CINXE.COM

Search results for: submerged arc welding

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: submerged arc welding</title> <meta name="description" content="Search results for: submerged arc welding"> <meta name="keywords" content="submerged arc welding"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="submerged arc welding" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="submerged arc welding"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 63</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: submerged arc welding</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Effect of Welding Parameters on Penetration and Bead Width for Variable Plate Thickness in Submerged Arc Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harish%20K.%20Arya">Harish K. Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kulwant%20Singh"> Kulwant Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Saxena"> R. K. Saxena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat flow in weldment changes its nature from 2D to 3D with the increase in plate thickness. For welding of thicker plates the heat loss in thickness direction increases the cooling rate of plate. Since the cooling rate changes, the various bead parameters like bead penetration, bead height and bead width also got affected by it. The present study incorporates the effect of variable plate thickness on penetration and bead width. The penetration reduces with increase in plate thickness due to heat loss in thickness direction for same heat input, while bead width increases for thicker plate due to faster cooling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=submerged%20arc%20welding" title="submerged arc welding">submerged arc welding</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20thickness" title=" plate thickness"> plate thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=bead%20geometry" title=" bead geometry"> bead geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20rate" title=" cooling rate"> cooling rate</a> </p> <a href="https://publications.waset.org/abstracts/33595/effect-of-welding-parameters-on-penetration-and-bead-width-for-variable-plate-thickness-in-submerged-arc-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Effect of Welding Parameters on Dilution and Bead Height for Variable Plate Thickness in Submerged Arc Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harish%20Kumar%20Arya">Harish Kumar Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kulwant%20Singh"> Kulwant Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K%20Saxena"> R. K Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepti%20Jaiswal"> Deepti Jaiswal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat flow in weldment changes its nature from 2D to 3D with the increase in plate thickness. For welding of thicker plates the heat loss in thickness direction increases the cooling rate of plate. Since the cooling rate changes, the various bead parameters like bead penetration, bead height and bead width also got affected by it. The present study incorporates the effect of variable plate thickness on bead geometry and dilution. The penetration reduces with increase in plate thickness due to heat loss in thickness direction, while bead width and reinforcement increases for thicker plate due to faster cooling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=submerged%20arc%20welding" title="submerged arc welding">submerged arc welding</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20thickness" title=" plate thickness"> plate thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=bead%20geometry" title=" bead geometry"> bead geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20rate" title=" cooling rate"> cooling rate</a> </p> <a href="https://publications.waset.org/abstracts/34968/effect-of-welding-parameters-on-dilution-and-bead-height-for-variable-plate-thickness-in-submerged-arc-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Characterization of Two Hybrid Welding Techniques on SA 516 Grade 70 Weldments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Z.%20Butt">M. T. Z. Butt</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ahmad"> T. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Siddiqui"> N. A. Siddiqui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Commercially SA 516 Grade 70 is frequently used for the manufacturing of pressure vessels, boilers and storage tanks etc. in fabrication industry. Heat input is the major parameter during welding that may bring significant changes in the microstructure as well as the mechanical properties. Different welding technique has different heat input rate per unit surface area. Materials with large thickness are dealt with different combination of welding techniques to achieve required mechanical properties. In the present research two schemes: Scheme 1: SMAW (Shielded Metal Arc Welding) &amp; GTAW (Gas Tungsten Arc Welding) and Scheme 2: SMAW &amp; SAW (Submerged Arc Welding) of hybrid welding techniques have been studied. The purpose of these schemes was to study hybrid welding effect on the microstructure and mechanical properties of the weldment, heat affected zone and base metal area. It is significant to note that the thickness of base plate was 12 mm, also welding conditions and parameters were set according to ASME Section IX. It was observed that two different hybrid welding techniques performed on two different plates demonstrated that the mechanical properties of both schemes are more or less similar. It means that the heat input, welding techniques and varying welding operating conditions &amp; temperatures did not make any detrimental effect on the mechanical properties. Hence, the hybrid welding techniques mentioned in the present study are favorable to implicate for the industry using the plate thickness around 12 mm thick. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grade%2070" title="grade 70">grade 70</a>, <a href="https://publications.waset.org/abstracts/search?q=GTAW" title=" GTAW"> GTAW</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20welding" title=" hybrid welding"> hybrid welding</a>, <a href="https://publications.waset.org/abstracts/search?q=SAW" title=" SAW"> SAW</a>, <a href="https://publications.waset.org/abstracts/search?q=SMAW" title=" SMAW"> SMAW</a> </p> <a href="https://publications.waset.org/abstracts/51031/characterization-of-two-hybrid-welding-techniques-on-sa-516-grade-70-weldments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Development of Orbital TIG Welding Robot System for the Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dongho%20Kim">Dongho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Choi"> Sung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyowoong%20Pee"> Kyowoong Pee</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngsik%20Cho"> Youngsik Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungwoo%20Jeong"> Seungwoo Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo-Ho%20Kim"> Soo-Ho Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is about the orbital TIG welding robot system which travels on the guide rail installed on the pipe, and welds and tracks the pipe seam using the LVS (Laser Vision Sensor) joint profile data. The orbital welding robot system consists of the robot, welder, controller, and LVS. Moreover we can define the relationship between welding travel speed and wire feed speed, and we can make the linear equation using the maximum and minimum amount of weld metal. Using the linear equation we can determine the welding travel speed and the wire feed speed accurately corresponding to the area of weld captured by LVS. We applied this orbital TIG welding robot system to the stainless steel or duplex pipe on DSME (Daewoo Shipbuilding and Marine Engineering Co. Ltd.,) shipyard and the result of radiographic test is almost perfect. (Defect rate: 0.033%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20welding" title="adaptive welding">adaptive welding</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20welding" title=" automatic