotic devices, integrated with EMG feedback systems, provide an innovative platform for facilitating neuroplasticity and functional improvement in stroke survivors. This retrospective study aims to investigate the impact of EMG-based Luna neurorobotic interventions on the strengthening of the affected side in chronic stroke patients. In rehabilitation, active patient participation significantly activates the sensorimotor network during motor control, unlike passive movement. Stroke is a debilitating condition that, when not effectively treated, can result in significant deficits and lifelong dependency. Common issues like neglecting the use of limbs can lead to weakness in chronic stroke cases. In rehabilitation, active patient participation significantly activates the sensorimotor network during motor control, unlike passive movement. This study aims to assess how electromyographic triggering (EMG-triggered) robotic treatments affect walking, ankle muscle force after an ischemic stroke, and the coactivation of agonist and antagonist muscles, which contributes to neuroplasticity with the assistance of biofeedback using robotics. Methods: The study utilized robotic techniques based on electromyography (EMG) for daily rehabilitation in long-term stroke patients, offering feedback and monitoring progress. Each patient received one session per day for two weeks, with the intervention group undergoing 45 minutes of robot-assisted training and exercise at the hospital, while the control group performed exercises at home. Eight participants with impaired motor function and gait after stroke were involved in the study. EMG-based biofeedback exercises were administered through the LUNA neuro-robotic machine, progressing from trigger and release mode to trigger and hold, and later transitioning to dynamic mode. Assessments were conducted at baseline and after two weeks, including the Timed Up and Go (TUG) test, a 10-meter walk test (10m), Berg Balance Scale (BBG), and gait parameters like cadence, step length, upper limb strength measured by EMG threshold in microvolts, and force in Newton meters. Results: The study utilized a scale to assess motor strength and balance, illustrating the benefits of EMG-biofeedback following LUNA robotic therapy. In the analysis of the left hemiparetic group, an increase in strength post-rehabilitation was observed. The pre-TUG mean value was 72.4, which decreased to 42.4 ± 0.03880133 seconds post-rehabilitation, with a significant difference indicated by a p-value below 0.05, reflecting a reduced task completion time. Similarly, in the force-based task, the pre-knee dynamic force in Newton meters was 18.2NM, which increased to 31.26NM during knee extension post-rehabilitation. The post-student t-test showed a p-value of 0.026, signifying a significant difference. This indicated an increase in the strength of knee extensor muscles after LUNA robotic rehabilitation. Lastly, at baseline, the EMG value for ankle dorsiflexion was 5.11 (µV), which increased to 43.4 ± 0.06 µV post-rehabilitation, signifying an increase in the threshold and the patient's ability to generate more motor units during left ankle dorsiflexion. Conclusion: This study aimed to evaluate the impact of EMG and dynamic force-based rehabilitation devices on walking and strength of the affected side in chronic stroke patients without nominal data comparisons among stroke patients. Additionally, it provides insights into the inclusion of EMG-triggered neurorehabilitation robots in the daily rehabilitation of patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neurorehabilitation" title="neurorehabilitation">neurorehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20therapy" title=" robotic therapy"> robotic therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke" title=" stroke"> stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=paralysis" title=" paralysis"> paralysis</a> </p> <a href="https://publications.waset.org/abstracts/175001/the-effect-of-using-emg-based-luna-neurorobotics-for-strengthening-of-affected-side-in-chronic-stroke-patients-retrospective-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Activation of Mirror Neuron System Response to Drumming Training: A Functional Magnetic Resonance Imaging Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manal%20Alosaimi">Manal Alosaimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many rehabilitation strategies exist to aid persons with neurological disorders relearn motor skills through intensive training. Evidence supporting the theory that cortical areas involved in motor execution can be triggered by observing actions performed by others is attributed to the function of the mirror neuron system (MNS) indicates that activation of the MNS is associated with improvements in physical action and motor learning. Therefore, it is important to investigate the relationship between motor training (in this case, playing the drums) and the activation of the MNS. To achieve this, 15 healthy right-handed participants received drum-kit training for 21 weeks, during which time blood oxygen level-dependent (BOLD) signals were monitored in the brain using functional magnetic resonance imaging (fMRI). Participants were required to perform action–observation and action–execution fMRI tasks. The main results are that BOLD signals in classical regions of the MNS such as supramarginal gyri, inferior parietal lobule, and supplementary motor area increase significantly over the training period. Activation of these areas indicates that passive-observation of others performing these same skills may facilitate recovery of persons suffering from neurological disorders, and complement conventional rehabilitation programs that focus on action execution or intense training. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fMRI" title="fMRI">fMRI</a>, <a href="https://publications.waset.org/abstracts/search?q=mirror%20neuron%20system" title=" mirror neuron system"> mirror neuron system</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroplasticity" title=" neuroplasticity"> neuroplasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=drumming" title=" drumming"> drumming</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a>, <a href="https://publications.waset.org/abstracts/search?q=music" title=" music"> music</a>, <a href="https://publications.waset.org/abstracts/search?q=action%20observation" title=" action observation"> action observation</a>, <a href="https://publications.waset.org/abstracts/search?q=action%20execution" title=" action execution"> action execution</a> </p> <a href="https://publications.waset.org/abstracts/186635/activation-of-mirror-neuron-system-response-to-drumming-training-a-functional-magnetic-resonance-imaging-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Profile and Care of Stroke Patients in Angola: Preliminary Results of a Longitudinal Two-Center Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Jos%C3%A9">L. José</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Vieira"> S. Vieira</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Melo"> E. Melo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Pinheiro"> A. R. Pinheiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: This study aims to characterize the stroke profile and the health care provided for people with a stroke in Luanda, Angola. Methods: A prospective longitudinal study was conducted at two Health centers, from March to November 2023, enrolling stroke patients. Data was gathered using a survey created by the researchers and validated by a health panel of experts from Angola. The analysis focused on demographic and stroke characteristics, as well as the care provided. Ethical approval and informed consent were obtained. Results: Preliminary results of a total of 186 patients are described, 122 from a Central Acute Care Hospital, with a mean age of 51.3±14.35 years old, a BMI of 26.7±4.15 kg/m2, 41% male, and 64 patients from a Rehabilitation Center, with 55.6±11.55 years old, a BMI of 27.0±3.8 kg/m2, 53% male. Ischemic stroke was reported as the most representative type in both centers (71.3% and 70.3%, respectively), though 100% of patients had no imaging diagnosis confirmation, neither data about the subtype was given. For patients admitted to the Hospital, discharge occurred before rehabilitation, and no follow-up was possible. No rehabilitation care was delivered in the first 7 days after the stroke. In the Rehabilitation Center, patient’s rehabilitation started in the late subacute phase, after a mean of 171.8±11.5 days. Conclusions: Stroke diagnosis lacks imaging confirmation, which is decisive for proper treatment, and rehabilitation starts during the late subacute phase, which is too late considering the international guidelines and the best window of opportunity for neuroplasticity and recovery. These results highlight the urgent need for the definition of Stroke-directed Health Care Policies in Angola. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stroke" title="stroke">stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=personalized%20health%20care" title=" personalized health care"> personalized health care</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20recovery" title=" functional recovery"> functional recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title=" quality of life"> quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20policies" title=" health policies"> health policies</a> </p> <a href="https://publications.waset.org/abstracts/188490/profile-and-care-of-stroke-patients-in-angola-preliminary-results-of-a-longitudinal-two-center-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Enhancing Neural Connections through Music and tDCS: Insights from an fNIRS Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dileep%20G.">Dileep G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Akash%20Singh"> Akash Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalchand%20%20Ahirwar"> Dalchand Ahirwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arkadeep%20Ghosh"> Arkadeep Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Purohit"> Ashutosh Purohit</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Guleria"> Gaurav Guleria</a>, <a href="https://publications.waset.org/abstracts/search?q=Kshatriya%20Om%20Prashant"> Kshatriya Om Prashant</a>, <a href="https://publications.waset.org/abstracts/search?q=Pushkar%20Patel"> Pushkar Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Saksham%20Kumar"> Saksham Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanshaj%20Nathani"> Vanshaj Nathani</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Dangi"> Vikas Dangi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubhajit%20Roy%20Chowdhury"> Shubhajit Roy Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Varun%20Dutt"> Varun Dutt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transcranial direct current stimulation (tDCS) has shown promise as a novel approach to enhance cognitive performance and provide therapeutic benefits for various brain disorders. However, the exact underlying brain mechanisms are not fully understood. We conducted a study to examine the brain's functional changes when subjected to simultaneous tDCS and music (Indian classical raga). During the study, participants in the experimental group underwent a 20-minute session of tDCS at two mA while listening to music (raga) for a duration of seven days. In contrast, the control group received a sham stimulation for two minutes at two mA over the same seven-day period. The objective was to examine whether repetitive tDCS could lead to the formation of additional functional connections between the medial prefrontal cortex (the stimulated area) and the auditory cortex in comparison to a sham stimulation group. In this study, 26 participants (5 female) underwent pre- and post-intervention scans, where changes were compared after one week of either tDCS or sham stimulation in conjunction with music. The study revealed significant effects of tDCS on functional connectivity between the stimulated area and the auditory cortex. The combination of tDCS applied over the mPFC and music resulted in newly formed connections. Based on our findings, it can be inferred that applying anodal tDCS over the mPFC enhances functional connectivity between the stimulated area and the auditory cortex when compared to the effects observed with sham stimulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fNIRS" title="fNIRS">fNIRS</a>, <a href="https://publications.waset.org/abstracts/search?q=tDCS" title=" tDCS"> tDCS</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroplasticity" title=" neuroplasticity"> neuroplasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=music" title=" music"> music</a> </p> <a href="https://publications.waset.org/abstracts/168874/enhancing-neural-connections-through-music-and-tdcs-insights-from-an-fnirs-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> The Next Generation’s Learning Ability, Memory, as Well as Cognitive Skills Is under the Influence of Paternal Physical Activity (An Intergenerational and Trans-Generational Effect): A Systematic Review and Meta-Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parvin%20Goli">Parvin Goli</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirhosein%20Kefayat"> Amirhosein Kefayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Rezvan%20Goli"> Rezvan Goli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: It is well established that parents can influence their offspring's neurodevelopment. It is shown that paternal environment and lifestyle is beneficial for the progeny's fitness and might affect their metabolic mechanisms; however, the effects of paternal exercise on the brain in the offspring have not been explored in detail. Objective: This study aims to review the impact of paternal physical exercise on memory and learning, neuroplasticity, as well as DNA methylation levels in the off-spring's hippocampus. Study design: In this systematic review and meta-analysis, an electronic literature search was conducted in databases including PubMed, Scopus, and Web of Science. Eligible studies were those with an experimental design, including an exercise intervention arm, with the assessment of any type of memory function, learning ability, or any type of brain plasticity as the outcome measures. Standardized