CINXE.COM

Search results for: imaging

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: imaging</title> <meta name="description" content="Search results for: imaging"> <meta name="keywords" content="imaging"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="imaging" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="imaging"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1286</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: imaging</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1256</span> The Functional Magnetic Resonance Imaging and the Consumer Behaviour: Reviewing Recent Research</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mikel%20Alonso%20L%C3%B3pez">Mikel Alonso López</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the first decade of the twenty-first century, advanced imaging techniques began to be applied for neuroscience research. The Functional Magnetic Resonance Imaging (fMRI) is one of the most important and most used research techniques for the investigation of emotions, because of its ease to observe the brain areas that oxygenate when performing certain tasks. In this research, we make a review about the main research carried out on the influence of the emotions in the decision-making process that is exposed by using the fMRI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title="decision making">decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=emotions" title=" emotions"> emotions</a>, <a href="https://publications.waset.org/abstracts/search?q=fMRI" title=" fMRI"> fMRI</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20behaviour" title=" consumer behaviour"> consumer behaviour</a> </p> <a href="https://publications.waset.org/abstracts/48203/the-functional-magnetic-resonance-imaging-and-the-consumer-behaviour-reviewing-recent-research" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1255</span> Durable Phantom Production Identical to Breast Tissue for Use in Breast Cancer Detection Research Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hayrettin%20Eroglu">Hayrettin Eroglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Adem%20Kara"> Adem Kara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently there has been significant attention given to imaging of the biological tissues via microwave imaging techniques. In this study, a phantom for the test and calibration of Microwave imaging used in detecting unhealthy breast structure or tumors was produced by using sol gel method. The liquid and gel phantoms being used nowadays are not durable due to evaporation and their organic ingredients, hence a new design was proposed. This phantom was fabricated from materials that were widely available (water, salt, gelatin, and glycerol) and was easy to make. This phantom was aimed to be better from the ones already proposed in the literature in terms of its durability and stability. S Parameters of phantom was measured with 1-18 GHz Probe Kit and permittivity was calculated via Debye method in “85070” commercial software. One, three, and five-week measurements were taken for this phantom. Finally, it was verified that measurement results were very close to the real biological tissue measurement results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phantom" title="phantom">phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20tissue" title=" breast tissue"> breast tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20imaging" title=" microwave imaging"> microwave imaging</a> </p> <a href="https://publications.waset.org/abstracts/12850/durable-phantom-production-identical-to-breast-tissue-for-use-in-breast-cancer-detection-research-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1254</span> Influence of Optical Fluence Distribution on Photoacoustic Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20K.%20Metwally">Mohamed K. Metwally</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20H.%20El-Gohary"> Sherif H. El-Gohary</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung%20Min%20Byun"> Kyung Min Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Moo%20Han"> Seung Moo Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20Yeol%20Lee"> Soo Yeol Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Hyoung%20Cho"> Min Hyoung Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Gon%20Khang"> Gon Khang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinsung%20Cho"> Jinsung Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Seong%20Kim"> Tae-Seong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithms for PAI assume uniform fluence within an imaging object. However, it is known that optical fluence distribution within the object is non-uniform. This could affect the reconstruction of PA images. In this study, we have investigated the influence of optical fluence distribution on PA back-propagation imaging using finite element method. The uniform fluence was simulated as a triangular waveform within the object of interest. The non-uniform fluence distribution was estimated by solving light propagation within a tissue model via Monte Carlo method. The results show that the PA signal in the case of non-uniform fluence is wider than the uniform case by 23%. The frequency spectrum of the PA signal due to the non-uniform fluence has missed some high frequency components in comparison to the uniform case. Consequently, the reconstructed image with the non-uniform fluence exhibits a strong smoothing effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=fluence%20distribution" title=" fluence distribution"> fluence distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20method" title=" Monte Carlo method"> Monte Carlo method</a>, <a href="https://publications.waset.org/abstracts/search?q=photoacoustic%20imaging" title=" photoacoustic imaging"> photoacoustic imaging</a> </p> <a href="https://publications.waset.org/abstracts/12607/influence-of-optical-fluence-distribution-on-photoacoustic-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1253</span> Detecting the Blood of Femoral and Carotid Artery of Swine Using Photoacoustic Tomography in-vivo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Lee">M. Y. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Park"> S. H. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Yu"> S. M. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Jo"> H. S. Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Song"> C. G. Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoacoustic imaging is the imaging technology that combines the optical imaging with ultrasound. It also provides the high contrast and resolution due to optical and ultrasound imaging, respectively. For these reasons, many studies take experiment in order to apply this method for many diagnoses. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer. In this study, we conduct the experiment using swine and detect the blood of carotid artery and femoral artery. We measured the blood of femoral and carotid artery of swine and reconstructed the image using 950nm due to the HbO₂ absorption coefficient. The photoacoustic image is overlaid with ultrasound image in order to match the position. In blood of artery, major composition of blood is HbO₂. In this result, we can measure the blood of artery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photoacoustic%20tomography" title="photoacoustic tomography">photoacoustic tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=swine%20artery" title=" swine artery"> swine artery</a>, <a href="https://publications.waset.org/abstracts/search?q=carotid%20artery" title=" carotid artery"> carotid artery</a>, <a href="https://publications.waset.org/abstracts/search?q=femoral%20artery" title=" femoral artery"> femoral artery</a> </p> <a href="https://publications.waset.org/abstracts/92983/detecting-the-blood-of-femoral-and-carotid-artery-of-swine-using-photoacoustic-tomography-in-vivo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1252</span> The Development Status of Terahertz Wave and Its Prospect in Wireless Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiquan%20Liao">Yiquan Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Quanhong%20Jiang"> Quanhong Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since terahertz was observed by German scientists, we have obtained terahertz through different generation technologies of broadband and narrowband. Then, with the development of semiconductor and other technologies, the imaging technology of terahertz has become increasingly perfect. From the earliest application of nondestructive testing in aviation to the present application of information transmission and human safety detection, the role of terahertz will shine in various fields. The weapons produced by terahertz were epoch-making, which is a crushing deterrent against technologically backward countries. At the same time, terahertz technology in the fields of imaging, medical and livelihood, communication and communication are for the well-being of the country and the people. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terahertz" title="terahertz">terahertz</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20treatment" title=" medical treatment"> medical treatment</a> </p> <a href="https://publications.waset.org/abstracts/166653/the-development-status-of-terahertz-wave-and-its-prospect-in-wireless-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1251</span> Multi-Modality Imaging of Aggressive Hoof Wall Neoplasia in Two Horses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hannah%20Nagel">Hannah Nagel</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayley%20Lang"> Hayley Lang</a>, <a href="https://publications.waset.org/abstracts/search?q=Albert%20Sole%20Guitart"> Albert Sole Guitart</a>, <a href="https://publications.waset.org/abstracts/search?q=Natasha%20Lean"> Natasha Lean</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Allavena"> Rachel Allavena</a>, <a href="https://publications.waset.org/abstracts/search?q=Cleide%20Sprohnie-Barrera"> Cleide Sprohnie-Barrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Young"> Alex Young</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aggressive neoplasia of the hoof is a rare occurrence in horses and has been only sporadically described in the literature. In the few cases reported intra-hoof wall, aggressive neoplasia has been documented radiographically and has been described with variable imaging characteristics. These include a well-defined osteolytic area, a smoothly outlined semi-circular defect, an extensive draining tract beneath the hoof wall, as well as an additional large area of osteolysis or an extensive central lytic region. A 20-year-old Quarterhorse gelding and a 10-year-old Thoroughbred gelding were both presented for chronic reoccurring lameness in the left forelimb and left hindlimb, respectively. Both of the cases displayed radiographic lesions that have been previously described but also displayed osteoproliferative expansile regions of additional bone formation. Changes associated with hoof neoplasia are often non-specific due to the nature and capacity of bone to react to pathological insult, which is either to proliferate or be absorbed. Both cases depict and describe imaging findings seen on radiography, contrast radiography, computed tomography, and magnetic resonance imaging before reaching a histological diagnosis of malignant melanoma and squamous cell carcinoma. Although aggressive hoof wall neoplasia is rare, there are some imaging features which may raise our index of suspicion for an aggressive hoof wall lesion. This case report documents two horses with similar imaging findings who underwent multiple assessments, surgical interventions, and imaging modalities with a final diagnosis of malignant neoplasia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=horse" title="horse">horse</a>, <a href="https://publications.waset.org/abstracts/search?q=hoof" title=" hoof"> hoof</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=radiography" title=" radiography"> radiography</a>, <a href="https://publications.waset.org/abstracts/search?q=neoplasia" title=" neoplasia"> neoplasia</a> </p> <a href="https://publications.waset.org/abstracts/134173/multi-modality-imaging-of-aggressive-hoof-wall-neoplasia-in-two-horses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1250</span> Biodistribution Study of 68GA-PDTMP as a New Bone Pet Imaging Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Tadayon">N. Tadayon</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ramazani"> A. Ramazani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Jalilian"> A. R. Jalilian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, 68Ga-PDTMP was prepared as a new agent for bone imaging. 68Ga was obtained from SnO2 based generator. A certain volume of the PDTMP solution was added to the vial containing 68GaCl3 and the pH of the mixture was adjusted to 4 using HEPES. Radiochemical purity of the radiolabelled complex was checked by thin layer chromatography. Biodistribution of this new agent was assessed in rats after intravenously injection of the complex. For this purpose, the rats were killed at specified times after injection and the weight and activity of each organ was measured. Injected dose per gram was calculated by dividing the activity of each organ to the total injected activity and the mass of each organ. As expected the most of the activity was accumulated in the bone tissue. The radiolabelled compound was extracted from blood very fast. This new bone-seeking complex can be considered as a good candidate of PET-based radiopharmaceutical for imaging of bone metastases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodistribution" title="biodistribution">biodistribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Ga-68" title=" Ga-68"> Ga-68</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=PDTMP" title=" PDTMP"> PDTMP</a> </p> <a href="https://publications.waset.org/abstracts/38752/biodistribution-study-of-68ga-pdtmp-as-a-new-bone-pet-imaging-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1249</span> Determining Water Infiltration Zone Using 2-D Resistivity Imaging Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azim%20Hilmy%20Mohamad%20Yusof">Azim Hilmy Mohamad Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Iqbal%20Mubarak%20Faharul%20Azman"> Muhamad Iqbal Mubarak Faharul Azman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Azwin%20Ismail"> Nur Azwin Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Noer%20El%20Hidayah%20Ismail"> Noer El Hidayah Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infiltration is the process by which precipitation or water soaks into subsurface soils and moves into rocks through cracks and pore spaces. This paper explains how the water infiltration will be identified using 2-D resistivity imaging. Padang Minden, in Universiti Sains Malaysia, Penang has been chosen as the survey area during this study. The study area consists of microcline granite with grain size of medium to coarse. 