CINXE.COM

Search results for: steering wheel amplitude

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: steering wheel amplitude</title> <meta name="description" content="Search results for: steering wheel amplitude"> <meta name="keywords" content="steering wheel amplitude"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="steering wheel amplitude" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="steering wheel amplitude"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 896</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: steering wheel amplitude</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">896</span> Study of Effect of Steering Column Orientation and Operator Platform Position on the Hand Vibration in Compactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Bandaru">Sunil Bandaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Yv"> Suresh Yv</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivas%20Vanapalli"> Srinivas Vanapalli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy machinery especially compactors has more vibrations induced from the compactor mechanism than the engines. Since the operator’s comfort is most important in any of the machines, this paper shows interest in studying the vibrations on the steering wheel for a double drum compactor. As there are no standard procedures available for testing vibrations on the steering wheel of double drum compactors, this paper tries to evaluate the vibrations on the steering wheel by considering most of the possibilities. In addition to the feasibility for the operator to adjust the steering wheel tilt as in the case of automotive, there is an option for the operator to change the orientation of the operator platform for the complete view of the road’s edge on both the ends of the front and rear drums. When the orientation is either +/-180°, the operator will be closer to the compactor mechanism; also there is a possibility for the shuffle in the modes with respect to the operator. Hence it is mandatory to evaluate the vibrations levels in both cases. This paper attempts to evaluate the vibrations on the steering wheel by considering the two operator platform positions and three steering wheel tilting angles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEA" title="FEA">FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=CAE" title=" CAE"> CAE</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20column" title=" steering column"> steering column</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20column%20orientation%20position" title=" steering column orientation position"> steering column orientation position</a> </p> <a href="https://publications.waset.org/abstracts/139895/study-of-effect-of-steering-column-orientation-and-operator-platform-position-on-the-hand-vibration-in-compactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">895</span> Electronically Controlled Motorized Steering System (E-Mo Steer)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Prasanth">M. Prasanth</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Nithin"> V. Nithin</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Keerthana"> R. Keerthana</a>, <a href="https://publications.waset.org/abstracts/search?q=S.Kalyani"> S.Kalyani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current scenario, the steering system in automobiles is such that the motion from the steering wheel is transferred to driving wheel by mechanical linkages. In this paper, we propose a method to design a steering mechanism using servomotors to turn the wheels instead of linkages. In this method, a steering angle sensor senses the turn angle of the steering wheel and its output is processed by an electronical control module. Then the ECM compares the angle value to that of a standard value from a look-up database. Then it gives the appropriate input power and the turning duration to the motors. Correspondingly, the motors turn the wheels by means of bevel gears welded to both the motor output shafts and the wheel hubs. Thus, the wheels are turned without the complicated framework of linkages, reducing the driver’s effort and fatigue considerably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20control%20unit" title="electronic control unit">electronic control unit</a>, <a href="https://publications.waset.org/abstracts/search?q=linkage-less%20steering" title=" linkage-less steering"> linkage-less steering</a>, <a href="https://publications.waset.org/abstracts/search?q=servomotors" title=" servomotors"> servomotors</a>, <a href="https://publications.waset.org/abstracts/search?q=E-Mo%20Steer" title=" E-Mo Steer"> E-Mo Steer</a> </p> <a href="https://publications.waset.org/abstracts/4163/electronically-controlled-motorized-steering-system-e-mo-steer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">894</span> Dynamic Stability Assessment of Different Wheel Sized Bicycles Based on Current Frame Design Practice with ISO Requirement for Bicycle Safety </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milan%20Paudel">Milan Paudel</a>, <a href="https://publications.waset.org/abstracts/search?q=Fook%20Fah%20Yap"> Fook Fah Yap</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20K.%20Bastola"> Anil K. Bastola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The difficulties in riding small wheel bicycles and their lesser stability have been perceived for a long time. Although small wheel bicycles are designed using the similar approach and guidelines that have worked well for big wheel bicycles, the performance of the big wheelers and the smaller wheelers are markedly different. Since both the big wheelers and small wheelers have same fundamental geometry, most blame the small wheel for this discrepancy in the performance. This paper reviews existing guidelines for bicycle design, especially the front steering geometry for the bicycle, and provides a systematic and quantitative analysis of different wheel sized bicycles. A validated mathematical model has been used as a tool to assess the dynamic performance of the bicycles in term of their self-stability. The results obtained were found to corroborate the subjective perception of cyclists for small wheel bicycles. The current approach for small wheel bicycle design requires higher speed to be self-stable. However, it was found that increasing the headtube angle and selecting a proper trail could improve the dynamic performance of small wheel bicycles. A range of parameters for front steering geometry has been identified for small wheel bicycles that have comparable stability as big wheel bicycles. Interestingly, most of the identified geometries are found to be beyond the ISO recommended range and seem to counter the current approach of small wheel bicycle design. Therefore, it was successfully shown that the guidelines for big wheelers do not translate directly to small wheelers, but careful selection of the front geometry could make small wheel bicycles as stable as big wheel bicycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20wheel%20bicycle" title="big wheel bicycle">big wheel bicycle</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20approach" title=" design approach"> design approach</a>, <a href="https://publications.waset.org/abstracts/search?q=ISO%20requirements" title=" ISO requirements"> ISO requirements</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20wheel%20bicycle" title=" small wheel bicycle"> small wheel bicycle</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20and%20performance" title=" stability and performance"> stability and performance</a> </p> <a href="https://publications.waset.org/abstracts/86408/dynamic-stability-assessment-of-different-wheel-sized-bicycles-based-on-current-frame-design-practice-with-iso-requirement-for-bicycle-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">893</span> Research on Control Strategy of Differential Drive Assisted Steering of Distributed Drive Electric Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Liu">J. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20P.%20Yu"> Z. P. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Xiong"> L. Xiong</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Feng"> Y. Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20He"> J. He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the independence, accuracy and controllability of the driving/braking torque of the distributed drive electric vehicle, a control strategy of differential drive assisted steering was designed. Firstly, the assisted curve under different speed and steering wheel torque was developed and the differential torques were distributed to the right and left front wheels. Then the steering return ability assisted control algorithm was designed. At last, the joint simulation was conducted by CarSim/Simulink. The result indicated: the differential drive assisted steering algorithm could provide enough steering drive-assisted under low speed and improve the steering portability. Along with the increase of the speed, the provided steering drive-assisted decreased. With the control algorithm, the steering stiffness of the steering system increased along with the increase of the speed, which ensures the driver’s road feeling. The control algorithm of differential drive assisted steering could avoid the understeer under low speed effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20assisted%20steering" title="differential assisted steering">differential assisted steering</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20strategy" title=" control strategy"> control strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20drive%20electric%20vehicle" title=" distributed drive electric vehicle"> distributed drive electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%2Fbraking%20torque" title=" driving/braking torque"> driving/braking torque</a> </p> <a href="https://publications.waset.org/abstracts/11277/research-on-control-strategy-of-differential-drive-assisted-steering-of-distributed-drive-electric-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">892</span> Mechanism Design and Dynamic Analysis of Active Independent Front Steering System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng-Chi%20Yu">Cheng-Chi Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Shiue%20Wang"> Yu-Shiue Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kei-Lin%20Kuo"> Kei-Lin Kuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Active Independent Front Steering system is a steering system which can according to vehicle driving situation adjusts the relation of steering angle between inner wheel and outer wheel. In low-speed cornering, AIFS sets the steering angles of inner and outer wheel into Ackerman steering geometry to make vehicle has less cornering radius. Besides, AIFS changes the steering geometry to parallel or even anti-Ackerman steering geometry to keep vehicle stability in high-speed cornering. Therefore, based on the analysis of the vehicle steering behavior from different steering geometries, this study develops a new screw type of active independent front steering system to make vehicles best cornering performance at any speeds. The screw type of active independent front steering system keeps the pinion and separates the rack into main rack and second rack. Two racks connect by a screw. Extra screw rotated motion powered by assistant motor through coupler makes second rack move relative to main rack, which can adjust both steering ratio and steering geometry. First of all, this study distinguishes the steering geometry by using Ackerman percentage and utilizes the software of ADAMS/Car to construct diverse steering geometry models. The different steering geometries are compared at low-speed and high-speed cornering, and then control strategies of the active independent front steering systems could be formulated. Secondly, this study applies closed loop equation to analyze tire steering angles and carries out optimization calculations to make the steering geometry from traditional rack and pinion steering system near to Ackerman steering geometry. Steering characteristics of the optimum steering mechanism and motion characteristics of vehicle installed the steering mechanism are verified by ADAMS/Car models of front suspension and full vehicle respectively. By adding dual auxiliary rack and dual motor to the optimum steering mechanism, the active independent front steering system could be developed to achieve the functions of variable steering ratio and variable steering geometry. At last, this study uses ADAMS/Car and Matlab/Simulink to co-simulate the cornering motion of vehicles confirms the vehicle installed the Active Independent Front Steering (AIFS) system has better handling performance than that with Active Independent Steering (AFS) system or with Electric Power Steering (EPS) system. At low-speed cornering, the vehicles with AIFS system and with AFS system have better maneuverability, less cornering radius, than the traditional vehicle with EPS system because that AIFS and AFS systems both provide function of variable steering ratio. However, there is a slight penalty in the motor(s) power consumption. In addition, because of the capability of variable steering geometry, the vehicle with AIFS system has better high-speed cornering stability, trajectory keeping, and even less motor(s) power consumption than that with EPS system and also with AFS system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20front%20steering%20system" title="active front steering system">active front steering system</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20independent%20front%20steering%20system" title=" active independent front steering system"> active independent front steering system</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20geometry" title=" steering geometry"> steering geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20ratio" title=" steering ratio"> steering ratio</a> </p> <a href="https://publications.waset.org/abstracts/77238/mechanism-design-and-dynamic-analysis-of-active-independent-front-steering-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">891</span> Assessing the Impact of Additional Information during Motor Preparation in Lane Change Task</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikita%20Rajendra%20Sharma">Nikita Rajendra Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Jai%20Prakash%20Kushvah"> Jai Prakash Kushvah</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerhard%20Rinkenauer"> Gerhard Rinkenauer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Driving a car is a discrete aiming movement in which drivers aim at successful extraction of relevant information and elimination of potentially distracting one. It is the motor preparation which enables one to react to certain stimuli onsite by allowing perceptual process for optimal adjustment. Drivers prepare their responses according to the available resources of advanced and ongoing information to drive efficiently. It requires constant programming and reprogramming of the motor system. The reaction time (RT) is shorter when a response signal is preceded by a warning signal. The reason behind this reduced time in responding to targets is that the warning signal causes the participant to prepare for the upcoming response by updating the motor program before the execution. While performing the primary task of changing lanes while driving, the simultaneous occurrence of additional information during the presentation of cues (congruent or incongruent with respect to target cue) might impact the motor preparation and execution. The presence of additional information (other than warning or response signal) between warning signal and imperative stimulus influences human motor preparation to a reasonable extent. The present study was aimed to assess the impact of congruent and incongruent additional information (with respect to imperative stimulus) on driving performance (reaction time, steering wheel amplitude, and steering wheel duration) during a lane change task. implementing movement pre-cueing paradigm. 