mean difference (SMD) and 95% confidence intervals (CI) were computed as effect size. Results: The systematic review revealed the important role of environmental enrichment in the behavioral development of the next generation. Also, offspring of exercised fathers displayed higher levels of memory ability and lower level of brain-derived neurotrophic factor. A significant effect of paternal exercise on the hippocampal volume was also reported in the few available studies. Conclusion: These results suggest an intergenerational effect of paternal physical activity on cognitive benefit, which may be associated with hippocampal epigenetic programming in offspring. However, the biological mechanisms of this modulation remain to be determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hippocampal%20plasticity" title="hippocampal plasticity">hippocampal plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20ability" title=" learning ability"> learning ability</a>, <a href="https://publications.waset.org/abstracts/search?q=memory" title=" memory"> memory</a>, <a href="https://publications.waset.org/abstracts/search?q=parental%20exercise" title=" parental exercise"> parental exercise</a> </p> <a href="https://publications.waset.org/abstracts/142790/the-next-generations-learning-ability-memory-as-well-as-cognitive-skills-is-under-the-influence-of-paternal-physical-activity-an-intergenerational-and-trans-generational-effect-a-systematic-review-and-meta-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Syndecan -1 as Regulator of Ischemic-Reperfusion Damage Limitation in Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Kolpakova">M. E. Kolpakova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Jakovleva"> A. A. Jakovleva</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20S.%20Poliakova"> L. S. Poliakova</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20El%20Amghari"> H. El Amghari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Soliman"> S. Soliman</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20R.%20Faizullina"> D. R. Faizullina</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Sharoyko"> V. V. Sharoyko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brain neuroplasticity is associated with blood-brain barrier vascular endothelial proteoglycans and post-stroke microglial activation. The study of the mechanisms of reperfusion injury limitation by remote ischemic postconditioning (RC) is of interest due to the effects on functional recovery after cerebral ischemia. The goal of the study is the assessment of the role of syndecan-1 (SDC-1) in restriction of ischemic-reperfusion injury on middle cerebral artery model in rats using RC protocol. Randomized controlled trials were conducted. Ischemia was performed by middle cerebral artery occlusion by Belayev L. (1996) on the Wistar rat-males (n= 87) weighting 250 ± 50 g. under general anesthesia (Zoletil 100 и Xylazine 2%). Syndecan-1 (SDC-1) concentration difference in plasma samples of false operated animals and animals with brain ischemia was 30% (30 min. МСАо: 41.4 * ± 1.3 ng/ml). SDC-1 concentration in animal plasma samples with ischemia + RC protocol was 112% (30 min МСАо+ RC): 67.8**± 5.8 ng/ml). Calculation of infarction volume in the ischemia group revealed brain injury in 31.97 ± 2.5%; the volume of infarction was 13.6 ± 1.3% in 30 min. МCАо + RC group. Swelling of tissue in the group 30 min. МCАо + RC was 16 ± 2.1%; it was 47 ± 3.3%. in 30 min. МCАо group. Correlation analysis showed a high direct correlation relationship between infarct area and muscle strength in the right forelimb (КК=0.72) in the 30 min. МCАо + RC group. Correlation analysis showed very high inverse correlation between infarct area and capillary blood flow in the 30 min. МCАо + RC group (p <0.01; r = -0.98). We believe the SDC-1 molecule in blood plasma may play role of potential messenger of ischemic-reperfusion injury restriction mechanisms. This leads to infarct-limiting effect of remote ischemic postconditioning and early functioning recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ischemia" title="ischemia">ischemia</a>, <a href="https://publications.waset.org/abstracts/search?q=%D0%9C%D0%A1%D0%90%D0%BE" title=" МСАо"> МСАо</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20ischemic%20postconditioning" title=" remote ischemic postconditioning"> remote ischemic postconditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=syndecan-1" title=" syndecan-1"> syndecan-1</a> </p> <a href="https://publications.waset.org/abstracts/179202/syndecan-1-as-regulator-of-ischemic-reperfusion-damage-limitation-in-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> The Utilization of Manganese-Enhanced Magnetic Resonance Imaging in the Fields of Ophthalmology and Visual Neuroscience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Mansour">Parisa Mansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding how vision works in both health and disease involves understanding the anatomy and physiology of the eye as well as the neural pathways involved in visual perception. The development of imaging techniques for the visual system is essential for understanding the neural foundation of visual function or impairment. MRI provides a way to examine neural circuit structure and function without invasive procedures, allowing for the detection of brain tissue abnormalities in real time. One of the advanced MRI methods is manganese-enhanced MRI (MEMRI), which utilizes active manganese contrast agents to enhance brain tissue signals in T1-weighted imaging, showcasing connectivity and activity levels. The way manganese ions build up in the eye, and visual pathways can be due to their spread throughout the body or by moving locally along axons in a forward direction and entering neurons through calcium channels that are voltage-gated. The paramagnetic manganese contrast is utilized in MRI for various applications in the visual system, such as imaging neurodevelopment and evaluating neurodegeneration, neuroplasticity, neuroprotection, and neuroregeneration. In this assessment, we outline four key areas of scientific research where MEMRI can play a crucial role - understanding brain structure, mapping nerve pathways, monitoring nerve cell function, and distinguishing between different types of glial cell activity. We discuss various studies that have utilized MEMRI to investigate the visual system, including delivery methods, spatiotemporal features, and biophysical analysis. Based on this literature, we have pinpointed key issues in the field related to toxicity, as well as sensitivity and specificity of manganese enhancement. We will also examine the drawbacks and other options to MEMRI that could offer new possibilities for future exploration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glial%20activity" title="glial activity">glial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese-enhanced%20magnetic%20resonance%20imaging" title=" manganese-enhanced magnetic resonance imaging"> manganese-enhanced magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroarchitecture" title=" neuroarchitecture"> neuroarchitecture</a>, <a