CINXE.COM

Search results for: train timetable

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: train timetable</title> <meta name="description" content="Search results for: train timetable"> <meta name="keywords" content="train timetable"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="train timetable" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="train timetable"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 623</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: train timetable</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">623</span> Intelligent Rescheduling Trains for Air Pollution Management </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kainat%20Affrin">Kainat Affrin</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Reshma"> P. Reshma</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Narendra%20Kumar"> G. Narendra Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimization of timetable is the need of the day for the rescheduling and routing of trains in real time. Trains are scheduled in parallel with the road transport vehicles to the same destination. As the number of trains is restricted due to single track, customers usually opt for road transport to use frequently. The air pollution increases as the density of vehicles on road transport is increased. Use of an alternate mode of transport like train helps in reducing air-pollution. This paper mainly aims at attracting the passengers to Train transport by proper rescheduling of trains using hybrid of stop-skip algorithm and iterative convex programming algorithm. Rescheduling of train bi-directionally is achieved on a single track with dynamic dual time and varying stops. Introduction of more trains attract customers to use rail transport frequently, thereby decreasing the pollution. The results are simulated using Network Simulator (NS-2). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=AODV" title=" AODV"> AODV</a>, <a href="https://publications.waset.org/abstracts/search?q=re-scheduling" title=" re-scheduling"> re-scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=WSNs" title=" WSNs"> WSNs</a> </p> <a href="https://publications.waset.org/abstracts/65307/intelligent-rescheduling-trains-for-air-pollution-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">622</span> Model of the Increasing the Capacity of the Train and Railway Track by Using the New Type of Wagon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Kendra">Martin Kendra</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Ma%C5%A1ek"> Jaroslav Mašek</a>, <a href="https://publications.waset.org/abstracts/search?q=Juraj%20%C4%8Camaj"> Juraj Čamaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20B%C3%BAda"> Martin Búda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with possibilities of increase train capacity by using a new type of railway wagon. In the first part is created a mathematical model to calculate the capacity of the train. The model is based on the main limiting parameters of the train - maximum number of axles per train, the maximum gross weight of the train, the maximum length of train and number of TEUs per one wagon. In the second part is the model applied to four different model trains with different composition of the train set and three different average weights of TEU and a train consisting of a new type of wagons. The result is to identify where the carrying capacity of the original trains is higher, respectively less than a capacity of the train consisting of a new type of wagons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=loading%20units" title="loading units">loading units</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20capacity%20model" title=" theoretical capacity model"> theoretical capacity model</a>, <a href="https://publications.waset.org/abstracts/search?q=train%20capacity" title=" train capacity"> train capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=wagon%20for%20intermodal%20transport" title=" wagon for intermodal transport"> wagon for intermodal transport</a> </p> <a href="https://publications.waset.org/abstracts/35613/model-of-the-increasing-the-capacity-of-the-train-and-railway-track-by-using-the-new-type-of-wagon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">621</span> Train Timetable Rescheduling Using Sensitivity Analysis: Application of Sobol, Based on Dynamic Multiphysics Simulation of Railway Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soha%20Saad">Soha Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Bigeon"> Jean Bigeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Florence%20Ossart"> Florence Ossart</a>, <a href="https://publications.waset.org/abstracts/search?q=Etienne%20Sourdille"> Etienne Sourdille</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developing better solutions for train rescheduling problems has been drawing the attention of researchers for decades. Most researches in this field deal with minor incidents that affect a large number of trains due to cascading effects. They focus on timetables, rolling stock and crew duties, but do not take into account infrastructure limits. The present work addresses electric infrastructure incidents that limit the power available for train traction, and hence the transportation capacity of the railway system. Rescheduling is needed in order to optimally share the available power among the different trains. We propose a rescheduling process based on dynamic multiphysics railway simulations that include the mechanical and electrical properties of all the system components and calculate physical quantities such as the train speed profiles, voltage along the catenary lines, temperatures, etc. The optimization problem to solve has a large number of continuous and discrete variables, several output constraints due to physical limitations of the system, and a high computation cost. Our approach includes a phase of sensitivity analysis in order to analyze the behavior of the system and help the decision making process and/or more precise optimization. This approach is a quantitative method based on simulation statistics of the dynamic railway system, considering a predefined range of variation of the input parameters. Three important settings are defined. Factor prioritization detects the input variables that contribute the most to the outputs variation. Then, factor fixing allows calibrating the input variables which do not influence the outputs. Lastly, factor mapping is used to study which ranges of input values lead to model realizations that correspond to feasible solutions according to defined criteria or objectives. Generalized Sobol indexes are used for factor prioritization and factor fixing. The approach is tested in the case of a simple railway system, with a nominal traffic running on a single track line. The considered incident is the loss of a feeding power substation, which limits the power available and the train speed. Rescheduling is needed and the variables to be adjusted are the trains departure times, train speed reduction at a given position and the number of trains (cancellation of some trains if needed). The results show that the spacing between train departure times is the most critical variable, contributing to more than 50% of the variation of the model outputs. In addition, we identify the reduced range of variation of this variable which guarantees that the output constraints are respected. Optimal solutions are extracted, according to different potential objectives: minimizing the traveling time, the train delays, the traction energy, etc. Pareto front is also built. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=rescheduling" title=" rescheduling"> rescheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20system" title=" railway system"> railway system</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=train%20timetable" title=" train timetable"> train timetable</a> </p> <a href="https://publications.waset.org/abstracts/83434/train-timetable-rescheduling-using-sensitivity-analysis-application-of-sobol-based-on-dynamic-multiphysics-simulation-of-railway-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">620</span> 2023 Targets of the Republic of Turkey State Railways</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hicran%20A%C3%A7%C4%B1kel">Hicran Açıkel</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%BCseyin%20Arak"> Hüseyin Arak</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ali%20A%C3%A7%C4%B1kel"> D. Ali Açıkel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Train or high-speed train is a land transportation vehicle, which is safe and offers passengers flight-like comfort while it is preferred for busy lines with respect to passengers. In this study, TCDD’s (Turkish State Railroads Company) targets for the year of 2023, the planned high-speed train lines, improvements, which are considered for the existing lines, and achievability of these targets are examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=train" title="train">train</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20train" title=" high-speed train"> high-speed train</a>, <a href="https://publications.waset.org/abstracts/search?q=TCDD" title=" TCDD"> TCDD</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation" title=" transportation"> transportation</a> </p> <a href="https://publications.waset.org/abstracts/41210/2023-targets-of-the-republic-of-turkey-state-railways" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">619</span> Timetabling for Interconnected LRT Lines: A Package Solution Based on a Real-world Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huazhen%20Lin">Huazhen Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruihua%20Xu"> Ruihua Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhibin%20Jiang"> Zhibin Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this real-world case, timetabling the LRT network as a whole is rather challenging for the operator: they are supposed to create a timetable to avoid various route conflicts manually while satisfying a given interval and the number of rolling stocks, but the outcome is not satisfying. Therefore, the operator adopts a computerised timetabling tool, the Train Plan Maker (TPM), to cope with this problem. However, with various constraints in the dual-line network, it is still difficult to find an adequate pairing of turnback time, interval and rolling stocks’ number, which requires extra manual intervention. Aiming at current problems, a one-off model for timetabling is presented in this paper to simplify the procedure of timetabling. Before the timetabling procedure starts, this paper presents how the dual-line system with a ring and several branches is turned into a simpler structure. Then, a non-linear programming model is presented in two stages. In the first stage, the model sets a series of constraints aiming to calculate a proper timing for coordinating two lines by adjusting the turnback time at termini. Then, based on the result of the first stage, the model introduces a series of inequality constraints to avoid various route conflicts. With this model, an analysis is conducted to reveal the relation between the ratio of trains in different directions and the possible minimum interval, observing that the more imbalance the ratio is, the less possible to provide frequent service under such strict constraints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light%20rail%20transit%20%28LRT%29" title="light rail transit (LRT)">light rail transit (LRT)</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20programming" title=" non-linear programming"> non-linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20timetabling" title=" railway timetabling"> railway timetabling</a>, <a href="https://publications.waset.org/abstracts/search?q=timetable%20coordination" title=" timetable coordination"> timetable coordination</a> </p> <a href="https://publications.waset.org/abstracts/174387/timetabling-for-interconnected-lrt-lines-a-package-solution-based-on-a-real-world-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">618</span> Analysis of Temporal Factors Influencing Minimum Dwell Time Distributions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Pedersen">T. Pedersen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Lindfeldt"> A. Lindfeldt </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The minimum dwell time is an important part of railway timetable planning. Due to its stochastic behaviour, the minimum dwell time should be considered to create resilient timetables. While there has been significant focus on how to determine and estimate dwell times, to our knowledge, little research has been carried out regarding temporal and running direction variations of these. In this paper, we examine how the minimum dwell time varies depending on temporal factors such as the time of day, day of the week and time of the year. We also examine how it is affected by running direction and station type. The minimum dwell time is estimated by means of track occupation data. A method is proposed to ensure that only minimum dwell times and not planned dwell times are acquired from the track occupation data. The results show that on an aggregated level, the average minimum dwell times in both running directions at a station are similar. However, when temporal factors are considered, there are significant variations. The minimum dwell time varies throughout the day with peak hours having the longest dwell times. It is also found that the minimum dwell times are influenced by weekday, and in particular, weekends are found to have lower minimum dwell times than most other days. The findings show that there is a potential to significantly improve timetable planning by taking minimum dwell time variations into account. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=minimum%20dwell%20time" title="minimum dwell time">minimum dwell time</a>, <a href="https://publications.waset.org/abstracts/search?q=operations%20quality" title=" operations quality"> operations quality</a>, <a href="https://publications.waset.org/abstracts/search?q=timetable%20planning" title=" timetable planning"> timetable planning</a>, <a href="https://publications.waset.org/abstracts/search?q=track%20occupation%20data" title=" track occupation data"> track occupation data</a> </p> <a href="https://publications.waset.org/abstracts/84540/analysis-of-temporal-factors-influencing-minimum-dwell-time-distributions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">617</span> The Development of Online-Class Scheduling Management System Conducted by the Case Study of Department of Social Science: Faculty of Humanities and Social Sciences Suan Sunandha Rajabhat University </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wipada%20Chaiwchan">Wipada Chaiwchan</a>, <a href="https://publications.waset.org/abstracts/search?q=Patcharee%20Klinhom"> Patcharee Klinhom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is aimed to develop the online-class scheduling management system and improve as a complex problem solution, this must take into consideration in various conditions and factors. In addition to the number of courses, the number of students and a timetable to study, the physical characteristics of each class room and regulations used in the class scheduling must also be taken into consideration. This system is developed to assist management in the class scheduling for convenience and efficiency. It can provide several instructors to schedule simultaneously. Both lecturers and students can check and publish a timetable and other documents associated with the system online immediately. It is developed in a web-based application. PHP is used as a developing tool. The database management system was MySQL. The tool that is used for efficiency testing of the system is questionnaire. The system was evaluated by using a Black-Box testing. The sample was composed of 2 groups: 5 experts and 100 general users. The average and the standard deviation of results from the experts were 3.50 and 0.67. The average and the standard deviation of results from the general users were 3.54 and 0.54. In summary, the results from the research indicated that the satisfaction of users was in a good level. Therefore, this system could be implemented in an actual workplace and satisfy the users’ requirement effectively <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=timetable" title="timetable">timetable</a>, <a href="https://publications.waset.org/abstracts/search?q=schedule" title=" schedule"> schedule</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20system" title=" management system"> management system</a>, <a href="https://publications.waset.org/abstracts/search?q=online" title=" online"> online</a> </p> <a href="https://publications.waset.org/abstracts/12377/the-development-of-online-class-scheduling-management-system-conducted-by-the-case-study-of-department-of-social-science-faculty-of-humanities-and-social-sciences-suan-sunandha-rajabhat-university" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">616</span> Innovative Methods of Improving Train Formation in Freight Transport</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Masek">Jaroslav Masek</a>, <a href="https://publications.waset.org/abstracts/search?q=Juraj%20Camaj"> Juraj Camaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Nedeliakova"> Eva Nedeliakova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper is focused on the operational model for transport the single wagon consignments on railway network by using two different models of train formation. The paper gives an overview of possibilities of improving the quality of transport services. Paper deals with two models used in problematic of train formatting - time continuously and time discrete. By applying these models in practice, the transport company can guarantee a higher quality of service and expect increasing of transport performance. The models are also applicable into others transport networks. The models supplement a theoretical problem of train formation by new ways of looking to affecting the organization of wagon flows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=train%20formation" title="train formation">train formation</a>, <a href="https://publications.waset.org/abstracts/search?q=wagon%20flows" title=" wagon flows"> wagon flows</a>, <a href="https://publications.waset.org/abstracts/search?q=marshalling%20yard" title=" marshalling yard"> marshalling yard</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20technology" title=" railway technology"> railway technology</a> </p> <a href="https://publications.waset.org/abstracts/32172/innovative-methods-of-improving-train-formation-in-freight-transport" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">615</span> Low-Level Modeling for Optimal Train Routing and Scheduling in Busy Railway Stations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quoc%20Khanh%20Dang">Quoc Khanh Dang</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Bourdeaud%E2%80%99huy"> Thomas Bourdeaud’huy</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Mesghouni"> Khaled Mesghouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Armand%20Toguy%C2%B4eni"> Armand Toguy´eni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies a train routing and scheduling problem for busy railway stations. Our objective is to allow trains to be routed in dense areas that are reaching saturation. Unlike traditional methods that allocate all resources to setup a route for a train and until the route is freed, our work focuses on the use of resources as trains progress through the railway node. This technique allows a larger number of trains to be routed simultaneously in a railway node and thus reduces their current saturation. To deal with this problem, this study proposes an abstract model and a mixed-integer linear programming formulation to solve it. The applicability of our method is illustrated on a didactic example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=busy%20railway%20stations" title="busy railway stations">busy railway stations</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed-integer%20linear%20programming" title=" mixed-integer linear programming"> mixed-integer linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=offline%20railway%20station%20management" title=" offline railway station management"> offline railway station management</a>, <a href="https://publications.waset.org/abstracts/search?q=train%20platforming" title=" train platforming"> train platforming</a>, <a href="https://publications.waset.org/abstracts/search?q=train%20routing" title=" train routing"> train routing</a>, <a href="https://publications.waset.org/abstracts/search?q=train%20scheduling" title=" train scheduling"> train scheduling</a> </p> <a href="https://publications.waset.org/abstracts/108783/low-level-modeling-for-optimal-train-routing-and-scheduling-in-busy-railway-stations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">614</span> A Study on Traction Motor Design for Obtaining the Maximum Traction Force of Tram-Train</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geochul%20Jeong">Geochul Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Gun%20Kim"> In-Gun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Seok%20Hong"> Hyun-Seok Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Woo%20Kang"> Dong-Woo Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Lee"> Ju Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is about IPMSM design for obtaining the maximum traction force of Tram-Train. Tram-Train is a Tram and Train-combined railway vehicles, which operates at a maximum speed of 70km/h in the city section (Tram section) and at a maximum speed of 150km/h in the out-of-city section (Train section). For this reason, tram-train was designed to be an IPMSM (Interior Permanent Synchronous Motor) with a wide range of speed variation. IPMSM’s magnetic path varies depending on the shape of rotor and in this case, the power characteristics are different in the constant torque area and the flux weakening area. Therefore, this study suggests a method to improve Tram-Train’s traction force, based on the relationship between magnetic torque and reluctance torque. The suggested method was applied through IPMSM rotor shape design and electromagnetic field finite element method was conducted to verify the validity of the suggested method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tram-train" title="tram-train">tram-train</a>, <a href="https://publications.waset.org/abstracts/search?q=traction%20motor" title=" traction motor"> traction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=IPMSM" title=" IPMSM"> IPMSM</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20motor" title=" synchronous motor"> synchronous motor</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20vehicles" title=" railway vehicles"> railway vehicles</a> </p> <a href="https://publications.waset.org/abstracts/41383/a-study-on-traction-motor-design-for-obtaining-the-maximum-traction-force-of-tram-train" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">613</span> A Survey on the Requirements of University Course Timetabling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Liyana%20Abdul%20Aziz">Nurul Liyana Abdul Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Aidya%20Hanum%20Aizam"> Nur Aidya Hanum Aizam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Course timetabling problems occur every semester in a university which includes the allocation of resources (subjects, lecturers and students) to a number of fixed rooms and timeslots. The assignment is carried out in a way such that there are no conflicts within rooms, students and lecturers, as well as fulfilling a range of constraints. The constraints consist of rules and policies set up by the universities as well as lecturers&rsquo; and students&rsquo; preferences of courses to be allocated in specific timeslots. This paper specifically focuses on the preferences of the course timetabling problem in one of the public universities in Malaysia. The demands will be considered into our existing mathematical model to make it more generalized and can be used widely. We have distributed questionnaires to a number of lecturers and students of the university to investigate their demands and preferences for their desired course timetable. We classify the preferences thus converting them to construct one mathematical model that can produce such timetable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=university%20course%20timetabling%20problem" title="university course timetabling problem">university course timetabling problem</a>, <a href="https://publications.waset.org/abstracts/search?q=integer%20programming" title=" integer programming"> integer programming</a>, <a href="https://publications.waset.org/abstracts/search?q=preferences" title=" preferences"> preferences</a>, <a href="https://publications.waset.org/abstracts/search?q=constraints" title=" constraints"> constraints</a> </p> <a href="https://publications.waset.org/abstracts/50024/a-survey-on-the-requirements-of-university-course-timetabling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">612</span> Incorporating Moving Authority Limits Into Driving Advice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peng%20Zhou">Peng Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Pudney"> Peter Pudney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Driver advice systems are used by many rail operators to help train drivers to improve timekeeping while minimising energy use. These systems typically operate independently of the safeworking system, because information on how far the train is allowed to travel -the “limit of authority"- is usually not available as real-time data that can be used when generating driving advice. This is not an issue when there is sufficient separation between trains. But on systems with low headways, driving advice could conflict with safeworking requirements. We describe a method for generating driving advice that takes into account a moving limit of authority that is communicated to the train in real-time. We illustrate the method with four simulated examples using data from the Zhengzhou Metro. The method will allow driver advice systems to be used more effectively on railways with low headways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=railway%20transportation" title="railway transportation">railway transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficient%20train%20operation" title=" energy efficient train operation"> energy efficient train operation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20train%20control" title=" optimal train control"> optimal train control</a>, <a href="https://publications.waset.org/abstracts/search?q=safe%20separation" title=" safe separation"> safe separation</a> </p> <a href="https://publications.waset.org/abstracts/194607/incorporating-moving-authority-limits-into-driving-advice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">9</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">611</span> Research on Aerodynamic Brake Device for High-Speed Train</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Yun">S. Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kwak"> M. Kwak </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is about an aerodynamic brake device for a high-speed train. In order to apply an aerodynamic brake device, an influence of the aerodynamic brake device on a high-speed train was studied aerodynamically, acoustically and dynamically. Wind tunnel test was conducted to predict an effect of braking distance reduction with a scale model of 1/30. Aerodynamic drag increases by 244% with a brake panel of a 90 degree angle. Braking distance for an emergency state was predicted to decrease by 13%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20brake" title="aerodynamic brake">aerodynamic brake</a>, <a href="https://publications.waset.org/abstracts/search?q=braking%20distance" title=" braking distance"> braking distance</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20train" title=" high-speed train"> high-speed train</a>, <a href="https://publications.waset.org/abstracts/search?q=wind-tunnel%20test" title=" wind-tunnel test"> wind-tunnel test</a> </p> <a href="https://publications.waset.org/abstracts/65559/research-on-aerodynamic-brake-device-for-high-speed-train" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">610</span> Location Uncertainty – A Probablistic Solution for Automatic Train Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monish%20Sengupta">Monish Sengupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Heydecker"> Benjamin Heydecker</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Woodland"> Daniel Woodland</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New train control systems rely mainly on Automatic Train Protection (ATP) and Automatic Train Operation (ATO) dynamically to control the speed and hence performance. The ATP and the ATO form the vital element within the CBTC (Communication Based Train Control) and within the ERTMS (European Rail Traffic Management System) system architectures. Reliable and accurate measurement of train location, speed and acceleration are vital to the operation of train control systems. In the past, all CBTC and ERTMS system have deployed a balise or equivalent to correct the uncertainty element of the train location. Typically a CBTC train is allowed to miss only one balise on the track, after which the Automatic Train Protection (ATP) system applies emergency brake to halt the service. This is because the location uncertainty, which grows within the train control system, cannot tolerate missing more than one balise. Balises contribute a significant amount towards wayside maintenance and studies have shown that balises on the track also forms a constraint for future track layout change and change in speed profile.This paper investigates the causes of the location uncertainty that is currently experienced and considers whether it is possible to identify an effective filter to ascertain, in conjunction with appropriate sensors, more accurate speed, distance and location for a CBTC driven train without the need of any external balises. An appropriate sensor fusion algorithm and intelligent sensor selection methodology will be deployed to ascertain the railway location and speed measurement at its highest precision. Similar techniques are already in use in aviation, satellite, submarine and other navigation systems. Developing a model for the speed control and the use of Kalman filter is a key element in this research. This paper will summarize the research undertaken and its significant findings, highlighting the potential for introducing alternative approaches to train positioning that would enable removal of all trackside location correction balises, leading to huge reduction in maintenances and more flexibility in future track design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ERTMS" title="ERTMS">ERTMS</a>, <a href="https://publications.waset.org/abstracts/search?q=CBTC" title=" CBTC"> CBTC</a>, <a href="https://publications.waset.org/abstracts/search?q=ATP" title=" ATP"> ATP</a>, <a href="https://publications.waset.org/abstracts/search?q=ATO" title=" ATO "> ATO </a> </p> <a href="https://publications.waset.org/abstracts/20065/location-uncertainty-a-probablistic-solution-for-automatic-train-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">609</span> Development of an Interactive Display-Control Layout Design System for Trains Based on Train Drivers’ Mental Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyeonkyeong%20Yang">Hyeonkyeong Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Minseok%20Son"> Minseok Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Taekbeom%20Yoo"> Taekbeom Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Woojin%20Park"> Woojin Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human error is the most salient contributing factor to railway accidents. To reduce the frequency of human errors, many researchers and train designers have adopted ergonomic design principles for designing display-control layout in rail cab. There exist a number of approaches for designing the display control layout based on optimization methods. However, the ergonomically optimized layout design may not be the best design for train drivers, since the drivers have their own mental models based on their experiences. Consequently, the drivers may prefer the existing display-control layout design over the optimal design, and even show better driving performance using the existing design compared to that using the optimal design. Thus, in addition to ergonomic design principles, train drivers’ mental models also need to be considered for designing display-control layout in rail cab. This paper developed an ergonomic assessment system of display-control layout design, and an interactive layout design system that can generate design alternatives and calculate ergonomic assessment score in real-time. The design alternatives generated from the interactive layout design system may not include the optimal design from the ergonomics point of view. However, the system’s strength is that it considers train drivers’ mental models, which can help generate alternatives that are more friendly and easier to use for train drivers. Also, with the developed system, non-experts in ergonomics, such as train drivers, can refine the design alternatives and improve ergonomic assessment score in real-time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=display-control%20layout%20design" title="display-control layout design">display-control layout design</a>, <a href="https://publications.waset.org/abstracts/search?q=interactive%20layout%20design%20system" title=" interactive layout design system"> interactive layout design system</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20model" title=" mental model"> mental model</a>, <a href="https://publications.waset.org/abstracts/search?q=train%20drivers" title=" train drivers"> train drivers</a> </p> <a href="https://publications.waset.org/abstracts/52550/development-of-an-interactive-display-control-layout-design-system-for-trains-based-on-train-drivers-mental-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">608</span> Disaster Probability Analysis of Banghabandhu Multipurpose Bridge for Train Accidents and Its Socio-Economic Impact on Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahab%20Uddin">Shahab Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazi%20M.