22 young valid car-drivers (Mage = 24.1+/- 3.21 years, M = 10, F = 12, age-range 21-33 years) participated in the study. The study revealed that additional information influenced the overall driving performance as potential distractors and relevant information. Findings suggest that the events of additional information relatively influenced the reaction time and steering wheel angle as potential distractor or irrelevant information. Participants took longer to respond, and higher steering wheel angles were reported for targets coupled with additional information in comparison with warning signs preceded by potential distractors and the participants' response time was more for a higher number of lanes (2 Lanes > 1 Lane). The same additional information appearing interchangeably at warning signals and targets worked as relevant information facilitating the motor programming in the trails where they were congruent with the direction of lane change direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additional%20information" title="additional information">additional information</a>, <a href="https://publications.waset.org/abstracts/search?q=lane%20change%20task" title=" lane change task"> lane change task</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20preparation" title=" motor preparation"> motor preparation</a>, <a href="https://publications.waset.org/abstracts/search?q=movement%20pre-cueing" title=" movement pre-cueing"> movement pre-cueing</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20time" title=" reaction time"> reaction time</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20wheel%20amplitude" title=" steering wheel amplitude"> steering wheel amplitude</a> </p> <a href="https://publications.waset.org/abstracts/142423/assessing-the-impact-of-additional-information-during-motor-preparation-in-lane-change-task" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">890</span> Integrated Steering Method for Mitigating Performance Degradation in Six-Wheel Robot Caused by Obstacle Traversing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Kasiri%20Bidhendi">Saleh Kasiri Bidhendi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiva%20Tashakori"> Shiva Tashakori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasing application of six-wheel robots in various industries, including agriculture and environmental monitoring, there is a growing demand for efficient and reliable control systems that can improve manoeuvrability and at the same time reduce energy consumption. Moving on uneven terrains, various factors such as obstacles or soil heterogeneity can cause the robot to slip. There is limited research addressing this issue. Although the robot is supposed to track a predetermined path, sudden lateral deviation necessitates path planning. To further address this issue, explicit steering is added by activating actuators on steerable wheels, while the SMC controller still commands differential traction forces on all wheels. This integration improves energy efficiency and obstacle traversability while maintaining the merits of skid-steering, such as tight turning manoeuvrability. However, achieving the desired steer angles presents certain challenges. Inverse kinematics was initially employed to achieve the needed steering angles from the desired position, but this approach led to excessive steering without yawing the body. Switching to desired velocity values instead of position limited over-steering but caused zero lateral velocity on horizontal paths, which was problematic for unforeseen skidding. To overcome this, a proportional controller has been employed, using lateral error as its input and providing a proportional yaw angle as output, the P-controller contributes to modifying the steering angles. The controller's robustness has been verified through sensitivity analyses under critical speeds and turning radius conditions. Our findings offer valuable insights into designing more efficient steering controls for rocker-bogie mechanisms in challenging situations, emphasizing the importance of reducing energy¬ consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=six-wheel%20robots" title="six-wheel robots">six-wheel robots</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20kinematics" title=" inverse kinematics"> inverse kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20steering" title=" integrated steering"> integrated steering</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20following" title=" path following"> path following</a>, <a href="https://publications.waset.org/abstracts/search?q=manoeuvrability" title=" manoeuvrability"> manoeuvrability</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=uneven%20terrains" title=" uneven terrains"> uneven terrains</a> </p> <a href="https://publications.waset.org/abstracts/189243/integrated-steering-method-for-mitigating-performance-degradation-in-six-wheel-robot-caused-by-obstacle-traversing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">889</span> Electronic Stability Control for a 7 DOF Vehicle Model Using Flex Ray and Neuro Fuzzy Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Battula">Praveen Battula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Any high performance car has the tendency to over steer and Understeer under slippery conditions, An Electronic Stability Control System is needed under these conditions to regulate the steering of the car. It uses Anti-Lock Braking System (ABS) and Traction Control and Wheel Speed Sensor, Steering Angle Sensor, Rotational Speed Sensors to correct the problems. The focus of this paper is to improve the driving dynamics and safety by controlling the forces applied on each wheel. ESC Control the Yaw Stability, traction controls the Roll Stability, where actually the vehicle slip rate and lateral acceleration is controlled. ESC uses differential braking on all four brakes independently to control the vehicle’s motion. A mathematical model is developed in Simulink for the FlexRay based Electronic Stability Control. Vehicle steering is developed using Neuro Fuzzy Logic Controller. 7 Degrees of Freedom Vehicle Model is used as a Plant Model using dSpace autobox. The Performance of the system is assessed using two different road Scenarios, Vehicle Control under standard maneuvering conditions. The entire system is set using Dspace Control Desk. Results are provided by comparison of how a Vehicle with and without Electronic Stability Control which shows an improved performance in control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ESC" title="ESC">ESC</a>, <a href="https://publications.waset.org/abstracts/search?q=flexray" title=" flexray"> flexray</a>, <a href="https://publications.waset.org/abstracts/search?q=chassis%20control" title=" chassis control"> chassis control</a>, <a href="https://publications.waset.org/abstracts/search?q=steering" title=" steering"> steering</a>, <a href="https://publications.waset.org/abstracts/search?q=neuro%20fuzzy" title=" neuro fuzzy"> neuro fuzzy</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20dynamics" title=" vehicle dynamics"> vehicle dynamics</a> </p> <a href="https://publications.waset.org/abstracts/13781/electronic-stability-control-for-a-7-dof-vehicle-model-using-flex-ray-and-neuro-fuzzy-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">888</span> The Combined Methodology To Detect Onboard Driver Fatigue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Senthil%20Nathan">K. Senthil Nathan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rajasekaran"> P. Rajasekaran </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fatigue is a feeling of extreme physical or mental tiredness. Almost everyone becomes fatigued at some time, but driver’s fatigue is a serious problem that leads to thousands of automobile crashes each year. Fatigue process is often a change from the alertness and vigor state to the tiredness and weakness state. It is not only accompanied by drowsiness but also has a negative impact on mood. There have been studies to detect and quantify fatigue from the measurement of physiology variables such as electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG). This project involves a multimodal sensing of driver’s drowsiness. The first method is to count the eye blinking rate. In the second level, we authenticate the results of eye blink module with a grip sensor. The Flexiforce sensor is placed over the steering wheel. In the third level, the activities are sensed, the time elapsed from the driver’s last activity is counted here. The activities in the sense: Changing gear, applying brake, pressing sound horns, and turning the steering wheel. Absence of these activities is also an indicator of fatigue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eye%20blink%20sensor" title="eye blink sensor">eye blink sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Flexiforce%20sensor" title=" Flexiforce sensor"> Flexiforce sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG" title=" EEG"> EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=EOG" title=" EOG"> EOG</a>, <a href="https://publications.waset.org/abstracts/search?q=EMG" title=" EMG "> EMG </a> </p> <a href="https://publications.waset.org/abstracts/30061/the-combined-methodology-to-detect-onboard-driver-fatigue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">887</span> Stability Analysis of Hossack Suspension Systems in High Performance Motorcycles </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ciro%20Moreno-Ramirez">Ciro Moreno-Ramirez</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Tomas-Rodriguez"> Maria Tomas-Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Simos%20A.