href="https://publications.waset.org/abstracts/search?q=neuronal%20activity" title=" neuronal activity"> neuronal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=neuronal%20tract%20tracing" title=" neuronal tract tracing"> neuronal tract tracing</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20pathway" title=" visual pathway"> visual pathway</a>, <a href="https://publications.waset.org/abstracts/search?q=eye" title=" eye"> eye</a> </p> <a href="https://publications.waset.org/abstracts/188703/the-utilization-of-manganese-enhanced-magnetic-resonance-imaging-in-the-fields-of-ophthalmology-and-visual-neuroscience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Studying the Effect of Heartfulness Meditation on Brain Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norman%20Farb">Norman Farb</a>, <a href="https://publications.waset.org/abstracts/search?q=Anirudh%20Kumar"> Anirudh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Subhan"> Abdul Subhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20Gupta"> Pallavi Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Jahnavi%20Mundluru"> Jahnavi Mundluru</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Subhan"> Abdul Subhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shankar%20Pathmakanthan"> Shankar Pathmakanthan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Long term meditation practice is increasingly recognized for its health benefits. Among a diversity of contemplative traditions, Heartfulness meditation represents a quickly growing set of practices that is largely unstudied. Heartfulness is unique in that it is a meditation practice that focuses on the Heart. It helps individuals to connect to themselves and find inner peace while meditating. In order to deepen ones’ meditation on the heart, the element of Yogic Energy (‘pranahuti’) is used as an aid during meditation. The purpose of this study was to determine whether consistent EEG effects of Heartfulness meditation be observed in sixty experienced Heartfulness meditators, each of whom attended 6 testing sessions. In each session, participants performed three conditions: a set of cognitive tasks, Heartfulness guided relaxation, and Heartfulness Meditation. To measure EEG, the MUSE EEG head band (product of Interaxon Inc) was used. Participants during the cognitive portion were required to answer questions that tested their logical thinking (Cognitive Reflective Test) and creative thinking skills. (Random Associative Test) The order of condition was randomly counter balanced across six sessions. It was hypothesized that Heartfulness meditation would bring increased alpha (8-12Hz) brain activity during meditation and better cognitive task scores in sessions where the tasks followed meditation. Results show that cognitive task scores were higher after meditation in both CRT and RAT, suggesting stronger right brain and left brain activation. Heartfulness meditation produces a significant decrease in brain activity (as indexed by higher levels of alpha) during the early stages of meditation. As the meditation progressed deep meditative state (as indexed by higher levels of delta) were observed until the end of the condition. This lead to the conclusion that Heartfulness Meditation produces a state that is clearly distinguishable from effortful problem solving. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heartfulness%20meditation" title="heartfulness meditation">heartfulness meditation</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroplasticity" title=" neuroplasticity"> neuroplasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20activity" title=" brain activity"> brain activity</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation%20response" title=" relaxation response"> relaxation response</a> </p> <a href="https://publications.waset.org/abstracts/68945/studying-the-effect-of-heartfulness-meditation-on-brain-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Efficacy and Mechanisms of Acupuncture for Depression: A Meta-Analysis of Clinical and Preclinical Evidence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yimeng%20Zhang">Yimeng Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Major depressive disorder (MDD) is a prevalent mental health condition with a substantial economic impact and limited treatment options. Acupuncture has gained attention as a promising non-pharmacological intervention for alleviating depressive symptoms. However, its mechanisms and clinical effectiveness remain incompletely understood. This meta-analysis aims to (1) synthesize existing evidence on the mechanisms and clinical effectiveness of acupuncture for depression and (2) compare these findings with pharmacological interventions, providing insights for future research. Evidence from animal models and clinical studies indicates that acupuncture may enhance hippocampal and network neuroplasticity and reduce brain inflammation, potentially alleviating depressive disorders. Clinical studies suggest that acupuncture can effectively relieve primary depression, particularly in milder cases, and is beneficial in managing post-stroke depression, pain-related depression, and postpartum depression, both as a standalone and adjunctive treatment. Notably, combining acupuncture with antidepressant pharmacotherapy appears to enhance treatment outcomes and reduce medication side effects, addressing a critical issue in conventional drug therapy's high dropout rates. This meta-analysis, encompassing 12 studies and 710 participants, draws data from eight digital databases (PubMed, EMBASE, Web of Science, EBSCOhost, CNKI, CBM, Wangfang, and CQVIP) covering the period from 2012 to 2022. Utilizing Stata software 15.0, the meta-analysis employed random-effects and fixed-effects models to assess the distribution of depression in Traditional Chinese Medicine (TCM). The results underscore the substantial evidence supporting acupuncture's beneficial effects on depression. However, the small sample sizes of many clinical trials raise concerns about the generalizability of the findings, indicating a need for further research to validate these outcomes and optimize acupuncture's role in treating depression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinese%20medicine" title="Chinese medicine">Chinese medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=acupuncture" title=" acupuncture"> acupuncture</a>, <a href="https://publications.waset.org/abstracts/search?q=depression" title=" depression"> depression</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-analysis" title=" meta-analysis"> meta-analysis</a> </p> <a href="https://publications.waset.org/abstracts/188915/efficacy-and-mechanisms-of-acupuncture-for-depression-a-meta-analysis-of-clinical-and-preclinical-evidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Development of NO-Ergic Synaptic Transmission in Sympathetic Neurons of Mammals: Immunohistochemical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Konstantin%20Yu.%20Moiseev">Konstantin Yu. Moiseev</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonina%20F.%20Budnik"> Antonina F. Budnik</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20I.%20Emanuilov"> Andrey I. Emanuilov</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20M.