CINXE.COM

Search results for: Gas flow rate

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Gas flow rate</title> <meta name="description" content="Search results for: Gas flow rate"> <meta name="keywords" content="Gas flow rate"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Gas flow rate" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Gas flow rate"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4598</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Gas flow rate</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4598</span> Synergistic Impacts and Optimization of Gas Flow Rate, Concentration of CO2, and Light Intensity on CO2 Biofixation in Wastewater Medium by Chlorella vulgaris</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ahmed%20Arkoazi">Ahmed Arkoazi</a>, <a href="https://publications.waset.org/search?q=Hussein%20Znad"> Hussein Znad</a>, <a href="https://publications.waset.org/search?q=Ranjeet%20Utikar"> Ranjeet Utikar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The synergistic impact and optimization of gas flow rate, concentration of CO<sub>2</sub>, and light intensity on CO<sub>2</sub> biofixation rate were investigated using wastewater as a medium to cultivate <em>Chlorella vulgaris</em> under different conditions (gas flow rate 1-8 L/min), CO<sub>2</sub> concentration (0.03-7%), and light intensity (150-400 &micro;mol/m<sup>2</sup>.s)). Response Surface Methodology and Box-Behnken experimental Design were applied to find optimum values for gas flow rate, CO<sub>2</sub> concentration, and light intensity. The optimum values of the three independent variables (gas flow rate, concentration of CO<sub>2</sub>, and light intensity) and desirability were 7.5 L/min, 3.5%, and 400 &micro;mol/m<sup>2</sup>.s, and 0.904, respectively. The highest amount of biomass produced and CO<sub>2</sub> biofixation rate at optimum conditions were 5.7 g/L, 1.23 gL<sup>-1</sup>d<sup>-1</sup>, respectively. The synergistic effect between gas flow rate and concentration of CO<sub>2</sub>, and between gas flow rate and light intensity was significant on the three responses, while the effect between CO<sub>2</sub> concentration and light intensity was less significant on CO<sub>2</sub> biofixation rate. The results of this study could be highly helpful when using microalgae for CO<sub>2</sub> biofixation in wastewater treatment.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Synergistic%20impact" title="Synergistic impact">Synergistic impact</a>, <a href="https://publications.waset.org/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/search?q=CO2%20biofixation" title=" CO2 biofixation"> CO2 biofixation</a>, <a href="https://publications.waset.org/search?q=airlift%20reactor." title=" airlift reactor."> airlift reactor.</a> </p> <a href="https://publications.waset.org/10010840/synergistic-impacts-and-optimization-of-gas-flow-rate-concentration-of-co2-and-light-intensity-on-co2-biofixation-in-wastewater-medium-by-chlorella-vulgaris" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010840/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010840/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010840/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010840/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010840/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010840/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010840/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010840/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010840/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010840/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">740</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4597</span> An Experimental Study of Tip Vortex Cavitation Inception in an Axial Flow Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohammad%20Taghi%20Shervani%20Tabar">Mohammad Taghi Shervani Tabar</a>, <a href="https://publications.waset.org/search?q=Zahra%20Poursharifi"> Zahra Poursharifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction of the blade tip with the casing boundary layer and the leakage flow may lead to a kind of cavitation namely tip vortex cavitation. In this study, the onset of tip vortex cavitation was experimentally investigated in an axial flow pump. For a constant speed and a fixed angle of attack and by changing the flow rate, the pump head, input power, output power and efficiency were calculated and the pump characteristic curves were obtained. The cavitation phenomenon was observed with a camera and a stroboscope. Finally, the critical flow region, which tip vortex cavitation might have occurred, was identified. The results show that just by adjusting the flow rate, out of the specified region, the possibility of occurring tip vortex cavitation, decreases to a great extent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Axial%20flow%20pump" title="Axial flow pump">Axial flow pump</a>, <a href="https://publications.waset.org/search?q=Gap%20cavitation" title=" Gap cavitation"> Gap cavitation</a>, <a href="https://publications.waset.org/search?q=Leakage%20vortex" title=" Leakage vortex"> Leakage vortex</a>, <a href="https://publications.waset.org/search?q=Tip%20vortex%20cavitation." title=" Tip vortex cavitation."> Tip vortex cavitation.</a> </p> <a href="https://publications.waset.org/480/an-experimental-study-of-tip-vortex-cavitation-inception-in-an-axial-flow-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/480/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/480/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/480/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/480/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/480/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/480/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/480/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/480/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/480/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/480/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2699</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4596</span> Development of Vibration Sensor with Wide Frequency Range Based on Condenser Microphone -Estimation System for Flow Rate in Water Pipes-</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hironori%20Kakuta">Hironori Kakuta</a>, <a href="https://publications.waset.org/search?q=Kajiro%20Watanabe"> Kajiro Watanabe</a>, <a href="https://publications.waset.org/search?q=Yosuke%20Kurihara"> Yosuke Kurihara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Water leakage is a serious problem in the maintenance of a waterworks facility. Monitoring the water flow rate is one way to locate leakage. However, conventional flowmeters such as the wet-type flowmeter and the clamp-on type ultrasonic flowmeter require additional construction for their installation and are therefore quite expensive. This paper proposes a novel estimation system for the flow rate in a water pipeline, which employs a vibration sensor. This assembly can be attached to any water pipeline without the need for additional high-cost construction. The vibration sensor is designed based on a condenser microphone. This sensor detects vibration caused by water flowing through a pipeline. It is possible to estimate the water flow rate by measuring the amplitude of the output signal from the vibration sensor. We confirmed the validity of the proposed sensing system experimentally.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Condenser%20microphone" title="Condenser microphone">Condenser microphone</a>, <a href="https://publications.waset.org/search?q=Flow%20rate%20estimation" title=" Flow rate estimation"> Flow rate estimation</a>, <a href="https://publications.waset.org/search?q=Piping%20vibration" title=" Piping vibration"> Piping vibration</a>, <a href="https://publications.waset.org/search?q=Water%20pipe." title=" Water pipe."> Water pipe.</a> </p> <a href="https://publications.waset.org/8417/development-of-vibration-sensor-with-wide-frequency-range-based-on-condenser-microphone-estimation-system-for-flow-rate-in-water-pipes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8417/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8417/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8417/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8417/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8417/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8417/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8417/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8417/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8417/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8417/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2326</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4595</span> Empirical Heat Transfer Correlations of Finned-Tube Heat Exchangers in Pulsatile Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jason%20P.%20Michaud">Jason P. Michaud</a>, <a href="https://publications.waset.org/search?q=Connor%20P.%20Speer"> Connor P. Speer</a>, <a href="https://publications.waset.org/search?q=David%20A.%20Miller"> David A. Miller</a>, <a href="https://publications.waset.org/search?q=David%20S.%20Nobes"> David S. Nobes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>An experimental study on finned-tube radiators has been conducted. Three radiators found in desktop computers sized for 120&nbsp;mm fans were tested in steady and pulsatile flows of ambient air over a Reynolds number range of&nbsp; 50 &lt; Re &lt; 900. Water at 60&nbsp;&deg;C was circulated through the radiators to maintain a constant fin temperature during the tests. For steady flow, it was found that the heat transfer rate increased linearly with the mass flow rate of air. The pulsatile flow experiments showed that frequency of pulsation had a negligible effect on the heat transfer rate for the range of frequencies tested (0.5&nbsp;Hz &ndash; 2.5&nbsp;Hz). For all three radiators, the heat transfer rate was decreased in the case of pulsatile flow. Linear heat transfer correlations for steady and pulsatile flow were calculated in terms of Reynolds number and Nusselt number.