2-D Resistivity Imaging survey is used to detect subsurface layer for many years by making measurements on the ground surface. The result shows that resistivity value of 0.015 Ωm - 10 Ωm represent the salt water intrusion zone while the resistivity value of 11 Ωm - 100 Ωm is suggested as the boundary zone between the salt water intrusion zone and low saturated zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2-D%20resistivity%20imaging" title="2-D resistivity imaging">2-D resistivity imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=microcline%20granite" title=" microcline granite"> microcline granite</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20water%20intrusion" title=" salt water intrusion"> salt water intrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20infiltration" title=" water infiltration"> water infiltration</a> </p> <a href="https://publications.waset.org/abstracts/62800/determining-water-infiltration-zone-using-2-d-resistivity-imaging-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1248</span> Comparison of Vessel Detection in Standard vs Ultra-WideField Retinal Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maher%20un%20Nisa">Maher un Nisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahsan%20Khawaja"> Ahsan Khawaja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Retinal imaging with Ultra-WideField (UWF) view technology has opened up new avenues in the field of retinal pathology detection. Recent developments in retinal imaging such as Optos California Imaging Device helps in acquiring high resolution images of the retina to help the Ophthalmologists in diagnosing and analyzing eye related pathologies more accurately. This paper investigates the acquired retinal details by comparing vessel detection in standard 450 color fundus images with the state of the art 2000 UWF retinal images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20fundus" title="color fundus">color fundus</a>, <a href="https://publications.waset.org/abstracts/search?q=retinal%20images" title=" retinal images"> retinal images</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-widefield" title=" ultra-widefield"> ultra-widefield</a>, <a href="https://publications.waset.org/abstracts/search?q=vessel%20detection" title=" vessel detection"> vessel detection</a> </p> <a href="https://publications.waset.org/abstracts/33520/comparison-of-vessel-detection-in-standard-vs-ultra-widefield-retinal-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1247</span> In Situ Volume Imaging of Cleared Mice Seminiferous Tubules Opens New Window to Study Spermatogenic Process in 3D</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Ded">Lukas Ded</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studying the tissue structure and histogenesis in the natural, 3D context is challenging but highly beneficial process. Contrary to classical approach of the physical tissue sectioning and subsequent imaging, it enables to study the relationships of individual cellular and histological structures in their native context. Recent developments in the tissue clearing approaches and microscopic volume imaging/data processing enable the application of these methods also in the areas of developmental and reproductive biology. Here, using the CLARITY tissue procedure and 3D confocal volume imaging we optimized the protocol for clearing, staining and imaging of the mice seminiferous tubules isolated from the testes without cardiac perfusion procedure. Our approach enables the high magnification and fine resolution axial imaging of the whole diameter of the seminiferous tubules with possible unlimited lateral length imaging. Hence, the large continuous pieces of the seminiferous tubule can be scanned and digitally reconstructed for the study of the single tubule seminiferous stages using nuclear dyes. Furthermore, the application of the antibodies and various molecular dyes can be used for molecular labeling of individual cellular and subcellular structures and resulting 3D images can highly increase our understanding of the spatiotemporal aspects of the seminiferous tubules development and sperm ultrastructure formation. Finally, our newly developed algorithms for 3D data processing enable the massive parallel processing of the large amount of individual cell and tissue fluorescent signatures and building the robust spermatogenic models under physiological and pathological conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CLARITY" title="CLARITY">CLARITY</a>, <a href="https://publications.waset.org/abstracts/search?q=spermatogenesis" title=" spermatogenesis"> spermatogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=testis" title=" testis"> testis</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20clearing" title=" tissue clearing"> tissue clearing</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20imaging" title=" volume imaging"> volume imaging</a> </p> <a href="https://publications.waset.org/abstracts/134202/in-situ-volume-imaging-of-cleared-mice-seminiferous-tubules-opens-new-window-to-study-spermatogenic-process-in-3d" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1246</span> Method Optimisation for [¹⁸F]-FDG Rodent Imaging Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Visser">J. Visser</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Driver"> C. Driver</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ebenhan"> T. Ebenhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> [¹⁸F]-FDG (fluorodeoxyglucose) is a radiopharmaceutical compound that is used for non-invasive cancer tumor imaging through positron emission tomography (PET). This radiopharmaceutical is used to visualise the metabolic processes in tumour tissues, which can be applied for the diagnosis and prognosis of various types of cancer. [¹⁸F]-FDG has widespread use in both clinical and pre-clinical research settings. Imaging using [¹⁸F]-FDG results in representative normal tissue distribution as well as visualisation of hypermetabolic lesions ([¹⁸F]-FDG avid foci). The metabolic tissue concentration of these lesions following [¹⁸F]-FDG administration can be quantified using Standard Uptake Values (SUV). Standard uptake values of [¹⁸F]-FDG-based Positron Emission Tomography can be influenced by various biological and technical handling factors. Biological factors that affect [¹⁸F]-FDG uptake include the blood glucose levels of subjects, normal physiological variants between subjects and administration of certain pharmaceutical agents. Technical factors that can have an effect include the route of radiopharmaceutical or pharmaceutical agents administered and environmental conditions such as ambient temperature and lighting. These factors influencing tracer uptake need to be investigated to improve the robustness of the imaging protocol, which will achieve reproducible image acquisition across various research projects, optimised tumor visualisation and increased data validity and reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorodeoxyglucose" title="fluorodeoxyglucose">fluorodeoxyglucose</a>, <a href="https://publications.waset.org/abstracts/search?q=tumour%20imaging" title=" tumour imaging"> tumour imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodent" title=" Rodent"> Rodent</a>, <a href="https://publications.waset.org/abstracts/search?q=Blood%20Glucose" title=" Blood Glucose"> Blood Glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=PET%2FCT%20Imaging" title=" PET/CT Imaging"> PET/CT Imaging</a> </p> <a href="https://publications.waset.org/abstracts/193486/method-optimisation-for-18f-fdg-rodent-imaging-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1245</span> Development of Nondestructive Imaging Analysis Method Using Muonic X-Ray with a Double-Sided Silicon Strip Detector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I-Huan%20Chiu">I-Huan Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuhiko%20Ninomiya"> Kazuhiko Ninomiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin%E2%80%99ichiro%20Takeda"> Shin’ichiro Takeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Meito%20Kajino"> Meito Kajino</a>, <a href="https://publications.waset.org/abstracts/search?q=Miho%20Katsuragawa"> Miho Katsuragawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Shunsaku%20Nagasawa"> Shunsaku Nagasawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsushi%20Shinohara"> Atsushi Shinohara</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadayuki%20Takahashi"> Tadayuki Takahashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryota%20Tomaru"> Ryota Tomaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin%20Watanabe"> Shin Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Goro%20Yabu"> Goro Yabu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, a nondestructive elemental analysis method based on muonic X-ray measurements has been developed and applied for various samples. Muonic X-rays are emitted after the formation of a muonic atom, which occurs when a negatively charged muon is captured in a muon atomic orbit around the nucleus. Because