%20Masliukov"> Petr M. Masliukov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vast majority of sympathetic ganglionic neurons are catecholaminergic. Some sympathetic neurons lack catecholamines and mostly use acetylcholine as their main neurotransmitter. Some cholinergic postganglionic neurons also express neuronal nitric oxide synthase (nNOS). Preganglionic sympathetic neurons are cholinergic and most of them are also nNOS-immunoreactive (IR). The purpose of this study was to gain further insight into the neuroplasticity of sympathetic neurons during postnatal ontogenesis by comparing the development of pre- and postganglionic neurons expressing nNOS in different mammals. nNOS was investigated by immunohistochemistry in the sympathetic superior cervical ganglion (SCG), stellate ganglion (SG), celiac ganglion (CG) and spinal cord from rats, mice and cats of different ages (newborn, 10-day-old, 20-day-old, 30-day-old, 2-month-old and 2-year-old). In rats and mice, nNOS-positive neurons were not found in sympathetic ganglia from birth onwards. In cats, non-catecholaminergic nNOS-IR sympathetic ganglionic neurons are present from the moment of birth. In all studied age groups, substantial populations of nNOS-IR cells (up to 8.3%) was found in the SG, with a much smaller population found in the SCG (<1%) and only few cells observed in the CG. The percentage of nNOS-IR neurons in the CG and SCG did not significantly change during development. The proportion of nNOS-IR neuron profiles in the SG increased in first 20 days of life from 2.3±0.15% to 8.3±0.56%. In the SG, percentages of nNOS-IR sympathetic neurons colocalizing vasoactive intestinal peptide increased in the first 20 days of life. Choline acetyltransferase (ChAT)-IR and calcitonin gene-related peptide-IR neurons were not observed in the sympathetic ganglia of newborn animals and did not appear until 10 days after birth. In the SG of newborn and 10-day-old kittens, the majority of NOS-IR neurons were calbindin (CB)-IR, whereas in the SCG and CG of cats of all age groups and in the SG of 30-day-old and older kittens, the vast majority of NOS-IR neurons lacked CB. In newborn mammals, the most of sympathetic preganglionic neurons in the nucleus intermediolateralis thoracolumbalis pars principalis (nucl.ILp) were nNOS-IR. The percentage of nNOS-IR neurons decreased and the same parameter of ChAT-IR neurons increased during the development. We conclude that the development of nNOS-IR preganglionic and ganglionic sympathetic neurons in different mammals has time and species differences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sympathetic%20neuron" title="sympathetic neuron">sympathetic neuron</a>, <a href="https://publications.waset.org/abstracts/search?q=nitric%20oxide%20synthase" title=" nitric oxide synthase"> nitric oxide synthase</a>, <a href="https://publications.waset.org/abstracts/search?q=immunohistochemistry" title=" immunohistochemistry"> immunohistochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a> </p> <a href="https://publications.waset.org/abstracts/58593/development-of-no-ergic-synaptic-transmission-in-sympathetic-neurons-of-mammals-immunohistochemical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Relevance Of Cognitive Rehabilitation Amongst Children Having Chronic Illnesses – A Theoretical Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pulari%20C.%20Milu%20Maria%20Anto">Pulari C. Milu Maria Anto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Cognitive Rehabilitation/Retraining has been variously used in the research literature to represent non-pharmacological interventions that target the cognitive impairments with the goal of ameliorating cognitive function and functional behaviors to optimize the quality of life. Along with adult’s cognitive impairments, the need to address acquired cognitive impairments (due to any chronic illnesses like CHD - congenital heart diseases or ALL - Acute Lymphoblastic Leukemia) among child populations is inevitable. Also, it has to be emphasized as same we consider the cognitive impairments seen in the children having neurodevelopmental disorders. Methods: All published brain image studies (Hermann, B. et al,2002, Khalil, A. et al., 2004, Follin, C. et al, 2016, etc.) and studies emphasizing cognitive impairments in attention, memory, and/or executive function and behavioral aspects (Henkin, Y. et al,2007, Bellinger, D. C., & Newburger, J. W. (2010), Cheung, Y. T., et al,2016, that could be identified were reviewed. Based on a systematic review of the literature from (2000 -2021) different brain imaging studies, increased risk of neuropsychological and psychosocial impairments are briefly described. Clinical and research gap in the area is discussed. Results:30 papers, both Indian studies and foreign publications (Sage journals, Delhi psychiatry journal, Wiley Online Library, APA PsyNet, Springer, Elsevier, Developmental medicine, and child neurology), were identified. Conclusions: In India, a very limited number of brain imaging studies and neuropsychological studies have done by indicating the cognitive deficits of a child having or undergone chronic illness. None of the studies have emphasized the relevance nor the need of implementingCR among such children, even though its high time to address but still not established yet. The review of the current evidence is to bring out an insight among rehabilitation professionals in establishing a child specific CR and to publish new findings regarding the implementation of CR among such children. Also, this study will be an awareness on considering cognitive aspects of a child having acquired cognitive deficit (due to chronic illness), especially during their critical developmental period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20rehabilitation" title="cognitive rehabilitation">cognitive rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=neuropsychological%20impairments" title=" neuropsychological impairments"> neuropsychological impairments</a>, <a href="https://publications.waset.org/abstracts/search?q=congenital%20heart%20diseases" title=" congenital heart diseases"> congenital heart diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20lymphoblastic%20leukemia" title=" acute lymphoblastic leukemia"> acute lymphoblastic leukemia</a>, <a href="https://publications.waset.org/abstracts/search?q=epilepsy" title=" epilepsy"> epilepsy</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20neuroplasticity" title=" and neuroplasticity"> and neuroplasticity</a> </p> <a href="https://publications.waset.org/abstracts/142163/relevance-of-cognitive-rehabilitation-amongst-children-having-chronic-illnesses-a-theoretical-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Serum Neurotrophins in Different Metabolic Types of Obesity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irina%20M.%20Kolesnikova">Irina M. Kolesnikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20M.%20Gaponov"> Andrey M. Gaponov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20A.%20Roumiantsev"> Sergey A. Roumiantsev</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatiana%20V.