%20Evangelou"> Simos A. Evangelou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A motorcycle's front end links the front wheel to the motorcycle's chassis and has two main functions: the front wheel suspension and the vehicle steering. Up to this date, several suspension systems have been developed in order to achieve the best possible front end behavior, being the telescopic fork the most common one and already subjected to several years of study in terms of its kinematics, dynamics, stability and control. A motorcycle telescopic fork suspension model consists of a couple of outer tubes which contain the suspension components (coil springs and dampers) internally and two inner tubes which slide into the outer ones allowing the suspension travel. The outer tubes are attached to the frame through two triple trees which connect the front end to the main frame through the steering bearings and allow the front wheel to turn about the steering axis. This system keeps the front wheel's displacement in a straight line parallel to the steering axis. However, there exist alternative suspension designs that allow different trajectories of the front wheel with the suspension travel. In this contribution, the authors investigate an alternative front suspension system (Hossack suspension) and its influence on the motorcycle nonlinear dynamics to identify and reduce stability risks that a new suspension systems may introduce in the motorcycle dynamics. Based on an existing high-fidelity motorcycle mathematical model, the front end geometry is modified to accommodate a Hossack suspension system. It is characterized by a double wishbone design that varies the front end geometry on certain maneuverings and, consequently, the machine's behavior/response. It consists of a double wishbone structure directly attached to the chassis. In here, the kinematics of this system and its impact on the motorcycle performance/stability are analyzed and compared to the well known telescopic fork suspension system. The framework of this research is the mathematical modelling and numerical simulation. Full stability analyses are performed in order to understand how the motorcycle dynamics may be affected by the newly introduced front end design. This study is carried out by a combination of nonlinear dynamical simulation and root-loci methods. A modal analysis is performed in order to get a deeper understanding of the different modes of oscillation and how the Hossack suspension system affects them. The results show that different kinematic designs of a double wishbone suspension systems do not modify the general motorcycle's stability. The normal modes properties remain unaffected by the new geometrical configurations. However, these normal modes differ from one suspension system to the other. It is seen that the normal modes behaviour depends on various important dynamic parameters, such as the front frame flexibility, the steering damping coefficient and the centre of mass location. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20mechanical%20systems" title="nonlinear mechanical systems">nonlinear mechanical systems</a>, <a href="https://publications.waset.org/abstracts/search?q=motorcycle%20dynamics" title=" motorcycle dynamics"> motorcycle dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=suspension%20systems" title=" suspension systems"> suspension systems</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/78106/stability-analysis-of-hossack-suspension-systems-in-high-performance-motorcycles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">886</span> Friction Estimation and Compensation for Steering Angle Control for Highly Automated Driving</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcus%20Walter">Marcus Walter</a>, <a href="https://publications.waset.org/abstracts/search?q=Norbert%20Nitzsche"> Norbert Nitzsche</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirk%20Odenthal"> Dirk Odenthal</a>, <a href="https://publications.waset.org/abstracts/search?q=Steffen%20M%C3%BCller"> Steffen Müller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This contribution presents a friction estimator for industrial purposes which identifies Coulomb friction in a steering system. The estimator only needs a few, usually known, steering system parameters. Friction occurs on almost every mechanical system and has a negative influence on high-precision position control. This is demonstrated on a steering angle controller for highly automated driving. In this steering system the friction induces limit cycles which cause oscillating vehicle movement when the vehicle follows a given reference trajectory. When compensating the friction with the introduced estimator, limit cycles can be suppressed. This is demonstrated by measurements in a series vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20estimation" title="friction estimation">friction estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20compensation" title=" friction compensation"> friction compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20system" title=" steering system"> steering system</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20vehicle%20guidance" title=" lateral vehicle guidance"> lateral vehicle guidance</a> </p> <a href="https://publications.waset.org/abstracts/27641/friction-estimation-and-compensation-for-steering-angle-control-for-highly-automated-driving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">885</span> Design and Validation of Different Steering Geometries for an All-Terrain Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prabhsharan%20Singh">Prabhsharan Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Sindhu"> Rahul Sindhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Piyush%20Sikka"> Piyush Sikka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steering system is an integral part and medium through which the driver communicates with the vehicle and terrain, hence the most suitable steering geometry as per requirements must be chosen. The function of the chosen steering geometry of an All-Terrain Vehicle (ATV) is to provide the desired understeer gradient, minimum tire slippage, expected weight transfer during turning as these are requirements for a good steering geometry of a BAJA ATV. This research paper focuses on choosing the best suitable steering geometry for BAJA ATV tracks by reasoning the working principle and using fundamental trigonometric functions for obtaining these geometries on the same vehicle itself, namely Ackermann, Anti- Ackermann, Parallel Ackermann. Full vehicle analysis was carried out on Adams Car Analysis software, and graphical results were obtained for various parameters. Steering geometries were achieved by using a single versatile knuckle for frontward and rearward tie-rod placement and were practically tested with the help of data acquisition systems set up on the ATV. Each was having certain characteristics, setup, and parameters were observed for the BAJA ATV, and correlations were created between analytical and practical values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=all-terrain%20vehicle" title="all-terrain vehicle">all-terrain vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=Ackermann" title=" Ackermann"> Ackermann</a>, <a href="https://publications.waset.org/abstracts/search?q=Adams%20car" title=" Adams car"> Adams car</a>, <a href="https://publications.waset.org/abstracts/search?q=Baja%20Sae" title=" Baja Sae"> Baja Sae</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20geometry" title=" steering geometry"> steering geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20system" title=" steering system"> steering system</a>, <a href="https://publications.waset.org/abstracts/search?q=tire%20slip" title=" tire slip"> tire slip</a>, <a href="https://publications.waset.org/abstracts/search?q=traction" title=" traction"> traction</a>, <a href="https://publications.waset.org/abstracts/search?q=understeer%20gradient" title=" understeer