welding"> automatic welding</a>, <a href="https://publications.waset.org/abstracts/search?q=pipe%20welding" title=" pipe welding"> pipe welding</a>, <a href="https://publications.waset.org/abstracts/search?q=orbital%20welding" title=" orbital welding"> orbital welding</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20vision%20sensor" title=" laser vision sensor"> laser vision sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=LVS" title=" LVS"> LVS</a>, <a href="https://publications.waset.org/abstracts/search?q=welding%20D%2FB" title=" welding D/B "> welding D/B </a> </p> <a href="https://publications.waset.org/abstracts/1631/development-of-orbital-tig-welding-robot-system-for-the-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">697</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> BLDC Motor Design Considering Core Loss Caused by Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Seok%20Hong">Hyun-Seok Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Gun%20Kim"> In-Gun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye-Jun%20Oh"> Ye-Jun Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Lee"> Ju Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the effects of welding performed for the manufacture of laminations in a stator in the case of prototype motors that are manufactured in small quantity. As a result of performing the no-load test for an IPM (interior permanent magnet)-type BLDC (blushless direct current) motor manufactured by welding both inside and outside of the stator, it was found that more DC input than expected was provided. To verify the effects of welding, a stator was re-manufactured by bonding, and DC inputs provided during the no-load test were compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=welding" title="welding">welding</a>, <a href="https://publications.waset.org/abstracts/search?q=stator" title=" stator"> stator</a>, <a href="https://publications.waset.org/abstracts/search?q=Eddy%20current" title=" Eddy current"> Eddy current</a>, <a href="https://publications.waset.org/abstracts/search?q=BLDC" title=" BLDC"> BLDC</a> </p> <a href="https://publications.waset.org/abstracts/41389/bldc-motor-design-considering-core-loss-caused-by-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">567</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Studies on Microstructure and Mechanical Properties of Simulated Heat Affected Zone in a Micro Alloyed Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Kumar">Sanjeev Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Nath"> S. K. Nath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proper selection of welding parameters for getting excellent weld is a challenge. HAZ simulation helps in identifying suitable welding parameters like heating rate, cooling rate, peak temperature, and energy input. In this study, the influence of weld thermal cycle of heat affected zone (HAZ) is simulated for Submerged Arc Welding (SAW) using Gleeble &reg; 3800 thermomechanical simulator. A (Micro-alloyed) MA steel plate of thickness 18 mm having yield strength 450MPa is used for making test specimens. Determination of the mechanical properties of weld simulated specimens including Charpy V-notch toughness and hardness is performed. Peak temperatures of 1300&deg;C, 1150&deg;C, 1000&deg;C, 900&deg;C, 800&deg;C, heat energy input of 22KJ/cm and preheat temperatures of 30&deg;C have been used with Rykalin-3D simulation model. It is found that the impact toughness (75J) is the best for the simulated HAZ specimen at the peak temperature 900&ordm;C. For parent steel, impact toughness value is 26.8J at -50&deg;C in transverse direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HAZ%20simulation" title="HAZ simulation">HAZ simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20temperature" title=" peak temperature"> peak temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=ship%20hull%20steel" title=" ship hull steel"> ship hull steel</a>, <a href="https://publications.waset.org/abstracts/search?q=weldability" title=" weldability"> weldability</a> </p> <a href="https://publications.waset.org/abstracts/7465/studies-on-microstructure-and-mechanical-properties-of-simulated-heat-affected-zone-in-a-micro-alloyed-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Effect of Welding Processes on Tensile Behavior of Aluminum Alloy Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaitanya%20Sharma">Chaitanya Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Upadhyay"> Vikas Upadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tripathi"> A. Tripathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction stir welding and tungsten inert gas welding techniques were employed to weld armor grade aluminum alloy to investigate the effect of welding processes on tensile behavior of weld joints. Tensile tests, Vicker microhardness tests and optical microscopy were performed on developed weld joints and base metal. Welding process influenced tensile behavior and microstructure of weld joints. Friction stir welded joints showed tensile behavior better than tungsten inert gas weld joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title="friction stir welding">friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20properties" title=" tensile properties"> tensile properties</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20locations" title=" fracture locations"> fracture locations</a> </p> <a href="https://publications.waset.org/abstracts/40159/effect-of-welding-processes-on-tensile-behavior-of-aluminum-alloy-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> A Study on the Pulse Transformer Design Considering Inrush Current in the Welding Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=In-Gun%20Kim">In-Gun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Seok%20Hong"> Hyun-Seok Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Woo%20Kang"> Dong-Woo Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Lee"> Ju Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An Inverter type arc-welding machine is inclined to be designed for higher frequency in order to reduce the size and cost. The need of the core material reconsideration for high frequency pulse transformer is more important since core loss grows as the frequency rises. An arc welding machine’s pulse transformer is designed using an Area Product (Ap) method and is considered margin air gap core design in order to prevent the burning of the IGBT by the inrush current. Finally, the reduction of the core weight and the core size are compared according to different materials for 30kW inverter type arc welding machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulse%20transformers" title="pulse transformers">pulse transformers</a>, <a href="https://publications.waset.org/abstracts/search?q=welding" title=" welding"> welding</a>, <a href="https://publications.waset.org/abstracts/search?q=inrush%20current" title=" inrush current"> inrush current</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20gaps" title=" air gaps"> air gaps</a> </p> <a href="https://publications.waset.org/abstracts/41051/a-study-on-the-pulse-transformer-design-considering-inrush-current-in-the-welding-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Study of Mechanical Properties of Aluminium Alloys on Normal Friction Stir Welding and Underwater Friction Stir Welding for Structural Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lingaraju%20Dumpala">Lingaraju Dumpala</a>, <a href="https://publications.waset.org/abstracts/search?q=Laxmi%20Mohan%20Kumar%20Chintada"> Laxmi Mohan Kumar Chintada</a>, <a href="https://publications.waset.org/abstracts/search?q=Devadas%20Deepu"> Devadas Deepu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pravin%20Kumar%20Yadav"> Pravin Kumar Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction stir welding is the new-fangled and cutting-edge technique in welding applications; it is widely used in the fields of transportation, aerospace, defense, etc. For thriving significant welding joints and properties of friction stir welded