muonic X-rays have higher energy than electronic X-rays due to the muon mass, they can be measured without being absorbed by a material. Thus, estimating the two-dimensional (2D) elemental distribution of a sample became possible using an X-ray imaging detector. In this work, we report a non-destructive imaging experiment using muonic X-rays at Japan Proton Accelerator Research Complex. The irradiated target consisted of polypropylene material, and a double-sided silicon strip detector, which was developed as an imaging detector for astronomical observation, was employed. A peak corresponding to muonic X-rays from the carbon atoms in the target was clearly observed in the energy spectrum at an energy of 14 keV, and 2D visualizations were successfully reconstructed to reveal the projection image from the target. This result demonstrates the potential of the non-destructive elemental imaging method that is based on muonic X-ray measurement. To obtain a higher position resolution for imaging a smaller target, a new detector system will be developed to improve the statistical analysis in further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DSSD" title="DSSD">DSSD</a>, <a href="https://publications.waset.org/abstracts/search?q=muon" title=" muon"> muon</a>, <a href="https://publications.waset.org/abstracts/search?q=muonic%20X-ray" title=" muonic X-ray"> muonic X-ray</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20analysis" title=" non-destructive analysis"> non-destructive analysis</a> </p> <a href="https://publications.waset.org/abstracts/137568/development-of-nondestructive-imaging-analysis-method-using-muonic-x-ray-with-a-double-sided-silicon-strip-detector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1244</span> Simulation of Human Heart Activation Based on Diffusion Tensor Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ihab%20Elaff">Ihab Elaff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulating the heart’s electrical stimulation is essential in modeling and evaluating the electrophysiology behavior of the heart. For achieving that, there are two structures in concern: the ventricles’ Myocardium, and the ventricles’ Conduction Network. Ventricles’ Myocardium has been modeled as anisotropic material from Diffusion Tensor Imaging (DTI) scan, and the Conduction Network has been extracted from DTI as a case-based structure based on the biological properties of the heart tissues and the working methodology of the Magnetic Resonance Imaging (MRI) scanner. Results of the produced activation were much similar to real measurements of the reference model that was presented in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion%20tensor" title="diffusion tensor">diffusion tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=DTI" title=" DTI"> DTI</a>, <a href="https://publications.waset.org/abstracts/search?q=heart" title=" heart"> heart</a>, <a href="https://publications.waset.org/abstracts/search?q=conduction%20network" title=" conduction network"> conduction network</a>, <a href="https://publications.waset.org/abstracts/search?q=excitation%20propagation" title=" excitation propagation"> excitation propagation</a> </p> <a href="https://publications.waset.org/abstracts/75607/simulation-of-human-heart-activation-based-on-diffusion-tensor-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1243</span> Role of Imaging in Alzheimer&#039;s Disease Trials: Impact on Trial Planning, Patient Recruitment and Retention</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kohkan%20Shamsi">Kohkan Shamsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: MRI and PET are now extensively utilized in Alzheimer's disease (AD) trials for patient eligibility, efficacy assessment, and safety evaluations but including imaging in AD trials impacts site selection process, patient recruitment, and patient retention. Methods: PET/MRI are performed at baseline and at multiple follow-up timepoints. This requires prospective site imaging qualification, evaluation of phantom data, training and continuous monitoring of machines for acquisition of standardized and consistent data. This also requires prospective patient/caregiver training as patients must go to multiple facilities for imaging examinations. We will share our experience form one of the largest AD programs. Lesson learned: Many neurological diseases have a similar presentation as AD or could confound the assessment of drug therapy. The inclusion of wrong patients has ethical and legal issues, and data could be excluded from the analysis. Centralized eligibility evaluation read process will be discussed. Amyloid related imaging abnormalities (ARIA) were observed in amyloid-β trials. FDA recommended regular monitoring of ARIA. Our experience in ARIA evaluations in large phase III study at > 350 sites will be presented. Efficacy evaluation: MRI is utilized to evaluate various volumes of the brain. FDG PET or amyloid PET agents has been used in AD trials. We will share our experience about site and central independent reads. Imaging logistic issues that need to be handled in the planning phase will also be discussed as it can impact patient compliance thereby increasing missing data and affecting study results. Conclusion: imaging must be prospectively planned to include standardizing imaging methodologies, site selection process and selecting assessment criteria. Training should be transparently conducted and documented. Prospective patient/caregiver awareness of imaging requirement is essential for patient compliance and reduction in missing imaging data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s%20disease" title="Alzheimer&#039;s disease">Alzheimer&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=ARIA" title=" ARIA"> ARIA</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=PET" title=" PET"> PET</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20recruitment" title=" patient recruitment"> patient recruitment</a>, <a href="https://publications.waset.org/abstracts/search?q=retention" title=" retention"> retention</a> </p> <a href="https://publications.waset.org/abstracts/103408/role-of-imaging-in-alzheimers-disease-trials-impact-on-trial-planning-patient-recruitment-and-retention" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1242</span> First Experimental Evidence on Feasibility of Molecular Magnetic Particle Imaging of Tumor Marker Alpha-1-Fetoprotein Using Antibody Conjugated Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kolja%20Them">Kolja Them</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyal%20Chikhaliwala"> Priyal Chikhaliwala</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudeshna%20Chandra"> Sudeshna Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The purpose of this work is to examine possibilities for noninvasive imaging and identification of tumor markers for cancer diagnosis. The proposed method uses antibody conjugated iron oxide nanoparticles and multicolor Magnetic Particle Imaging (mMPI). The method has the potential for radiation exposure free real-time estimation of local tumor marker concentrations in vivo. In this study, the method is applied to human Alpha-1-Fetoprotein. Materials and Methods: As tracer material AFP antibody-conjugated Dendrimer-Fe3O4 nanoparticles were used. The nanoparticle bioconjugates were then incubated with bovine serum albumin (BSA) to block any possible nonspecific binding sites. Parts of the resulting solution were then incubated with AFP antigen. MPI measurements were done using the preclinical MPI scanner (Bruker Biospin MRI GmbH) and the multicolor method was used for image reconstruction. Results: In multicolor MPI images the nanoparticles incubated only with BSA were clearly distinguished from nanoparticles incubated with BSA and AFP antigens. Conclusion: Tomographic imaging of human tumor marker Alpha-1-Fetoprotein is possible using AFP antibody conjugated iron oxide nanoparticles in presence of BSA. This opens interesting perspectives for cancer diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noninvasive%20imaging" title="noninvasive imaging">noninvasive imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20antigens" title=" tumor antigens"> tumor antigens</a>, <a href="https://publications.waset.org/abstracts/search?q=antibody%20conjugated%20iron%20oxide%20nanoparticles" title=" antibody conjugated iron oxide nanoparticles"> antibody conjugated iron oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=multicolor%20magnetic%20particle%20imaging" title=" multicolor magnetic particle imaging"> multicolor magnetic particle imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20diagnosis" title=" cancer diagnosis"> cancer diagnosis</a> </p> <a href="https://publications.waset.org/abstracts/73134/first-experimental-evidence-on-feasibility-of-molecular-magnetic-particle-imaging-of-tumor-marker-alpha-1-fetoprotein-using-antibody-conjugated-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1241</span> A Review of Intelligent Fire Management Systems to Reduce Wildfires</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nomfundo%20Ngombane">Nomfundo Ngombane</a>, <a href="https://publications.waset.org/abstracts/search?q=Topside%20E.