gradient"> understeer gradient</a> </p> <a href="https://publications.waset.org/abstracts/121416/design-and-validation-of-different-steering-geometries-for-an-all-terrain-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">884</span> The Effect of Surface Conditions on Wear of a Railway Wheel and Rail</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Shebani">A. Shebani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Iwnicki"> S. Iwnicki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the nature of wheel and rail wear in the railway field is of fundamental importance to the safe and cost effective operation of the railways. Twin disc wear testing is used extensively for studying wear of wheel and rail materials. The University of Huddersfield twin disc rig was used in this paper to examine the effect of surface conditions on wheel and rail wear measurement under a range of wheel/rail contact conditions, with and without contaminants. This work focuses on an investigation of the effect of dry, wet, and lubricated conditions and the effect of contaminants such as sand on wheel and rail wear. The wheel and rail wear measurements were carried out by using a replica material and an optical profilometer that allows measurement of wear in difficult location with high accuracy. The results have demonstrated the rate at which both water and oil reduce wheel and rail wear. Scratches and other damage were seen on the wheel and rail surfaces after the addition of sand and consequently both wheel and rail wear damage rates increased under these conditions. This work introduced the replica material and an optical instrument as effective tools to study the effect of surface conditions on wheel and rail wear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=railway%20wheel%2Frail%20wear" title="railway wheel/rail wear">railway wheel/rail wear</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20conditions" title=" surface conditions"> surface conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=twin%20disc%20test%20rig" title=" twin disc test rig"> twin disc test rig</a>, <a href="https://publications.waset.org/abstracts/search?q=replica%20material" title=" replica material"> replica material</a>, <a href="https://publications.waset.org/abstracts/search?q=Alicona%20profilometer" title=" Alicona profilometer"> Alicona profilometer</a> </p> <a href="https://publications.waset.org/abstracts/47795/the-effect-of-surface-conditions-on-wear-of-a-railway-wheel-and-rail" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">883</span> Design and Motion Control of a Two-Wheel Inverted Pendulum Robot </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiuh-Jer%20Huang">Shiuh-Jer Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Su-Shean%20Chen"> Su-Shean Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheam-Chyun%20Lin"> Sheam-Chyun Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot&rsquo;s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balance%20control" title="balance control">balance control</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20control" title=" speed control"> speed control</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20controller" title=" intelligent controller"> intelligent controller</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20wheel%20inverted%20pendulum" title=" two wheel inverted pendulum"> two wheel inverted pendulum</a> </p> <a href="https://publications.waset.org/abstracts/90056/design-and-motion-control-of-a-two-wheel-inverted-pendulum-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">882</span> Modeling and Dynamics Analysis for Intelligent Skid-Steering Vehicle Based on Trucksim-Simulink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yansong%20Zhang">Yansong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xueyuan%20Li"> Xueyuan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Junjie%20Zhou"> Junjie Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Xufeng%20Yin"> Xufeng Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Shihua%20Yuan"> Shihua Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuxian%20Liu"> Shuxian Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aiming at the verification of control algorithms for skid-steering vehicles, a vehicle simulation model of 6&times;6 electric skid-steering unmanned vehicle was established based on Trucksim and Simulink. The original transmission and steering mechanism of Trucksim are removed, and the electric skid-steering model and a closed-loop controller for the vehicle speed and yaw rate are built in Simulink. The simulation results are compared with the ones got by theoretical formulas. The results show that the predicted tire mechanics and vehicle kinematics of Trucksim-Simulink simulation model are closed to the theoretical results. Therefore, it can be used as an effective approach to study the dynamic performance and control algorithm of skid-steering vehicle. In this paper, a method of motion control based on feed forward control is also designed. The simulation results show that the feed forward control strategy can make the vehicle follow the target yaw rate more quickly and accurately, which makes the vehicle have more maneuverability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skid-steering" title="skid-steering">skid-steering</a>, <a href="https://publications.waset.org/abstracts/search?q=Trucksim-Simulink" title=" Trucksim-Simulink"> Trucksim-Simulink</a>, <a href="https://publications.waset.org/abstracts/search?q=feedforward%20control" title=" feedforward control"> feedforward control</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a> </p> <a href="https://publications.waset.org/abstracts/84745/modeling-and-dynamics-analysis-for-intelligent-skid-steering-vehicle-based-on-trucksim-simulink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">881</span> Impact of Wheel-Housing on Aerodynamic Drag and Effect on Energy Consumption on an Bus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amitabh%20Das">Amitabh Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Yash%20Jain"> Yash Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Rafiq%20B.%20Agrewale"> Mohammad Rafiq B. Agrewale</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Vora"> K. C. Vora </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Role of wheel and underbody aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing geometry and pattern. Based on benchmarking a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption on an electric bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheel-housing" title="wheel-housing">wheel-housing</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20simulation" title=" CFD simulation"> CFD simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption "> energy consumption </a> </p> <a href="https://publications.waset.org/abstracts/108694/impact-of-wheel-housing-on-aerodynamic-drag-and-effect-on-energy-consumption-on-an-bus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">880</span> Maneuvering Modelling of a One-Degree-of-Freedom Articulated Vehicle: Modeling and Experimental Verification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20E.%20Cruz">Mauricio E. Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilse%20Cervantes"> Ilse Cervantes</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20J.