%20Uddin"> Kazi M. Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamamah%20Sadiqa"> Hamamah Sadiqa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with the Banghabandhu Multipurpose Bridge (BMB), the 11th longest bridge in the world was constructed in 1998 aimed at contributing to promote economic development in Bangladesh. In recent years, however, the high incidence of traffic accidents and injuries at the bridge sites looms as a great safety concern. Investigation into the derailment of nine bogies out of thirteen of Dinajpur-bound intercity train ‘Drutajan Express ’were derailed and inclined on the Banghabandhu Multipurpose Bridge on 28 April 2014. The train accident in Bridge will be deep concern for both structural safety of bridge and people than other vehicles accident. In this study we analyzed the disaster probability of the Banghabandhu Multipurpose Bridge for accidents by checking the fitness of Bridge structure. We found that train accident impact is more risky than other vehicles accidents. We also found that socio-economic impact on Bangladesh will be deep concerned. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=train%20accident" title="train accident">train accident</a>, <a href="https://publications.waset.org/abstracts/search?q=derailment" title=" derailment"> derailment</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster" title=" disaster"> disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-economic" title=" socio-economic"> socio-economic</a> </p> <a href="https://publications.waset.org/abstracts/60020/disaster-probability-analysis-of-banghabandhu-multipurpose-bridge-for-train-accidents-and-its-socio-economic-impact-on-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">607</span> Experimental and Numerical Investigations of Impact Response on High-Speed Train Windshield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen%20Ma">Wen Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Peng"> Yong Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhixiang%20Li"> Zhixiang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Security journey is a vital focus on the field of Rail Transportation. Accidents caused by the damage of the high-speed train windshield have occurred many times and have given rise to terrible consequences. Train windshield consists of tempered glass and polyvinyl butyral (PVB) film. In this work, the quasi-static tests and the split Hopkinson pressure bar (SHPB) tests were carried out first to obtain the mechanical properties and constitutive model for the tempered glass and PVB film. These tests results revealed that stress and Young’s modulus of tempered glass were wake-sensitive to strain rate, but stress and Young’s modulus of PVB film were strong-sensitive to strain rate. Then impact experiment of the windshield was carried out to investigate dynamic response and failure characteristics of train windshield. In addition, a finite element model based on the combined finite element method was proposed to investigate fracture and fragmentation responses of train windshield under different-velocity impact. The results can be used for further design and optimization of the windshield for high-speed train application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constitutive%20model" title="constitutive model">constitutive model</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20response" title=" impact response"> impact response</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism%20properties" title=" mechanism properties"> mechanism properties</a>, <a href="https://publications.waset.org/abstracts/search?q=PVB%20film" title=" PVB film"> PVB film</a>, <a href="https://publications.waset.org/abstracts/search?q=tempered%20glass" title=" tempered glass"> tempered glass</a> </p> <a href="https://publications.waset.org/abstracts/96056/experimental-and-numerical-investigations-of-impact-response-on-high-speed-train-windshield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">606</span> Impact Load Response of Light Rail Train Rail Guard</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyob%20Hundessa%20Gose">Eyob Hundessa Gose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, it is obviously known that the construction of different infrastructures is one measurement of the development of a country; infrastructures like buildings, bridges, roads, and railways are among them. In the capital city of Ethiopia, the so-called Addis Ababa, the Light Rail Train (LRT), was built Four years ago to satisfy the demand for transportation among the people in the city. The lane of the Train and vehicle separation Media was built with a curb and rail guard installation system to show the right-of-way and for protection of vehicles entering the Train Lane, but this Rail guard fails easily when impacted by vehicles and found that the impact load response of the Rail guard is weak and the Rail guard cannot withstand impact load. This study investigates the effect of variation of parameters such as vehicle speed and different mass effects and assesses the failure mode FRP and Steel reinforcement bar rail guards of deflection and damage state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impact%20load" title="impact load">impact load</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20polymer" title=" fiber reinforced polymer"> fiber reinforced polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20guard" title=" rail guard"> rail guard</a>, <a href="https://publications.waset.org/abstracts/search?q=LS-DYNA" title=" LS-DYNA"> LS-DYNA</a> </p> <a href="https://publications.waset.org/abstracts/183199/impact-load-response-of-light-rail-train-rail-guard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">605</span> Energy Saving Study of Mass Rapid Transit by Optimal Train Coasting Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artiya%20Sopharak">Artiya Sopharak</a>, <a href="https://publications.waset.org/abstracts/search?q=Tosaphol%20Ratniyomchai"> Tosaphol Ratniyomchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanatchai%20Kulworawanichpong"> Thanatchai Kulworawanichpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an energy-saving study of Mass Rapid Transit (MRT) using an optimal train coasting operation. For the dynamic train movement with four modes of operation, including accelerating mode, constant speed or cruising mode, coasting mode, and braking mode are considered in this study. The acceleration rate, the deceleration rate, and the starting coasting point are taken into account the optimal train speed profile during coasting mode with considering the energy saving and acceptable travel time comparison to the based case with no coasting operation. In this study, the mathematical method as a Quadratic Search Method (QDS) is conducted to carry out the optimization problem. A single train of MRT services between two stations with a distance of 2 km and a maximum speed of 80 km/h is taken to be the case study. Regarding the coasting mode operation, the results show that the longer distance of costing mode, the less energy consumption in cruising mode and the less braking energy. On the other hand, the shorter distance of coasting mode, the more energy consumption in cruising mode and the more braking energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title="energy saving">energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=coasting%20mode" title=" coasting mode"> coasting mode</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20rapid%20transit" title=" mass rapid transit"> mass rapid transit</a>, <a href="https://publications.waset.org/abstracts/search?q=quadratic%20search%20method" title=" quadratic search method"> quadratic search method</a> </p> <a href="https://publications.waset.org/abstracts/122572/energy-saving-study-of-mass-rapid-transit-by-optimal-train-coasting-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">604</span> Estimation of Train Operation Using an Exponential Smoothing Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taiyo%20Matsumura">Taiyo Matsumura</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuninori%20Takahashi"> Kuninori Takahashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Ono"> Takashi Ono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research is to improve the convenience of waiting for trains at level crossings and stations and to prevent accidents resulting from forcible entry into level crossings, by providing level crossing users and passengers with information that tells them when the next train will pass through or arrive. For this paper, we proposed methods for estimating