CINXE.COM

Search results for: bitter vetch

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: bitter vetch</title> <meta name="description" content="Search results for: bitter vetch"> <meta name="keywords" content="bitter vetch"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="bitter vetch" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="bitter vetch"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 72</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: bitter vetch</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> In Vitro Digestibility of Grains and Straw of Seventeen Ecotypes of Bitter Vetch (Vicia ervilia) in the North of Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boukrouh%20Soumaya">Boukrouh Soumaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Cabaraux%20Jean-Fran%C3%A7ois"> Cabaraux Jean-François</a>, <a href="https://publications.waset.org/abstracts/search?q=Avril%20Claire"> Avril Claire</a>, <a href="https://publications.waset.org/abstracts/search?q=Noutfia%20Ali"> Noutfia Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Chentouf%20Mouad"> Chentouf Mouad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The introduction of marginal leguminous forage species in the diet of ruminants are of great importance. Bitter vetch is a good source of proteins, highly resistant against drought and poor soil conditions. Accordingly; two years field trials (2018/2019 and 2019-2020) were conducted to determine the digestibility of straw and grains of 17 promising bitter vetch ecotypes(Vicia ervilia) in the north of Morocco. In vitro dry and organic matter digestibility, gas production, and kinetics of fermentation of grains and straw were evaluated using gas production technique, pepsin-cellulase enzymatic digestibility of DM (CDDM)and OM (CDOM), as well as protease enzymatic CP degradation (CPD) and in vitro true digestibility, were performed using DAISYII Incubator. In vitro digestibility was performed using gas production method of (Menke et al., 1979) improved by Menke and Steingass (1988). Samples were incubated in glass syringes that contained rumen fluid and incubation solution that conserved in water bath in 39°C during 72 hours. Gas production was recorded after 2, 4, 8, 12, 24, 48, and 72 hours. Studied digestibility parameters were dry and organic matter digestibility, microbial biomass production, partitioning factor, and volatile fatty acids. Enzymatic dry matter digestibility was different (p < 0.05) among grains and straw for all ecotypes. It varied from 804.1 to 957.7 g/kg DM and 270.4 to 412.3 g/kg DM for grains and straw, respectively. Metabolizable energy varied between 11.7 to 14.3 MJ/kg DM and 2.6 to 5.0 MJ/kg DM for grains and straw, respectively. Potential gas production (A), the rate constants (c and d), and lag times of grains and straws from different bitter vetch ecotypes were different (p > 0.05). The results emphasized that in any evaluation of bitter vetch ecotypes, where straw of this legume seed is used as an animal feed, not only seed yield but also yield and quality of straw should be taken into consideration, particularly in areas where straw from this legume is considered as an important feedstuff for ruminants. Enzymatic digestibility was lower than in vitro digestibility by gaz production and by the DAISYII method because rumen fluid contains bacteria than increase digestibility. There was no difference between in vitro digestibility by gaz production and the DAISY II method. The DAISY II method can be used to increase labor efficiency in the in vitro DM digestibility analysis if gaz production is not necessary for analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitter%20vetch" title="bitter vetch">bitter vetch</a>, <a href="https://publications.waset.org/abstracts/search?q=grains" title=" grains"> grains</a>, <a href="https://publications.waset.org/abstracts/search?q=straw" title=" straw"> straw</a>, <a href="https://publications.waset.org/abstracts/search?q=ecotype" title=" ecotype"> ecotype</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20digestibility" title=" in vitro digestibility"> in vitro digestibility</a>, <a href="https://publications.waset.org/abstracts/search?q=gaz%20production" title=" gaz production"> gaz production</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20digestibility" title=" enzymatic digestibility"> enzymatic digestibility</a> </p> <a href="https://publications.waset.org/abstracts/144002/in-vitro-digestibility-of-grains-and-straw-of-seventeen-ecotypes-of-bitter-vetch-vicia-ervilia-in-the-north-of-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> In vitro α-Amylase and α-Glucosidase Inhibitory Activities of Bitter Melon (Momordica charantia) with Different Stage of Maturity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Percin">P. S. Percin</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Inanli"> O. Inanli</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Karakaya"> S. Karakaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bitter melon (Momordica charantia) is a medicinal vegetable, which is used traditionally to remedy diabetes. Bitter melon contains several classes of primary and secondary metabolites. In traditional Turkish medicine bitter melon is used for wound healing and treatment of peptic ulcers. Nowadays, bitter melon is used for the treatment of diabetes and ulcerative colitis in many countries. The main constituents of bitter melon, which are responsible for the anti-diabetic effects, are triterpene, protein, steroid, alkaloid and phenolic compounds. In this study total phenolics, total carotenoids and β-carotene contents of mature and immature bitter melons were determined. In addition, in vitro α-amylase and α-glucosidase activities of mature and immature bitter melons were studied. Total phenolic contents of immature and mature bitter melon were 74 and 123 mg CE/g bitter melon respectively. Although total phenolics of mature bitter melon was higher than that of immature bitter melon, this difference was not found statistically significant (p > 0.05). Carotenoids, a diverse group of more than 600 naturally occurring red, orange and yellow pigments, play important roles in many physiological processes both in plants and humans. The total carotenoid content of mature bitter melon was 4.36 fold higher than the total carotenoid content of immature bitter melon. The compounds that have hypoglycaemic effect of bitter melon are steroidal saponins known as charantin, insulin-like peptides and alkaloids. α-Amylase is one of the main enzymes in human that is responsible for the breakdown of starch to more simple sugars. Therefore, the inhibitors of this enzyme can delay the carbohydrate digestion and reduce the rate of glucose absorption. The immature bitter melon extract showed α-amylase and α-glucosidase inhibitory activities in vitro. α-Amylase inhibitory activity was higher than that of α-glucosidase inhibitory activity when IC50 values were compared. In conclusion, the present results provide evidence that aqueous extract of bitter melon may have an inhibitory effect on carbohydrate breakdown enzymes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitter%20melon" title="bitter melon">bitter melon</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20antidiabetic%20activity" title=" in vitro antidiabetic activity"> in vitro antidiabetic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20carotenoids" title=" total carotenoids"> total carotenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenols" title=" total phenols"> total phenols</a> </p> <a href="https://publications.waset.org/abstracts/81770/in-vitro-a-amylase-and-a-glucosidase-inhibitory-activities-of-bitter-melon-momordica-charantia-with-different-stage-of-maturity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Study of Dormancy-Breaking of Bitter Apple Seed (Citrullus Colocynthis L. Schard)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asghar%20Rahimi">Asghar Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Puryousef"> Majid Puryousef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to examine dormancy-breaking of bitter apple (Citrullus colocynthis) seed. Seeds of wild bitter apple collected from the Balochestan zone in east of Iran were subjected to different treatments including temperatures (20 and 30°C) and some dormancy breaking methods on breaking seed dormancy of bitter apple. Only 6 treatments from 12 dormancy breaking treatments were effective in dormancy breaking, therefore only effective treatments were analyzed. In general, germination percentage of cleaved seeds, soaked seeds in hot water (98°c) and soaking in H2SO4 in both temperatures was higher than other treatments and germination percentage of scarified seeds with sandy paper in both temperature was lower than other treatments. Also germination percentage of soaked seeds in hot water (98°c) and naturally cracked seeds in temperature 20°c was higher than 30°c. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foliar%20application" title="foliar application">foliar application</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20chelate" title=" nano chelate"> nano chelate</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=Safflower" title=" Safflower"> Safflower</a> </p> <a href="https://publications.waset.org/abstracts/69540/study-of-dormancy-breaking-of-bitter-apple-seed-citrullus-colocynthis-l-schard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Comparative Performance and Emission Analysis of Diesel Engine Fueled with Diesel and Bitter Apricot Kernal Oil Biodiesel Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Virender%20Singh%20Gurau">Virender Singh Gurau</a>, <a href="https://publications.waset.org/abstracts/search?q=Akash%20Deep"> Akash Deep</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarbjot%20S.%20Sandhu"> Sarbjot S. Sandhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. In the present research work Bitter Apricot kernel oil was employed as a feedstock for the production of biodiesel. The physicochemical properties of the Bitter Apricot kernel oil methyl ester were investigated as per ASTM D6751. From the series of engine testing, it is concluded that the brake thermal efficiency (BTE) with biodiesel blend was little lower than that of diesel. BSEC is slightly higher for Bitter apricot kernel oil methyl ester blends than neat diesel. For biodiesel blends, CO emission was lower than diesel fuel as B 20 reduced CO emissions by 18.75%. Approximately 11% increase in NOx emission was observed with 20% biodiesel blend. It is observed that HC emissions tend to decrease for biodiesel based fuels and Smoke opacity was found lower for biodiesel blends in comparison to diesel fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=bitter%20apricot%20kernel%20oil" title=" bitter apricot kernel oil"> bitter apricot kernel oil</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20and%20emission%20testing" title=" performance and emission testing"> performance and emission testing</a> </p> <a href="https://publications.waset.org/abstracts/52661/comparative-performance-and-emission-analysis-of-diesel-engine-fueled-with-diesel-and-bitter-apricot-kernal-oil-biodiesel-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> The Antioxidant Gel Mask Supplies Of Bitter Melon&#039;s Extract ( Momordica charantia Linn.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20S.