%20Mathonsi"> Topside E. Mathonsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Remote sensing and satellite imaging have been widely used to detect wildfires; nevertheless, the technologies present some limitations in terms of early wildfire detection as the technologies are greatly influenced by weather conditions and can miss small fires. The fires need to have spread a few kilometers for the technologies to provide accurate detection. The South African Advanced Fire Information System uses MODIS (Moderate Resolution Imaging Spectroradiometer) as satellite imaging. MODIS has limitations as it can exclude small fires and can fall short in validating fire vulnerability. Thus in the future, a Machine Learning algorithm will be designed and implemented for the early detection of wildfires. A simulator will be used to evaluate the effectiveness of the proposed solution, and the results of the simulation will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moderate%20resolution%20imaging%20spectroradiometer" title="moderate resolution imaging spectroradiometer">moderate resolution imaging spectroradiometer</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20fire%20information%20system" title=" advanced fire information system"> advanced fire information system</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20algorithm" title=" machine learning algorithm"> machine learning algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=detection%20of%20wildfires" title=" detection of wildfires"> detection of wildfires</a> </p> <a href="https://publications.waset.org/abstracts/154851/a-review-of-intelligent-fire-management-systems-to-reduce-wildfires" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1240</span> End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omer%20Cahana">Omer Cahana</a>, <a href="https://publications.waset.org/abstracts/search?q=Ofer%20Levi"> Ofer Levi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maya%20Herman"> Maya Herman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title="magnetic resonance imaging">magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20reconstruction" title=" image reconstruction"> image reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=pyramid%20network" title=" pyramid network"> pyramid network</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/150838/end-to-end-pyramid-based-method-for-magnetic-resonance-imaging-reconstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1239</span> Evaluate the Changes in Stress Level Using Facial Thermal Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Derakhshan">Amin Derakhshan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mikaili"> Mohammad Mikaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Khalilzadeh"> Mohammad Ali Khalilzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Mohammadian"> Amin Mohammadian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a stress recognition system from multi-modal bio-potential signals. For stress recognition, Support Vector Machines (SVM) and LDA are applied to design the stress classifiers and its characteristics are investigated. Using gathered data under psychological polygraph experiments, the classifiers are trained and tested. The pattern recognition method classifies stressful from non-stressful subjects based on labels which come from polygraph data. The successful classification rate is 96% for 12 subjects. It means that facial thermal imaging due to its non-contact advantage could be a remarkable alternative for psycho-physiological methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress" title="stress">stress</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20imaging" title=" thermal imaging"> thermal imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=face" title=" face"> face</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=polygraph" title=" polygraph"> polygraph</a> </p> <a href="https://publications.waset.org/abstracts/8628/evaluate-the-changes-in-stress-level-using-facial-thermal-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1238</span> Dynamic Contrast-Enhanced Breast MRI Examinations: Clinical Use and Technical Challenges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janet%20Wing-Chong%20Wai">Janet Wing-Chong Wai</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Chiu-Wing%20Lee"> Alex Chiu-Wing Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hailey%20Hoi-Ching%20Tsang"> Hailey Hoi-Ching Tsang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20Chiu"> Jeffrey Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwok-Wing%20Tang"> Kwok-Wing Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Mammography has limited sensitivity and specificity though it is the primary imaging technique for detection of early breast cancer. Ultrasound imaging and contrast-enhanced MRI are useful adjunct tools to mammography. The advantage of breast MRI is high sensitivity for invasive breast cancer. Therefore, indications for and use of breast magnetic resonance imaging have increased over the past decade. Objectives: 1. Cases demonstration on different indications for breast MR imaging. 2. To review of the common artifacts and pitfalls in breast MR imaging. Materials and Methods: This is a retrospective study including all patients underwent dynamic contrast-enhanced breast MRI examination in our centre, performed from Jan 2011 to Dec 2017. The clinical data and radiological images were retrieved from the EPR (electronic patient record), RIS (Radiology Information System) and PACS (Picture Archiving and Communication System). Results and Discussion: Cases including (1) Screening of the contralateral breast in patient with a new breast malignancy (2) Breast augmentation with free injection of unknown foreign materials (3) Finding of axillary adenopathy with an unknown site of primary malignancy (4) Neo-adjuvant chemotherapy: before, during, and after chemotherapy to evaluate treatment response and extent of residual disease prior to operation. Relevant images will be included and illustrated in the presentation. As with other types of MR imaging, there are different artifacts and pitfalls that can potentially limit interpretation of the images. Because of the coils and software specific to breast MR imaging, there are some other technical considerations that are unique to MR imaging of breast regions. Case demonstration images will be available in presentation. Conclusion: Breast MR imaging is a highly sensitive and reasonably specific method for the detection of breast cancer. Adherent to appropriate clinical indications and technical optimization are crucial for achieving satisfactory images for interpretation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MRI" title="MRI">MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=breast" title=" breast"> breast</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical" title=" clinical"> clinical</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a> </p> <a