components, it is essential to carry out this advanced process in a prescribed systematic procedure. At this moment, Underwater Friction Stir Welding (UFSW) Process is the field of interest to do research work. In the continuous assessment, the study of UFSW process is to comprehend problems occurred in the past and the structure through which the mechanical properties of the welded joints can be value-added and contributes to conclude results an acceptable and resourceful joint. A meticulous criticism is given on how to modify the experimental setup from NFSW to UFSW. It can discern the influence of tool materials, feeds, spindle angle, load, rotational speeds and mechanical properties. By expending the DEFORM-3D simulation software, the achieved outcomes are validated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Underwater%20Friction%20Stir%20Welding%28UFSW%29" title="Underwater Friction Stir Welding(UFSW)">Underwater Friction Stir Welding(UFSW)</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%20alloys" title=" Al alloys"> Al alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Normal%20Friction%20Stir%20Welding%28NFSW%29" title=" Normal Friction Stir Welding(NFSW)"> Normal Friction Stir Welding(NFSW)</a> </p> <a href="https://publications.waset.org/abstracts/75288/study-of-mechanical-properties-of-aluminium-alloys-on-normal-friction-stir-welding-and-underwater-friction-stir-welding-for-structural-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Hardness Analysis of Samples of Friction Stir Welded Joints of (Al-Cu)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Upamanyu%20Majumder">Upamanyu Majumder</a>, <a href="https://publications.waset.org/abstracts/search?q=Angshuman%20Das"> Angshuman Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction Stir Welding (FSW) is a Solid-State joining process. Unlike fusion welding techniques it does not involve operation above the melting point temperature of metals, but above the re-crystallization temperature. FSW also does not involve fusion of other material. FSW of ALUMINIUM has been commercialized and recent studies on joining dissimilar metals have been studied. Friction stir welding was introduced and patented in 1991 by The Welding Institute. For this paper, a total of nine samples each of copper and ALUMINIUM(Dissimilar metals) were welded using FSW process and Vickers Hardness were conducted on each of the samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding%20%28FSW%29" title="friction stir welding (FSW)">friction stir welding (FSW)</a>, <a href="https://publications.waset.org/abstracts/search?q=recrystallization%20temperature" title=" recrystallization temperature"> recrystallization temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=dissimilar%20metals" title=" dissimilar metals"> dissimilar metals</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminium-copper" title=" aluminium-copper"> aluminium-copper</a>, <a href="https://publications.waset.org/abstracts/search?q=Vickers%20hardness%20test" title=" Vickers hardness test"> Vickers hardness test</a> </p> <a href="https://publications.waset.org/abstracts/37637/hardness-analysis-of-samples-of-friction-stir-welded-joints-of-al-cu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> A Review on the Studies on Mechanical and Tribological Properties of Aluminum and Magnesium Alloys Welded by Friction Stir Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukhdeep%20Singh%20Gill">Sukhdeep Singh Gill</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurbhinder%20Singh%20Brar"> Gurbhinder Singh Brar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, friction stir welding (FSW) has attracted the main attention of the concerned researcher especially in case of joining of nonferrous alloys like aluminum and magnesium due to its unmatchable properties with respect to other welding techniques. Friction stir welding is a solid state welding process which is most suitable for the welding of nonferrous alloys, especially aluminum and magnesium alloys. Aluminum and magnesium alloys are widely used for structural applications of all types of automobiles due to their superior mechanical properties with their low density. This paper deals with the critical review of the different properties (like tensile strength, microhardness, impact strength, corrosion resistance, and metallurgical investigation on SEM) obtained by the FSW of aluminum and magnesium alloys. After a critical review of the existing published literature on concerned topics, all the properties of welding joins are compared in the tabulated manner to optimize the selection of materials and FSW parameters according to mechanical and tribological properties. Different tool designs used for the FSW process are also thoroughly studied, and the influence of the design of the tool used in FSW on the different properties has also been incorporated in this paper. It has been observed from the existing published literature that FSW is the most effective and practical technique for joining the non ferrous alloys especially aluminum and magnesium alloys, and among the different FSW tools, left hand threaded tri-flute (LHTTF) tool is best for the welding of non ferrous alloys like aluminum and magnesium alloys which gives the superior mechanical properties to welding joint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum" title="aluminum">aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title=" friction stir welding"> friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20applications" title=" structural applications"> structural applications</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20design" title=" tool design"> tool design</a> </p> <a href="https://publications.waset.org/abstracts/108193/a-review-on-the-studies-on-mechanical-and-tribological-properties-of-aluminum-and-magnesium-alloys-welded-by-friction-stir-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Dissimilar Cu/Al Friction Stir Welding: Sensitivity of the Tool Offset</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tran%20Hung%20Tra">Tran Hung Tra</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Dinh%20Duong"> Hao Dinh Duong</a>, <a href="https://publications.waset.org/abstracts/search?q=Masakazu%20Okazaki"> Masakazu Okazaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper 1100 and aluminum 1050 plates with a thickness of 5.0 mm are butt-joint using friction stir welding. The tool offset is linearly varied along the welding path. Two welding regimes, using the same linear tool offset but in opposite directions, are applied for fabricating two Cu/Al plates. The material flow is dominated by both tool offset and offset history. The intermetallic compounds layer and interface morphology in each welded plate are formed in a different manner. As a result, the bonding strength and fracture behavior between two welded plates are significantly distinct. The role of interface morphology on fracture behavior is analyzed by the finite element method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu%2FAl%20dissimilar%20welding" title="Cu/Al dissimilar welding">Cu/Al dissimilar welding</a>, <a href="https://publications.waset.org/abstracts/search?q=offset%20history" title=" offset history"> offset history</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20morphology" title=" interface morphology"> interface morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=intermetallic%20compounds" title=" intermetallic compounds"> intermetallic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20and%20fracture" title=" strength and fracture"> strength and fracture</a> </p> <a href="https://publications.waset.org/abstracts/170912/dissimilar-cual-friction-stir-welding-sensitivity-of-the-tool-offset" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Intermetallic Phases in the Fusion Weld of CP Ti to Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juzar%20Vohra">Juzar Vohra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravish%20Malhotra"> Ravish Malhotra</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Pasang"> Tim