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Finned-tube%20heat%20exchangers" title="Finned-tube heat exchangers">Finned-tube heat exchangers</a>, <a href="https://publications.waset.org/search?q=radiators" title=" radiators"> radiators</a>, <a href="https://publications.waset.org/search?q=heat%20transfer%20correlations" title=" heat transfer correlations"> heat transfer correlations</a>, <a href="https://publications.waset.org/search?q=pulsatile%20flow" title=" pulsatile flow"> pulsatile flow</a>, <a href="https://publications.waset.org/search?q=computer%20radiators." title=" computer radiators."> computer radiators.</a> </p> <a href="https://publications.waset.org/10007470/empirical-heat-transfer-correlations-of-finned-tube-heat-exchangers-in-pulsatile-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007470/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007470/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007470/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007470/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007470/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007470/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007470/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007470/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007470/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007470/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1368</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4594</span> A Noble Flow Rate Control based on Leaky Bucket Method for Multi-Media OBS Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kentaro%20Miyoko">Kentaro Miyoko</a>, <a href="https://publications.waset.org/search?q=Yoshihiko%20Mori"> Yoshihiko Mori</a>, <a href="https://publications.waset.org/search?q=Yugo%20Ikeda"> Yugo Ikeda</a>, <a href="https://publications.waset.org/search?q=Yoshihiro%20Nishino"> Yoshihiro Nishino</a>, <a href="https://publications.waset.org/search?q=Yong-Bok%20Choi"> Yong-Bok Choi</a>, <a href="https://publications.waset.org/search?q=Hiromi%20Okada"> Hiromi Okada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical burst switching (OBS) has been proposed to realize the next generation Internet based on the wavelength division multiplexing (WDM) network technologies. In the OBS, the burst contention is one of the major problems. The deflection routing has been designed for resolving the problem. However, the deflection routing becomes difficult to prevent from the burst contentions as the network load becomes high. In this paper, we introduce a flow rate control methods to reduce burst contentions. We propose new flow rate control methods based on the leaky bucket algorithm and deflection routing, i.e. separate leaky bucket deflection method, and dynamic leaky bucket deflection method. In proposed methods, edge nodes which generate data bursts carry out the flow rate control protocols. In order to verify the effectiveness of the flow rate control in OBS networks, we show that the proposed methods improve the network utilization and reduce the burst loss probability through computer simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Optical%20burst%20switching" title="Optical burst switching">Optical burst switching</a>, <a href="https://publications.waset.org/search?q=OBS" title=" OBS"> OBS</a>, <a href="https://publications.waset.org/search?q=flow%20rate%20control." title=" flow rate control."> flow rate control.</a> </p> <a href="https://publications.waset.org/4216/a-noble-flow-rate-control-based-on-leaky-bucket-method-for-multi-media-obs-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4216/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4216/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4216/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4216/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4216/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4216/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4216/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4216/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4216/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4216/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1706</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4593</span> Comparison of Three Turbulence Models in Wear Prediction of Multi-Size Particulate Flow through Rotating Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pankaj%20K.%20Gupta">Pankaj K. Gupta</a>, <a href="https://publications.waset.org/search?q=Krishnan%20V.%20Pagalthivarthi"> Krishnan V. Pagalthivarthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work compares the performance of three turbulence modeling approach (based on the two-equation k -ε model) in predicting erosive wear in multi-size dense slurry flow through rotating channel. All three turbulence models include rotation modification to the production term in the turbulent kineticenergy equation. The two-phase flow field obtained numerically using Galerkin finite element methodology relates the local flow velocity and concentration to the wear rate via a suitable wear model. The wear models for both sliding wear and impact wear mechanisms account for the particle size dependence. Results of predicted wear rates using the three turbulence models are compared for a large number of cases spanning such operating parameters as rotation rate, solids concentration, flow rate, particle size distribution and so forth. The root-mean-square error between FE-generated data and the correlation between maximum wear rate and the operating parameters is found less than 2.5% for all the three models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Rotating%20channel" title="Rotating channel">Rotating channel</a>, <a href="https://publications.waset.org/search?q=maximum%20wear%20rate" title=" maximum wear rate"> maximum wear rate</a>, <a href="https://publications.waset.org/search?q=multi-sizeparticulate%20flow" title=" multi-sizeparticulate flow"> multi-sizeparticulate flow</a>, <a href="https://publications.waset.org/search?q=k%20%E2%88%92%CE%B5%20turbulence%20models." title=" k −ε turbulence models."> k −ε turbulence models.</a> </p> <a href="https://publications.waset.org/3553/comparison-of-three-turbulence-models-in-wear-prediction-of-multi-size-particulate-flow-through-rotating-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3553/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3553/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3553/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3553/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3553/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3553/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3553/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3553/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3553/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3553/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1772</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4592</span> An Improvement of Flow Forming Process for Pressure Vessels by Four Rollers Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.%20Sawitri">P. Sawitri</a>, <a href="https://publications.waset.org/search?q=S.%20Cdr.%20Sittha"> S. Cdr. Sittha</a>, <a href="https://publications.waset.org/search?q=T.%20Kritsana"> T. Kritsana </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Flow forming is widely used in many industries, especially in defence technology industries. Pressure vessels requirements are high precision, light weight, seamless and optimum strength. For large pressure vessels, flow forming by 3 rollers machine were used. In case of long range rocket motor case flow forming and welding of pressure vessels have been used for manufacturing. Due to complication of welding process, researchers had developed 4 meters length pressure vessels without weldment by 4 rollers flow forming machine. Design and preparation of preform work pieces are performed. The optimization of flow forming parameter such as feed rate, spindle speed and depth of cut will be discussed. The experimental result shown relation of flow forming parameters to quality of flow formed tube and prototype pressure vessels have been made.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Flow%20forming" title="Flow forming">Flow forming</a>, <a href="https://publications.waset.org/search?q=Pressure%20vessel" title=" Pressure vessel"> Pressure vessel</a>, <a href="https://publications.waset.org/search?q=four%20rollers" title=" four rollers"> four rollers</a>, <a href="https://publications.waset.org/search?q=feed%20rate" title=" feed rate"> feed rate</a>, <a href="https://publications.waset.org/search?q=spindle%20speed" title=" spindle speed"> spindle speed</a>, <a href="https://publications.waset.org/search?q=cold%20work." title=" cold work."> cold work.</a> </p> <a href="https://publications.waset.org/9999246/an-improvement-of-flow-forming-process-for-pressure-vessels-by-four-rollers-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999246/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999246/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999246/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999246/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999246/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999246/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999246/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999246/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999246/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999246/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2790</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4591</span> The Estimate Rate of Permanent Flow of a Liquid Simulating Blood by Doppler Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Malika.D%20Kedir-Talha">Malika.D Kedir-Talha</a>, <a href="https://publications.waset.org/search?q=Mohammed%20Mehenni"> Mohammed Mehenni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To improve the characterization of blood flows, we propose a method which makes it possible to use the spectral analysis of the Doppler signals. Our calculation induces a reasonable approximation, the error made on estimated speed reflects the fact that speed depends on the flow conditions as well as on measurement parameters like the bore and the volume flow rate. The estimate of the Doppler signal frequency enables us to determine the maximum Doppler frequencie Fd max as well as the maximum flow speed. The results show that the difference between the estimated frequencies ( Fde ) and the Doppler frequencies ( Fd ) is small, this variation tends to zero for important θ angles and it is proportional to the diameter D. The description of the speed of friction and the coefficient of friction justify the error rate obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Doppler%20frequency" title="Doppler frequency">Doppler frequency</a>, <a href="https://publications.waset.org/search?q=Doppler%20spectrum" title=" Doppler spectrum"> Doppler spectrum</a>, <a href="https://publications.waset.org/search?q=estimate%20speed" title=" estimate speed"> estimate speed</a>, <a href="https://publications.waset.org/search?q=permanent%20flow." title=" permanent flow."