href="https://publications.waset.org/abstracts/86879/dynamic-contrast-enhanced-breast-mri-examinations-clinical-use-and-technical-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1237</span> Breath Ethanol Imaging System Using Real Time Biochemical Luminescence for Evaluation of Alcohol Metabolic Capacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xin%20Wang">Xin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Munkbayar%20Munkhjargal"> Munkbayar Munkhjargal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumiko%20Miyajima"> Kumiko Miyajima</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Arakawa"> Takahiro Arakawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohji%20Mitsubayashi"> Kohji Mitsubayashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The measurement of gaseous ethanol plays an important role of evaluation of alcohol metabolic capacity in clinical and forensic analysis. A 2-dimensional visualization system for gaseous ethanol was constructed and tested in visualization of breath and transdermal alcohol. We demonstrated breath ethanol measurement using developed high-sensitive visualization system. The concentration of breath ethanol calculated with the imaging signal was significantly different between the volunteer subjects of ALDH2 (+) and (-). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breath%20ethanol" title="breath ethanol">breath ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=ethnaol%20imaging" title=" ethnaol imaging"> ethnaol imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=biochemical%20luminescence" title=" biochemical luminescence"> biochemical luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=alcohol%20metabolism" title=" alcohol metabolism"> alcohol metabolism</a> </p> <a href="https://publications.waset.org/abstracts/2708/breath-ethanol-imaging-system-using-real-time-biochemical-luminescence-for-evaluation-of-alcohol-metabolic-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1236</span> Isolated Hydatidosis of Spleen: A Rare Entity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anshul%20Raja">Anshul Raja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cystic lesions of the spleen are rare and splenic hydatid cysts account for only 0.5% to 8% of all hydatidosis. Authors hereby report a case where a 50-year-old female presented to our hospital with the complains of heaviness and pain over left upper abdomen over the past 8-10 years. On radiological examination, ultrasonography revealed findings consistent with isolated splenic hydatid cyst and was later on confirmed on Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). No other organ or system involvement was seen. The patient underwent splenectomy and hydatid cyst was confirmed on histopathology. Owing to its rarity, it offers a diagnostic challenge to physicians but can reliably be diagnosed with great confidence employing various imaging modalities like CT and MRI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gastrointestinal%20radiology" title="gastrointestinal radiology">gastrointestinal radiology</a>, <a href="https://publications.waset.org/abstracts/search?q=abdominal%20imaging" title=" abdominal imaging"> abdominal imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=hydatid%20cyst" title=" hydatid cyst"> hydatid cyst</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20and%20health%20sciences" title=" medical and health sciences"> medical and health sciences</a> </p> <a href="https://publications.waset.org/abstracts/18260/isolated-hydatidosis-of-spleen-a-rare-entity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1235</span> Micro-CT Imaging Of Hard Tissues</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Davood%20Elmi">Amir Davood Elmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From the earliest light microscope to the most innovative X-ray imaging techniques, all of them have refined and improved our knowledge about the organization and composition of living tissues. The old techniques are time consuming and ultimately destructive to the tissues under the examination. In recent few decades, thanks to the boost of technology, non-destructive visualization techniques, such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), selective plane illumination microscopy (SPIM), and optical projection tomography (OPT), have come to the forefront. Among these techniques, CT is excellent for mineralized tissues such as bone or dentine. In addition, CT it is faster than other aforementioned techniques and the sample remains intact. In this article, applications, advantages, and limitations of micro-CT is discussed, in addition to some information about micro-CT of soft tissue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Micro-CT" title="Micro-CT">Micro-CT</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20tissue" title=" hard tissue"> hard tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=bone" title=" bone"> bone</a>, <a href="https://publications.waset.org/abstracts/search?q=attenuation%20coefficient" title=" attenuation coefficient"> attenuation coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20prototyping" title=" rapid prototyping"> rapid prototyping</a> </p> <a href="https://publications.waset.org/abstracts/128393/micro-ct-imaging-of-hard-tissues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1234</span> Spatially Encoded Hyperspectral Compressive Microscope for Broadband VIS/NIR Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luk%C3%A1%C5%A1%20Klein">Lukáš Klein</a>, <a href="https://publications.waset.org/abstracts/search?q=Karel%20%C5%BD%C3%ADdek"> Karel Žídek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hyperspectral imaging counts among the most frequently used multidimensional sensing methods. While there are many approaches to capturing a hyperspectral data cube, optical compression is emerging as a valuable tool to reduce the setup complexity and the amount of data storage needed. Hyperspectral compressive imagers have been created in the past; however, they have primarily focused on relatively narrow sections of the electromagnetic spectrum. A broader spectral study of samples can provide helpful information, especially for applications involving the harmonic generation and advanced material characterizations. We demonstrate a broadband hyperspectral microscope based on the single-pixel camera principle. Captured spatially encoded data are processed to reconstruct a hyperspectral cube in a combined visible and near-infrared spectrum (from 400 to 2500 nm). Hyperspectral cubes can be reconstructed with a spectral resolution of up to 3 nm and spatial resolution of up to 7 µm (subject to diffraction) with a high compressive ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20imaging" title="compressive imaging">compressive imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral%20imaging" title=" hyperspectral imaging"> hyperspectral imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=near-infrared%20spectrum" title=" near-infrared spectrum"> near-infrared spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=single-pixel%20camera" title=" single-pixel camera"> single-pixel camera</a>, <a href="https://publications.waset.org/abstracts/search?q=visible%20spectrum" title=" visible spectrum"> visible spectrum</a> </p> <a href="https://publications.waset.org/abstracts/155053/spatially-encoded-hyperspectral-compressive-microscope-for-broadband-visnir-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1233</span> Clinical and Radiological Outcome in 300 Patients with Non-Aneurysmal Sah</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ranjith%20Menon">Ranjith Menon</a>, <a href="https://publications.waset.org/abstracts/search?q=Abathar%20Aladi"> Abathar Aladi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hans-Christean%20Nahser"> Hans-Christean Nahser</a>, <a href="https://publications.waset.org/abstracts/search?q=Maneesh%20Bhojak"> Maneesh Bhojak</a>, <a href="https://publications.waset.org/abstracts/search?q=Sacha%20Nevin"> Sacha Nevin</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Eldridge"> Paul Eldridge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Spontaneous subarachnoid haemorrhage (SAH) accounts for approximately 5% of all strokes. Patients with spontaneous SAH (as shown by CT or lumbar puncture) undergo investigations to identify or exclude an underlying structural cause, typically cerebral aneurysm. However in 10 - 20% of cases, no structural cause is found. This includes more than one imaging modality (intracranial MRA, CTA, 4DCTA and/or DSA) and in some spinal MRI. Objective: To determine; 1) If an underlying structural or vascular cause can be identified in non-aneurysmal SAH patients by comparing different imaging modalities at presentation and at follow-up. 2) If MRI spine in patients with non-aneurysmal SAH reveals an underlying SAH cause. 