%20Risqina">N. S. Risqina</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Edijanti"> G. Edijanti</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Nurita"> P. S. Nurita</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Endang"> L. Endang</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Siti"> R. A. Siti</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Tri"> R. Tri </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin is an important and vital organs and also as a mirror of health and life. Facial skin care is one of the main emphasis to get the beautiful, healthy, and fresh skin. Potentially antioxidant phenolic compounds shows, antimutagen, antitumor, anti-inflammatory, and anti-cancer. Flavonoids are a group of polyphenolic compounds that have the nature of free radicals, inhibiting the oxidative and hydrolytic enzymes as well as anti-inflammatory. Bitter melon (Momordica charantia Linn) is a plant that contains flavonoids, and phenolic antioxidant activity. Bitter melon has strong antioxidant activity that can counteract the free radicals.These compounds can prevent free radicals that cause premature aging. Gel masks including depth cleansing is the cosmetics which work in depth and could raise the dead skin cells. Measurement of antioxidant activity of the extract and gel mask is done by using the immersion method of DPPH. IC50 value of ethanol extract of bitter melon fruit of 287.932 ppm. The preparation of gel mask bitter melon fruit extract, necessary to test the effectiveness of antioxidants using DPPH method is done by measuring the inhibition of DPPH and using UV spectrophotometer at the wavelength of maximum DPPH solution. Tests conducted at the beginning and end of the evaluation (day 0 and day 28). The purpose of this study is to determine the antioxidant activity of the bitter melon's extract and to determine the antioxidant activity of ethanol extract gel mask pare in varying concentrations, ie 1xIC100 (0.295%), 2xIC100 (0.590%) and 4xIC100 (1.180%). Evaluation of physical properties of the preparation on (Day-0,7,14,21, and 28) and evaluation of antioxidant activity (day 0 and 28). Data were analyzed using One Way ANOVA to determine differences in the physical properties of each formula. The statistical results showed that differences in the formula and storage time affects the adhesion, dispersive power, dry time and pH it is shown on a significant value of p <0.05, but longer storage does not affect the pH because the significance value p> 0,05. The antioxidant test showed that there are differences in antioxidant activity in all formulas. Measurement of antioxidant activity of bitter melon fruit extract gel mask on day 0 with a concentration of 0.295%, 0.590%, and 1.180%, respectively, are 124,209.277 ppm, ppm 83819.223 and 47323.592 ppm, whereas day 28 consecutive 130 411, 495 ppm, and 53239.806 95561.645 ppm ppm. The Conclusions drawn that there are antioxidant activity in preparation gel mask of bitter melon fruit extract. The antioxidant activity of bitter melon fruit extract gel mask on the day 0 with a concentration of 0.295%, 0.590%, and 1.180%, respectively, are 124,209.277 ppm, ppm 83819.223 and 47323.592 ppm, whereas on day 28 of antioxidant activity gel mask bitter melon fruit extract with a concentration of 0.295%, 0.590%, and 1.180% in succession, namely: 130,411.495 ppm, ppm 95561.645 and 53239.806 ppm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxdant" title="antioxdant">antioxdant</a>, <a href="https://publications.waset.org/abstracts/search?q=bitter%20melon" title=" bitter melon"> bitter melon</a>, <a href="https://publications.waset.org/abstracts/search?q=gel%20mask" title=" gel mask"> gel mask</a>, <a href="https://publications.waset.org/abstracts/search?q=IC50" title=" IC50"> IC50</a> </p> <a href="https://publications.waset.org/abstracts/32963/the-antioxidant-gel-mask-supplies-of-bitter-melons-extract-momordica-charantia-linn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Effect of Local Processing Techniques on the Nutrients and Anti-Nutrients Content of Bitter Cassava (Manihot Esculenta Crantz)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Alakali">J. S. Alakali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Ismaila"> A. R. Ismaila</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20G.%20Atume"> T. G. Atume</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of local processing techniques on the nutrients and anti-nutrients content of bitter cassava were investigated. Raw bitter cassava tubers were boiled, sundried, roasted, fried to produce Kuese, partially fermented and sun dried to produce Alubo, fermented by submersion to produce Akpu and fermented by solid state to produce yellow and white gari. These locally processed cassava products were subjected to proximate, mineral analysis and anti-nutrient analysis using standard methods. The result of the proximate analysis showed that, raw bitter cassava is composed of 1.85% ash, 20.38% moisture, 4.11% crude fibre, 1.03% crude protein, 0.66% lipids and 71.88% total carbohydrate. For the mineral analysis, the raw bitter cassava tuber contained 32.00% Calcium, 12.55% Magnesium, 1.38% Iron and 80.17% Phosphorous. Even though all processing techniques significantly increased the mineral content, fermentation had higher mineral increment effect. The anti-nutrients analysis showed that the raw tuber contained 98.16mg/100g cyanide, 44.00mg/100g oxalate 304.20mg/100g phytate and 73.00mg/100g saponin. In general all the processing techniques showed a significant reduction of the phytate, oxalate and saponin content of the cassava. However, only fermentation, sun drying and gasification were able to reduce the cyanide content of bitter cassava below the safe level (10mg/100g) recommended by Standard Organization of Nigeria. Yellow gari(with the addition of palm oil) showed low cyanide content (1.10 mg/100g) than white gari (3.51 mg/100g). Processing methods involving fermentation reduce cyanide and other anti-nutrients in the cassava to levels that are safe for consumption and should be widely practiced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitter%20cassava" title="bitter cassava">bitter cassava</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20processing" title=" local processing"> local processing</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-nutrient." title=" anti-nutrient."> anti-nutrient.</a> </p> <a href="https://publications.waset.org/abstracts/46049/effect-of-local-processing-techniques-on-the-nutrients-and-anti-nutrients-content-of-bitter-cassava-manihot-esculenta-crantz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Legume Grain as Alternative to Soya Bean Meal in Small Ruminant Diets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abidi%20Sourour">Abidi Sourour</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Salem%20Hichem"> Ben Salem Hichem</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoghlemi%20Aziza"> Zoghlemi Aziza</a>, <a href="https://publications.waset.org/abstracts/search?q=Mezni%20Mejid"> Mezni Mejid</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasri%20Saida"> Nasri Saida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Tunisia, there is an urgent need to maintain food security by reversing soil degradation and improving crop and livestock productivity. Conservation Agriculture (CA) can be helpful in enhancing crop productivity and soil health. However, the demand for crop residues as animal feed are among the major constraints for the adoption of CA. Thus, the objective of this trial is to test the nutritional value of new forage mixture hays as alternative to cereal residues. Two tri-specific cereal-legume mixture were studied and compared to the classic Vetch-Oat one. They were implemented at farm level in four regions characterized by sub-humi climatic: V70-A15-T15 (Vetch70% - Oat15% -Triticale15%) installed in two sites (Zhir and safasaf), V60-A7-T33 (Vetch60% - Oat7% -Triticale33%) and V70-A30 (Vetch70%-Oat30%). Results revealed a significant variation between mixtures V70-A15-T15 installed at Safsafa, recorded the highest forage yield with 12t DM ha-1 than V60A7T33 and V70A30 installed, respectively in ksar cheikh and Fernana with 11.6 and 11.2.tMSha-1. The same mixture installed in Safsafa gave 22% less yields than the one installed in Safsafa. In fact, the month of March was dry in Z'hir. Moreover, these yields in DM can be comparable to those observed by Yucel and Avci (2009). The CP contents of the samples studied vary significantly between the mixtures (P<0.0003). V70-A15-T15 installed in Safsaf and V70A30 present higher contents of CP (respectively 14.4 and 13.7% DM) compared to the other mixtures. These contents are explained by the high proportion of vetch in the fourth mixture and by the low proportion of weeds in the second. In all cases, the hay produced from these mixtures is significantly richer in protein than that of oats in pure culture (Abdelraheem et al., 2019). The positive correlation between the CP content and the proportion of vetch explains this superior quality. The NDF and ADF contents were similar for all mixtures. These values were similar to those reported in the literature (Abidi and Benyoussef, 2019; Haj-Ayed and al., 2000). In general, the Land Equivalent Ratio (LER) was significantly greater than 1 for the vetch-oat-triticale mixture at Zhiir and Safsafa and also for the vetch-oat a at Fernana, proving that they are more productive in intercropping than in pure culture. For the Ksar Cheikh site, the LER value of the vetch-oat-triticale mixture is maintained at around 1. Proving the absence of the advantage of mixture culture compared to pure culture. This proves the massive presence of weeds interferes with the two partners of the mixture increases. The LER for the vetch-oat mixture reached its maximum in March 13 and decreases in April but remained above 1. This proves that the tutoring power of oats showed itself in a constant way until an advanced stage since the variety used is characterized by very thick stems, protecting it from the risk of lodging. These forages mixture present a promising option, a high nutritional quality that could reduce the use of concentrate and, therefore, the cost of feed. With such feed value, these mixtures allow good animal performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soybean" title="soybean">soybean</a>, <a href="https://publications.waset.org/abstracts/search?q=lupine" title=" lupine"> lupine</a>, <a href="https://publications.waset.org/abstracts/search?q=vetch" title=" vetch"> vetch</a>, <a href="https://publications.waset.org/abstracts/search?q=lamb-ADG" title=" lamb-ADG"> lamb-ADG</a>, <a href="https://publications.waset.org/abstracts/search?q=meat" title=" meat"> meat</a> </p> <a href="https://publications.waset.org/abstracts/160539/legume-grain-as-alternative-to-soya-bean-meal-in-small-ruminant-diets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Antidiabetic Effects of Bitter Melon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinhyun%20Ryu">Jinhyun Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chengliang%20Xie"> Chengliang Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Nal%20Ae%20Yoon"> Nal Ae Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Hoon%20Lee"> Dong Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Gu%20Seob%20Roh"> Gu Seob Roh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Joon%20Kim"> Hyun Joon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyeong%20Jae%20Cho"> Gyeong Jae Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Sung%20Choi"> Wan Sung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Soo%20Kang"> Sang Soo Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Type 2 diabetes is a heterogeneous group of metabolic disorders featured by a deficit in or loss of insulin activity to maintain normal glucose homeostasis. Mainly, it results from the compromised insulin secretion and/or reduced insulin activity. The frequency of type 2 diabetes (T2D) has been increased rapidly in recent decades with the increase in the trend of obesity due to life style and food habit. Obesity is considered to be the primary risk factor for the development of insulin resistance and thereby developing T2D. Traditionally naturally occurring fruits, vegetables etc. are being used to treat many pathogenic conditions. In this study, we tried to find out the effect of a popularly used vegetable in Bangladesh and several other Asian countries, ‘bitter melon’ on high fat diet induced T2D. To investigate the effect, we used 70% ethanol extract of bitter melon (BME) as dietary supplement with chow. BME was found to attenuate the high fat diet (HFD) induced body weight and total fat mass significantly. We also observed that BME reduced the insulin resistance induced by HFD effectively. Furthermore, dietary supplementation of BME was highly effective in increasing insulin sensitivity, and reducing the hepatic fat and obesity. These results indicate that BME could be effective to attenuate T2D and could be a preventive measure against T2D. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitter%20melon" title="bitter melon">bitter melon</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes" title=" type 2 diabetes"> type 2 diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20fat%20diet" title=" high fat diet"> high fat diet</a> </p> <a href="https://publications.waset.org/abstracts/41779/antidiabetic-effects-of-bitter-melon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Impact of Wastewater from Outfalls of River Ganga on Germination Percentage and Growth Parameters of Bitter Gourd (Momordica charantia L.) with Antioxidant Activity Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayanti%20Kar">Sayanti Kar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amitava%20Ghosh"> Amitava Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pritam%20Aitch"> Pritam Aitch</a>, <a href="https://publications.waset.org/abstracts/search?q=Gupinath%20Bhandari"> Gupinath Bhandari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An extensive seasonal analysis of wastewater had been done from outfalls of river Ganga in Howrah, Hooghly, 24 PGS (N) District, West Bengal, India during 2017. The morphological parameters of Bitter gourd (Momordica charantia L.) were estimated under wastewater treatment. An approach to study the activity within the range of low molecular weight peptide 3-0.5 kDa were taken through its extraction and purification by ion exchange resin column, cation, and anion exchanger. HPLC analysis had been done for both in wastewater treated and untreated plants. The antioxidant activity by using DPPH and germination percentage in control and treated plants were also determined in relation to wastewater effect. The inhibition of growth and its parameters were maximum in pre-monsoon in comparing to post-monsoon and monsoon season. The study also helped to explore the effect of wastewater on the peptidome of Bitter gourd (Momordica charantia L.). Some of these low molecular weight peptide(s) (3-0.5 kDa) also inhibited during wastewater treatment. Expression of particular peptide(s) or absence of some peptide(s) in chromatogram indicated the adverse effects on plants which may be the indication of stressful condition. Pre monsoon waste water was found to create more impact than other two. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitter%20gourd%20%28Momordica%20charantia%20l.%29" title="bitter gourd (Momordica charantia l.)">bitter gourd (Momordica charantia l.)</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20molecular%20weight%20peptide" title=" low molecular weight peptide"> low molecular weight peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20ganga" title=" river ganga"> river ganga</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/101111/impact-of-wastewater-from-outfalls-of-river-ganga-on-germination-percentage-and-growth-parameters-of-bitter-gourd-momordica-charantia-l-with-antioxidant-activity-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Evaluation of Forage Yield and Competition Indices for Intercropped Barley and Legumes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdollah%20Javanmard">Abdollah Javanmard</a>, <a href="https://publications.waset.org/abstracts/search?q=Fariborz%20Shekari"> Fariborz Shekari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Barley (Hordeum vulgare L.), vetch (Vicia villosa), and grass pea (Lathyrus sativus L.) monocultures as well as mixtures of barley with each of the above legumes, in three seeding ratios (i.e., barley: legume 75:25, 50:50 and 25:75 based on seed numbers) were used to investigate forage yield and competition indices. The results showed that intercropping reduced the dry matter yield of the three component plants, compared with their respective monocrops. The greatest value of total dry matter yield was obtained from barley25-grasspea75 (5.44 t ha-1) mixture, followed by grass pea sole crop (4.99 t ha-1). The total AYL values were positive and greater than 0 in all mixtures, indicating an advantage from intercropping over sole crops. Intercropped barley had a higher relative crowding coefficient (K=1.64) than intercropped legumes (K=1.20), indicating that barley was more competitive than legumes in mixtures. Furthermore, grass pea was more competitive than vetch in mixtures with barley. The highest LER, SPI and MAI were obtained when barley was mixed at a rate of 25% with 75% seed rate of grass pea. It is concluded that intercropping of barley with grass pea has a good potential to improve the performance of forage with high land-use efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forage" title="forage">forage</a>, <a href="https://publications.waset.org/abstracts/search?q=grass%20pea" title=" grass pea"> grass pea</a>, <a href="https://publications.waset.org/abstracts/search?q=intercropping" title=" intercropping"> intercropping</a>, <a href="https://publications.waset.org/abstracts/search?q=LER" title=" LER"> LER</a>, <a href="https://publications.waset.org/abstracts/search?q=monetary%20advantage" title=" monetary advantage"> monetary advantage</a> </p> <a href="https://publications.waset.org/abstracts/3557/evaluation-of-forage-yield-and-competition-indices-for-intercropped-barley-and-legumes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Growth, Yield and Pest Infestation Response of Maize (Zea mays Linn.) to Biopesticide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Udomporn%20Pangnakorn">Udomporn Pangnakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Settawut%20Prasatporn"> Settawut Prasatporn</a>, <a href="https://publications.waset.org/abstracts/search?q=Sombat%20Chuenchooklin"> Sombat Chuenchooklin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of biopesticide on growth, yield and pest infestation of maize (Zea mays Linn.) (variety DK 6818) was evaluated during the drought season. The experimental plots were located at research station of Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand. The extracted substance from plants was evaluated in the plots in 4 treatments: 1) water as control; 2) bitter bush (Chromolaena odorata L.); 3) neem (Azadirachta indica A. Juss), 4) golden shower (Cassia fistula Linn.). The experiment was followed a Randomized Complete Block Design (RCBD) with 4 treatments and 4 replications per treatment. The results showed that golden shower gave the highest growth of maize in term of height (203.29 cm), followed by neem and bitter bush with average height of 202.66 cm and 191.66 cm respectively with significance different. But neem treatment given significantly higher average of yield component in term of length, width, and weight of pod corn with 18.89 cm 13.91 cm and 166.46 g respectively. Also, treatment of neem showed the highest harvested yield at 284.06 kg/ha followed by the golden shower and bitter bush with harvested yield at 245.86 kg/ha and 235.52 kg/ha respectively. Additionally, treatment of neem and golden shower were the highest effectiveness for reducing insects pest infestation of maize: corn leaf aphid Rhopalosiphum maidis Fitch, corn borer Ostrinia fumacalis Guenee and corn armyworm Mythimna separata Walker. The treatment of neem, golden shower, and bitter bush given reduction insect infestation on maize with leaves area were infested at 5,412 mm², 6,827 mm² and 8,910 mm² respectively with significance different when compared to control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maize" title="maize">maize</a>, <a href="https://publications.waset.org/abstracts/search?q=Zea%20mays%20Linn." title=" Zea mays Linn."> Zea mays Linn.</a>, <a href="https://publications.waset.org/abstracts/search?q=biopesticide" title=" biopesticide"> biopesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=bitter%20bush" title=" bitter bush"> bitter bush</a>, <a href="https://publications.waset.org/abstracts/search?q=Chromolaena%20odorata%20L.%29" title=" Chromolaena odorata L.)"> Chromolaena odorata L.)</a>, <a href="https://publications.waset.org/abstracts/search?q=neem" title=" neem"> neem</a>, <a href="https://publications.waset.org/abstracts/search?q=Azadirachta%20indica%20A.%20Juss" title=" Azadirachta indica A. Juss"> Azadirachta indica A. Juss</a>, <a href="https://publications.waset.org/abstracts/search?q=golden%20shower" title=" golden shower"> golden shower</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassia%20fistula%20Linn." title=" Cassia fistula Linn. "> Cassia fistula Linn. </a> </p> <a href="https://publications.waset.org/abstracts/65223/growth-yield-and-pest-infestation-response-of-maize-zea-mays-linn-to-biopesticide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Sweet to Bitter Perception Parageusia: Case of Posterior Inferior Cerebellar Artery Territory Diaschisis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20S.%20Gandhi">I. S. Gandhi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20N.%20Patel"> D. N. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Johnson"> M. Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Hirsch"> A. R. Hirsch </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although distortion of taste perception following a cerebrovascular event may seem to be a frivolous consequence of a classic stroke presentation, altered taste perception places patients at an increased risk for malnutrition, weight loss, and depression, all of which negatively impact the quality of life. Impaired taste perception can result from a wide variety of cerebrovascular lesions to various locations, including pons, insular cortices, and ventral posteromedial nucleus of the thalamus. Wallenberg syndrome, also known as a lateral medullary syndrome, has been described to impact taste; however, specific sweet to bitter taste dysgeusia from a territory infarction is an infrequent event; as such, a case is presented. One year prior to presentation, this 64-year-old right-handed woman, suffered a right posterior inferior cerebellar artery aneurysm rupture with resultant infarction, culminating in a ventriculoperitoneal shunt placement. One and half months after this event, she noticed the gradual onset of lack of ability to taste sweet, to eventually all sweet food tasting bitter. Since the onset of her chemosensory problems, the patient has lost 60-pounds. Upon gustatory testing, the patient's taste threshold showed ageusia to sucrose and hydrochloric acid, while normogeusia to sodium chloride, urea, and phenylthiocarbamide. The gustatory cortex is made in part by the right insular cortex as well as the right anterior operculum, which are primarily involved in the sensory taste modalities. In this model, sweet is localized in the posterior-most along with the rostral aspect of the right insular cortex, notably adjacent to the region responsible for bitter taste. The sweet to bitter dysgeusia in our patient suggests the presence of a lesion in this localization. Although the primary lesion in this patient was located in the right medulla of the brainstem, neurodegeneration in the rostal and posterior-most aspect, of the right insular cortex may have occurred due to diaschisis. Diaschisis has been described as neurophysiological changes that occur in remote regions to a focal brain lesion. Although hydrocephalus and vasospasm due to aneurysmal rupture may explain the distal foci of impairment, the gradual onset of dysgeusia is more indicative of diaschisis. The perception of sweet, now tasting bitter, suggests that in the absence of sweet taste reception, the intrinsic bitter taste of food is now being stimulated rather than sweet. In the evaluation and treatment of taste parageusia secondary to cerebrovascular injury, prophylactic neuroprotective measures may be worthwhile. Further investigation is warranted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diaschisis" title="diaschisis">diaschisis</a>, <a href="https://publications.waset.org/abstracts/search?q=dysgeusia" title=" dysgeusia"> dysgeusia</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke" title=" stroke"> stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=taste" title=" taste"> taste</a> </p> <a href="https://publications.waset.org/abstracts/113097/sweet-to-bitter-perception-parageusia-case-of-posterior-inferior-cerebellar-artery-territory-diaschisis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Boiling Effect of Momordica charantia with Salt to the Antihiperglicemia Effectiveness of Diabetes Mellitus Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zulfa%20D.