%20Fabela"> Manuel J. Fabela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evaluation of the maneuverability of road vehicles is generally carried out through the use of specialized computer programs due to the advantages they offer compared to the experimental method. These programs are based on purely geometric considerations of the characteristics of the vehicles, such as main dimensions, the location of the axles, and points of articulation, without considering parameters such as weight distribution and magnitude, tire properties, etc. In this paper, we address the problem of maneuverability in a semi-trailer truck to navigate urban streets, maneuvering yards, and parking lots, using the Ackerman principle to propose a kinematic model that, through geometric considerations, it is possible to determine the space necessary to maneuver safely. The model was experimentally validated by conducting maneuverability tests with an articulated vehicle. The measurements were made through a GPS that allows us to know the position, trajectory, and speed of the vehicle, an inertial motion unit (IMU) that allows measuring the accelerations and angular speeds in the semi-trailer, and an instrumented steering wheel that allows measuring the angle of rotation of the flywheel, the angular velocity and the torque applied to the flywheel. To obtain the steering angle of the tires, a parameterization of the complete travel of the steering wheel and its equivalent in the tires was carried out. For the tests, 3 different angles were selected, and 3 turns were made for each angle in both directions of rotation (left and right turn). The results showed that the proposed kinematic model achieved 95% accuracy for speeds below 5 km / h. The experiments revealed that that tighter maneuvers increased significantly the space required and that the vehicle maneuverability was limited by the size of the semi-trailer. The maneuverability was also tested as a function of the vehicle load and 3 different load levels we used: light, medium, and heavy. It was found that the internal turning radii also increased with the load, probably due to the changes in the tires' adhesion to the pavement since heavier loads had larger contact wheel-road surfaces. The load was found as an important factor affecting the precision of the model (up to 30%), and therefore I should be considered. The model obtained is expected to be used to improve maneuverability through a robust control system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=articuled%20vehicle" title="articuled vehicle">articuled vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20validation" title=" experimental validation"> experimental validation</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic%20model" title=" kinematic model"> kinematic model</a>, <a href="https://publications.waset.org/abstracts/search?q=maneuverability" title=" maneuverability"> maneuverability</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-trailer%20truck" title=" semi-trailer truck"> semi-trailer truck</a> </p> <a href="https://publications.waset.org/abstracts/144751/maneuvering-modelling-of-a-one-degree-of-freedom-articulated-vehicle-modeling-and-experimental-verification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">879</span> Efficient Antenna Array Beamforming with Robustness against Random Steering Mismatch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju-Hong%20Lee">Ju-Hong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Wei%20Liao"> Ching-Wei Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun-Che%20Lee"> Kun-Che Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the problem of using antenna sensors for adaptive beamforming in the presence of random steering mismatch. We present an efficient adaptive array beamformer with robustness to deal with the considered problem. The robustness of the proposed beamformer comes from the efficient designation of the steering vector. Using the received array data vector, we construct an appropriate correlation matrix associated with the received array data vector and a correlation matrix associated with signal sources. Then, the eigenvector associated with the largest eigenvalue of the constructed signal correlation matrix is designated as an appropriate estimate of the steering vector. Finally, the adaptive weight vector required for adaptive beamforming is obtained by using the estimated steering vector and the constructed correlation matrix of the array data vector. Simulation results confirm the effectiveness of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20beamforming" title="adaptive beamforming">adaptive beamforming</a>, <a href="https://publications.waset.org/abstracts/search?q=antenna%20array" title=" antenna array"> antenna array</a>, <a href="https://publications.waset.org/abstracts/search?q=linearly%20constrained%20minimum%20variance" title=" linearly constrained minimum variance"> linearly constrained minimum variance</a>, <a href="https://publications.waset.org/abstracts/search?q=robustness" title=" robustness"> robustness</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20vector" title=" steering vector"> steering vector</a> </p> <a href="https://publications.waset.org/abstracts/84543/efficient-antenna-array-beamforming-with-robustness-against-random-steering-mismatch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">878</span> Forward Speed and Draught Requirement of a Semi-Automatic Cassava Planter under Different Wheel Usage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ale%20M.%20O.">Ale M. O.</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuwa%20S.%20I."> Manuwa S. I.</a>, <a href="https://publications.waset.org/abstracts/search?q=Olukunle%20O.%20J."> Olukunle O. J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ewetumo%20T."> Ewetumo T.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Five varying speeds of 1.5, 1.8, 2.1, 2.3, and 2.6 km/h were used at a constant soil depth of 100 mm to determine the effects of forward speed on the draught requirement of a semi-automatic cassava planter under the pneumatic wheel and rigid wheel usage on a well prepared sandy clay loam soil. The soil draught was electronically measured using an on-the-go soil draught measuring instrumentation system developed for the purpose of this research. The results showed an exponential relationship between forward speed and draught, in which draught ranging between 24.91 and 744.44N increased with an increase in forward speed in the rigid wheel experiment. This is contrary to the polynomial relationship observed in the pneumatic wheel experiment in which the draught varied between 96.09 and 343.53 N. It was observed in the experiments that the optimum speed of 1.5 km/h had the least values of draught in both the pneumatic wheel and rigid wheel experiments, with higher values in the pneumatic experiment. It was generally noted that the rigid wheel planter with less value of draught requires less energy required for operation. It is therefore concluded that operating the semi-automatic cassava planter with rigid wheels will be more economical for cassava farmers than operating the planter with pneumatic wheels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cassava%20planter" title="Cassava planter">Cassava planter</a>, <a href="https://publications.waset.org/abstracts/search?q=planting" title=" planting"> planting</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20speed" title=" forward speed"> forward speed</a>, <a href="https://publications.waset.org/abstracts/search?q=draught" title=" draught"> draught</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel%20type" title=" wheel type"> wheel type</a> </p> <a href="https://publications.waset.org/abstracts/156326/forward-speed-and-draught-requirement-of-a-semi-automatic-cassava-planter-under-different-wheel-usage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">877</span> Lateral Control of Electric Vehicle Based on Fuzzy Logic Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hartani%20Kada">Hartani Kada</a>, <a href="https://publications.waset.org/abstracts/search?q=Merah%20Abdelkader"> Merah Abdelkader</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aiming at the high nonlinearities and unmatched uncertainties of the intelligent electric vehicles’ dynamic system, this paper presents a lateral motion control algorithm for intelligent electric vehicles with four in-wheel motors. A fuzzy logic procedure is presented and formulated to realize lateral control in lane change. The vehicle dynamics model and a desired target tracking model were established in this paper. A fuzzy logic controller was designed for integrated active front steering (AFS) and direct yaw moment control (DYC) in order to improve vehicle handling performance and stability, and a fuzzy controller for the automatic steering problem. The simulation results demonstrate the strong robustness and excellent tracking performance of the control algorithm that is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title="fuzzy logic">fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20control" title=" lateral control"> lateral control</a>, <a href="https://publications.waset.org/abstracts/search?q=AFS" title=" AFS"> AFS</a>, <a href="https://publications.waset.org/abstracts/search?q=DYC" title=" DYC"> DYC</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20car%20technology" title=" electric car technology"> electric car