3)The functional outcome at discharge. Results: We performed a retrospective analysis of all non-traumatic SAH patients admitted to the Walton centre from January 2009 to December 2015. There were 1457 patients with non-traumatic SAH admitted to the Walton centre of whom 21.8% (n=300) patients were diagnosed with non-aneurysmal SAH. Males were 65.6% and females were 43.3%. The presenting symptoms were sudden onset headache (93.6%), the focal neurological deficit (12%), loss of consciousness (10.6%) and others (6%). About 285 patients received 2 modalities of imaging (CTA & DSA), 192 received 3 modalities of imaging (CTA, MRA & DSA) and 137 received MRI spine (51/137 whole spine). The modified Rankin Score at discharge were: mRS 0 = 292 (97.33%), mRS 1-2 = 6, mRS 6 = 1 (cardiac arrest in IHD patient) and unknown in 1. Follow-up imaging at 3 to 6 months in 190 (63.3%) patients did not identify an underlying cause. Conclusion: This retrospective analysis concludes that non-aneurysmal SAH has a good functional outcome. A single imaging modality (CTA (4DCTA) or MRA or DSA) was adequate to exclude an underlying cause of SAH and a delayed imaging failed to identify a cause. Routinely performing MRI spine in this group of patients appears not to be necessary according to this evidence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stroke" title="stroke">stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=non-aneurysmal%20subarachnoid%20haemorrhage" title=" non-aneurysmal subarachnoid haemorrhage"> non-aneurysmal subarachnoid haemorrhage</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroimaging" title=" neuroimaging"> neuroimaging</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20rankin%20score" title=" modified rankin score"> modified rankin score</a> </p> <a href="https://publications.waset.org/abstracts/52339/clinical-and-radiological-outcome-in-300-patients-with-non-aneurysmal-sah" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1232</span> Lab Bench for Synthetic Aperture Radar Imaging System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karthiyayini%20Nagarajan">Karthiyayini Nagarajan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20V.%20Ramakrishna"> P. V. Ramakrishna </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar (SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System (Lab Bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthetic%20aperture%20radar" title="synthetic aperture radar">synthetic aperture radar</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20reflection%20model" title=" radio reflection model"> radio reflection model</a>, <a href="https://publications.waset.org/abstracts/search?q=lab%20bench" title=" lab bench"> lab bench</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging%20engineering" title=" imaging engineering"> imaging engineering</a> </p> <a href="https://publications.waset.org/abstracts/29485/lab-bench-for-synthetic-aperture-radar-imaging-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1231</span> Recent Advances of Photo-Detectors in Single Photon Emission Computed Tomography Imaging System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qasem%20A.%20Alyazji">Qasem A. Alyazji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main techniques for Positron emission tomography (PET), Single photon emission computed tomography (SPECT) is the development of radiation detectors. The NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes known as the Anger camera, is the most dominant detectors system in PET and SPECT devices. Technological advances in many materials, in addition to the emerging importance of specialized applications such as preclinical imaging and cardiac imaging, have encouraged innovation so that alternatives to the anger camera are now part in alternative imaging systems. In this paper we will discuss the main performance characteristics of detectors devices and scanning developments in both scintillation detectors, semiconductor (solid state) detectors, and Photon Transducers such as photomultiplier tubes (PMTs), position sensitive photomultiplier tubes (PSPMTs), Avalanche photodiodes (APDs) and Silicon photomultiplier (SiPMT). This paper discussed the detectors that showed promising results. This study is a review of recent developments in the detectors used in single photon emission computed tomography (SPECT) imaging system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SPECT" title="SPECT">SPECT</a>, <a href="https://publications.waset.org/abstracts/search?q=scintillation" title=" scintillation"> scintillation</a>, <a href="https://publications.waset.org/abstracts/search?q=PMTs" title=" PMTs"> PMTs</a>, <a href="https://publications.waset.org/abstracts/search?q=SiPMT" title=" SiPMT"> SiPMT</a>, <a href="https://publications.waset.org/abstracts/search?q=PSPMTs" title=" PSPMTs"> PSPMTs</a>, <a href="https://publications.waset.org/abstracts/search?q=APDs" title=" APDs"> APDs</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20%28solid%20state%29" title=" semiconductor (solid state)"> semiconductor (solid state)</a> </p> <a href="https://publications.waset.org/abstracts/157985/recent-advances-of-photo-detectors-in-single-photon-emission-computed-tomography-imaging-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1230</span> Detecting Rat’s Kidney Inflammation Using Real Time Photoacoustic Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Lee">M. Y. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20H.%20Shin"> D. H. Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Park"> S. H. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=W.C.%20Ham"> W.C. Ham</a>, <a href="https://publications.waset.org/abstracts/search?q=S.K.%20Ko"> S.K. Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Song"> C. G. Song </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoacoustic Tomography (PAT) is a promising medical imaging modality that combines optical imaging contrast with the spatial resolution of ultrasound imaging. It can also distinguish the changes in biological features. But, real-time PAT system should be confirmed due to photoacoustic effect for tissue. Thus, we have developed a real-time PAT system using a custom-developed data acquisition board and ultrasound linear probe. To evaluate performance of our system, phantom test was performed. As a result of those experiments, the system showed satisfactory performance and its usefulness has been confirmed. We monitored the degradation of inflammation which induced on the rat&rsquo;s kidney using real-time PAT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photoacoustic%20tomography" title="photoacoustic tomography">photoacoustic tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation%20detection" title=" inflammation detection"> inflammation detection</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a>, <a href="https://publications.waset.org/abstracts/search?q=kidney" title=" kidney"> kidney</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20agent" title=" contrast agent"> contrast