%20Putri">Zulfa D. Putri</a>, <a href="https://publications.waset.org/abstracts/search?q=Jumayanti%20Jumayanti"> Jumayanti Jumayanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatiefah%20T.%20I.%20Melati"> Hatiefah T. I. Melati</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiki%20Indriati"> Kiki Indriati</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20U.%20Mauhibah"> Farah U. Mauhibah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Momordica charantia is a food that is often used for nutrition therapy for patients with Diabetes Mellitus (DM) because of its effect as antihiperglicemia. However, the bitter taste of Momordica charantia may be an obstacle to consume. Some people remove the bitter taste of this by boiling it with salt water. The purpose of this study was to determine the effect of Momordica charantia boiling with salt water in lowering blood glucose levels. This study is a quasi-experimental study with pre-post test with control group design. The research sample consisted of 25 rats Sprague-Dawley were divided into 5 groups: Control group of healthy, control group of DM, control group of DM with the addition of Momordica charantia are boiled by salt for 3 minutes, 6 minutes, and 9 minutes. Blood glucose levels were measured after 4 weeks using a spectrophotometer. These results indicate that there is the effect of bitter taste from Momordica charantia in lowering blood glucose levels in rats significantly. The conclusion of this study is giving a Momordica charantia juice in Sprague-Dawley rats that induced by alloxan has meaningful statistically proven by One Way ANOVA test (p = 0.00) in lowering blood glucose levels of rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antihiperglicemia" title="antihiperglicemia">antihiperglicemia</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title=" diabetes mellitus"> diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=momordica%20charantia" title=" momordica charantia"> momordica charantia</a>, <a href="https://publications.waset.org/abstracts/search?q=salt" title=" salt"> salt</a> </p> <a href="https://publications.waset.org/abstracts/54488/boiling-effect-of-momordica-charantia-with-salt-to-the-antihiperglicemia-effectiveness-of-diabetes-mellitus-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Effect of Saline Ground Water on Economics of Bitter-Gourd (Momordica charantia L.) Cultivation and Soil Characteristics in Semi Arid Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Baksh%20Soomro">Kamran Baksh Soomro</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Talei"> Amin Talei</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20Alaghmand"> Sina Alaghmand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the declining freshwater availability to agriculture in many areas, the utilization of saline irrigation requires more consideration. For this purpose, the effects of saline irrigation on the economics of crop yield and soil salinity should be understood. A two-year field experiment was carried out during 2017-18 with three replications to investigate the effect of saline groundwater on the economics of bitter gourd production and soil salinity status after harvesting the crop. Two irrigation treatments, i.e., fresh quality irrigation water (IT₁ EC 0.56 dS.m⁻¹ (control) and other is saline groundwater ( IT₂ EC 2.56 dS.m⁻¹) were used under drip system of irrigation. Cost-benefit analysis is often used to assess adaptation approaches. In this study, it has been observed that the salts under IT₁ (fresh quality water) and IT₂ (saline groundwater) did not accumulate in the wetted zone. However, the salts were observed deposited at wetted periphery under both the treatments after the crop end at all the three sampling depths under drip system of irrigation. Moreover, the costs and benefits associated with different irrigation treatments for two consecutive seasons for bitter-gourd cultivation were also investigated, and it was found that the average gross returns per hectare in season 1 were USD 5008.22 and 4454.78 under irrigation treatment IT₁ and IT₂ respectively. Whereas in season 2 the average gross returns per hectare were 3713.47 and 3140.51 under IT₁ and IT₂ respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground-water" title="ground-water">ground-water</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20salinity" title=" soil salinity"> soil salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=drip%20irrigation" title=" drip irrigation"> drip irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=wetted%20zone" title=" wetted zone"> wetted zone</a>, <a href="https://publications.waset.org/abstracts/search?q=wetted%20periphery" title=" wetted periphery"> wetted periphery</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20benefit%20analysis" title=" cost benefit analysis"> cost benefit analysis</a> </p> <a href="https://publications.waset.org/abstracts/101836/effect-of-saline-ground-water-on-economics-of-bitter-gourd-momordica-charantia-l-cultivation-and-soil-characteristics-in-semi-arid-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Effects of Saline Groundwater on Crop Yield of Bitter-Gourd (Momordica charantia L.) under Drip System of Irrigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Baksh%20Soomro">Kamran Baksh Soomro</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Talei"> Amin Talei</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20Alaghmand"> Sina Alaghmand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water scarcity has exacerbated in the last couple of decades; it is incumbent on agriculture to maximize the use of water of all qualities. The drip irrigation system practice has shown a vast increase in profit and research interests in the last two decades. However, the application of this system is still limited. The two years field experiment was conducted with three replications at Malir, Karachi (a semi-arid region) in Pakistan. The aim was to evaluate the effects of two qualities of irrigation water IT1 (EC 0.56 dS.m⁻¹) and IT2 (EC 2.89 dS.m⁻¹) on water use efficiency. To achieve the aim, bitter gourd was grown under the drip irrigation system in 2016-17. The uniformity co-efficient (UC) ranged from 93 to 96%. Water use efficiency, of 1.60 and 1.21 kg.m⁻³ under IT1 was recorded higher in season 1 and 2. Using t-test at 5% significance level, the crop yield was higher in both seasons under IT1 compared to IT2. Using pairwise t-test at 5% significance level, the parameters related with the quality of fruit, like length, weight, and diameter, were higher in IT1 than IT2 in all plants; and in both seasons. A correlational study was also conducted to observe the trends in the variables associated with both irrigation treatments for the two seasons. Results showed that most of the parameters exhibited a similar linear trend in both the seasons. The study concluded that bitter gourd crop could be grown successfully in sandy loam using drip irrigation system, supplying saline ground-water. The sustainable use of saline irrigation water should be utilized for vegetable cultivation to meet the food demand in the rural areas of Pakistan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uniformity%20co-efficient" title="uniformity co-efficient">uniformity co-efficient</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency"> water use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=drip%20irrigation" title=" drip irrigation"> drip irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=ground-water" title=" ground-water"> ground-water</a>, <a href="https://publications.waset.org/abstracts/search?q=t-test" title=" t-test"> t-test</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a> </p> <a href="https://publications.waset.org/abstracts/101896/effects-of-saline-groundwater-on-crop-yield-of-bitter-gourd-momordica-charantia-l-under-drip-system-of-irrigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Change of Taste Preference after Bariatric Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Tylec">Piotr Tylec</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Wierzbicka"> Julia Wierzbicka</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Gajewska"> Natalia Gajewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Przeczek"> Krzysztof Przeczek</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Torbicz"> Grzegorz Torbicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Alicja%20Dudek"> Alicja Dudek</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Pisarska-Adamczyk"> Magdalena Pisarska-Adamczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Wierdak"> Mateusz Wierdak</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Pedziwiatr"> Michal Pedziwiatr </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Many patients have described changes in taste perception after weight loss surgery. However, little data is available about short term changes in taste after surgery. Aim: We aimed to evaluate short-term changes in taste preference after bariatric surgeries in comparison to colorectal surgeries. Material and Methods: Between April 2018 and April 2019, a total of 121 bariatric patients and 63 controls participated. Bariatric patients underwent laparoscopic sleeve gastrectomy or Roux-en-Y gastric by-pass. Controls underwent oncological colorectal surgeries. Patients who developed clinical complications requiring restriction of oral intake after surgery or withdraw their consent were excluded from the study. In the end, 85 bariatric patients and 44 controls were included. In all of them, the 16-item ERAS Protocol was applied. Using 10-points Numeric Rating Scale (1-10) patients completed questionnaire and rated their appetite and thirst (1 - no appetite/not thirsty, 10 – normal appetite/very thirsty) and flavoured standardized liquids' taste (1- horrible, 10-very tasty) and food images for the 6 group of taste (sweet, umami, sour, spicy, bitter and salty) (1 - not appetizing, 10 - very appetizing) preoperatively and on the first postoperative