Pasang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mana%20Azizi"> Mana Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Tao"> Yuan Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Masami%20Mizutani">Masami Mizutani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, dissimilar welding of titanium to stainless steels is reported. Laser Beam Welding (LBW) and Gas Tungsten Arc Welding (GTAW) were employed to join CPTi to SS304. The welds were examined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). FeTi, Ti2Cr and Fe2Ti dendrites are formed along with beta phase titanium matrix. The hardness values of these phases are high which makes them brittle and leading to cracking along the weld pool. However, it is believed that cracking, hence, fracturing of this weld joint is largely due to the difference in thermal properties of the two alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissimilar%20metals" title="dissimilar metals">dissimilar metals</a>, <a href="https://publications.waset.org/abstracts/search?q=fusion%20welding" title=" fusion welding"> fusion welding</a>, <a href="https://publications.waset.org/abstracts/search?q=intermetallics" title=" intermetallics"> intermetallics</a>, <a href="https://publications.waset.org/abstracts/search?q=brittle" title=" brittle"> brittle</a> </p> <a href="https://publications.waset.org/abstracts/35283/intermetallic-phases-in-the-fusion-weld-of-cp-ti-to-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Optimization of MAG Welding Process Parameters Using Taguchi Design Method on Dead Mild Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tadele%20Tesfaw">Tadele Tesfaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajit%20Pal%20Singh"> Ajit Pal Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abebaw%20Mekonnen%20Gezahegn"> Abebaw Mekonnen Gezahegn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Welding is a basic manufacturing process for making components or assemblies. Recent welding economics research has focused on developing the reliable machinery database to ensure optimum production. Research on welding of materials like steel is still critical and ongoing. Welding input parameters play a very significant role in determining the quality of a weld joint. The metal active gas (MAG) welding parameters are the most important factors affecting the quality, productivity and cost of welding in many industrial operations. The aim of this study is to investigate the optimization process parameters for metal active gas welding for 60x60x5mm dead mild steel plate work-piece using Taguchi method to formulate the statistical experimental design using semi-automatic welding machine. An experimental study was conducted at Bishoftu Automotive Industry, Bishoftu, Ethiopia. This study presents the influence of four welding parameters (control factors) like welding voltage (volt), welding current (ampere), wire speed (m/min.), and gas (CO2) flow rate (lit./min.) with three different levels for variability in the welding hardness. The objective functions have been chosen in relation to parameters of MAG welding i.e., welding hardness in final products. Nine experimental runs based on an L9 orthogonal array Taguchi method were performed. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to investigate the welding characteristics of dead mild steel plate and used in order to obtain optimum levels for every input parameter at 95% confidence level. The optimal parameters setting was found is welding voltage at 22 volts, welding current at 125 ampere, wire speed at 2.15 m/min and gas flow rate at 19 l/min by using the Taguchi experimental design method within the constraints of the production process. Finally, six conformations welding have been carried out to compare the existing values; the predicated values with the experimental values confirm its effectiveness in the analysis of welding hardness (quality) in final products. It is found that welding current has a major influence on the quality of welded joints. Experimental result for optimum setting gave a better hardness of welding condition than initial setting. This study is valuable for different material and thickness variation of welding plate for Ethiopian industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weld%20quality" title="Weld quality">Weld quality</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20active%20gas%20welding" title=" metal active gas welding"> metal active gas welding</a>, <a href="https://publications.waset.org/abstracts/search?q=dead%20mild%20steel%20plate" title=" dead mild steel plate"> dead mild steel plate</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20array" title=" orthogonal array"> orthogonal array</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis%20of%20variance" title=" analysis of variance"> analysis of variance</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a> </p> <a href="https://publications.waset.org/abstracts/22892/optimization-of-mag-welding-process-parameters-using-taguchi-design-method-on-dead-mild-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Investigation of Fusion Zone Microstructures in Plasma Arc Welding of Austenitic Stainless Steel (SS-304L) with Low Carbon Steel (A-36) with or without Filler Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shan-e-Fatima">Shan-e-Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Mushtaq%20Khan"> Mushtaq Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Imran%20Hussian"> Syed Imran Hussian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma arc welding technology is used for welding SS-304L with A-36. Two different optimize butt welded joints were produced by using austenitic filler alloy E-309L and with direct fusion at 45 A, 2mm/sec by keeping plasma gas flow rate at 0.5LPM. Microstructure analysis of the weld bead was carried out. The results reveal complex heterogeneous microstructure in austenitic base filler alloy sample where as full martensite was found in directly fused sample. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fusion%20zone%20microstructure" title="fusion zone microstructure">fusion zone microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20carbon%20steel" title=" low carbon steel"> low carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20arc%20welding" title=" plasma arc welding"> plasma arc welding</a> </p> <a href="https://publications.waset.org/abstracts/14603/investigation-of-fusion-zone-microstructures-in-plasma-arc-welding-of-austenitic-stainless-steel-ss-304l-with-low-carbon-steel-a-36-with-or-without-filler-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Concentration of D-Pinitol from Carob Kibble Using Submerged Fermentation by Saccharomyces cerevisiae </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thi%20Huong%20Vu">Thi Huong Vu</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Jayasena"> Vijay Jayasena</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongxiang%20Fang"> Zhongxiang Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Dykes"> Gary Dykes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> D-pinitol (3-O-methyl ether of D-chiro-inosito) has been known to have health benefits for diabetic patients. Carob kibble has received attention due to the presence of high value D-pinitol and polyphenol antioxidants. D-pinitol was concentrated from carob kibble using submerged fermentation with Saccharomyces cerevisiae. Total carbohydrates and D-pinitol were determined by the phenol-sulphuric acid method and HPLC, respectively. The content of D-pinitol increased from approximately 43 to 70 mg/g dry weight after fermentation. The yeast consumed over 70% of total carbohydrates in carob kibble without any negative effect on D-pinitol content. A range of substrate medium pH’s from 5.0 – 7.0 had no significant effect on the removal of carbohydrates and D-pinitol. This method may provide a practical solution for production of D-pinitol from carob in a cost effective manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carob%20kibble" title="carob kibble">carob kibble</a>, <a