> permanent flow.</a> </p> <a href="https://publications.waset.org/12703/the-estimate-rate-of-permanent-flow-of-a-liquid-simulating-blood-by-doppler-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12703/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12703/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12703/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12703/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12703/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12703/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12703/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12703/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12703/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12703/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1340</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4590</span> Wetting Front Propagation during Quenching of Aluminum Plate by Water Spray</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20M.%20Seraj">M. M. Seraj</a>, <a href="https://publications.waset.org/search?q=M.%20S.%20Gadala"> M. S. Gadala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This study presents a systematic analysis of wetted region due to cooling of aluminum plate by water spray impingement with respect to different water flow rates, spray nozzle heights, and subcooling. Unlike jet impingement, the wetting is not commenced upon spray impingement and there is a delay in wetness of hot test surface. After initiation, the wetting (black zone) progresses gradually to cover all test plate and provides efficient cooling in nucleate boiling regime. Generally, spray cooling is found function of spray flow rate, spray-to-surface distance and water subcooling. Wetting delay is decreasing by increasing of spray flow rate until spray impact area is not become bigger that test surface. Otherwise, higher spray flow rate is not practically accelerated start of wetting. Very fast wetting due to spray cooling can be obtained by dense spray (high floe rate) discharged from adjacent nozzle to the test surface. Highly subcooling water spray also triggers earlier wetting of hot aluminum plate.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Water%20spray" title="Water spray">Water spray</a>, <a href="https://publications.waset.org/search?q=wetting" title=" wetting"> wetting</a>, <a href="https://publications.waset.org/search?q=aluminum%20plate" title=" aluminum plate"> aluminum plate</a>, <a href="https://publications.waset.org/search?q=flow%20rate." title=" flow rate."> flow rate.</a> </p> <a href="https://publications.waset.org/14398/wetting-front-propagation-during-quenching-of-aluminum-plate-by-water-spray" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14398/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14398/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14398/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14398/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14398/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14398/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14398/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14398/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14398/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14398/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1956</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4589</span> Double Pass Solar Air Heater with Transvers Fins and without Absorber Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20J.%20Mahmood">A. J. Mahmood</a>, <a href="https://publications.waset.org/search?q=L.%20B.%20Y.%20Aldabbagh"> L. B. Y. Aldabbagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The counter flow solar air heaters, with four transverse fins and wire mesh layers are constructed and investigated experimentally for thermal efficiency at a geographic location of Cyprus in the city of Famagusta. The absorber plate is replaced by sixteen steel wire mesh layers, 0.18 x 0.18cm in cross section opening and a 0.02cm in diameter. The wire mesh layers arranged in three groups, first and second include 6 layers, while the third include 4 layers. All layers fixed in the duct parallel to the glazing and each group separated from the others by wood frame thickness of 0.5cm to reduce the pressure drop. The transverse fins arranged in a way to force the air to flow through the bed like eight letter path with flow depth 3cm. The proposed design has increased the heat transfer rate, but on other hand causes a high pressure drop. The obtained results show that, for air mass flow rate range between 0.011-0.036kg/s, the thermal efficiency increases with increasing the air mass flow. The maximum efficiency obtained is 65.6% for the mass flow rate of 0.036kg/s. Moreover, the temperature difference between the outlet flow and the ambient temperature, ΔT, reduces as the air mass flow rate increase. The maximum difference between the outlet and ambient temperature obtained was 43°C for double pass for minimum mass flow rate of 0.011kg/s. Comparison with a conventional solar air heater collector shows a significantly development in the thermal efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Counter%20flow" title="Counter flow">Counter flow</a>, <a href="https://publications.waset.org/search?q=solar%20air%20heater%20%28SAH%29" title=" solar air heater (SAH)"> solar air heater (SAH)</a>, <a href="https://publications.waset.org/search?q=Wire%20mesh" title=" Wire mesh"> Wire mesh</a>, <a href="https://publications.waset.org/search?q=Fins" title=" Fins"> Fins</a>, <a href="https://publications.waset.org/search?q=Thermal%20efficiency." title=" Thermal efficiency."> Thermal efficiency.</a> </p> <a href="https://publications.waset.org/8230/double-pass-solar-air-heater-with-transvers-fins-and-without-absorber-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8230/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8230/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8230/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8230/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8230/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8230/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8230/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8230/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8230/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8230/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3179</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4588</span> Numerical Simulation and Experimental Validation of the Hydraulic L-Shaped Check Ball Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shinji%20Kajiwara">Shinji Kajiwara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The spring-driven ball-type check valve is one of the most important components of hydraulic systems: it controls the position of the ball and prevents backward flow. To simplify the structure, the spring must be eliminated, and to accomplish this, the flow pattern and the behavior of the check ball in L-shaped pipe must be determined. In this paper, we present a full-scale model of a check ball made of acrylic resin, and we determine the relationship between the initial position of the ball, the position and diameter of the inflow port. The check flow rate increases in a standard center inflow model, and it is possible to greatly decrease the check-flow rate by shifting the inflow from the center.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hydraulics" title="Hydraulics">Hydraulics</a>, <a href="https://publications.waset.org/search?q=Pipe%20Flow" title=" Pipe Flow"> Pipe Flow</a>, <a href="https://publications.waset.org/search?q=Numerical%20Simulation" title=" Numerical Simulation"> Numerical Simulation</a>, <a href="https://publications.waset.org/search?q=Flow%0D%0AVisualization" title=" Flow Visualization"> Flow Visualization</a>, <a href="https://publications.waset.org/search?q=Check%20ball" title=" Check ball"> Check ball</a>, <a href="https://publications.waset.org/search?q=L-shaped%20Pipe." title=" L-shaped Pipe."> L-shaped Pipe.</a> </p> <a href="https://publications.waset.org/10000540/numerical-simulation-and-experimental-validation-of-the-hydraulic-l-shaped-check-ball-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000540/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000540/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000540/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000540/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000540/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000540/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000540/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000540/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000540/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000540/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2078</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4587</span> Aerodynamic Designing of Supersonic Centrifugal Compressor Stages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Y.%20Galerkin">Y. Galerkin</a>, <a href="https://publications.waset.org/search?q=A.%20Rekstin"> A. Rekstin</a>, <a href="https://publications.waset.org/search?q=K.%20Soldatova"> K. Soldatova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Universal modeling method well proven for industrial compressors was applied for design of the high flow rate supersonic stage. Results were checked by ANSYS CFX and NUMECA Fine Turbo calculations. The impeller appeared to be very effective at transonic flow velocities. Stator elements efficiency is acceptable at design Mach numbers too. Their loss coefficient versus inlet flow angle performances correlates well with Universal modeling prediction. The impeller demonstrates ability of satisfactory operation at design flow rate. Supersonic flow behavior in the impeller inducer at the shroud blade to blade surface &Phi; des deserves additional study.