%20Grigoryeva"> Tatiana V. Grigoryeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20V.%20Laikov"> Alexander V. Laikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20V.%20Shestopalov"> Alexander V. Shestopalov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background. Neuropathy is a common complication of obesity. In this regard, the content of neurotrophins in such patients is of particular interest. Neurotrophins are the proteins that regulate neuron survival and neuroplasticity and include brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). However, the risk of complications depends on the metabolic type of obesity. Metabolically unhealthy obesity (MUHO) is associated with a high risk of complications, while this is not the case with metabolically healthy obesity (MHO). Therefore, the aim of our work was to study the effect of the obesity metabolic type on serum neurotrophins levels. Patients, materials, methods. The study included 134 healthy donors and 104 obese patients. Depending on the metabolic type of obesity, the obese patients were divided into subgroups with MHO (n=40) and MUHO (n=55). In the blood serum, the concentration of BDNF and NGF was determined. In addition, the content of adipokines (leptin, asprosin, resistin, adiponectin), myokines (irisin, myostatin, osteocrin), indicators of carbohydrate, and lipid metabolism were measured. Correlation analysis revealed the relationship between the studied parameters. Results. We found that serum BDNF concentration was not different between obese patients and healthy donors, regardless of obesity metabolic type. At the same time, in obese patients, there was a decrease in serum NGF level versus control. A similar trend was characteristic of both MHO and MUHO. However, MUHO patients had a higher NGF level than MHO patients. The literature indicates that obesity is associated with an increase in the plasma concentration of NGF. It can be assumed that in obesity, there is a violation of NGF storage in platelets, which accelerates neurotrophin degradation. We found that BDNF concentration correlated with irisin levels in MUHO patients. Healthy donors had a weak association between NGF and VEGF levels. No such association was found in obese patients, but there was an association between NGF and leptin concentrations. In MHO, the concentration of NHF correlated with the content of leptin, irisin, osteocrin, insulin, and the HOMA-IR index. But in MUHO patients, we found only the relationship between NGF and adipokines (leptin, asprosin). It can be assumed that in patients with MHO, the replenishment of serum NGF occurs under the influence of muscle and adipose tissue. In the MUHO patients only the effect of adipose tissue on NGF was observed. Conclusion. Obesity, regardless of metabolic type, is associated with a decrease in serum NGF concentration. We showed that muscle and adipose tissues make a significant contribution to the serum NGF pool in the MHO patients. In MUHO there is no effect of muscle on the NGF level, but the effect of adipose tissue remains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neurotrophins" title="neurotrophins">neurotrophins</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20growth%20factor" title=" nerve growth factor"> nerve growth factor</a>, <a href="https://publications.waset.org/abstracts/search?q=NGF" title=" NGF"> NGF</a>, <a href="https://publications.waset.org/abstracts/search?q=brain-derived%20neurotrophic%20factor" title=" brain-derived neurotrophic factor"> brain-derived neurotrophic factor</a>, <a href="https://publications.waset.org/abstracts/search?q=BDNF" title=" BDNF"> BDNF</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolically%20healthy%20obesity" title=" metabolically healthy obesity"> metabolically healthy obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolically%20unhealthy%20obesity" title=" metabolically unhealthy obesity"> metabolically unhealthy obesity</a> </p> <a href="https://publications.waset.org/abstracts/145328/serum-neurotrophins-in-different-metabolic-types-of-obesity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Attention and Memory in the Music Learning Process in Individuals with Visual Impairments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lana%20Burmistrova">Lana Burmistrova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The influence of visual impairments on several cognitive processes used in the music learning process is an increasingly important area in special education and cognitive musicology. Many children have several visual impairments due to the refractive errors and irreversible inhibitors. However, based on the compensatory neuroplasticity and functional reorganization, congenitally blind (CB) and early blind (EB) individuals use several areas of the occipital lobe to perceive and process auditory and tactile information. CB individuals have greater memory capacity, memory reliability, and less false memory mechanisms are used while executing several tasks, they have better working memory (WM) and short-term memory (STM). Blind individuals use several strategies while executing tactile and working memory n-back tasks: verbalization strategy (mental recall), tactile strategy (tactile recall) and combined strategies. Methods and design: The aim of the pilot study was to substantiate similar tendencies while executing attention, memory and combined auditory tasks in blind and sighted individuals constructed for this study, and to investigate attention, memory and combined mechanisms used in the music learning process. For this study eight (n=8) blind and eight (n=8) sighted individuals aged 13-20 were chosen. All respondents had more than five years music performance and music learning experience. In the attention task, all respondents had to identify pitch changes in tonal and randomized melodic pairs. The memory task was based on the mismatch negativity (MMN) proportion theory: 80 percent standard (not changed) and 20 percent deviant (changed) stimuli (sequences). Every sequence was named (na-na, ra-ra, za-za) and several items (pencil, spoon, tealight) were assigned for each sequence. Respondents had to recall the sequences, to associate them with the item and to detect possible changes. While executing the combined task, all respondents had to focus attention on the pitch changes and had to detect and describe these during the recall. Results and conclusion: The results support specific features in CB and EB, and similarities between late blind (LB) and sighted individuals. While executing attention and memory tasks, it was possible to observe the tendency in CB and EB by using more precise execution tactics and usage of more advanced periodic memory, while focusing on auditory and tactile stimuli. While executing memory and combined tasks, CB and EB individuals used passive working memory to recall standard sequences, active working memory to recall deviant sequences and combined strategies. Based on the observation results, assessment of blind respondents and recording specifics, following attention and memory correlations were identified: reflective attention and STM, reflective attention and periodic memory, auditory attention and WM, tactile attention