href="https://publications.waset.org/abstracts/search?q=d-pinitol" title=" d-pinitol"> d-pinitol</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharomyces%20cerevisiae" title=" saccharomyces cerevisiae"> saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=submerged%20fermentation" title=" submerged fermentation"> submerged fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20carbohydrates" title=" total carbohydrates"> total carbohydrates</a> </p> <a href="https://publications.waset.org/abstracts/54361/concentration-of-d-pinitol-from-carob-kibble-using-submerged-fermentation-by-saccharomyces-cerevisiae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Experimental and Numerical Investigation of Micro-Welding Process and Applications in Digital Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Al-Badani">Khaled Al-Badani</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Norbury"> Andrew Norbury</a>, <a href="https://publications.waset.org/abstracts/search?q=Essam%20Elmshawet"> Essam Elmshawet</a>, <a href="https://publications.waset.org/abstracts/search?q=Glynn%20Rotwell"> Glynn Rotwell</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Jenkinson"> Ian Jenkinson </a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Ren"> James Ren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro welding procedures are widely used for joining materials, developing duplex components or functional surfaces, through various methods such as Micro Discharge Welding or Spot Welding process, which can be found in the engineering, aerospace, automotive, biochemical, biomedical and numerous other industries. The relationship between the material properties, structure and processing is very important to improve the structural integrity and the final performance of the welded joints. This includes controlling the shape and the size of the welding nugget, state of the heat affected zone, residual stress, etc. Nowadays, modern high volume productions require the welding of much versatile shapes/sizes and material systems that are suitable for various applications. Hence, an improved understanding of the micro welding process and the digital tools, which are based on computational numerical modelling linking key welding parameters, dimensional attributes and functional performance of the weldment, would directly benefit the industry in developing products that meet current and future market demands. This paper will introduce recent work on developing an integrated experimental and numerical modelling code for micro welding techniques. This includes similar and dissimilar materials for both ferrous and non-ferrous metals, at different scales. The paper will also produce a comparative study, concerning the differences between the micro discharge welding process and the spot welding technique, in regards to the size effect of the welding zone and the changes in the material structure. Numerical modelling method for the micro welding processes and its effects on the material properties, during melting and cooling progression at different scales, will also be presented. Finally, the applications of the integrated numerical modelling and the material development for the digital manufacturing of welding, is discussed with references to typical application cases such as sensors (thermocouples), energy (heat exchanger) and automotive structures (duplex steel structures). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20modelling" title="computer modelling">computer modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=droplet%20formation" title=" droplet formation"> droplet formation</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20distortion" title=" material distortion"> material distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20forming" title=" materials forming"> materials forming</a>, <a href="https://publications.waset.org/abstracts/search?q=welding" title=" welding"> welding</a> </p> <a href="https://publications.waset.org/abstracts/53285/experimental-and-numerical-investigation-of-micro-welding-process-and-applications-in-digital-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Study the Impact of Welding Poles Type on the Tensile Strength Steel of Low Alloys and High Resistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulmagid%20A.%20Khattabi">Abdulmagid A. Khattabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Fatah%20M.%20Emhamed"> Abdul Fatah M. Emhamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steel alloy Introduced after becoming carbon-steel does not meet the requirements of engineering industry; and it cannot be obtained tensile strength from carbon-steel higher than (700MPa), the low alloy steel enters in a lot of heavy engineering equipment parts, molds, agricultural equipment and other industry. In addition, that may be exposed to in-service failure, which may require returned to work, to do the repairs or maintenance by one of the welding methods available. The ability of steel weld determined through palpation of the cracks, which can reduce by many ways. These ways are often expensive and difficult to implement, perhaps the control to choose the type of electrode welding user is one of the easiest and least expensive applications. It has been welding the steel low alloys high resistance by manual metal arc (MMA), and by using a set of welding electrodes which varying in chemical composition and in their prices as well and test their effect on tensile strength. Results showed that using the poles of welding, which have a high proportion of iron powder and low hydrogen. The Tensile resistance is (484MPa) and the weld joint efficiency was (56.9%), but when (OK 47.04) electrode was used the tensile strength increased to (720MPa) and the weld joint efficiency to (84.7%). Using the cheapest electrode (OK 45.00) the weld joint efficiency did not exceed (24.2%), but when using the most expensive electrode (OK 91.28) the weld joint efficiency is (38.1%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20low%20alloys%20high%20resistance" title="steel low alloys high resistance">steel low alloys high resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodes%20welding" title=" electrodes welding"> electrodes welding</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a> </p> <a href="https://publications.waset.org/abstracts/43686/study-the-impact-of-welding-poles-type-on-the-tensile-strength-steel-of-low-alloys-and-high-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Temperature Gradient In Weld Zones During Friction Stir Process Using Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armansyah">Armansyah</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20P.%20Almanar"> I. P. Almanar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saiful%20Bahari%20Shaari"> M. Saiful Bahari Shaari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shamil%20Jaffarullah"> M. Shamil Jaffarullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finite element approach have been used via three-dimensional models by using Altair Hyper Work, a commercially available software, to describe heat gradients along the welding zones (axially and coronaly) in Friction Stir Welding (FSW). Transient thermal finite element analyses are performed in AA 6061-T6 Aluminum Alloy to obtain temperature distribution in the welded aluminum plates during welding operation. Heat input from tool shoulder and tool pin are considered in the model. A moving heat source with a heat distribution simulating the heat generated by frictions between tool shoulder and work piece is used in the analysis. The developed model was then used to show the effect of various input parameters such as total rate of welding speed and rotational speed on temperature distribution in the work piece. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frictions%20Stir%20Welding%20%28FSW%29" title="Frictions Stir Welding (FSW)">Frictions Stir Welding (FSW)</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20distribution" title=" temperature distribution"> temperature distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Method%20%28FEM%29" title=" Finite Element Method (FEM)"> Finite Element Method (FEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=altair%20hyperwork" title=" altair hyperwork"> altair hyperwork</a> </p> <a href="https://publications.waset.org/abstracts/21638/temperature-gradient-in-weld-zones-during-friction-stir-process-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Increasing Productivity through Lean Manufacturing Principles and Tools: A Successful Rail Welding Plant Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Faria">T. A. Faria</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20C.%20Toniolo"> C. C. Toniolo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20F.%20Ribeiro"> L. F. Ribeiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to satisfy the costumer’s needs, many sectors of industry and services has been spending major effort to make its processes more efficient. Facing a situation, when its production cannot cover the demand, the traditional way to achieve the production required involves, mostly, adding shifts, workforce, or even more machines. This paper narrates how lean manufacturing supported a dramatic increase of productivity at a rail welding plant in Brazil in order to meet the demand for the next years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=productivity" title="productivity">productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20manufacturing" title=" lean manufacturing"> lean manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20welding" title=" rail welding"> rail welding</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20stream%20mapping" title=" value stream mapping"> value stream mapping</a> </p> <a href="https://publications.waset.org/abstracts/54348/increasing-productivity-through-lean-manufacturing-principles-and-tools-a-successful-rail-welding-plant-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Carbon Dioxide Removal from Off Gases in a Self-Priming Submerged Venturi Scrubber </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manisha%20Bal">Manisha Bal</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Verma"> Amit Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20C.%20Meikap"> B. C. Meikap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon dioxide (CO₂) is the most abundant waste produced by human activities. It is estimated to be one of the major contributors of greenhouse effect and also considered as a major air pollutant formed by burning of fossil fuels. The main sources of emissions are flue gas from thermal power plants and process industries. It is also a contributor of acid rain. Its exposure through inhalation can lead to health risks. Therefore, control of CO₂ emission in the environment is very necessary. The main focus of this study is on the removal of carbon dioxide from off gases using a self-priming venturi scrubber in submerged conditions using sodium hydroxide as the scrubbing liquid. A self-priming submerged venturi scrubber is an efficient device to remove gaseous pollutants. In submerged condition, venturi scrubber remains submerged in the liquid tank and the liquid enters at the throat section of venturi scrubber due to the pressure difference which includes the hydrostatic pressure of the liquid and static pressure of the gas. The inlet polluted air stream enters through converging section which moves at very high velocity in the throat section and atomizes the liquid droplets. This leads to absorption of CO₂ from the off gases in scrubbing liquid which resulted in removal of CO₂ gas from the off gases. Detailed investigation on the scrubbing of carbon dioxide has been done in this literature. Experiments were conducted at different throat gas velocities, liquid levels in outer cylinder and CO₂ inlet concentrations to study the carbon dioxide removal efficiency. Experimental results give more than 95% removal efficiency of CO₂ in the self priming venturi scrubber which can meet the environmental emission limit of CO₂ to save the human life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title="carbon dioxide">carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=scrubbing" title=" scrubbing"> scrubbing</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20control" title=" pollution control"> pollution control</a>, <a href="https://publications.waset.org/abstracts/search?q=self-priming%20venturi%20scrubber" title=" self-priming venturi scrubber"> self-priming venturi scrubber</a> </p> <a href="https://publications.waset.org/abstracts/100123/carbon-dioxide-removal-from-off-gases-in-a-self-priming-submerged-venturi-scrubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Titanium Alloys for Cryogenic Gas Bottle Applications: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhanu%20Pant">Bhanu Pant</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20H.%20Upadhyay"> Sanjay H. Upadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium alloys, owing to their high specific strength coupled with excellent resistance to corrosion in many severe environments, find extensive usage in the aerospace sector. Alpha and beta lean Titanium alloys have an additional characteristic of exhibiting high toughness with an NTS/ UTS ratio greater than one down to liquid oxygen and liquid helium temperatures. The cryogenic stage of high-performance rockets utilizes cryo-fluid submerged pressurizing tanks to improve volume to mass performance factor. A superior volume-to-mass ratio is achieved for LH2-submerged pressurizing tanks as compared to those submerged in LOX. Such high-efficiency tanks for LH2 submerged application necessitate the use of difficult to process alpha type Ti5Al2.5Sn-ELI alloy, which requires close control of process parameters to develop the tanks. In the present paper, a comparison of this alpha-type cryogenic Titanium alloy has been brought out with conventional alpha-beta Ti6Al4V-ELI alloy, which is usable up to LOX temperatures. Specific challenges faced during the development of these cryogenic pressurizing tanks for a launch vehicle based on the author's experience are included in the paper on the comparatively lesser-studied alpha Ti5Al2.5Sn-ELI alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20tanks" title="cryogenic tanks">cryogenic tanks</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20Alloys" title=" titanium Alloys"> titanium Alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=NTS%2FUTS%20ratio" title=" NTS/UTS ratio"> NTS/UTS ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha%20and%20alpha-beta%20ELI%20alloys" title=" alpha and alpha-beta ELI alloys"> alpha and alpha-beta ELI alloys</a> </p> <a href="https://publications.waset.org/abstracts/184964/titanium-alloys-for-cryogenic-gas-bottle-applications-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Developing an Empirical Relationship to Predict Tensile Strength and Micro Hardness of Friction Stir Welded Aluminium Alloy Joints </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurmeet%20Singh%20Cheema">Gurmeet Singh Cheema</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurjinder%20Singh"> Gurjinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amardeep%20Singh%20Kang"> Amardeep Singh Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminium alloy 6061 is a medium to high strength heat-treatable alloy which has very good corrosion resistance and very good weldability. Friction Stir Welding was developed and this technique has attracted considerable interest from the aerospace and automotive industries since it is able to produce defect free joints particularly for light metals i.e aluminum alloy and magnesium alloy. In the friction stir welding process, welding parameters such as tool rotational speed, welding speed and tool shoulder diameter play a major role in deciding the weld quality. In this research work, an attempt has been made to understand the effect of tool rotational speed, welding speed and tool shoulder diameter on friction stir welded AA6061 aluminium alloy joints. Statistical tool such as central composite design is used to develop the mathematical