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Centrifugal%20compressor%20stage" title="Centrifugal compressor stage">Centrifugal compressor stage</a>, <a href="https://publications.waset.org/search?q=supersonic%20impeller" title=" supersonic impeller"> supersonic impeller</a>, <a href="https://publications.waset.org/search?q=inlet%20flow%20angle" title=" inlet flow angle"> inlet flow angle</a>, <a href="https://publications.waset.org/search?q=loss%20coefficient" title=" loss coefficient"> loss coefficient</a>, <a href="https://publications.waset.org/search?q=return%20channel" title=" return channel"> return channel</a>, <a href="https://publications.waset.org/search?q=shock%20wave" title=" shock wave"> shock wave</a>, <a href="https://publications.waset.org/search?q=vane%0D%0Adiffuser." title=" vane diffuser."> vane diffuser.</a> </p> <a href="https://publications.waset.org/10000501/aerodynamic-designing-of-supersonic-centrifugal-compressor-stages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000501/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000501/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000501/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000501/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000501/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000501/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000501/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000501/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000501/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000501/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3207</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4586</span> Burning Rate Response of Solid Fuels in Laminar Boundary Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20M.%20Tahsini">A. M. Tahsini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid fuel transient burning behavior under oxidizer gas flow is numerically investigated. It is done using analysis of the regression rate responses to the imposed sudden and oscillatory variation at inflow properties. The conjugate problem is considered by simultaneous solution of flow and solid phase governing equations to compute the fuel regression rate. The advection upstream splitting method is used as flow computational scheme in finite volume method. The ignition phase is completely simulated to obtain the exact initial condition for response analysis. The results show that the transient burning effects which lead to the combustion instabilities and intermittent extinctions could be observed in solid fuels as the solid propellants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Extinction" title="Extinction">Extinction</a>, <a href="https://publications.waset.org/search?q=Oscillation" title=" Oscillation"> Oscillation</a>, <a href="https://publications.waset.org/search?q=Regression%20rate" title=" Regression rate"> Regression rate</a>, <a href="https://publications.waset.org/search?q=Response" title=" Response"> Response</a>, <a href="https://publications.waset.org/search?q=Transient%20burning." title=" Transient burning."> Transient burning.</a> </p> <a href="https://publications.waset.org/7048/burning-rate-response-of-solid-fuels-in-laminar-boundary-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7048/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7048/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7048/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7048/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7048/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7048/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7048/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7048/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7048/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7048/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2364</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4585</span> The New Semi-Experimental Method for Simulation of Turbine Flow Meters Rotation in the Transitional Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=J.%20Tonkonogij">J. Tonkonogij</a>, <a href="https://publications.waset.org/search?q=A.%20Pedi%C5%A1ius"> A. Pedišius</a>, <a href="https://publications.waset.org/search?q=A.%20Stankevi%C4%8Dius"> A. Stankevičius</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The new semi-experimental method for simulation of the turbine flow meters rotation in the transitional flow has been developed. The method is based on the experimentally established exponential low of changing of dimensionless relative turbine gas meter rotation frequency and meter inertia time constant. For experimental evaluation of the meter time constant special facility has been developed. The facility ensures instant switching of turbine meter under test from one channel to the other channel with different flow rate and measuring the meter response. The developed method can be used for evaluation and predication of the turbine meters response and dynamic error in the transitional flow with any arbitrary law of flow rate changing. The examples of the method application are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dynamic%20error" title="Dynamic error">Dynamic error</a>, <a href="https://publications.waset.org/search?q=pulsing%20flow" title=" pulsing flow"> pulsing flow</a>, <a href="https://publications.waset.org/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/search?q=response" title="response">response</a>, <a href="https://publications.waset.org/search?q=turbine%20gas%20meters." title=" turbine gas meters."> turbine gas meters.</a> </p> <a href="https://publications.waset.org/6042/the-new-semi-experimental-method-for-simulation-of-turbine-flow-meters-rotation-in-the-transitional-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6042/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6042/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6042/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6042/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6042/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6042/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6042/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6042/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6042/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6042/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2202</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4584</span> The Flotation Device Designed to Treat Phosphate Rock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Z.%20Q.%20Zhang">Z. Q. Zhang</a>, <a href="https://publications.waset.org/search?q=Y.%20Zhang"> Y. Zhang</a>, <a href="https://publications.waset.org/search?q=D.%20L.%20Li"> D. L. Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>To overcome the some shortcomings associated with traditional flotation machines and columns in collophanite flotation, a flotation device was designed and fabricated in the laboratory. A multi-impeller pump with same function as a mechanical cell was used instead of the injection sparger and circulation pump in column flotation unit. The influence of main operational parameters of the device like feed flow rate, air flow rate and impellers&rsquo; speed on collophanite flotation was analyzed. Experiment results indicate that the influence of the operational parameters were significant on flotation recovery and grade of phosphate concentrate. The best operating conditions of the device were: feed flow rate 0.62 L/min, air flow rate 6.67 L/min and impellers speed 900 rpm. At these conditions, a phosphate concentrate assaying about 30.5% P<sub>2</sub>O<sub>5</sub> and 1% MgO with a P<sub>2</sub>O<sub>5</sub> recovery of about 81% was obtained from a Yuan&#39;an phosphate ore sample containing about 22.30% P<sub>2</sub>O<sub>5</sub> and 3.2% MgO.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Collophanite%20flotation" title="Collophanite flotation">Collophanite flotation</a>, <a href="https://publications.waset.org/search?q=flotation%20columns" title=" flotation columns"> flotation columns</a>, <a href="https://publications.waset.org/search?q=flotation%20machines" title=" flotation machines"> flotation machines</a>, <a href="https://publications.waset.org/search?q=multi-impeller%20pump." title=" multi-impeller pump. "> multi-impeller pump. </a> </p> <a href="https://publications.waset.org/10010120/the-flotation-device-designed-to-treat-phosphate-rock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010120/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010120/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010120/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010120/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010120/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010120/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010120/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010120/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010120/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010120/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">814</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4583</span> Inductance Characteristic of Annealed Titanium Dioxide on Silicon Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chih%20Chin%20Yang">Chih Chin Yang</a>, <a href="https://publications.waset.org/search?q=Lan%20Hui%20Huang"> Lan Hui Huang</a>, <a href="https://publications.waset.org/search?q=Bo%20Shum%20Chen"> Bo Shum Chen</a>, <a href="https://publications.waset.org/search?q=Jia%20Liang%20Ke"> Jia Liang Ke</a>, <a href="https://publications.waset.org/search?q=Chung%20Lun%20Tsai"> Chung Lun Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The control of oxygen flow rate during growth of titanium dioxide by mass flow controller in DC plasma sputtering growth system is studied. The impedance of TiO2 films for inductance effect is influenced by annealing time and oxygen flow rate. As annealing time is increased, the inductance of TiO2 film is the more. The growth condition of optimum and maximum inductance for TiO2 film to serve as sensing device are oxygen flow rate of 15 sccm and large annealing time. The large inductance of TiO2 film will be adopted to fabricate the biosensor to obtain the high sensitivity of sensing in biology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Annealed" title="Annealed">Annealed</a>, <a href="https://publications.waset.org/search?q=Inductance" title=" Inductance"> Inductance</a>, <a href="https://publications.waset.org/search?q=Silicon%20substarte" title=" Silicon substarte"> Silicon substarte</a>, <a href="https://publications.waset.org/search?q=Titanium%0Adioxide" title=" Titanium dioxide"> Titanium dioxide</a> </p> <a href="https://publications.waset.org/11241/inductance-characteristic-of-annealed-titanium-dioxide-on-silicon-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11241/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11241/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11241/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11241/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11241/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11241/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11241/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11241/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11241/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11241/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1965</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4582</span> Thermohydraulic Performance of Double Flow Solar Air Heater with Corrugated Absorber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20P.