day. Data were analysed with Statistica 13.0 PL. Results: Analysed group consist of 129 patients (85 bariatric, 44 controls). Mean age and BMI in a research group was 44.91 years old, 46.22 kg/m² and in control group 62.09 years old, 25.87 kg/m², respectively. Our analysis revealed significant differences in changes of appetite between both groups (research: -4.55 ± 3.76 vs. control: -0.85 ± 4.37; p < 0.05), ratings bitter (research: 0.60 ± 2.98 vs. control: -0.88 ± 2.58; p < 0.05) and salty (research: 1.20 ± 3.50 vs. control: -0.52 ± 2.90; p < 0.05) flavoured liquids and ratings for sweet (research: 1.62 ± 3.31 vs. control: 0.01 ± 2.63; p < 0.05) and bitter (research: 1.21 ± 3.15 vs. control: -0.09 ± 2.25; p < 0.05) food images. There were statistically significant results in the ratings of other images, but in comparison to the control group, they were not statistically significant. Conclusion: The study showed that bariatric surgeries quickly decreases appetite and desire to eat certain types of food, such as salty. Moreover, the bitter taste was more desirable in the research group in comparison to control group. Nevertheless, the sweet taste was more appetible in the bariatric group than in control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bariatric%20surgery" title="bariatric surgery">bariatric surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=general%20surgery" title=" general surgery"> general surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=taste%20preference" title=" taste preference"> taste preference</a> </p> <a href="https://publications.waset.org/abstracts/128223/change-of-taste-preference-after-bariatric-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Postprandial Glycemic and Appetite Responses of Muffins Supplemented with Different Vegetables in Young Males</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umair%20Arshad">Muhammad Umair Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Objectives: Different vegetables have been reported to possess diabetic potential in in-vitro studies; however, the same role of these vegetables has not been much explored through human intervention. Therefore, the present study was conducted to examine the comparative effects of muffins supplemented with bitter gourd (BGM), and other vegetables like spinach (SPM) and eggplant (EPM) on subjective appetite, blood glucose (BG), gut hormones and food intake in healthy young males through a randomized, cross over experiment. Methods and Study Design: After 12 hours fasting, twenty-four healthy young males (18-30 Y) were fed 250ml of plain muffins (control) or supplemented with bitter gourd powder, BGM (10g/100g flour), or spinach powder, SPM (10g/100g flour), or eggplant powder, EPM (10g/100g flour). An ad libitum pizza meal was served at 120min to measure the food intake. Subjective appetite, blood glucose, and gut hormones (insulin, GLP-1, active ghrelin) were measured at intervals from baseline to 120min. Results: Post-treatment (0-120min) glucose, but not insulin, decreased following all the vegetables supplemented muffins compared to the control (p < 0.0001) with a more pronounced effect of BGM. However, post-treatment avg. subjective appetite (p=0.0017) and food intake (p=0.0021) were reduced following BGM but not SPM and EPM. BGM further improved GLP-1 concentration (p < 0.0001), and reduced active ghrelin (p=0.0022), compared with control. Conclusions: The bitter gourd supplemented baked foods possess potential more than other vegetables to regulate postprandial appetite and glycemic responses, without a disproportionate increase in insulin concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vegetables" title="vegetables">vegetables</a>, <a href="https://publications.waset.org/abstracts/search?q=muffins" title=" muffins"> muffins</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20homeostasis" title=" glucose homeostasis"> glucose homeostasis</a>, <a href="https://publications.waset.org/abstracts/search?q=subjective%20appetite" title=" subjective appetite"> subjective appetite</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20intake" title=" food intake "> food intake </a> </p> <a href="https://publications.waset.org/abstracts/109364/postprandial-glycemic-and-appetite-responses-of-muffins-supplemented-with-different-vegetables-in-young-males" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Formulation, Preparation, and Evaluation of Coated Desloratadine Oral Disintegrating Tablets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Etman">Mohamed A. Etman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20G.%20Abd-Elnasser"> Mona G. Abd-Elnasser</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Shams-Eldin"> Mohamed A. Shams-Eldin</a>, <a href="https://publications.waset.org/abstracts/search?q=Aly%20H.%20Nada"> Aly H. Nada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orally disintegrating tablets (ODTs) are gaining importance as new drug delivery systems and emerged as one of the popular and widely accepted dosage forms, especially for the pediatric and geriatric patients. Their advantages such as administration without water, anywhere, anytime lead to their suitability to geriatric and pediatric patients. They are also suitable for the mentally ill, the bed-ridden and patients who do not have easy access to water. The benefits, in terms of patient compliance, rapid onset of action, increased bioavailability, and good stability make these tablets popular as a dosage form of choice in the current market. These dosage forms dissolve or disintegrate in the oral cavity within a matter of seconds without the need of water or chewing. Desloratadine is a tricyclic antihistaminic, which has a selective and peripheral H1-antagonist action. It is an antagonist at histamine H1 receptors, and an antagonist at all subtypes of the muscarinic acetylcholine receptor. Desloratadine is the major metabolite of loratadine. Twelve different placebos ODT were prepared (F1-F12) using different functional excipients. They were evaluated for their compressibility, hardness and disintegration time. All formulations were non sticky except four formulations; namely (F8, F9, F10, F11). All formulations were compressible with the exception of (F2). Variable disintegration times were found ranging between 20 and 120 seconds. It was found that (F12) showed the least disintegration time (20 secs) without showing any sticking which could be due to the use of high percentage of superdisintegrants. Desloratadine showed bitter taste when formulated as ODT without any treatment. Therefore, different techniques were tried in order to mask its bitter taste. Using Eudragit EPO resulted in complete masking of the bitter taste of the drug and increased the acceptability to volunteers. The compressible non sticky formulations (F1, F3, F4, F5, F6, F7 and F12) were subjected to further evaluation tests after addition of coated desloratadine, including weight uniformity, wetting time, and friability testing.. Fairly good weight uniformity values were observed in all the tested formulations. F12 exhibiting the shortest wetting time (14.7 seconds) and consequently the lowest (20 seconds) disintegration time. Dissolution profile showed that 100% desloratadine release was attained after only 2.5 minutes from the prepared ODT (F12) with dissolution efficiency of 95%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Desloratadine" title="Desloratadine">Desloratadine</a>, <a href="https://publications.waset.org/abstracts/search?q=orally%20disintegrating%20tablets%20%28ODTs%29" title=" orally disintegrating tablets (ODTs)"> orally disintegrating tablets (ODTs)</a>, <a href="https://publications.waset.org/abstracts/search?q=formulations" title=" formulations"> formulations</a>, <a href="https://publications.waset.org/abstracts/search?q=taste%20masking" title=" taste masking "> taste masking </a> </p> <a href="https://publications.waset.org/abstracts/10491/formulation-preparation-and-evaluation-of-coated-desloratadine-oral-disintegrating-tablets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Preparation of Zinc Oxide Nanoparticles and Its Anti-diabetic Effect with Momordica Charantia Plant Extract in Diabetic Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahid%20Hussain">Zahid Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Nayyab%20Sultan"> Nayyab Sultan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study describes the preparation of zinc oxide nanoparticles and their anti-diabetic effect individually and with the combination of Momordica charantia plant extract. This plant is termed bitter melon, balsam pear, bitter gourd, or karela. Blood glucose levels in mice were monitored in their random state before and after the administration of zinc oxide nanoparticles and plant extract. The powdered form of nanoparticles and the selected plant were used as an oral treatment. Diabetes was induced in mice by using a chemical named as streptozotocin. It is an artificial diabetes-inducing chemical. In the case of zinc oxide nanoparticles (3mg/kg) and Momordica charantia plant extract (500mg/kg); the maximum anti-diabetic effect observed was 70% ± 1.6 and 75% ± 1.3, respectively. In the case of the combination of zinc oxide nanoparticles (3mg/kg) and Momordica charantia plant extract (500mg/kg), the maximum anti-diabetic effect observed was 86% ± 2.0. The results obtained were more effective as compared to standard drugs Amaryl (3mg/kg), having an effectiveness of 52% ± 2.4, and Glucophage (500mg/kg), having an effectiveness of 29% ± 2.1. Results indicate that zinc oxide nanoparticles and plant extract in combination are more helpful in treating diabetes as compared to their individual treatments. It is considered a natural treatment without any side effects rather than using standard drugs, which shows adverse side effects on health, and most probably detoxifies in liver and kidneys. More experimental work and extensive research procedures are still required in order to make them applicable to pharmaceutical industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=albino%20mice" title="albino mice">albino mice</a>, <a href="https://publications.waset.org/abstracts/search?q=amaryl" title=" amaryl"> amaryl</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-diabetic%20effect" title=" anti-diabetic effect"> anti-diabetic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20glucose%20level" title=" blood glucose level"> blood glucose level</a>, <a href="https://publications.waset.org/abstracts/search?q=Camellia%20sinensis" title=" Camellia sinensis"> Camellia sinensis</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title=" diabetes mellitus"> diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=Momordica%20charantia%20plant%20extract" title=" Momordica charantia plant extract"> Momordica charantia plant extract</a>, <a href="https://publications.waset.org/abstracts/search?q=streptozotocin" title=" streptozotocin"> streptozotocin</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide%20nanoparticles" title=" zinc oxide nanoparticles"> zinc oxide nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/166799/preparation-of-zinc-oxide-nanoparticles-and-its-anti-diabetic-effect-with-momordica-charantia-plant-extract-in-diabetic-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Effect of Spermidine on Physicochemical Properties of Protein Based Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Sabbah">Mohammed Sabbah</a>, <a href="https://publications.waset.org/abstracts/search?q=Prospero%20Di%20Pierro"> Prospero Di Pierro</a>, <a href="https://publications.waset.org/abstracts/search?q=Raffaele%20Porta"> Raffaele Porta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protein-based edible