technology</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20control" title=" longitudinal control"> longitudinal control</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20motion" title=" lateral motion"> lateral motion</a> </p> <a href="https://publications.waset.org/abstracts/14474/lateral-control-of-electric-vehicle-based-on-fuzzy-logic-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">610</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">876</span> Using Adaptive Pole Placement Control Strategy for Active Steering Safety System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Adibi-Asl">Hadi Adibi-Asl</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Doosthosseini"> Alireza Doosthosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Taghavipour"> Amir Taghavipour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the design of an adaptive control strategy to tune an active steering system for better drivability and maneuverability. In the first step, adaptive control strategy is applied to estimate the uncertain parameters on-line (e.g. cornering stiffness), then the estimated parameters are fed into the pole placement controller to generate corrective feedback gain to improve the steering system dynamic&rsquo;s characteristics. The simulations are evaluated for three types of road conditions (dry, wet, and icy), and the performance of the adaptive pole placement control (APPC) are compared with pole placement control (PPC) and a passive system. The results show that the APPC strategy significantly improves the yaw rate and side slip angle of a bicycle plant model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title="adaptive control">adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20steering" title=" active steering"> active steering</a>, <a href="https://publications.waset.org/abstracts/search?q=pole%20placement" title=" pole placement"> pole placement</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20dynamics" title=" vehicle dynamics"> vehicle dynamics</a> </p> <a href="https://publications.waset.org/abstracts/59941/using-adaptive-pole-placement-control-strategy-for-active-steering-safety-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">875</span> A Theoretical Hypothesis on Ferris Wheel Model of University Social Responsibility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Le%20Kang">Le Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the nature of the university, as a free and responsible academic community, USR is based on a different foundation —academic responsibility, so the Pyramid and the IC Model of CSR could not fully explain the most distinguished feature of USR. This paper sought to put forward a new model— Ferris Wheel Model, to illustrate the nature of USR and the process of achievement. The Ferris Wheel Model of USR shows the university creates a balanced, fairness and neutrality systemic structure to afford social responsibilities; that makes the organization could obtain a synergistic effect to achieve more extensive interests of stakeholders and wider social responsibilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=USR" title="USR">USR</a>, <a href="https://publications.waset.org/abstracts/search?q=achievement%20model" title=" achievement model"> achievement model</a>, <a href="https://publications.waset.org/abstracts/search?q=ferris%20wheel%20model" title=" ferris wheel model"> ferris wheel model</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20responsibilities" title=" social responsibilities"> social responsibilities</a> </p> <a href="https://publications.waset.org/abstracts/29125/a-theoretical-hypothesis-on-ferris-wheel-model-of-university-social-responsibility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">725</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">874</span> Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Vidhyaprakash">D. Vidhyaprakash</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Elango"> A. Elango</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheeled%20mobile%20robot" title="wheeled mobile robot">wheeled mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain" title=" terrain"> terrain</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel%20slippage" title=" wheel slippage"> wheel slippage</a>, <a href="https://publications.waset.org/abstracts/search?q=odometryerror" title=" odometryerror"> odometryerror</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory" title=" trajectory"> trajectory</a> </p> <a href="https://publications.waset.org/abstracts/38028/studies-on-affecting-factors-of-wheel-slip-and-odometry-error-on-real-time-of-wheeled-mobile-robots-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">873</span> The Wellness Wheel: A Tool to Reimagine Schooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20F.%20Moore">Jennifer F. Moore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wellness wheel as a tool for school growth and change is currently being piloted by a startup school in Chicago, IL. In this case study, members of the school community engaged in the appreciative inquiry process to plan their organizational development around the wellness wheel. The wellness wheel (comprised of physical, emotional, social, spiritual, environmental, cognitive, and financial wellness) is used as a planning tool by teachers, students, parents, and administrators. Through the appreciative inquiry method of change, the community is reflecting on their individual level of wellness and developing organizational structures to ensure the well being of children and adults. The goal of the case study is to test the appropriateness of the use of appreciative inquiry (as a method) and the wellness wheel (as a tool) for school growth and development. Findings of the case study will be realized by the conference. The research is in process now. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=education" title="education">education</a>, <a href="https://publications.waset.org/abstracts/search?q=schools" title=" schools"> schools</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20being" title=" well being"> well being</a>, <a href="https://publications.waset.org/abstracts/search?q=wellness" title=" wellness"> wellness</a> </p> <a href="https://publications.waset.org/abstracts/91419/the-wellness-wheel-a-tool-to-reimagine-schooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">872</span> Modeling of a Vehicle Wheel System having a Built-in Suspension Structure Consisted of Radially Deployed Colloidal Spokes between Hub and Rim</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barenten%20Suciu">Barenten Suciu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, by replacing the traditional solid spokes with colloidal spokes, a vehicle wheel with a built-in suspension structure is proposed. Following the background and description of the wheel system, firstly, a vibration model of the wheel equipped with colloidal spokes is proposed, and based on such model the equivalent damping coefficients and spring constants are identified. Then, a modified model of a quarter-vehicle moving on a rough pavement is proposed in order to estimate the transmissibility of vibration from the road roughness to vehicle body. In the end, the optimal design of the colloidal spokes and the optimum number of colloidal spokes are decided in order to minimize the transmissibility of vibration, i.e., to maximize the ride comfort of the vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=built-in%20suspension" title="built-in suspension">built-in suspension</a>, <a href="https://publications.waset.org/abstracts/search?q=colloidal%20spoke" title=" colloidal spoke"> colloidal spoke</a>, <a href="https://publications.waset.org/abstracts/search?q=intrinsic%20spring" title=" intrinsic spring"> intrinsic spring</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel" title=" wheel"> wheel</a> </p> <a href="https://publications.waset.org/abstracts/32999/modeling-of-a-vehicle-wheel-system-having-a-built-in-suspension-structure-consisted-of-radially-deployed-colloidal-spokes-between-hub-and-rim" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">871</span> Generator Subgraphs of the Wheel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neil%20M.