relationships. The mathematical model was developed to predict mechanical properties of friction stir welded aluminium alloy joints at the 95% confidence level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20alloy" title="aluminium alloy">aluminium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title=" friction stir welding"> friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20composite%20design" title=" central composite design"> central composite design</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20relationship" title=" mathematical relationship"> mathematical relationship</a> </p> <a href="https://publications.waset.org/abstracts/52425/developing-an-empirical-relationship-to-predict-tensile-strength-and-micro-hardness-of-friction-stir-welded-aluminium-alloy-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Effect of Ultrasonic Vibration on the Dilution, Mechanical, and Metallurgical Properties in Cladding of 308 on Mild Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Singh%20Sandhu">Sandeep Singh Sandhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Karanvir%20Singh%20Ghuman"> Karanvir Singh Ghuman</a>, <a href="https://publications.waset.org/abstracts/search?q=Parminder%20Singh%20Saini">Parminder Singh Saini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present investigation was to study the effect of ultrasonic vibration on the cladding of the AISI 308 on the mild steel plates using the shielded metal arc welding (SMAW). Ultrasonic vibrations were applied to molten austenitic stainless steel during the welding process. Due to acoustically induced cavitations and streaming there is a complete mixture of the clad metal and the base metal. It was revealed that cladding of AISI 308 over mild steel along with ultrasonic vibrations result in uniform and finer grain structures. The effect of the vibration on the dilution, mechanical properties and metallographic studies were also studied. It was found that the welding done using the ultrasonic vibration has the less dilution and CVN value for the vibrated sample was also high. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surfacing" title="surfacing">surfacing</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20vibrations" title=" ultrasonic vibrations"> ultrasonic vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=shielded%20metal%20arc%20welding" title=" shielded metal arc welding"> shielded metal arc welding</a> </p> <a href="https://publications.waset.org/abstracts/33132/effect-of-ultrasonic-vibration-on-the-dilution-mechanical-and-metallurgical-properties-in-cladding-of-308-on-mild-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Effect of Hydraulic Residence Time on Aromatic Petrochemical Wastewater Treatment Using Pilot-Scale Submerged Membrane Bioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Yousefi">Fatemeh Yousefi</a>, <a href="https://publications.waset.org/abstracts/search?q=Narges%20Fallah"> Narges Fallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Kian"> Mohsen Kian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrzad%20Pakzadeh"> Mehrzad Pakzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The petrochemical complex releases wastewater, which is rich in organic pollutants and could not be treated easily. Treatment of the wastewater from a petrochemical industry has been investigated using a submerged membrane bioreactor (MBR). For this purpose, a pilot-scale submerged MBR with a flat-sheet ultrafiltration membrane was used for treatment of petrochemical wastewater according to Bandar Imam Petrochemical complex (BIPC) Aromatic plant. The testing system ran continuously (24-h) over 6 months. Trials on different membrane fluxes and hydraulic retention time (HRT) were conducted and the performance evaluation of the system was done. During the 167 days operation of the MBR at hydraulic retention time (HRT) of 18, 12, 6, and 3 and at an infinite sludge retention time (SRT), the MBR effluent quality consistently met the requirement for discharge to the environment. A fluxes of 6.51 and 13.02 L m-2 h-1 (LMH) was sustainable and HRT of 6 and 12 h corresponding to these fluxes were applicable. Membrane permeability could be fully recovered after cleaning. In addition, there was no foaming issue in the process. It was concluded that it was feasible to treat the wastewater using submersed MBR technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor%20%28MBR%29" title="membrane bioreactor (MBR)">membrane bioreactor (MBR)</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemical%20wastewater" title=" petrochemical wastewater"> petrochemical wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%20removal" title=" COD removal"> COD removal</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment" title=" biological treatment"> biological treatment</a> </p> <a href="https://publications.waset.org/abstracts/21056/effect-of-hydraulic-residence-time-on-aromatic-petrochemical-wastewater-treatment-using-pilot-scale-submerged-membrane-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Advancements in Laser Welding Process: A Comprehensive Model for Predictive Geometrical, Metallurgical, and Mechanical Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Fatemeh%20Nabavi">Seyedeh Fatemeh Nabavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Dalir"> Hamid Dalir</a>, <a href="https://publications.waset.org/abstracts/search?q=Anooshiravan%20Farshidianfar"> Anooshiravan Farshidianfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser welding is pivotal in modern manufacturing, offering unmatched precision, speed, and efficiency. Its versatility in minimizing heat-affected zones, seamlessly joining dissimilar materials, and working with various metals makes it indispensable for crafting intricate automotive components. Integration into automated systems ensures consistent delivery of high-quality welds, thereby enhancing overall production efficiency. Noteworthy are the safety benefits of laser welding, including reduced fumes and consumable materials, which align with industry standards and environmental sustainability goals. As the automotive sector increasingly demands advanced materials and stringent safety and quality standards, laser welding emerges as a cornerstone technology. A comprehensive model encompassing thermal dynamic and characteristics models accurately predicts geometrical, metallurgical, and mechanical aspects of the laser beam welding process. Notably, Model 2 showcases exceptional accuracy, achieving remarkably low error rates in predicting primary and secondary dendrite arm spacing (PDAS and SDAS). These findings underscore the model's reliability and effectiveness, providing invaluable insights and predictive capabilities crucial for optimizing welding processes and ensuring superior productivity, efficiency, and quality in the automotive industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20welding%20process" title="laser welding process">laser welding process</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrical%20characteristics" title=" geometrical characteristics"> geometrical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20characteristics" title=" mechanical characteristics"> mechanical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20characteristics" title=" metallurgical characteristics"> metallurgical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=comprehensive%20model" title=" comprehensive model"> comprehensive model</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20dynamic" title=" thermal dynamic"> thermal dynamic</a> </p> <a href="https://publications.waset.org/abstracts/182985/advancements-in-laser-welding-process-a-comprehensive-model-for-predictive-geometrical-metallurgical-and-mechanical-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> The Development of Monk’s Food Bowl Production on Occupational Health Safety and Environment at Work for the Strength of Rattanakosin Local Wisdom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thammarak%20Srimarut">Thammarak Srimarut</a>, <a href="https://publications.waset.org/abstracts/search?q=Witthaya%20Mekhum"> Witthaya Mekhum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study analysed and developed a model for monk’s food bowl production on occupational health safety and environment at work for the encouragement of Rattanakosin local wisdom at Banbart Community. The process of blowpipe welding was necessary to produce the bowl which was very dangerous or 93.59% risk. After the employment of new sitting posture, the work risk was lower 48.41% or moderate risk. When considering in details, it was found that: 1) the traditional sitting posture could create work risk at 88.89% while the new sitting posture could create the work risk at 58.86%. 