films and coatings have attracted an increasing interest in recent years since they might be used to protect pharmaceuticals or improve the shelf life of different food products. Among them, several plant proteins represent an abundant, inexpensive and renewable raw source. These natural biopolymers are used as film forming agents, being able to form intermolecular linkages by various interactions. However, without the addition of a plasticizing agent, many biomaterials are brittle and, consequently, very difficult to be manipulated. Plasticizers are generally small and non-volatile organic additives used to increase film extensibility and reduce its crystallinity, brittleness and water vapor permeability. Plasticizers normally act by decreasing the intermolecular forces along the polymer chains, thus reducing the relative number of polymer-polymer contacts, producing a decrease in cohesion and tensile strength and thereby increasing film flexibility allowing its deformation without rupture. The most commonly studied plasticizers are polyols, like glycerol (GLY) and some mono or oligosaccharides. In particular, GLY not only increases film extensibility but also migrates inside the film network often causing the loss of desirable mechanical properties of the material. Therefore, replacing GLY with a different plasticizer might help to improve film characteristics allowing potential industrial applications. To improve film properties, it seemed of interest to test as plasticizers some cationic small molecules like polyamines (PAs). Putrescine, spermidine (SPD), and spermine are PAs widely distributed in nature and of particular interest for their biological activities that may have some beneficial health effects. Since PAs contains amino instead of hydroxyl functional groups, they are able to trigger ionic interactions with negatively charged proteins. Bitter vetch (Vicia ervilia; BV) is an ancient grain legume crop, originated in the Mediterranean region, which can be found today in many countries around the world. This annual Vicia genus shows several favorable features, being their seeds a cheap and abundant protein source. The main objectives of this study were to investigate the effect of different concentrations of SPD on the mechanical and permeability properties of films prepared with native or heat denatured BV proteins in the presence of different concentrations of SPD and/or GLY. Therefore, a BV seed protein concentrate (BVPC), containing about 77% proteins, was used to prepare film forming solutions (FFSs), whereas GLY and SPD were added as film plasticizers, either singly or in combination, at various concentrations. Since a primary plasticizer is generally defined as a molecule that when added to a material makes it softer, more flexible and easier to be processed, our findings lead to consider SPD as a possible primary plasticizer of protein-based films. In fact, the addition of millimolar concentrations of SPD to BVPC FFS allowed obtaining handleable biomaterials with improved properties. Moreover, SPD can be also considered as a secondary plasticizer, namely an 'extender', because of its ability even to enhance the plasticizing performance of GLY. In conclusion, our studies indicate that innovative edible protein-based films and coatings can be obtained by using PAs as new plasticizers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edible%20films" title="edible films">edible films</a>, <a href="https://publications.waset.org/abstracts/search?q=glycerol" title=" glycerol"> glycerol</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticizers" title=" plasticizers"> plasticizers</a>, <a href="https://publications.waset.org/abstracts/search?q=polyamines" title=" polyamines"> polyamines</a>, <a href="https://publications.waset.org/abstracts/search?q=spermidine" title=" spermidine"> spermidine</a> </p> <a href="https://publications.waset.org/abstracts/79359/effect-of-spermidine-on-physicochemical-properties-of-protein-based-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Performance of Different Biodegradable Waxes Based Specialized Pheromone and Lure Application Technology-Male Anhelation Technique-Cue Lure Formulations in Bittergourd Field against Bactrocera cucurbitae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amna%20Jalal">Amna Jalal</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Dildar%20Gogi"> Muhammad Dildar Gogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Jalal%20Arif"> Muhammad Jalal Arif</a>, <a href="https://publications.waset.org/abstracts/search?q=Anum%20Tariq"> Anum Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Afzal%20Naveed"> Waleed Afzal Naveed</a>, <a href="https://publications.waset.org/abstracts/search?q=Talha%20Farooq"> Talha Farooq</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubashir%20Iqbal"> Mubashir Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Junaid%20Nisar"> Muhammad Junaid Nisar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Melon fruit flies (Diptera: Tephritidae: Dacinae) are economically important pests of the cucurbits and are geographically distributed throughout the tropics and subtropics of the world. It causes heavy quantitative and qualitative losses in bitter gourd. The present experiment was carried out to evaluate the performance of different biodegradable waxes based SPLAT-MAT-CL (Specialized Pheromone and Lure Application Technology-Male Anhelation Technique- Cue Lure) formulations in bitter gourd field. Fourteen SPLAT-MAT emulsions/formulations were prepared by admixing different SPLAT matrices with toxicant (spinosad) and sex pheromone cuelure (attractant) in different proportionate percentage by weight. The results revealed that attraction and trapping of fruit flies of B. cucurbitae varied significantly for different SPLAT-MAT-CL formulations (p < 0.05). The maximum B. cucurbitae males were trapped in SPLAT-MAT-CL-7 (60 flies/trap/day) followed by SPLAT-MAT-CL-9 (40 flies/trap/day). The performance of all other formulations of SPLAT-MAT-CL was found in the order of SPLAT-MAT-CL-8 (30 flies/trap/day) > SPLAT-MAT-CL-3 (28 flies/trap/day) > SPLAT-MAT-CL-5 (25 flies/trap/day) > SPLAT-MAT-CL-4 (22 flies/trap/day) > SPLAT-MAT-CL-12 (20 flies/trap/day) SPLAT-MAT-CL-2 (19 flies/trap/day) > SPLAT-MAT-CL-14 (17 flies/trap/day) > SPLAT-MAT-CL-13 (15 flies/trap/day) > SPLAT-MAT-CL-11 (10 flies/trap/day) > SPLAT-MAT-CL-1 (8 flies/trap/day) > SPLAT-MAT-CL-10 (02 flies/trap/day). Overall, all the SPLAT-MAT-CL formulations, except SPLAT-MAT-CL-10, demonstrated higher density of captures of B. cucurbitae males as compared to standard (06 flies/trap/day). The results also demonstrate that SPLAT-MAT-CL-7, SPLAT-MAT-CL-9, SPLAT-MAT-CL-8, SPLAT-MAT-CL-3, SPLAT-MAT-CL-5, SPLAT-MAT-CL-4, SPLAT-MAT-CL-12, SPLAT-MAT-CL-2, SPLAT-MAT-CL-14, SPLAT-MAT-CL-13, SPLAT-MAT-CL-11 and SPLAT-MAT-CL-1 explained approximately 5, 4.6, 4.1, 3.6, 3.3, 3.1,2.8,2.5 and 1.6 times higher captures of B. cucurbitae males over standards. However, SPLAT-MAT-CL-10 demonstrated 3 times fewer captures of B. cucurbitae males over standards. In conclusion, SPLAT-MAT-CL-7, SPLAT-MAT-CL-9 can be exploited for the monitoring and trapping of B. cucurbitae in its IPM of program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attractancy" title="attractancy">attractancy</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20conditions" title=" field conditions"> field conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=melon%20fruit%20fly" title=" melon fruit fly"> melon fruit fly</a>, <a href="https://publications.waset.org/abstracts/search?q=SPLAT-MAT-CL" title=" SPLAT-MAT-CL"> SPLAT-MAT-CL</a> </p> <a href="https://publications.waset.org/abstracts/97310/performance-of-different-biodegradable-waxes-based-specialized-pheromone-and-lure-application-technology-male-anhelation-technique-cue-lure-formulations-in-bittergourd-field-against-bactrocera-cucurbitae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Volatile Compounds and Sensory Characteristics of Herbal Teas and Bush Tea Blends with Selected Herbal Teas South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Florence%20Malongane">Florence Malongane</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyndy%20J.%20McGaw"> Lyndy J. McGaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Legesse%20K.%20Debusho"> Legesse K. Debusho</a>, <a href="https://publications.waset.org/abstracts/search?q=Fhatuwani%20N.%20Mudau"> Fhatuwani N. Mudau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rooibos (Aspalathus linearis (Burm.f.) R.Dahlgren), honeybush (Cyclopia Vent. species), bush tea (Athrixia phylicoides DC.) and special tea (Monsonia burkeana) are traditionally consumed herbal teas in South Africa. The volatile and sensory qualities of rooibos and honeybush tea have previously been described although there is a dearth of information regarding the sensory attributes and volatile compounds analysis of special tea and bush tea. The objective of this study was to describe the sensory properties, compare the differences in descriptive sensory analysis (DSA) and volatile compounds of bush tea, special, rooibos, honeybush and the blend of bush tea with special, honeybush and rooibos in a 1:1 ratio and subsequently to determine the influence of blending bush tea with other herbal teas. DSA was used to assess the sensory attributes of the teas while gas chromatography–mass spectrometry (GC-MS) was used to quantitatively determine the volatile components of the teas. Rooibos tea and honeybush tea had an overall sweet-caramel, honey-sweet, perfume floral and woody aroma with slight astringency, consistent with the taste and aftertaste attributes. In contrast, bush tea and special tea depicted green-cut grass, dry green herbal, cooked spinach aroma as well as taste and aftertaste characteristics. GC-MS analyses revealed that the seven tea samples had similar major volatiles, including 2-furanmethanol, 2-methoxy-4-vinylphenol, acetic acid, D-limonene terpene and phytol. Cluster analysis revealed that the sweet and woody flavour of honeybush and rooibos were ascribed to the presence of á-myrcene, phenylethyl alcohol, phytol and vanillin. The bitter, medicinal flavour attributes of special tea were attributed to (-)-carvone. Blending of bush tea with rooibos and honeybush tea toned down its aversive flavour components, typically the bitter, green-cut grass and herbal properties, thus minimising the possibility of consumer aversion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bush%20tea" title="bush tea">bush tea</a>, <a href="https://publications.waset.org/abstracts/search?q=rooibos%20tea" title=" rooibos tea"> rooibos tea</a>, <a href="https://publications.waset.org/abstracts/search?q=honeybush%20tea" title=" honeybush tea"> honeybush tea</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory" title=" sensory"> sensory</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20compounds" title=" volatile compounds"> volatile compounds</a> </p> <a href="https://publications.waset.org/abstracts/84160/volatile-compounds-and-sensory-characteristics-of-herbal-teas-and-bush-tea-blends-with-selected-herbal-teas-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Comparative Study on the Thickening/Viscosity of Ogbono Seed Powder from Irvingia gabonenesis and Irvingia wombolu Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orlando%20Ketebu">Orlando Ketebu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ogbono seed is the seed obtained from African bush mango (Irvingia gabonenesis) and bitter bush mango (Irvingia wombolu). Irvingia gabonenesis is known for its sweet edible pulp while Irvingia wombolu has a bitter pulp. Their seed powder is used in cooking soup known as ogbono soup in Nigeria and in West Africa. The