%20Mame">Neil M. Mame</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider only finite graphs without loops nor multiple edges. Let G be a graph with E(G) = {e1, e2, …., em}. The edge space of G, denoted by ε(G), is a vector space over the field Z2. The elements of ε(G) are all the subsets of E(G). Vector addition is defined as X+Y = X Δ Y, the symmetric difference of sets X and Y, for X, Y ∈ ε(G). Scalar multiplication is defined as 1.X =X and 0.X = Ø for X ∈ ε(G). The set S ⊆ ε(G) is called a generating set if every element ε(G) is a linear combination of the elements of S. For a non-empty set X ∈ ε(G), the smallest subgraph with edge set X is called edge-induced subgraph of G, denoted by G[X]. The set EH(G) = { A ∈ ε(G) : G[A] ≅ H } denotes the uniform set of H with respect to G and εH(G) denotes the subspace of ε(G) generated by EH(G). If εH(G) is generating set, then we call H a generator subgraph of G. This paper gives the characterization for the generator subgraphs of the wheel that contain cycles and gives the necessary conditions for the acyclic generator subgraphs of the wheel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edge%20space" title="edge space">edge space</a>, <a href="https://publications.waset.org/abstracts/search?q=edge-induced%20subgraph" title=" edge-induced subgraph"> edge-induced subgraph</a>, <a href="https://publications.waset.org/abstracts/search?q=generator%20subgraph" title=" generator subgraph"> generator subgraph</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel" title=" wheel"> wheel</a> </p> <a href="https://publications.waset.org/abstracts/28953/generator-subgraphs-of-the-wheel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">870</span> Clarifications on the Damping Mechanism Related to the Hunting Motion of the Wheel Axle of a High-Speed Railway Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barenten%20Suciu">Barenten Suciu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to explain the damping mechanism, related to the hunting motion of the wheel axle of a high-speed railway vehicle, a generalized dynamic model is proposed. Based on such model, analytic expressions for the damping coefficient and damped natural frequency are derived, without imposing restrictions on the ratio between the lateral and vertical creep coefficients. Influence of the travelling speed, wheel conicity, dimensionless mass of the wheel axle, ratio of the creep coefficients, ratio of the track span to the yawing diameter, etc. on the damping coefficient and damped natural frequency, is clarified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-speed%20railway%20vehicle" title="high-speed railway vehicle">high-speed railway vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=hunting%20motion" title=" hunting motion"> hunting motion</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel%20axle" title=" wheel axle"> wheel axle</a>, <a href="https://publications.waset.org/abstracts/search?q=damping" title=" damping"> damping</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20model" title=" vibration model"> vibration model</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis." title=" analysis."> analysis.</a> </p> <a href="https://publications.waset.org/abstracts/78472/clarifications-on-the-damping-mechanism-related-to-the-hunting-motion-of-the-wheel-axle-of-a-high-speed-railway-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">869</span> Exploring Wheel-Motion Energy Sources for Energy Harvesting Based on Electromagnetic Effect: Experimental and Numerical Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Alaa%20Alwafaie">Mohammed Alaa Alwafaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Bela%20Kovacs"> Bela Kovacs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid emergence and evolution of renewable energy sources like wind and solar power, there is an increasing demand for effective energy harvester architectures. This paper focuses on investigating the concept of energy harvesting using a wheel-motion energy source. The proposed method involves the placement of magnets and copper coils inside the hubcap rod of a wheel. When the wheel is set in motion, following Faraday's Law, the movement of the magnet within the coil induces an electric current. The paper includes an experiment to measure the output voltage of electromagnetics, as well as a numerical simulation to further explore the potential of this energy harvesting approach. By harnessing the rotational motion of wheels, this research aims to contribute to the development of innovative techniques for generating electrical power in a sustainable and efficient manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=harvesting%20energy" title="harvesting energy">harvesting energy</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic" title=" electromagnetic"> electromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=hubcap%20rod%20wheel" title=" hubcap rod wheel"> hubcap rod wheel</a>, <a href="https://publications.waset.org/abstracts/search?q=magnet%20movement%20inside%20coil" title=" magnet movement inside coil"> magnet movement inside coil</a>, <a href="https://publications.waset.org/abstracts/search?q=faraday%20law" title=" faraday law"> faraday law</a> </p> <a href="https://publications.waset.org/abstracts/171197/exploring-wheel-motion-energy-sources-for-energy-harvesting-based-on-electromagnetic-effect-experimental-and-numerical-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">868</span> 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dachuan%20Shi">Dachuan Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hecht"> M. Hecht</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ye"> Y. Ye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20detection" title="fault detection">fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel%20flat" title=" wheel flat"> wheel flat</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/102932/1-d-convolutional-neural-network-approach-for-wheel-flat-detection-for-freight-wagons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">867</span> Design of a Drift Assist Control System Applied to Remote Control Car</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng-Tse%20Wu">Sheng-Tse Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wu-Sung%20Yao"> Wu-Sung Yao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a drift assist control system is proposed for remote control (RC) cars to get the perfect drift angle. A steering servo control scheme is given powerfully to assist the drift driving. A gyroscope sensor is included to detect the machine&#39;s tail sliding and to achieve a better automatic counter-steering to prevent RC car from spinning. To analysis tire traction and vehicle dynamics is used to obtain the dynamic track of RC cars. It comes with a control gain to adjust counter-steering amount according to the sensor condition. An illustrated example of 1:10 RC drift car is given and the real-time control algorithm is realized by Arduino Uno. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drift%20assist%20control%20system" title="drift assist control system">drift assist control system</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20control%20cars" title=" remote control cars"> remote control cars</a>, <a href="https://publications.waset.org/abstracts/search?q=gyroscope" title=" gyroscope"> gyroscope</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20dynamics" title=" vehicle dynamics"> vehicle dynamics</a> </p> <a href="https://publications.waset.org/abstracts/47436/design-of-a-drift-assist-control-system-applied-to-remote-control-car" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steering%20wheel%20amplitude&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steering%20wheel%20amplitude&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steering%20wheel%20amplitude&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steering%20wheel%20amplitude&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steering%20wheel%20amplitude&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steering%20wheel%20amplitude&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steering%20wheel%20amplitude&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steering%20wheel%20amplitude&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steering%20wheel%20amplitude&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steering%20wheel%20amplitude&amp;page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steering%20wheel%20amplitude&amp;page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steering%20wheel%20amplitude&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10