operation by means of an average value method, variable response smoothing method, and exponential smoothing method, on the basis of open data, which has low accuracy, but for which performance schedules are distributed in real time. We then examined the accuracy of the estimations. The results showed that the application of an exponential smoothing method is valid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exponential%20smoothing%20method" title="exponential smoothing method">exponential smoothing method</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20data" title=" open data"> open data</a>, <a href="https://publications.waset.org/abstracts/search?q=operation%20estimation" title=" operation estimation"> operation estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=train%20schedule" title=" train schedule"> train schedule</a> </p> <a href="https://publications.waset.org/abstracts/78572/estimation-of-train-operation-using-an-exponential-smoothing-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">603</span> An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-ding%20Du">Yu-ding Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi-lian%20Bao"> Qi-lian Bao</a>, <a href="https://publications.waset.org/abstracts/search?q=Nassim%20Bessaad"> Nassim Bessaad</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Liu"> Lin Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-sensor%20data%20fusion" title="multi-sensor data fusion">multi-sensor data fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=train%20positioning" title=" train positioning"> train positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=GNSS" title=" GNSS"> GNSS</a>, <a href="https://publications.waset.org/abstracts/search?q=odometer" title=" odometer"> odometer</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20track%20map" title=" digital track map"> digital track map</a>, <a href="https://publications.waset.org/abstracts/search?q=map%20matching" title=" map matching"> map matching</a>, <a href="https://publications.waset.org/abstracts/search?q=BP%20neural%20network" title=" BP neural network"> BP neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20weighted%20fusion" title=" adaptive weighted fusion"> adaptive weighted fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a> </p> <a href="https://publications.waset.org/abstracts/98264/an-adaptive-back-propagation-network-and-kalman-filter-based-multi-sensor-fusion-method-for-train-location-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">602</span> Analysis of Aerodynamic Forces Acting on a Train Passing Through a Tornado</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Suzuki">Masahiro Suzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobuyuki%20Okura"> Nobuyuki Okura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crosswind effect on ground transportations has been extensively investigated for decades. The effect of tornado, however, has been hardly studied in spite of the fact that even heavy ground vehicles, namely, trains were overturned by tornadoes with casualties in the past. Therefore, aerodynamic effects of the tornado on the train were studied by several approaches in this study. First, an experimental facility was developed to clarify aerodynamic forces acting on a vehicle running through a tornado. Our experimental set-up consists of two apparatus. One is a tornado simulator, and the other is a moving model rig. PIV measurements showed that the tornado simulator can generate a swirling-flow field similar to those of the natural tornadoes. The flow field has the maximum tangential velocity of 7.4 m/s and the vortex core radius of 96 mm. The moving model rig makes a 1/40 scale model train of single-car/three-car unit run thorough the swirling flow with the maximum speed of 4.3 m/s. The model car has 72 pressure ports on its surface to estimate the aerodynamic forces. The experimental results show that the aerodynamic forces vary its magnitude and direction depends on the location of the vehicle in the flow field. Second, the aerodynamic forces on the train were estimated by using Rankin vortex model. The Rankin vortex model is a simple tornado model which widely used in the field of civil engineering. The estimated aerodynamic forces on the middle car were fairly good agreement with the experimental results. Effects of the vortex core radius and the path of the train on the aerodynamic forces were investigated using the Rankin vortex model. The results shows that the side and lift forces increases as the vortex core radius increases, while the yawing moment is maximum when the core radius is 0.3875 times of the car length. Third, a computational simulation was conducted to clarify the flow field around the train. The simulated results qualitatively agreed with the experimental ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20force" title="aerodynamic force">aerodynamic force</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20method" title=" experimental method"> experimental method</a>, <a href="https://publications.waset.org/abstracts/search?q=tornado" title=" tornado"> tornado</a>, <a href="https://publications.waset.org/abstracts/search?q=train" title=" train"> train</a> </p> <a href="https://publications.waset.org/abstracts/56105/analysis-of-aerodynamic-forces-acting-on-a-train-passing-through-a-tornado" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">601</span> Intelligent Crowd Management Systems in Trains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sai%20S.%20Hari">Sai S. Hari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shriram%20Ramanujam"> Shriram Ramanujam</a>, <a href="https://publications.waset.org/abstracts/search?q=Unnati%20Trivedi"> Unnati Trivedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advent of mass transit systems like rail, metro, maglev, and various other rail based transport has pacified the requirement of public transport for the masses to a great extent. However, the abatement of the demand does not necessarily mean it is managed efficiently, eloquently or in an encapsulating manner. The primary problem identified that the one this paper seeks to solve is the dipsomaniac like manner in which the compartments are occupied. This problem is solved by using a comparison of an empty train and an occupied one. The pixel data of an occupied train is compared to the pixel data of an empty train. This is done using canny edge detection technique. After the comparison it intimates the passengers at the consecutive stops which compartments are not occupied or have low occupancy. Thus, redirecting them and preventing overcrowding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=canny%20edge%20detection" title="canny edge detection">canny edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison" title=" comparison"> comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation" title=" encapsulation"> encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=redirection" title=" redirection"> redirection</a> </p> <a href="https://publications.waset.org/abstracts/35655/intelligent-crowd-management-systems-in-trains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">600</span> High-Speed Particle Image Velocimetry of the Flow around a Moving Train Model with Boundary Layer Control Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Buhr">Alexander Buhr</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus%20Ehrenfried"> Klaus Ehrenfried</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trackside induced airflow velocities, also known as slipstream velocities, are an important criterion for the design of high-speed trains. The maximum permitted values are given by the Technical Specifications for Interoperability (TSI) and have to be checked in the approval process. For train manufactures it is of great interest to know in advance, how new train geometries would perform in TSI tests. The Reynolds number in moving model experiments is lower compared to full-scale. Especially the limited model length leads to a thinner boundary layer at the rear end. The hypothesis is that the boundary layer rolls up to characteristic flow structures in the train wake, in which the maximum flow velocities can be observed. The idea is to enlarge the boundary layer using roughness elements at the train model head so that the ratio between the boundary layer thickness and the car width at the rear end is comparable to a full-scale train. This may lead to similar flow structures in the wake and better prediction accuracy for TSI tests. In this case, the design of the roughness elements is limited by the moving model rig. Small rectangular roughness shapes are