powder thickens when cooked and researches have shown that it has medicinal uses such as lowering cholesterol; aiding weight loss and helps in improving diabetes control. The nutritional composition of the seeds indicated that Irvingia gabonenesis contains 8.60% protein, 13.8% carbohydrate, 2.0% moisture, 1.5% crude fiber, 16.4% ash, and Irvingia wombolu contains 7.38% protein, 25.75% carbohydrate, 11.7% moisture, 0.84% crude fiber, 2.50% ash. Solvent extraction of these seeds has shown that the seed of the two species are oil seeds with approximately 70 % and 52 % for Irvingia gabonenesis and Irvingia wombolu respectively. One major setback using ogbono seed powder in cooking soup is identifying the specie of ogbono seed powder that thickens most within the same cooking condition and how temperature affects the thickness of ogbono seed powder which determines its viscosity and in turn affects the quality of the soup and its nutrients. This research work monitored how the viscosity of ogbono species after being sun dried for one week changes with temperature. The result showed that heating 20 grams of powdered Irvingia gabonenesis and Irvingia wombolu at 30 OC, 45 OC, 55 OC, 65 OC, 75 OC, 85 OC and 95OC respectively in 200 ml beaker mixed with 100 ml of water, the viscosity of both species decreases with increase temperature with Irvingia wombolu having higher average viscosity in Pascal seconds (Pa.s) of 1.059, 1.042, 0.961, 0.778, 0.684, 0.675, and 0.495 at 30 OC, 45 OC, 55 OC, 65 OC, 75 OC, 85 OC and 95 OC respectively compared to Irvingia gabonenesis with result 0.982, 0.920, 0.720, 0.646, 0.597 and 0.446 at 30 OC, 45 OC, 55 OC, 65 OC, 75 OC, 85 OC and 95 OC respectively. Also from the experiment carried out it was found out that the viscosity of both species decreases with ageing of the seeds and the quantity of ogbono seed powder used and amount of water added also affected the viscosity of both species. In conclusion, it was observed that under the same cooking conditions (temperature range, quantity of water added, time and quantity of ogbono seed powder used), Irvingia wombolu had higher viscosity which is a measure of its thickness and quality of nutrients compared to Irvingia gabonenesis and the viscosity of both species decreases with increasing temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ogbono%20seed%20powder" title="ogbono seed powder">ogbono seed powder</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity "> viscosity </a>, <a href="https://publications.waset.org/abstracts/search?q=soup" title=" soup"> soup</a> </p> <a href="https://publications.waset.org/abstracts/84017/comparative-study-on-the-thickeningviscosity-of-ogbono-seed-powder-from-irvingia-gabonenesis-and-irvingia-wombolu-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Antiglycemic Activity of Raw Plant Materials as Potential Components of Functional Food</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ewa%20Flaczyk">Ewa Flaczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Przeor"> Monika Przeor</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Kobus-Cisowska"> Joanna Kobus-Cisowska</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B3zef%20Korczak"> Józef Korczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper was to collect the information concerning the most popular raw plant materials of antidiabetic activity, in a context of functional food developing production. The elaboration discusses morphological elements possible for an application in functional food production of the plants such as: common bean, ginger, Ceylon cinnamon, white mulberry, fenugreek, French lilac, ginseng, jambolão, and bitter melon. An activity of bioactive substances contained in these raw plant materials was presented, pointing their antiglycemic and also hypocholesterolemic, antiarthritic, antirheumatic, antibacterial, and antiviral activity in the studies on humans and animals. Also the genesis of functional food definition was presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiglycemic%20activity" title="antiglycemic activity">antiglycemic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20plant%20materials" title=" raw plant materials"> raw plant materials</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20food" title=" functional food"> functional food</a>, <a href="https://publications.waset.org/abstracts/search?q=food" title=" food"> food</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20sciences" title=" nutritional sciences"> nutritional sciences</a> </p> <a href="https://publications.waset.org/abstracts/4153/antiglycemic-activity-of-raw-plant-materials-as-potential-components-of-functional-food" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Efficacy of Solanum anguivi Lam Fruits (African Bitter Berry) in Lowering Glucose Levels in Diabetes Mellitus and Increasing Survival</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aisha%20Musaazi%20Sebunya%20Nakitto">Aisha Musaazi Sebunya Nakitto</a>, <a href="https://publications.waset.org/abstracts/search?q=Anika%20E.%20Wagner"> Anika E. Wagner</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20B.%20Byaruhanga"> Yusuf B. Byaruhanga</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20H.%20Muyonga"> John H. Muyonga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prevalence and burden of diabetes are rapidly increasing globally, stemming from changes in lifestyle and dietary habits. Although several drugs are available to treat type 2 diabetes mellitus (T2DM), many are accompanied by several side effects and are often costly. Solanum anguivi Lam. fruits (SALF) are bitter berries that commonly grow in the wild and are traditionally cultivated by many globally as a remedy for T2DM. This effect is likely attributable to the presence of bioactive compounds such as phenolics, flavonoids, saponins, alkaloids, and vitamin C in SALF. In this study, we investigated the morphological characteristics of different SALF accessions and the effect of ripeness stages and thermal treatments on the bioactive compounds contents (BCC) and antioxidant activity (AA) of SALF accessions. Using the fruit fly Drosophila melanogaster (D. melanogaster) model, we explored the potential impact of dietary SALF in preventing and treating T2DM phenotypes. Morphological characterization was conducted based on descriptors of Solanum species. The BCC and AA of SALF at different ripeness stages (unripe, yellow, orange, and red) and after thermal treatments were determined using spectrophotometry, HPLC, and gravimetry. Male and female fruit flies were fed a high-sugar diet (HSD) to induce a T2DM-like phenotype, while control flies were fed on SY10 medium for up to 24 days. Experimental flies were exposed to HSD supplemented with 5 or 10 mg/ml SALF. The therapeutic and prevention effect of SALF in T2DM-like phenotype was investigated on weight, climbing activity, glucose and triglyceride contents, survival, and gene expression of PPARγ co-activator 1α fly homolog Srl and Drosophila insulin-like peptides. Methods in fly studies included Gustatory assay, Climbing assay, Glucose GOD-PAP assay, Triglyceride GPO-PAP assay, Roti-Quant®, and Real Time-PCR analysis. The ripeness stage significantly influenced SALF BCC and AA, and this was dependent on the accession. The unripe stage had the highest AA and total phenolics and flavonoids; the orange stage was rich in saponins, while the red stage had the highest alkaloid contents. Boiling and steaming increased the total phenolics and AA up to 4-fold and 3-fold, respectively. Drying at low temperatures resulted in higher phenolics and AA than the control. In the therapeutic model, the HSD-fed female flies exhibited elevated glucose levels, which exhibited a dose-dependent reduction upon exposure to a SALF-supplemented diet. Female flies fed on a SALF+ HSD exhibited a significant increase in survival compared to HSD-fed and control diet-fed flies. SALF supplementation did not alter the weights, fitness, and triglyceride levels of female flies in comparison with HSD-only-fed flies. The mRNA levels of Srl decreased in HSD-fed flies compared to the control-fed, with no effect observed in females exposed to HSD+SALF. Similarly, in the preventative model, the SALF diet resulted in higher survival of supplemented flies compared to controls. Consumption of boiled unripe SALF may result in the highest health benefits due to the high phenolic contents and antioxidant activity observed. Dietary intake of SALF significantly lowered glucose levels and increased survival of the D. melanogaster model. Additional studies in higher organisms are needed to explore the preventative and therapeutic potential of SALF in T2DM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title=" bioactive compounds"> bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=bitter%20berries" title=" bitter berries"> bitter berries</a>, <a href="https://publications.waset.org/abstracts/search?q=Drosophila%20melanogaster" title=" Drosophila melanogaster"> Drosophila melanogaster</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanum%20anguivi" title=" Solanum anguivi"> Solanum anguivi</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes%20mellitus" title=" type 2 diabetes mellitus"> type 2 diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=survival" title=" survival"> survival</a> </p> <a href="https://publications.waset.org/abstracts/190336/efficacy-of-solanum-anguivi-lam-fruits-african-bitter-berry-in-lowering-glucose-levels-in-diabetes-mellitus-and-increasing-survival" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Life Cycle Assessment of Bioethanol from Feedstocks in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanapat%20Chaireongsirikul">Thanapat Chaireongsirikul</a>, <a href="https://publications.waset.org/abstracts/search?q=Apichit%20Svang-Ariyaskul"> Apichit Svang-Ariyaskul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An analysis of mass balance, energy performance, and environmental impact assessment were performed to evaluate bioethanol production in Thailand. Thailand is an agricultural country. Thai government plans to increase the use of alternative energy to 20 percent by 2022. One of the primary campaigns is to promote a bioethanol production from abundant biomass resources such as bitter cassava, molasses and sugarcane. The bioethanol production is composed of three stages: cultivation, pretreatment, and bioethanol conversion. All of mass, material, fuel, and energy were calculated to determine the environmental impact of three types of bioethanol production: bioethanol production from cassava (CBP), bioethanol production from molasses (MBP), and bioethanol production from rice straw (RBP). The results showed that bioethanol production from cassava has the best environmental performance. CBP contributes less impact when compared to the other processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioethanol%20production" title="bioethanol production">bioethanol production</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel" title=" biofuel"> biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=LCA" title=" LCA"> LCA</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20engineering" title=" chemical engineering"> chemical engineering</a> </p> <a href="https://publications.waset.org/abstracts/8268/life-cycle-assessment-of-bioethanol-from-feedstocks-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Improved Food Security and Alleviation of Cyanide Intoxication through Commercialization and Utilization of Cassava Starch by Tanzania Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Mtunguja">Mariam Mtunguja</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20Laswai"> Henry