2) About the environmental pollution, with the traditional sitting posture, workers exposed to the polluted fume from welding at 61.11% while with the new sitting posture workers exposed to the polluted fume from welding at 40.47%. 3) On accidental risk, with the traditional sitting posture, workers exposed to the accident from welding at 94.44% while with the new sitting posture workers exposed to the accident from welding at 62.54%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=occupational%20health%20safety" title="occupational health safety">occupational health safety</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20at%20work" title=" environment at work"> environment at work</a>, <a href="https://publications.waset.org/abstracts/search?q=Monk%E2%80%99s%20food%20bowl" title=" Monk’s food bowl"> Monk’s food bowl</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20intelligence" title=" machine intelligence"> machine intelligence</a> </p> <a href="https://publications.waset.org/abstracts/6679/the-development-of-monks-food-bowl-production-on-occupational-health-safety-and-environment-at-work-for-the-strength-of-rattanakosin-local-wisdom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> The Joint Properties for Friction Stir Welding of Aluminium Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahbdelfattah%20M.%20Khourshid">Ahbdelfattah M. Khourshid</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Elabeidi"> T. Elabeidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction Stir Welding (FSW), a solid state joining technique, is widely being used for joining Al alloys for aerospace, marine automotive and many other applications of commercial importance. FSW were carried out using a vertical milling machine on Al 5083 alloy pipe. These pipe sections are relatively small in diameter, 5mm, and relatively thin walled, 2mm. In this study, 5083 aluminum alloy pipe were welded as similar alloy joints using (FSW) process in order to investigate mechanical and microstructural properties .rotation speed 1400 r.p.m and weld speed 10,40,70 mm/min. In order to investigate the effect of welding speeds on mechanical properties, metallographic and mechanical tests were carried out on the welded areas. Vickers hardness profile and tensile tests of the joints as a metallurgical investigation, Optic Microscopy and Scanning Electron Microscopy (SEM) were used for base and weld zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding%20%28FSW%29" title="friction stir welding (FSW)">friction stir welding (FSW)</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%20alloys" title=" Al alloys"> Al alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure "> microstructure </a> </p> <a href="https://publications.waset.org/abstracts/16722/the-joint-properties-for-friction-stir-welding-of-aluminium-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Removal of Gaseous Pollutant from the Flue Gas in a Submerged Self-Priming Venturi Scrubber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manisha%20Bal">Manisha Bal</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20C.%20Meikap"> B. C. Meikap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen chloride is the most common acid gas emitted by the industries. HCl gas is listed as Title III hazardous air pollutant. It causes severe threat to the human health as well as environment. So, removal of HCl from flue gases is very imperative. In the present study, submerged self-priming venturi scrubber is chosen to remove the HCl gas with water as a scrubbing liquid. Venturi scrubber is the most popular device for the removal of gaseous pollutants. Main mechanism behind the venturi scrubber is the polluted gas stream enters at converging section which accelerated to maximum velocity at throat section. A very interesting thing in case of submerged condition, venturi scrubber is submerged inside the liquid tank and liquid is entered at throat section because of suction created due to large pressure drop generated at the throat section. Maximized throat gas velocity atomizes the entered liquid into number of tiny droplets. Gaseous pollutant HCl is absorbed from gas to liquid droplets inside the venturi scrubber due to interaction between the gas and water. Experiments were conducted at different throat gas velocity, water level and inlet concentration of HCl to enhance the HCl removal efficiency. The effect of throat gas velocity, inlet concentration of HCl, and water level on removal efficiency of venturi scrubber has been evaluated. Present system yielded very high removal efficiency for the scrubbing of HCl gas which is more than 90%. It is also concluded that the removal efficiency of HCl increases with increasing throat gas velocity, inlet HCl concentration, and water level height. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=HCl%20scrubbing" title=" HCl scrubbing"> HCl scrubbing</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=self-priming%20venturi%20scrubber" title=" self-priming venturi scrubber"> self-priming venturi scrubber</a> </p> <a href="https://publications.waset.org/abstracts/91400/removal-of-gaseous-pollutant-from-the-flue-gas-in-a-submerged-self-priming-venturi-scrubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Optimization of Friction Stir Spot Welding Process Parameters for Joining 6061 Aluminum Alloy Using Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20Tashkandi">Mohammed A. Tashkandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jawdat%20A.%20Al-Jarrah"> Jawdat A. Al-Jarrah</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Ibrahim"> Masoud Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the shear strength of the joints produced by friction stir spot welding process (FSSW). FSSW parameters such as tool rotational speed, plunge depth, shoulder diameter of the welding tool and dwell time play the major role in determining the shear strength of the joints. The effect of these four parameters on FSSW process as well as the shear strength of the welded joints was studied via five levels of each parameter. Taguchi method was used to minimize the number of experiments required to determine the fracture load of the friction stir spot-welded joints by incorporating independently controllable FSSW parameters. Taguchi analysis was applied to optimize the FSSW parameters to attain the maximum shear strength of the spot weld for this type of aluminum alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Friction%20Stir%20Spot%20Welding" title="Friction Stir Spot Welding">Friction Stir Spot Welding</a>, <a href="https://publications.waset.org/abstracts/search?q=Al6061%20alloy" title=" Al6061 alloy"> Al6061 alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=Shear%20Strength" title=" Shear Strength"> Shear Strength</a>, <a href="https://publications.waset.org/abstracts/search?q=FSSW%20process%20parameters" title=" FSSW process parameters "> FSSW process parameters </a> </p> <a href="https://publications.waset.org/abstracts/21231/optimization-of-friction-stir-spot-welding-process-parameters-for-joining-6061-aluminum-alloy-using-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=submerged%20arc%20welding&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=submerged%20arc%20welding&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=submerged%20arc%20welding&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10