used to get a sufficient effect on the boundary layer, while the elements are robust enough to withstand the high accelerating and decelerating forces during the test runs. For this investigation, High-Speed Particle Image Velocimetry (HS-PIV) measurements on an ICE3 train model have been realized in the moving model rig of the DLR in G&ouml;ttingen, the so called tunnel simulation facility G&ouml;ttingen (TSG). The flow velocities within the boundary layer are analysed in a plain parallel to the ground. The height of the plane corresponds to a test position in the EN standard (TSI). Three different shapes of roughness elements are tested. The boundary layer thickness and displacement thickness as well as the momentum thickness and the form factor are calculated along the train model. Conditional sampling is used to analyse the size and dynamics of the flow structures at the time of maximum velocity in the train wake behind the train. As expected, larger roughness elements increase the boundary layer thickness and lead to larger flow velocities in the boundary layer and in the wake flow structures. The boundary layer thickness, displacement thickness and momentum thickness are increased by using larger roughness especially when applied in the height close to the measuring plane. The roughness elements also cause high fluctuations in the form factors of the boundary layer. Behind the roughness elements, the form factors rapidly are approaching toward constant values. This indicates that the boundary layer, while growing slowly along the second half of the train model, has reached a state of equilibrium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title="boundary layer">boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20PIV" title=" high-speed PIV"> high-speed PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=ICE3" title=" ICE3"> ICE3</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20train%20model" title=" moving train model"> moving train model</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness%20elements" title=" roughness elements"> roughness elements</a> </p> <a href="https://publications.waset.org/abstracts/65754/high-speed-particle-image-velocimetry-of-the-flow-around-a-moving-train-model-with-boundary-layer-control-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">599</span> Analysis of Energy Efficiency Behavior with the Use of Train Dynamics Simulator and Statistical Tools: Case Study of Vitoria Minas Railway, Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eric%20Wilson%20Santos%20Cabral">Eric Wilson Santos Cabral</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20%20Monteiro%20Da%20Costa%20Cruz"> Marta Monteiro Da Costa Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Luis%20Maciel%20Machado"> Fabio Luis Maciel Machado</a>, <a href="https://publications.waset.org/abstracts/search?q=Henrique%20%20Andrade"> Henrique Andrade</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Pirola%20Pestana"> Rodrigo Pirola Pestana</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivian%20Andrea%20Parreira"> Vivian Andrea Parreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The large variation in the price of diesel in Brazil directly affects the variable cost of companies operating in the transportation sector. In rail transport, the great challenge is to overcome the annual budget, cargo and ore transported with cost reduction in relation to previous years, becoming more efficient every year. Some effective measures are necessary to achieve the reduction of the liter ratio consumed by KTKB (Gross Ton per Kilometer multiplied by thousand). This acronym represents the indicator of energy efficiency of some railroads in the world. This study is divided into two parts: the first, to identify using statistical tools, part of the controlled variables in the railways, which have a correlation with the energy efficiency indicator, seeking to aid decision-making. The second, with the use of the train dynamics simulator, within scenarios defined in the operational reality of a railroad, seeks to optimize the train formations and the train stop model for the change of train drivers. With the completion of the study, companies in the rail sector are expected to be able to reduce some of their transportation costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=railway%20transport" title="railway transport">railway transport</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20simulation" title=" railway simulation"> railway simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a> </p> <a href="https://publications.waset.org/abstracts/69090/analysis-of-energy-efficiency-behavior-with-the-use-of-train-dynamics-simulator-and-statistical-tools-case-study-of-vitoria-minas-railway-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">598</span> Modelling of Passengers Exchange between Trains and Platforms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Craveur">Guillaume Craveur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evaluation of the passenger exchange time is necessary for railway operators in order to optimize and dimension rail traffic. Several influential parameters are identified and studied. Each parameter leads to a modeling completed with the buildingEXODUS software. The objective is the modelling of passenger exchanges measured by passenger counting. Population size is dimensioned using passenger counting files which are a report of the train service and contain following useful informations: number of passengers who get on and leave the train, exchange time. These information are collected by sensors placed at the top of each train door. With passenger counting files it is possible to know how many people are engaged in the exchange and how long is the exchange, but it is not possible to know passenger flow of the door. All the information about observed exchanges are thus not available. For this reason and in order to minimize inaccuracies, only short exchanges (less than 30 seconds) with a maximum of people are performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passengers%20exchange" title="passengers exchange">passengers exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20tools" title=" numerical tools"> numerical tools</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20stock" title=" rolling stock"> rolling stock</a>, <a href="https://publications.waset.org/abstracts/search?q=platforms" title=" platforms"> platforms</a> </p> <a href="https://publications.waset.org/abstracts/72046/modelling-of-passengers-exchange-between-trains-and-platforms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">597</span> Optimal Maintenance Clustering for Rail Track Components Subject to Possession Capacity Constraints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cuong%20D.%20Dao">Cuong D. Dao</a>, <a href="https://publications.waset.org/abstracts/search?q=Rob%20J.I.%20Basten"> Rob J.I. Basten</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Hartmann"> Andreas Hartmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the optimal maintenance planning of preventive maintenance and renewal activities for components in a single railway track when the available time for maintenance is limited. The rail-track system consists of several types of components, such as rail, ballast, and switches with different preventive maintenance and renewal intervals. To perform maintenance or renewal on the track, a train free period for maintenance, called a possession, is required. Since a major possession directly affects the regular train schedule, maintenance and renewal activities are clustered as much as possible. In a highly dense and utilized railway network, the possession time on the track is critical since the demand for train operations is very high and a long possession has a severe impact on the regular train schedule. We present an optimization model and investigate the maintenance schedules with and without the possession capacity constraint. In addition, we also integrate the social-economic cost related to the effects of the maintenance time to the variable possession cost into the optimization model. A numerical example is provided to illustrate the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rail-track%20components" title="rail-track components">rail-track components</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20clustering" title=" optimal clustering"> optimal clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=possession%20capacity" title=" possession capacity"> possession capacity</a> </p> <a