%20Sharma">S. P. Sharma</a>, <a href="https://publications.waset.org/search?q=Som%20Nath%20Saha"> Som Nath Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper deals with the analytical investigation of thermal and thermohydraulic performance of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater has been presented, and a computer program in C<sup>++</sup> language is developed to estimate the outlet temperature of air for the evaluation of thermal and thermohydraulic efficiency by solving the governing equations numerically using relevant correlations for heat transfer coefficients. The results obtained from the mathematical model is compared with the available experimental results and it is found to be reasonably good. The results show that the double flow solar air heaters have higher efficiency than conventional solar air heater, although the double flow corrugated absorber is superior to that of flat plate double flow solar air heater. It is also observed that the thermal efficiency increases with increase in mass flow rate; however, thermohydraulic efficiency increases with increase in mass flow rate up to a certain limit, attains the maximum value, then thereafter decreases sharply.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Corrugated%20absorber" title="Corrugated absorber">Corrugated absorber</a>, <a href="https://publications.waset.org/search?q=double%20flow" title=" double flow"> double flow</a>, <a href="https://publications.waset.org/search?q=solar%20air%20heater" title=" solar air heater"> solar air heater</a>, <a href="https://publications.waset.org/search?q=thermohydraulic%20efficiency." title=" thermohydraulic efficiency. "> thermohydraulic efficiency. </a> </p> <a href="https://publications.waset.org/10007553/thermohydraulic-performance-of-double-flow-solar-air-heater-with-corrugated-absorber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007553/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007553/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007553/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007553/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007553/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007553/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007553/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007553/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007553/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007553/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1502</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4581</span> Numerical Investigation of the Flow Characteristics inside the Scrubber Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kumaresh%20Selvakumar">Kumaresh Selvakumar</a>, <a href="https://publications.waset.org/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Wet scrubbers have found widespread use in cleaning contaminated gas streams because of their ability to remove particulates and based on the applications of scrubbing of marine engine exhaust gases by spraying sea-water. In order to examine the flow characteristics inside the scrubber, the model is designated with flow properties of hot air and water sprayer. The flow dynamics of evaporation of hot air by the injection of water droplets is the key factor considered in this paper. The flow behavior inside the scrubber was investigated from the previous works and to sum up the evaporation rate with respect to the concentration of water droplets are predicted to bring out the competent modelling. The numerical analysis using CFD facilitates in understanding the problem better and empathies the behavior of the model over its entire operating envelope.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Concentration%20of%20water%20droplets" title="Concentration of water droplets">Concentration of water droplets</a>, <a href="https://publications.waset.org/search?q=Evaporation%20rate" title=" Evaporation rate"> Evaporation rate</a>, <a href="https://publications.waset.org/search?q=Scrubber" title=" Scrubber"> Scrubber</a>, <a href="https://publications.waset.org/search?q=Water%20sprayer." title=" Water sprayer."> Water sprayer.</a> </p> <a href="https://publications.waset.org/10000341/numerical-investigation-of-the-flow-characteristics-inside-the-scrubber-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000341/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000341/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000341/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000341/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000341/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000341/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000341/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000341/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000341/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000341/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3296</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4580</span> Comparison of Two-Phase Critical Flow Models for Estimation of Leak Flow Rate through Cracks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tadashi%20Watanabe">Tadashi Watanabe</a>, <a href="https://publications.waset.org/search?q=Jinya%20Katsuyama"> Jinya Katsuyama</a>, <a href="https://publications.waset.org/search?q=Akihiro%20Mano"> Akihiro Mano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The estimation of leak flow rates through narrow cracks in structures is of importance for nuclear reactor safety, since the leak flow could be detected before occurrence of loss-of-coolant accidents. The two-phase critical leak flow rates are calculated using the system analysis code, and two representative non-homogeneous critical flow models, Henry-Fauske model and Ransom-Trapp model, are compared. The pressure decrease and vapor generation in the crack, and the leak flow rates are found to be larger for the Henry-Fauske model. It is shown that the leak flow rates are not affected by the structural temperature, but affected largely by the roughness of crack surface.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Crack" title="Crack">Crack</a>, <a href="https://publications.waset.org/search?q=critical%20flow" title=" critical flow"> critical flow</a>, <a href="https://publications.waset.org/search?q=leak" title=" leak"> leak</a>, <a href="https://publications.waset.org/search?q=roughness." title=" roughness. "> roughness. </a> </p> <a href="https://publications.waset.org/10010869/comparison-of-two-phase-critical-flow-models-for-estimation-of-leak-flow-rate-through-cracks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010869/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010869/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010869/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010869/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010869/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010869/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010869/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010869/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010869/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010869/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">842</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4579</span> Improved Thermal Comfort and Sensation with Occupant Control of Ceiling Personalized Ventilation System: A Lab Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Walid%20Chakroun">Walid Chakroun</a>, <a href="https://publications.waset.org/search?q=Sorour%20Alotaibi"> Sorour Alotaibi</a>, <a href="https://publications.waset.org/search?q=Nesreen%20Ghaddar"> Nesreen Ghaddar</a>, <a href="https://publications.waset.org/search?q=Kamel%20Ghali"> Kamel Ghali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This study aims at determining the extent to which occupant control of microenvironment influences, improves thermal sensation and comfort, and saves energy in spaces equipped with ceiling personalized ventilation (CPV) system assisted by chair fans (CF) and desk fans (DF) in 2 experiments in a climatic chamber equipped with two-station CPV systems, one that allows control of fan flow rate and the other is set to the fan speed of the selected participant in control. Each experiment included two participants each entering the cooled space from transitional environment at a conventional mixed ventilation (MV) at 24 &deg;C. For CPV diffuser, fresh air was delivered at a rate of 20 Cubic feet per minute (CFM) and a temperature of 16 &deg;C while the recirculated air was delivered at the same temperature but at a flow rate 150 CFM. The macroclimate air of the space was at 26 &deg;C. The full speed flow rates for both the CFs and DFs were at 5 CFM and 20 CFM, respectively. Occupant 1 was allowed to operate the CFs or the DFs at (1/3 of the full speed, 2/3 of the full speed, and the full speed) while occupant 2 had no control on the fan speed and their fan speed was selected by occupant 1. Furthermore, a parametric study was conducted to study the effect of increasing the fresh air flow rate on the occupants&rsquo; thermal comfort and whole body sensations. The results showed that most occupants in the CPV+CFs, who did not control the CF flow rate, felt comfortable 6 minutes. The participants, who controlled the CF speeds, felt comfortable in around 24 minutes because they were preoccupied with the CFs. For the DF speed control experiments, most participants who did not control the DFs felt comfortable within the first 8 minutes. Similarly to the CPV+CFs, the participants who controlled the DF flow rates felt comfortable at around 26 minutes. When the CPV system was either supported by CFs or DFs, 93% of participants in both cases reached thermal comfort. Participants in the parametric study felt more comfortable when the fresh air flow rate was low, and felt cold when as the flow rate increased.