Laswai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasinta%20Muzanilla"> Yasinta Muzanilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Ndunguru"> Joseph Ndunguru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starchy tuberous roots of cassava provide food for people but also find application in various industries. Recently there has been the focus of concentrated research efforts to fully exploit its potential as a sustainable multipurpose crop. High starch yield is the important trait for commercial cassava production for the starch industries. Furthermore, cyanide present in cassava root poses a health challenge in the use of cassava for food. Farming communities where cassava is a staple food, prefer bitter (high cyanogenic) varieties as protection from predators and thieves. As a result, food insecure farmers prefer growing bitter cassava. This has led to cyanide intoxication to this farming communities. Cassava farmers can benefit from marketing cassava to starch producers thereby improving their income and food security. This will decrease dependency on cassava as staple food as a result of increased income and be able to afford other food sources. To achieve this, adequate information is required on the right cassava cultivars and appropriate harvesting period so as to maximize cassava production and profitability. This study aimed at identifying suitable cassava cultivars and optimum time of harvest to maximize starch production. Six commonly grown cultivars were identified and planted in a complete random block design and further analysis was done to assess variation in physicochemical characteristics, starch yield and cyanogenic potentials across three environments. The analysis showed that there is a difference in physicochemical characteristics between landraces (p ≤ 0.05), and can be targeted to different industrial applications. Among landraces, dry matter (30-39%), amylose (11-19%), starch (74-80%) and reducing sugars content (1-3%) varied when expressed on a dry weight basis (p ≤ 0.05); however, only one of the six genotypes differed in crystallinity and mean starch granule particle size, while glucan chain distribution and granule morphology were the same. In contrast, the starch functionality features measured: swelling power, solubility, syneresis, and digestibility differed (p ≤ 0.05). This was supported by Partial least square discriminant analysis (PLS-DA), which highlighted the divergence among the cassavas based on starch functionality, permitting suggestions for the targeted uses of these starches in diverse industries. The study also illustrated genotypic difference in starch yield and cyanogenic potential. Among landraces, Kiroba showed potential for maximum starch yield (12.8 t ha-1) followed by Msenene (12.3 t ha-1) and third was Kilusungu (10.2 t ha-1). The cyanide content of cassava landraces was between 15 and 800 ppm across all trial sites. GGE biplot analysis further confirmed that Kiroba was a superior cultivar in terms of starch yield. Kilusungu had the highest cyanide content and average starch yield, therefore it can also be suitable for use in starch production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyanogen" title="cyanogen">cyanogen</a>, <a href="https://publications.waset.org/abstracts/search?q=cassava%20starch" title=" cassava starch"> cassava starch</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a>, <a href="https://publications.waset.org/abstracts/search?q=starch%20yield" title=" starch yield"> starch yield</a> </p> <a href="https://publications.waset.org/abstracts/60240/improved-food-security-and-alleviation-of-cyanide-intoxication-through-commercialization-and-utilization-of-cassava-starch-by-tanzania-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> The Determination of Sodium/Potassium Ion Ratio in Selected Edible Leafy Vegetables in North-Eastern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raymond%20D.%20Uzoh">Raymond D. Uzoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Philip%20K.%20Shallsuku"> Philip K. Shallsuku</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20S.%20Vaachia"> Christopher S. Vaachia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selected edible leafy vegetables from North-eastern Nigeria were analysed for their sodium and potassium content in mg/100 g and the ratio Na+/K+ worked out. From experimental results, Venonia amydalina (bitter leaf) contained 150 mg (0.15 g) of sodium and 20500 mg (20.5 g) potassium with a ratio of 0.007, Brassica oleracea var capitata (cabbage) contained 300 mg (0.3 g) of sodium and 19000 mg (19 g) of potassium with a ration of 0.012. Others are Telfairia occidentalis (fluted pumpkin) with 400 mg (0.45 g) of sodium and 19500 mg (19.5 g) of potassium with a ratio of 0.020; Hibiscus sabdriffa (sorrel) has 200 mg (0.2 g) of sodium and 600 mg (0.6 g) of potassium with a ratio of 0.300; and Amarantus caudatus (spinach) contained 450 mg (0.45 g) of sodium and 23000 mg (23 g) of potassium with a ratio of 0.020. The presence of sodium and potassium in foods has become increasingly important as recent studies and dietary information gathered in this research has shown that sodium intake is not the sole consideration in elevated blood pressure but its considered as a ratio Na+/K+ fixed at 0.6. This ratio has been found to be a more important factor, suggesting that our diet should contain 67 % more potassium than sodium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vegetables" title="vegetables">vegetables</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium" title=" sodium"> sodium</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium" title=" potassium"> potassium</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure" title=" blood pressure"> blood pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=diet" title=" diet"> diet</a>, <a href="https://publications.waset.org/abstracts/search?q=foods" title=" foods "> foods </a> </p> <a href="https://publications.waset.org/abstracts/11091/the-determination-of-sodiumpotassium-ion-ratio-in-selected-edible-leafy-vegetables-in-north-eastern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> The Effects of Seasonal Variation on the Microbial-N Flow to the Small Intestine and Prediction of Feed Intake in Grazing Karayaka Sheep</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Salman">Mustafa Salman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurcan%20Cetinkaya"> Nurcan Cetinkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Zehra%20Selcuk"> Zehra Selcuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Bugra%20Genc"> Bugra Genc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objectives of the present study were to estimate the microbial-N flow to the small intestine and to predict the digestible organic matter intake (DOMI) in grazing Karayaka sheep based on urinary excretion of purine derivatives (xanthine, hypoxanthine, uric acid, and allantoin) by the use of spot urine sampling under field conditions. In the trial, 10 Karayaka sheep from 2 to 3 years of age were used. The animals were grazed in a pasture for ten months and fed with concentrate and vetch plus oat hay for the other two months (January and February) indoors. Highly significant linear and cubic relationships (P<0.001) were found among months for purine derivatives index, purine derivatives excretion, purine derivatives absorption, microbial-N and DOMI. Through urine sampling and the determination of levels of excreted urinary PD and Purine Derivatives / Creatinine ratio (PDC index), microbial-N values were estimated and they indicated that the protein nutrition of the sheep was insufficient. In conclusion, the prediction of protein nutrition of sheep under the field conditions may be possible with the use of spot urine sampling, urinary excreted PD and PDC index. The mean purine derivative levels in spot urine samples from sheep were highest in June, July and October. Protein nutrition of pastured sheep may be affected by weather changes, including rainfall. Spot urine sampling may useful in modeling the feed consumption of pasturing sheep. However, further studies are required under different field conditions with different breeds of sheep to develop spot urine sampling as a model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karayaka%20sheep" title="Karayaka sheep">Karayaka sheep</a>, <a href="https://publications.waset.org/abstracts/search?q=spot%20sampling" title=" spot sampling"> spot sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=urinary%20purine%20derivatives" title=" urinary purine derivatives"> urinary purine derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=PDC%20index" title=" PDC index"> PDC index</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial-N" title=" microbial-N"> microbial-N</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20intake" title=" feed intake"> feed intake</a> </p> <a href="https://publications.waset.org/abstracts/6132/the-effects-of-seasonal-variation-on-the-microbial-n-flow-to-the-small-intestine-and-prediction-of-feed-intake-in-grazing-karayaka-sheep" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> The Effect of Aromatherapy with Citrus aurantium Blossom Essential Oil on Premenstrual Syndrome in University Students: A Clinical Trial Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neda%20Jamalimoghadam">Neda Jamalimoghadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Naval%20Heydari"> Naval Heydari</a>, <a href="https://publications.waset.org/abstracts/search?q=Maliheh%20Abootalebi"> Maliheh Abootalebi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Kasraeian"> Maryam Kasraeian</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Emamghoreishi"> M. Emamghoreishi </a>, <a href="https://publications.waset.org/abstracts/search?q=Akbarzadeh%20Marzieh"> Akbarzadeh Marzieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The aim was to investigate the effect of aromatherapy using Citrus aurantium blossom essential oil on premenstrual syndrome in university students. Methods: In this double-blind clinical trial was controlled on 62 students from March 2016 to February 2017. The intervention with 0.5% of C. Aurantium blossom essential oil and control was inhalation of odorless sweet almond oil in the luteal phase of the menstrual cycle. The screening questionnaire (PSST) for PMSwas filled out before and also one and two months after the intervention. Results: Mean score of overall symptoms of PMS between the Bitter orange and control groups In the first (p < 0.003) and second months (p < 0.001) of the intervention was significant. Besides, decreased the mean score of psychological symptoms in the intervention group (p < 0.001), but on physical symptoms and social function were not significant (p > 0.05). Conclusion: The aromatherapy with Citrus aurantium blossom improved the symptoms of premenstrual syndrome. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aromatherapy" title="aromatherapy">aromatherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=Citrus%20Aurantium" title=" Citrus Aurantium"> Citrus Aurantium</a>, <a href="https://publications.waset.org/abstracts/search?q=premenstrual%20syndrome" title=" premenstrual syndrome"> premenstrual syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=students" title=" students"> students</a> </p> <a href="https://publications.waset.org/abstracts/138381/the-effect-of-aromatherapy-with-citrus-aurantium-blossom-essential-oil-on-premenstrual-syndrome-in-university-students-a-clinical-trial-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bitter%20vetch&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bitter%20vetch&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bitter%20vetch&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10