and WM, auditory tactile attention and STM. The results and the summary of findings highlight the attention and memory features used in the music learning process in the context of blindness, and the tendency of the several attention and memory types correlated based on the task, strategy and individual features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attention" title="attention">attention</a>, <a href="https://publications.waset.org/abstracts/search?q=blindness" title=" blindness"> blindness</a>, <a href="https://publications.waset.org/abstracts/search?q=memory" title=" memory"> memory</a>, <a href="https://publications.waset.org/abstracts/search?q=music%20learning" title=" music learning"> music learning</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy"> strategy</a> </p> <a href="https://publications.waset.org/abstracts/95997/attention-and-memory-in-the-music-learning-process-in-individuals-with-visual-impairments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Real-Time Neuroimaging for Rehabilitation of Stroke Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gerhard%20Gritsch">Gerhard Gritsch</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Skupch"> Ana Skupch</a>, <a href="https://publications.waset.org/abstracts/search?q=Manfred%20Hartmann"> Manfred Hartmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolfgang%20Fr%C3%BChwirt"> Wolfgang Frühwirt</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannes%20Perko"> Hannes Perko</a>, <a href="https://publications.waset.org/abstracts/search?q=Dieter%20Grossegger"> Dieter Grossegger</a>, <a href="https://publications.waset.org/abstracts/search?q=Tilmann%20Kluge"> Tilmann Kluge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rehabilitation of stroke patients is dominated by classical physiotherapy. Nowadays, a field of research is the application of neurofeedback techniques in order to help stroke patients to get rid of their motor impairments. Especially, if a certain limb is completely paralyzed, neurofeedback is often the last option to cure the patient. Certain exercises, like the imagination of the impaired motor function, have to be performed to stimulate the neuroplasticity of the brain, such that in the neighboring parts of the injured cortex the corresponding activity takes place. During the exercises, it is very important to keep the motivation of the patient at a high level. For this reason, the missing natural feedback due to a movement of the effected limb may be replaced by a synthetic feedback based on the motor-related brain function. To generate such a synthetic feedback a system is needed which measures, detects, localizes and visualizes the motor related µ-rhythm. Fast therapeutic success can only be achieved if the feedback features high specificity, comes in real-time and without large delay. We describe such an approach that offers a 3D visualization of µ-rhythms in real time with a delay of 500ms. This is accomplished by combining smart EEG preprocessing in the frequency domain with source localization techniques. The algorithm first selects the EEG channel featuring the most prominent rhythm in the alpha frequency band from a so-called motor channel set (C4, CZ, C3; CP6, CP4, CP2, CP1, CP3, CP5). If the amplitude in the alpha frequency band of this certain electrode exceeds a threshold, a µ-rhythm is detected. To prevent detection of a mixture of posterior alpha activity and µ-activity, the amplitudes in the alpha band outside the motor channel set are not allowed to be in the same range as the main channel. The EEG signal of the main channel is used as template for calculating the spatial distribution of the µ - rhythm over all electrodes. This spatial distribution is the input for a inverse method which provides the 3D distribution of the µ - activity within the brain which is visualized in 3D as color coded activity map. This approach mitigates the influence of lid artifacts on the localization performance. The first results of several healthy subjects show that the system is capable of detecting and localizing the rarely appearing µ-rhythm. In most cases the results match with findings from visual EEG analysis. Frequent eye-lid artifacts have no influence on the system performance. Furthermore, the system will be able to run in real-time. Due to the design of the frequency transformation the processing delay is 500ms. First results are promising and we plan to extend the test data set to further evaluate the performance of the system. The relevance of the system with respect to the therapy of stroke patients has to be shown in studies with real patients after CE certification of the system. This work was performed within the project ‘LiveSolo’ funded by the Austrian Research Promotion Agency (FFG) (project number: 853263). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=real-time%20EEG%20neuroimaging" title="real-time EEG neuroimaging">real-time EEG neuroimaging</a>, <a href="https://publications.waset.org/abstracts/search?q=neurofeedback" title=" neurofeedback"> neurofeedback</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke" title=" stroke"> stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG%E2%80%93signal%20processing" title=" EEG–signal processing"> EEG–signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a> </p> <a href="https://publications.waset.org/abstracts/63360/real-time-neuroimaging-for-rehabilitation-of-stroke-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Cicadas: A Clinician-assisted, Closed-loop Technology, Mobile App for Adolescents with Autism Spectrum Disorders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Biagianti">Bruno Biagianti</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Tseng"> Angela Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Kathy%20Wannaviroj"> Kathy Wannaviroj</a>, <a href="https://publications.waset.org/abstracts/search?q=Allison%20Corlett"> Allison Corlett</a>, <a href="https://publications.waset.org/abstracts/search?q=Megan%20DuBois"> Megan DuBois</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyu%20Lee"> Kyu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Suma%20Jacob"> Suma Jacob</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: ASD is characterized by pervasive Sensory Processing Abnormalities (SPA) and social cognitive deficits that persist throughout the course of the illness and have been linked to functional abnormalities in specific neural systems that underlie the perception, processing, and representation of sensory information. SPA and social cognitive deficits are associated with difficulties in interpersonal relationships, poor development of social skills, reduced social interactions and lower academic performance. Importantly, they can hamper the effects of established evidence-based psychological treatments—including PEERS (Program for the Education and Enrichment of Relationship Skills), a parent/caregiver-assisted, 16-weeks social skills intervention—which nonetheless requires a functional brain capable of assimilating and retaining information and skills. As a matter of fact, some adolescents benefit from PEERS more than others, calling for strategies to increase treatment response