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Thermal%20comfort" title="Thermal comfort">Thermal comfort</a>, <a href="https://publications.waset.org/search?q=thermal%20sensation" title=" thermal sensation"> thermal sensation</a>, <a href="https://publications.waset.org/search?q=predicted%20mean%20vote" title=" predicted mean vote"> predicted mean vote</a>, <a href="https://publications.waset.org/search?q=thermal%20environment." title=" thermal environment. "> thermal environment. </a> </p> <a href="https://publications.waset.org/10011545/improved-thermal-comfort-and-sensation-with-occupant-control-of-ceiling-personalized-ventilation-system-a-lab-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011545/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011545/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011545/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011545/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011545/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011545/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011545/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011545/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011545/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011545/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4578</span> An Experimental Study on Evacuated Tube Solar Collector for Heating of Air in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Avadhesh%20Yadav">Avadhesh Yadav</a>, <a href="https://publications.waset.org/search?q=V.K.%20Bajpai"> V.K. Bajpai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A solar powered air heating system using one ended evacuated tubes is experimentally investigated. A solar air heater containing forty evacuated tubes is used for heating purpose. The collector surface area is about 4.44 m2. The length and outer diameters of the outer glass tube and absorber tube are 1500, 47 and 37 mm, respectively. In this experimental setup, we have a header (heat exchanger) of square shape (190 mm x 190 mm). The length of header is 1500 mm. The header consists of a hollow pipe in the center whose diameter is 60 mm through which the air is made to flow. The experimental setup contains approximately 108 liters of water. Water is working as heat collecting medium which collects the solar heat falling on the tubes. This heat is delivered to the air flowing through the header pipe. This heat flow is due to natural convection and conduction. The outlet air temperature depends upon several factors along with air flow rate and solar radiation intensity. The study has been done for both up-flow and down-flow of air in header in similar weather conditions, at different flow rates. In the present investigations the study has been made to find the effect of intensity of solar radiations and flow rate of air on the out let temperature of the air with time and which flow is more efficient. The obtained results show that the system is highly effective for the heating in this region. Moreover, it has been observed that system is highly efficient for the particular flow rate of air. It was also observed that downflow configuration is more effective than up-flow condition at all flow rates due to lesser losses in down-flow. The results show that temperature differences of upper head and lower head, both of water and surface of pipes on the respective ends is lower in down-flow.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=air%20flow%20direction" title="air flow direction">air flow direction</a>, <a href="https://publications.waset.org/search?q=Evacuated%20tube%20solar%20collector" title=" Evacuated tube solar collector"> Evacuated tube solar collector</a>, <a href="https://publications.waset.org/search?q=solar%20air%20heating" title=" solar air heating"> solar air heating</a>, <a href="https://publications.waset.org/search?q=solar%20thermal%20utilization." title=" solar thermal utilization."> solar thermal utilization.</a> </p> <a href="https://publications.waset.org/14741/an-experimental-study-on-evacuated-tube-solar-collector-for-heating-of-air-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14741/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14741/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14741/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14741/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14741/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14741/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14741/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14741/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14741/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14741/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5196</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4577</span> Unsteadiness Effects on Variable Thrust Nozzle Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20M.%20Tahsini">A. M. Tahsini</a>, <a href="https://publications.waset.org/search?q=S.%20T.%20Mousavi"> S. T. Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The purpose of this paper is to elucidate the flow unsteady behavior for moving plug in convergent-divergent variable thrust nozzle. Compressible axisymmetric Navier-Stokes equations are used to study this physical phenomenon. Different velocities are set for plug to investigate the effect of plug movement on flow unsteadiness. Variation of mass flow rate and thrust are compared under two conditions: First, the plug is placed at different positions and flow is simulated to reach the steady state (quasi steady simulation) and second, the plug is moved with assigned velocity and flow simulation is coupled with plug movement (unsteady simulation). If plug speed is high enough and its movement time scale is at the same order of the flow time scale, variation of the mass flow rate and thrust level versus plug position demonstrate a vital discrepancy under the quasi steady and unsteady conditions. This phenomenon should be considered especially from response time viewpoints in thrusters design.&nbsp;</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nozzle" title="Nozzle">Nozzle</a>, <a href="https://publications.waset.org/search?q=Numerical%20study" title=" Numerical study"> Numerical study</a>, <a href="https://publications.waset.org/search?q=Unsteady" title=" Unsteady"> Unsteady</a>, <a href="https://publications.waset.org/search?q=Variable%20thrust." title=" Variable thrust. "> Variable thrust. </a> </p> <a href="https://publications.waset.org/9996609/unsteadiness-effects-on-variable-thrust-nozzle-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996609/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996609/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996609/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996609/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996609/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996609/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996609/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996609/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996609/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996609/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2250</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4576</span> Movement of Location of Tip Vortex Cavitation along Blade Edge due to Reduction of Flow Rate in an Axial Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohammad%20T.%20Shervani-Tabar">Mohammad T. Shervani-Tabar</a>, <a href="https://publications.waset.org/search?q=Navid%20Shervani-Tabar"> Navid Shervani-Tabar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tip vortex cavitation is one of well known patterns of cavitation phenomenon which occurs in axial pumps. This pattern of cavitation occurs due to pressure difference between the pressure and suction sides of blades of an axial pump. Since the pressure in the pressure side of the blade is higher than the pressure in its suction side, thus a very small portion of liquid flow flows back from pressure side to the suction side. This fact is cause of tip vortex cavitation and gap cavitation that may occur in axial pumps. In this paper the results of our experimental investigation about movement of tip vortex cavitation along blade edge due to reduction of pump flow rate in an axial pump is reported. Results show that reduction of pump flow rate in conjunction with increasing of outlet pressure causes movement of tip vortex cavitation along blade edge towards the blade tip. Results also show that by approaching tip vortex cavitation to the blade tip, vortex tip pattern of cavitation replaces with a cavitation phenomenon on the blade tip. Furthermore by further reduction of pump flow rate and increasing of outlet pressure, an unstable cavitation phenomenon occurs between each blade leading edge and the next blade trailing edge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Axial%20Flow%20Pump" title="Axial Flow Pump">Axial Flow Pump</a>, <a href="https://publications.waset.org/search?q=Cavitation" title=" Cavitation"> Cavitation</a>, <a href="https://publications.waset.org/search?q=Gap%20Cavitation" title=" Gap Cavitation"> Gap Cavitation</a>, <a href="https://publications.waset.org/search?q=Tip%0AVortex%20Cavitation." title=" Tip Vortex Cavitation."> Tip Vortex Cavitation.