agent</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/71172/detecting-rats-kidney-inflammation-using-real-time-photoacoustic-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1229</span> &#039;Low Electronic Noise&#039; Detector Technology in Computed Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ikhlef">A. Ikhlef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image noise in computed tomography, is mainly caused by the statistical noise, system noise reconstruction algorithm filters. Since last few years, low dose x-ray imaging became more and more desired and looked as a technical differentiating technology among CT manufacturers. In order to achieve this goal, several technologies and techniques are being investigated, including both hardware (integrated electronics and photon counting) and software (artificial intelligence and machine learning) based solutions. From a hardware point of view, electronic noise could indeed be a potential driver for low and ultra-low dose imaging. We demonstrated that the reduction or elimination of this term could lead to a reduction of dose without affecting image quality. Also, in this study, we will show that we can achieve this goal using conventional electronics (low cost and affordable technology), designed carefully and optimized for maximum detective quantum efficiency. We have conducted the tests using large imaging objects such as 30 cm water and 43 cm polyethylene phantoms. We compared the image quality with conventional imaging protocols with radiation as low as 10 mAs (<< 1 mGy). Clinical validation of such results has been performed as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20noise" title=" electronic noise"> electronic noise</a>, <a href="https://publications.waset.org/abstracts/search?q=scintillation%20detector" title=" scintillation detector"> scintillation detector</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20detector" title=" x-ray detector"> x-ray detector</a> </p> <a href="https://publications.waset.org/abstracts/105183/low-electronic-noise-detector-technology-in-computed-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1228</span> Design of an Acoustic Imaging Sensor Array for Mobile Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dibyendu%20Roy">Dibyendu Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Ramu%20Reddy"> V. Ramu Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Parijat%20Deshpande"> Parijat Deshpande</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjan%20Dasgupta"> Ranjan Dasgupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Imaging of underwater objects is primarily conducted by acoustic imagery due to the severe attenuation of electro-magnetic waves in water. Acoustic imagery underwater has varied range of significant applications such as side-scan sonar, mine hunting sonar. It also finds utility in other domains such as imaging of body tissues via ultrasonography and non-destructive testing of objects. In this paper, we explore the feasibility of using active acoustic imagery in air and simulate phased array beamforming techniques available in literature for various array designs to achieve a suitable acoustic sensor array design for a portable mobile robot which can be applied to detect the presence/absence of anomalous objects in a room. The multi-path reflection effects especially in enclosed rooms and environmental noise factors are currently not simulated and will be dealt with during the experimental phase. The related hardware is designed with the same feasibility criterion that the developed system needs to be deployed on a portable mobile robot. There is a trade of between image resolution and range with the array size, number of elements and the imaging frequency and has to be iteratively simulated to achieve the desired acoustic sensor array design. The designed acoustic imaging array system is to be mounted on a portable mobile robot and targeted for use in surveillance missions for intruder alerts and imaging objects during dark and smoky scenarios where conventional optic based systems do not function well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20sensor%20array" title="acoustic sensor array">acoustic sensor array</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20imagery" title=" acoustic imagery"> acoustic imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title=" anomaly detection"> anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=phased%20array%20beamforming" title=" phased array beamforming"> phased array beamforming</a> </p> <a href="https://publications.waset.org/abstracts/43887/design-of-an-acoustic-imaging-sensor-array-for-mobile-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1227</span> The Potential for Cyclotron and Generator-produced Positron Emission Tomography Radiopharmaceuticals: An Overview</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ng%20Yen">Ng Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shafii%20Khamis"> Shafii Khamis</a>, <a href="https://publications.waset.org/abstracts/search?q=Rehir%20Bin%20Dahalan"> Rehir Bin Dahalan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cyclotrons in the energy range 10-30 MeV are widely used for the production of clincally relevant radiosiotopes used in positron emission tomography (PET) nuclear imaging. Positron emmision tomography is a powerful nuclear imaging tool that produces high quality 3-dimentional images of functional processes of body. The advantage of PET among all other imaging devices is that it allows the study of an impressive array of discrete biochemical and physiologic processes, within a single imaging session. The number of PET scanner increases every year globally due to high clinical demand. However, not all PET centers can afford a cyclotron, due to the expense associated with operation of an in-house cyclotron. Therefore, current research has also focused on the development of parent/daughter generators that can reliably provide PET nuclides. These generators (68Ge/68Ga generator, 62Zn/62Cu, 82Sr/82Rb, etc) can provide even short-lived radionuclides at any time on demand, without the need of an ‘in-house cyclotron’. The parent isotope is produced at a cyclotron/reactor facility, and can be shipped to remote clinical sites (regionally/overseas), where the daughter isotope is eluted, a model similar to the 99Mo/99mTc generator system. The specific aim for this presentation is to talk about the potential for both of the cyclotron and generator-produced PET radiopharmaceuticals used in clinical imaging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=positron%20emission%20tomography" title="positron emission tomography">positron emission tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=radiopharmaceutical" title=" radiopharmaceutical"> radiopharmaceutical</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclotron" title=" cyclotron"> cyclotron</a>, <a href="https://publications.waset.org/abstracts/search?q=generator" title=" generator"> generator</a> </p> <a href="https://publications.waset.org/abstracts/18366/the-potential-for-cyclotron-and-generator-produced-positron-emission-tomography-radiopharmaceuticals-an-overview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imaging&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imaging&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imaging&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imaging&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imaging&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imaging&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imaging&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imaging&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imaging&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imaging&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imaging&amp;page=42">42</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imaging&amp;page=43">43</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imaging&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10