rates. Objective: We will present interim data on CICADAS (Care Improving Cognition for ADolescents on the Autism Spectrum)—a clinician-assisted, closed-loop technology mobile application for adolescents with ASD. Via ten mobile assessments, CICADAS captures data on sensory processing abnormalities and associated cognitive deficits. These data populate a machine learning algorithm that tailors the delivery of ten neuroplasticity-based social cognitive training (NB-SCT) exercises targeting sensory processing abnormalities. Methods: In collaboration with the Autism Spectrum and Neurodevelopmental Disorders Clinic at the University of Minnesota, we conducted a fully remote, three-arm, randomized crossover trial with adolescents with ASD to document the acceptability of CICADAS and evaluate its potential as a stand-alone treatment or as a treatment enhancer of PEERS. Twenty-four adolescents with ASD (ages 11-18) have been initially randomized to 16 weeks of PEERS + CICADAS (Arm A) vs. 16 weeks of PEERS + computer games vs. 16 weeks of CICADAS alone (Arm C). After 16 weeks, the full battery of assessments has been remotely administered. Results: We have evaluated the acceptability of CICADAS by examining adherence rates, engagement patterns, and exit survey data. We found that: 1) CICADAS is able to serve as a treatment enhancer for PEERS, inducing greater improvements in sensory processing, cognition, symptom reduction, social skills and behaviors, as well as the quality of life compared to computer games; 2) the concurrent delivery of PEERS and CICADAS induces greater improvements in study outcomes compared to CICADAS only. Conclusion: While preliminary, our results indicate that the individualized assessment and treatment approach designed in CICADAS seems effective in inducing adaptive long-term learning about social-emotional events. CICADAS-induced enhancement of processing and cognition facilitates the application of PEERS skills in the environment of adolescents with ASD, thus improving their real-world functioning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ASD" title="ASD">ASD</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20skills" title=" social skills"> social skills</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20training" title=" cognitive training"> cognitive training</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20app" title=" mobile app"> mobile app</a> </p> <a href="https://publications.waset.org/abstracts/143824/cicadas-a-clinician-assisted-closed-loop-technology-mobile-app-for-adolescents-with-autism-spectrum-disorders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Application of the Pattern Method to Form the Stable Neural Structures in the Learning Process as a Way of Solving Modern Problems in Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liudmyla%20Vesper">Liudmyla Vesper</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problems of modern education are large-scale and diverse. The aspirations of parents, teachers, and experts converge - everyone interested in growing up a generation of whole, well-educated persons. Both the family and society are expected in the future generation to be self-sufficient, desirable in the labor market, and capable of lifelong learning. Today's children have a powerful potential that is difficult to realize in the conditions of traditional school approaches. Focusing on STEM education in practice often ends with the simple use of computers and gadgets during class. "Science", "technology", "engineering" and "mathematics" are difficult to combine within school and university curricula, which have not changed much during the last 10 years. Solving the problems of modern education largely depends on teachers - innovators, teachers - practitioners who develop and implement effective educational methods and programs. Teachers who propose innovative pedagogical practices that allow students to master large-scale knowledge and apply it to the practical plane. Effective education considers the creation of stable neural structures during the learning process, which allow to preserve and increase knowledge throughout life. The author proposed a method of integrated lessons – cases based on the maths patterns for forming a holistic perception of the world. This method and program are scientifically substantiated and have more than 15 years of practical application experience in school and student classrooms. The first results of the practical application of the author's methodology and curriculum were announced at the International Conference "Teaching and Learning Strategies to Promote Elementary School Success", 2006, April 22-23, Yerevan, Armenia, IREX-administered 2004-2006 Multiple Component Education Project. This program is based on the concept of interdisciplinary connections and its implementation in the process of continuous learning. This allows students to save and increase knowledge throughout life according to a single pattern. The pattern principle stores information on different subjects according to one scheme (pattern), using long-term memory. This is how neural structures are created. The author also admits that a similar method can be successfully applied to the training of artificial intelligence neural networks. However, this assumption requires further research and verification. The educational method and program proposed by the author meet the modern requirements for education, which involves mastering various areas of knowledge, starting from an early age. This approach makes it possible to involve the child's cognitive potential as much as possible and direct it to the preservation and development of individual talents. According to the methodology, at the early stages of learning students understand the connection between school subjects (so-called "sciences" and "humanities") and in real life, apply the knowledge gained in practice. This approach allows students to realize their natural creative abilities and talents, which makes it easier to navigate professional choices and find their place in life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=science%20education" title="science education">science education</a>, <a href="https://publications.waset.org/abstracts/search?q=maths%20education" title=" maths education"> maths education</a>, <a href="https://publications.waset.org/abstracts/search?q=AI" title=" AI"> AI</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroplasticity" title=" neuroplasticity"> neuroplasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=innovative%20education%20problem" title=" innovative education problem"> innovative education problem</a>, <a href="https://publications.waset.org/abstracts/search?q=creativity%20development" title=" creativity development"> creativity development</a>, <a href="https://publications.waset.org/abstracts/search?q=modern%20education%20problem" title=" modern education problem"> modern education problem</a> </p> <a href="https://publications.waset.org/abstracts/183533/application-of-the-pattern-method-to-form-the-stable-neural-structures-in-the-learning-process-as-a-way-of-solving-modern-problems-in-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>