</a> </p> <a href="https://publications.waset.org/14298/movement-of-location-of-tip-vortex-cavitation-along-blade-edge-due-to-reduction-of-flow-rate-in-an-axial-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14298/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14298/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14298/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14298/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14298/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14298/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14298/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14298/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14298/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14298/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1901</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4575</span> Performance Improvement of a Supersonic External Compression Inlet by Heat Source Addition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohammad%20Reza%20Soltani">Mohammad Reza Soltani</a>, <a href="https://publications.waset.org/search?q=Mohammad%20Farahani"> Mohammad Farahani</a>, <a href="https://publications.waset.org/search?q=Javad%20Sepahi%20Younsi"> Javad Sepahi Younsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat source addition to the axisymmetric supersonic inlet may improve the performance parameters, which will increase the inlet efficiency. In this investigation the heat has been added to the flow field at some distance ahead of an axisymmetric inlet by adding an imaginary thermal source upstream of cowl lip. The effect of heat addition on the drag coefficient, mass flow rate and the overall efficiency of the inlet have been investigated. The results show that heat addition causes flow separation, hence to prevent this phenomena, roughness has been added on the spike surface. However, heat addition reduces the drag coefficient and the inlet mass flow rate considerably. Furthermore, the effects of position, size, and shape on the inlet performance were studied. It is found that the thermal source deflects the flow streamlines. By improper location of the thermal source, the optimum condition has been obtained. For the optimum condition, the drag coefficient is considerably reduced and the inlet mass flow rate and its efficiency have been increased slightly. The optimum shape of the heat source is obtained too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Drag%20coefficient" title="Drag coefficient">Drag coefficient</a>, <a href="https://publications.waset.org/search?q=heat%20source" title=" heat source"> heat source</a>, <a href="https://publications.waset.org/search?q=performanceparameters" title=" performanceparameters"> performanceparameters</a>, <a href="https://publications.waset.org/search?q=supersonic%20inlet." title=" supersonic inlet."> supersonic inlet.</a> </p> <a href="https://publications.waset.org/2446/performance-improvement-of-a-supersonic-external-compression-inlet-by-heat-source-addition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2446/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2446/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2446/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2446/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2446/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2446/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2446/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2446/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2446/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2446/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2290</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4574</span> Numerical Comparison of Rushton Turbine and CD-6 Impeller in Non-Newtonian Fluid Stirred Tank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Akhilesh%20Khapre">Akhilesh Khapre</a>, <a href="https://publications.waset.org/search?q=Basudeb%20Munshi"> Basudeb Munshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A computational fluid dynamics simulation is done for non-Newtonian fluid in a baffled stirred tank. The CMC solution is taken as non-Newtonian shear thinning fluid for simulation. The Reynolds Average Navier Stocks equation with steady state multi reference frame approach is used to simulate flow in the stirred tank. The turbulent flow field is modelled using realizable k-&epsilon; turbulence model. The simulated velocity profiles of Rushton turbine is validated with literature data. Then, the simulated flow field of CD-6 impeller is compared with the Rushton turbine. The flow field generated by CD-6 impeller is less in magnitude than the Rushton turbine. The impeller global parameter, power number and flow number, and entropy generation due to viscous dissipation rate is also reported.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computational%20fluid%20dynamics" title="Computational fluid dynamics">Computational fluid dynamics</a>, <a href="https://publications.waset.org/search?q=non-Newtonian" title=" non-Newtonian"> non-Newtonian</a>, <a href="https://publications.waset.org/search?q=Rushton%20turbine" title=" Rushton turbine"> Rushton turbine</a>, <a href="https://publications.waset.org/search?q=CD-6%20impeller" title=" CD-6 impeller"> CD-6 impeller</a>, <a href="https://publications.waset.org/search?q=power%20number" title=" power number"> power number</a>, <a href="https://publications.waset.org/search?q=flow%20number" title=" flow number"> flow number</a>, <a href="https://publications.waset.org/search?q=viscous%20dissipation%20rate." title=" viscous dissipation rate."> viscous dissipation rate.</a> </p> <a href="https://publications.waset.org/9999926/numerical-comparison-of-rushton-turbine-and-cd-6-impeller-in-non-newtonian-fluid-stirred-tank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999926/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999926/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999926/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999926/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999926/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999926/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999926/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999926/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999926/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999926/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4148</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4573</span> A CFD Study of Sensitive Parameters Effect on the Combustion in a High Velocity Oxygen-Fuel Thermal Spray Gun</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Hossainpour">S. Hossainpour</a>, <a href="https://publications.waset.org/search?q=A.%20R.%20Binesh"> A. R. Binesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-velocity oxygen fuel (HVOF) thermal spraying uses a combustion process to heat the gas flow and coating material. A computational fluid dynamics (CFD) model has been developed to predict gas dynamic behavior in a HVOF thermal spray gun in which premixed oxygen and propane are burnt in a combustion chamber linked to a parallel-sided nozzle. The CFD analysis is applied to investigate axisymmetric, steady-state, turbulent, compressible, chemically reacting, subsonic and supersonic flow inside and outside the gun. The gas velocity, temperature, pressure and Mach number distributions are presented for various locations inside and outside the gun. The calculated results show that the most sensitive parameters affecting the process are fuel-to-oxygen gas ratio and total gas flow rate. Gas dynamic behavior along the centerline of the gun depends on both total gas flow rate and fuel-to-oxygen gas ratio. The numerical simulations show that the axial gas velocity and Mach number distribution depend on both flow rate and ratio; the highest velocity is achieved at the higher flow rate and most fuel-rich ratio. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the HVOF system design, optimization and performance analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=HVOF" title="HVOF">HVOF</a>, <a href="https://publications.waset.org/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/search?q=gas%20dynamics" title=" gas dynamics"> gas dynamics</a>, <a href="https://publications.waset.org/search?q=thermal%20spray" title=" thermal spray"> thermal spray</a>, <a href="https://publications.waset.org/search?q=combustion." title=" combustion."> combustion.</a> </p> <a href="https://publications.waset.org/15134/a-cfd-study-of-sensitive-parameters-effect-on-the-combustion-in-a-high-velocity-oxygen-fuel-thermal-spray-gun" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15134/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15134/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15134/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15134/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15134/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15134/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15134/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15134/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15134/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15134/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2159</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4572</span> Effect of Laser Power and Powder Flow Rate on Properties of Laser Metal Deposited Ti6Al4V</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mukul%20Shukla">Mukul Shukla</a>, <a href="https://publications.waset.org/search?q=Rasheedat%20M.%20Mahamood"> Rasheedat M. Mahamood</a>, <a href="https://publications.waset.org/search?q=Esther%20T.%20Akinlabi"> Esther T. Akinlabi</a>, <a href="https://publications.waset.org/search?q=Sisa.%20Pityana"> Sisa. Pityana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser Metal Deposition (LMD) is an additive manufacturing process with capabilities that include: producing new part directly from 3 Dimensional Computer Aided Design (3D CAD) model, building new part on the existing old component and repairing an existing high valued component parts that would have been discarded in the past. With all these capabilities and its advantages over other additive manufacturing techniques, the underlying physics of the LMD process is yet to be fully understood probably because of high interaction between the processing parameters and studying many parameters at the same time makes it further complex to understand. In this study, the effect of laser power and powder flow rate on physical properties (deposition height and deposition width), metallurgical property (microstructure) and mechanical (microhardness) properties on laser deposited most widely used aerospace alloy are studied. Also, because the Ti6Al4V is very expensive, and LMD is capable of reducing buy-to-fly ratio of aerospace parts, the material utilization efficiency is also studied. Four sets of experiments were performed and repeated to establish repeatability using laser power of 1.8 kW and 3.0 kW, powder flow rate of 2.88 g/min and 5.67 g/min, and keeping the gas flow rate and scanning speed constant at 2 l/min and 0.005 m/s respectively. The deposition height / width are found to increase with increase in laser power and increase in powder flow rate. The material utilization is favoured by higher power while higher powder flow rate reduces material utilization. The results are presented and fully discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Laser%20Metal%20Deposition" title="Laser Metal Deposition">Laser Metal Deposition</a>, <a href="https://publications.waset.org/search?q=Material%20Efficiency" title=" Material Efficiency"> Material Efficiency</a>, <a href="https://publications.waset.org/search?q=Microstructure" title=" Microstructure"> Microstructure</a>, <a href="https://publications.waset.org/search?q=Ti6Al4V." title=" Ti6Al4V."