href="https://publications.waset.org/abstracts/69824/optimal-maintenance-clustering-for-rail-track-components-subject-to-possession-capacity-constraints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">596</span> A Review on the Hydrologic and Hydraulic Performances in Low Impact Development-Best Management Practices Treatment Train</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatin%20Khalida%20Abdul%20Khadir">Fatin Khalida Abdul Khadir</a>, <a href="https://publications.waset.org/abstracts/search?q=Husna%20Takaijudin"> Husna Takaijudin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioretention system is one of the alternatives to approach the conventional stormwater management, low impact development (LID) strategy for best management practices (BMPs). Incorporating both filtration and infiltration, initial research on bioretention systems has shown that this practice extensively decreases runoff volumes and peak flows. The LID-BMP treatment train is one of the latest LID-BMPs for stormwater treatments in urbanized watersheds. The treatment train is developed to overcome the drawbacks that arise from conventional LID-BMPs and aims to enhance the performance of the existing practices. In addition, it is also used to improve treatments in both water quality and water quantity controls as well as maintaining the natural hydrology of an area despite the current massive developments. The objective of this paper is to review the effectiveness of the conventional LID-BMPS on hydrologic and hydraulic performances through column studies in different configurations. The previous studies on the applications of LID-BMP treatment train that were developed to overcome the drawbacks of conventional LID-BMPs are reviewed and use as the guidelines for implementing this system in Universiti Teknologi Petronas (UTP) and elsewhere. The reviews on the analysis conducted for hydrologic and hydraulic performances using the artificial neural network (ANN) model are done in order to be utilized in this study. In this study, the role of the LID-BMP treatment train is tested by arranging bioretention cells in series in order to be implemented for controlling floods that occurred currently and in the future when the construction of the new buildings in UTP completed. A summary of the research findings on the performances of the system is provided which includes the proposed modifications on the designs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioretention%20system" title="bioretention system">bioretention system</a>, <a href="https://publications.waset.org/abstracts/search?q=LID-BMP%20treatment%20train" title=" LID-BMP treatment train"> LID-BMP treatment train</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20and%20hydraulic%20performance" title=" hydrological and hydraulic performance"> hydrological and hydraulic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN%20analysis" title=" ANN analysis"> ANN analysis</a> </p> <a href="https://publications.waset.org/abstracts/132861/a-review-on-the-hydrologic-and-hydraulic-performances-in-low-impact-development-best-management-practices-treatment-train" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">595</span> Aerodynamic Brake Study of Reducing Braking Distance for High-Speed Trains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phatthara%20Surachon">Phatthara Surachon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tosaphol%20Ratniyomchai"> Tosaphol Ratniyomchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanatchai%20Kulworawanichpong"> Thanatchai Kulworawanichpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an aerodynamic brake study of reducing braking distance for high-speed trains (HST) using aerodynamic brakes as inspiration from the applications on the commercial aircraft wings. In case of emergency, both braking distance and stopping time are longer than the usual situation. Therefore, the passenger safety and the HST driving control management are definitely obtained by reducing the time and distance of train braking during emergency situation. Due to the limited study and implementation of the aerodynamic brake in HST, the possibility in use and the effectiveness of the aerodynamic brake to the train dynamic movement during braking are analyzed and considered. Regarding the aircraft’s flaps that applied in the HST, the areas of the aerodynamic brake acted as an additional drag force during train braking are able to vary depending on the operating angle and the required dynamic braking force. The HST with a varying speed of 200 km/h to 350 km/h is taken as a case study of this paper. The results show that the stopping time and the brake distance are effectively reduced by the aerodynamic brakes. The mechanical brake and its maintenance are effectively getting this benefit by extending its lifetime for longer use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-speed%20train" title="high-speed train">high-speed train</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20brake" title=" aerodynamic brake"> aerodynamic brake</a>, <a href="https://publications.waset.org/abstracts/search?q=brake%20distance" title=" brake distance"> brake distance</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20force" title=" drag force "> drag force </a> </p> <a href="https://publications.waset.org/abstracts/122559/aerodynamic-brake-study-of-reducing-braking-distance-for-high-speed-trains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">594</span> A Review on the Mechanism Removal of Pesticides and Heavy Metal from Agricultural Runoff in Treatment Train</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Ahmad%20Zubairi">N. A. Ahmad Zubairi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Takaijudin"> H. Takaijudin</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20W.%20Yusof"> K. W. Yusof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pesticides have been used widely over the world in agriculture to protect from pests and reduce crop losses. However, it affects the environment with toxic chemicals. Exceed of toxic constituents in the ecosystem will result in bad side effects. The hydrological cycle is related to the existence of pesticides and heavy metal which it can penetrate through varieties of sources into the soil or water bodies, especially runoff. Therefore, proper mechanisms of pesticide and heavy metal removal should be studied to improve the quality of ecosystem free or reduce from unwanted substances. This paper reviews the use of treatment train and its mechanisms to minimize pesticides and heavy metal from agricultural runoff. Organochlorine (OCL) is a common pesticide that was found in the agricultural runoff. OCL is one of the toxic chemicals that can disturb the ecosystem such as inhibiting plants&#39; growth and harm human health by having symptoms as asthma, active cancer cell, vomit, diarrhea, etc. Thus, this unwanted contaminant gives disadvantages to the environment and needs treatment system. Hence, treatment train by bioretention system is suitable because removal efficiency achieves until 90% of pesticide removal with selected vegetated plant and additive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticides" title="pesticides">pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20runoff" title=" agricultural runoff"> agricultural runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=bioretention" title=" bioretention"> bioretention</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism%20removal" title=" mechanism removal"> mechanism removal</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20train" title=" treatment train"> treatment train</a> </p> <a href="https://publications.waset.org/abstracts/130426/a-review-on-the-mechanism-removal-of-pesticides-and-heavy-metal-from-agricultural-runoff-in-treatment-train" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=train%20timetable&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=train%20timetable&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=train%20timetable&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=train%20timetable&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=train%20timetable&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=train%20timetable&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=train%20timetable&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=train%20timetable&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=train%20timetable&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=train%20timetable&amp;page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=train%20timetable&amp;page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=train%20timetable&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10