> Ti6Al4V.</a> </p> <a href="https://publications.waset.org/4310/effect-of-laser-power-and-powder-flow-rate-on-properties-of-laser-metal-deposited-ti6al4v" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4310/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4310/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4310/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4310/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4310/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4310/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4310/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4310/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4310/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4310/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3629</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4571</span> One Dimensional Reactor Modeling for Methanol Steam Reforming to Hydrogen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hongfang%20Ma">Hongfang Ma</a>, <a href="https://publications.waset.org/search?q=Mingchuan%20Zhou"> Mingchuan Zhou</a>, <a href="https://publications.waset.org/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>One dimensional pseudo-homogenous modeling has been performed for methanol steam reforming reactor. The results show that the models can well predict the industrial data. The reactor had minimum temperature along axial because of endothermic reaction. Hydrogen productions and temperature profiles along axial were investigated regarding operation conditions such as inlet mass flow rate and mass fraction of methanol, inlet temperature of external thermal oil. Low inlet mass flow rate of methanol, low inlet temperature, and high mass fraction of methanol decreased minimum temperature along axial. Low inlet mass flow rate of methanol, high mass fraction of methanol, and high inlet temperature of thermal oil made cold point forward. Low mass fraction, high mass flow rate, and high inlet temperature of thermal oil increased hydrogen production. One dimensional models can be a guide for industrial operation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Reactor" title="Reactor">Reactor</a>, <a href="https://publications.waset.org/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/search?q=steam%20reforming." title=" steam reforming. "> steam reforming. </a> </p> <a href="https://publications.waset.org/10009782/one-dimensional-reactor-modeling-for-methanol-steam-reforming-to-hydrogen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009782/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009782/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009782/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009782/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009782/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009782/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009782/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009782/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009782/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009782/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">748</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4570</span> Experimental Investigation of Combustion Chamber Dimensions Effects on Pollutant Emission and Combustion Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.%20Bashirnezhad">K. Bashirnezhad</a>, <a href="https://publications.waset.org/search?q=M.%20Joleini"> M. Joleini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The combustion chamber dimensions have important effects on pollutant emission in furnaces as a direct result of temperature distribution and maximum temperature value. In this paper the pollutant emission and the temperature distribution in two cylindrical furnaces with different dimensions (with similar length to diameter ratio) in similar condition have been investigated experimentally. The furnace fuel is gas oil that is used with three different flow rates. The results show that in these two cases the temperature increases to its maximum value quickly, and then decreases slowly. The results also show that increase in fuel flow rate cause to increase in NOx emission in each case, but this increase is greater in small furnace. With increase in fuel flow rate, CO emission decreases firstly, and then it increases. Combustion efficiency reduces with increase in fuel flow rate but the rate of reduction in small furnace is greater than large furnace. The results of axial temperature distribution have been compared with those have been obtained numerically and experimentally by Moghiman. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Furnace%20dimensions" title="Furnace dimensions">Furnace dimensions</a>, <a href="https://publications.waset.org/search?q=Oxides%20of%20Nitrogen" title=" Oxides of Nitrogen"> Oxides of Nitrogen</a>, <a href="https://publications.waset.org/search?q=Carbonmonoxide" title=" Carbonmonoxide"> Carbonmonoxide</a>, <a href="https://publications.waset.org/search?q=Efficiency." title=" Efficiency."> Efficiency.</a> </p> <a href="https://publications.waset.org/9563/experimental-investigation-of-combustion-chamber-dimensions-effects-on-pollutant-emission-and-combustion-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9563/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9563/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9563/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9563/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9563/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9563/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9563/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9563/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9563/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9563/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1792</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4569</span> Modern State of the Universal Modeling for Centrifugal Compressors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Y.%20Galerkin">Y. Galerkin</a>, <a href="https://publications.waset.org/search?q=K.%20Soldatova"> K. Soldatova</a>, <a href="https://publications.waset.org/search?q=A.%20Drozdov"> A. Drozdov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The 6th version of Universal modeling method for centrifugal compressor stage calculation is described. Identification of the new mathematical model was made. As a result of identification the uniform set of empirical coefficients is received. The efficiency definition error is 0,86 % at a design point. The efficiency definition error at five flow rate points (except a point of the maximum flow rate) is 1,22 %. Several variants of the stage with 3D impellers designed by 6th version program and quasi threedimensional calculation programs were compared by their gas dynamic performances CFD (NUMECA FINE TURBO). Performance comparison demonstrated general principles of design validity and leads to some design recommendations.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Compressor%20design" title="Compressor design">Compressor design</a>, <a href="https://publications.waset.org/search?q=loss%20model" title=" loss model"> loss model</a>, <a href="https://publications.waset.org/search?q=performance%0D%0Aprediction" title=" performance prediction"> performance prediction</a>, <a href="https://publications.waset.org/search?q=test%20data" title=" test data"> test data</a>, <a href="https://publications.waset.org/search?q=model%20stages" title=" model stages"> model stages</a>, <a href="https://publications.waset.org/search?q=flow%20rate%20coefficient" title=" flow rate coefficient"> flow rate coefficient</a>, <a href="https://publications.waset.org/search?q=work%0D%0Acoefficient." title=" work coefficient."> work coefficient.</a> </p> <a href="https://publications.waset.org/10000587/modern-state-of-the-universal-modeling-for-centrifugal-compressors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000587/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000587/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000587/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000587/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000587/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000587/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000587/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000587/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000587/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000587/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1880</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gas%20flow%20rate&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gas%20flow%20rate&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gas%20flow%20rate&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gas%20flow%20rate&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gas%20flow%20rate&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gas%20flow%20rate&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gas%20flow%20rate&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gas%20flow%20rate&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gas%20flow%20rate&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gas%20flow%20rate&amp;page=153">153</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gas%20flow%20rate&amp;page=154">154</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gas%20flow%20rate&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10