CINXE.COM
Search results for: pure bending
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: pure bending</title> <meta name="description" content="Search results for: pure bending"> <meta name="keywords" content="pure bending"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="pure bending" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="pure bending"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1556</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: pure bending</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1526</span> Flange/Web Distortional Buckling of Cold-Formed Steel Beams with Web Holes under Pure Bending</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nan-Ting%20Yu">Nan-Ting Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Boksun%20Kim"> Boksun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Long-Yuan%20Li"> Long-Yuan Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cold-formed steel beams with web holes are widely used as the load-carrying members in structural engineering. The perforations can release the space of the building and let the pipes go through. However, the perforated cold-formed steel (PCFS) beams may fail by distortional buckling more easily than beams with plain web; this is because the rotational stiffness from the web decreases. It is well known that the distortional buckling can be described as the buckling of the compressed flange-lip system. In fact, near the ultimate failure, the flange/web corner would move laterally, which indicates the bending of the web should be taken account. The purpose of this study is to give a specific solution for the critical stress of flange/web distortional buckling of PCFS beams. The new model is deduced based on classical energy method, and the deflection of the web is represented by the shape function of the plane beam element. The finite element analyses have been performed to validate the accuracy of the proposed model. The comparison of the critical stress calculated from Hancock's model, FEA, and present model, shows that the present model can provide a splendid prediction for the flange/web distortional buckling of PCFS beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold-formed%20steel" title="cold-formed steel">cold-formed steel</a>, <a href="https://publications.waset.org/abstracts/search?q=beams" title=" beams"> beams</a>, <a href="https://publications.waset.org/abstracts/search?q=perforations" title=" perforations"> perforations</a>, <a href="https://publications.waset.org/abstracts/search?q=flange-web%20distortional%20buckling" title=" flange-web distortional buckling"> flange-web distortional buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/122660/flangeweb-distortional-buckling-of-cold-formed-steel-beams-with-web-holes-under-pure-bending" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1525</span> A 3D Eight Nodes Brick Finite Element Based on the Strain Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Belounar">L. Belounar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Gerraiche"> K. Gerraiche</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Rebiai"> C. Rebiai</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Benmebarek"> S. Benmebarek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of a new three dimensional brick finite element by the use of the strain based approach for the linear analysis of plate bending behavior. The developed element has the three essential external degrees of freedom (U, V and W) at each of the eight corner nodes. The displacements field of the developed element is based on assumed functions for the various strains satisfying the compatibility and the equilibrium equations. The performance of this element is evaluated on several problems related to thick and thin plate bending in linear analysis. The obtained results show the good performances and accuracy of the present element. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brick%20element" title="brick element">brick element</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20approach" title=" strain approach"> strain approach</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20bending" title=" plate bending"> plate bending</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering" title=" civil engineering "> civil engineering </a> </p> <a href="https://publications.waset.org/abstracts/18774/a-3d-eight-nodes-brick-finite-element-based-on-the-strain-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1524</span> A Study on the Comparatison of Mechanical and Thermal Properties According to Laminated Orientation of CFRP through Bending Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hee%20Jae%20Shin">Hee Jae Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Ku%20Kwac"> Lee Ku Kwac</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Pyo%20Cha"> In Pyo Cha</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Sang%20Lee"> Min Sang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Kyung%20Yoon"> Hyun Kyung Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Gun%20Kim"> Hong Gun Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In rapid industrial development has increased the demand for high-strength and lightweight materials. Thus, various CFRP (Carbon Fiber Reinforced Plastics) with composite materials are being used. The design variables of CFRP are its lamination direction, order, and thickness. Thus, the hardness and strength of CFRP depend much on their design variables. In this paper, the lamination direction of CFRP was used to produce a symmetrical ply [0掳/0掳, -15掳/+15掳, -30掳/+30掳, -45掳/+45掳, -60掳/+60掳, -75掳/+75掳, and 90掳/90掳] and an asymmetrical ply [0掳/15掳, 0掳/30掳, 0掳/45掳, 0掳/60掳 0掳/75掳, and 0掳/90掳]. The bending flexure stress of the CFRP specimen was evaluated through a bending test. Its thermal property was measured using an infrared camera. The symmetrical specimen and the asymmetrical specimen were analyzed. The results showed that the asymmetrical specimen increased the bending loads according to the increase in the orientation angle; and from 0掳, the symmetrical specimen showed a tendency opposite the asymmetrical tendency because the tensile force of fiber differs at the vertical direction of its load. Also, the infrared camera showed that the thermal property had a trend similar to that of the mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carbon%20Fiber%20Reinforced%20Plastic%20%28CFRP%29" title="Carbon Fiber Reinforced Plastic (CFRP)">Carbon Fiber Reinforced Plastic (CFRP)</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20test" title=" bending test"> bending test</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20camera" title=" infrared camera"> infrared camera</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a> </p> <a href="https://publications.waset.org/abstracts/21385/a-study-on-the-comparatison-of-mechanical-and-thermal-properties-according-to-laminated-orientation-of-cfrp-through-bending-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1523</span> Deformation of Metallic Foams with Closed Cell at High Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emrah%20Ersoy">Emrah Ersoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Ozcatalbas"> Yusuf Ozcatalbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to investigate formability of Al based closed cell metallic foams at high temperature. The foam specimens with rectangular section were produced from AlMg1Si0.6TiH20.8 alloy preform material. Bending and free bending tests based on gravity effect were applied to foam specimens at high temperatures. During the tests, the time-angular deformation relationships with various temperatures were determined. Deformation types formed in cell walls were investigated by means of Scanning Electron Microscopy (SEM) and optical microscopy. Bending deformation about 90掳 was achieved without any defect at high temperatures. The importance of a critical temperature and deformation rate was emphasized in maintaining the deformation. Significant slip lines on surface of cell walls at tensile zones of bending specimen were observed. At high strain rates, the microcrack formation in boundaries of elongated grains was determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al%20alloy" title="Al alloy">Al alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=Closed%20cell" title=" Closed cell"> Closed cell</a>, <a href="https://publications.waset.org/abstracts/search?q=Hot%20deformation" title=" Hot deformation"> Hot deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=Metallic%20foam" title=" Metallic foam"> Metallic foam</a> </p> <a href="https://publications.waset.org/abstracts/20655/deformation-of-metallic-foams-with-closed-cell-at-high-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1522</span> Study on 3D FE Analysis on Normal and Osteoporosis Mouse Models Based on 3-Point Bending Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tae-min%20Byun">Tae-min Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-soo%20Chon"> Chang-soo Chon</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-hyun%20Seo"> Dong-hyun Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Han-sung%20Kim"> Han-sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Bum-mo%20Ahn"> Bum-mo Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-suk%20Yun"> Hui-suk Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheolwoong%20Ko"> Cheolwoong Ko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a 3-point bending computational analysis of normal and osteoporosis mouse models was performed based on the Micro-CT image information of the femurs. The finite element analysis (FEA) found 1.68 N (normal group) and 1.39 N (osteoporosis group) in the average maximum force, and 4.32 N/mm (normal group) and 3.56 N/mm (osteoporosis group) in the average stiffness. In the comparison of the 3-point bending test results, the maximum force and the stiffness were different about 9.4 times in the normal group and about 11.2 times in the osteoporosis group. The difference between the analysis and the test was greatly significant and this result demonstrated improvement points of the material properties applied to the computational analysis of this study. For the next study, the material properties of the mouse femur will be supplemented through additional computational analysis and test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3-point%20bending%20test" title="3-point bending test">3-point bending test</a>, <a href="https://publications.waset.org/abstracts/search?q=mouse" title=" mouse"> mouse</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title=" osteoporosis"> osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA" title=" FEA"> FEA</a> </p> <a href="https://publications.waset.org/abstracts/54813/study-on-3d-fe-analysis-on-normal-and-osteoporosis-mouse-models-based-on-3-point-bending-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1521</span> Experimental and Numerical Evaluation of a Shaft Failure Behaviour Using Three-Point Bending Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernd%20Engel">Bernd Engel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Salman%20Hassan%20Al-Maeeni"> Sara Salman Hassan Al-Maeeni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A substantial amount of natural resources are nowadays consumed at a growing rate, as humans all over the world used materials obtained from the Earth. Machinery manufacturing industry is one of the major resource consumers on a global scale. Even though the incessant finding out of the new material, metals, and resources, it is urgent for the industry to develop methods to use the Earth's resources intelligently and more sustainable than before. Re-engineering of machine tools regarding design and failure analysis is an approach whereby out-of-date machines are upgraded and returned to useful life. To ensure the reliable future performance of the used machine components, it is essential to investigate the machine component failure through the material, design, and surface examinations. This paper presents an experimental approach aimed at inspecting the shaft of the rotary draw bending machine as a case to study. The testing methodology, which is based on the principle of the three-point bending test, allows assessing the shaft elastic behavior under loading. Furthermore, the shaft elastic characteristics include the maximum linear deflection, and maximum bending stress was determined by using an analytical approach and finite element (FE) analysis approach. In the end, the results were compared with the ones obtained by the experimental approach. In conclusion, it is seen that the measured bending deflection and bending stress were well close to the permissible design value. Therefore, the shaft can work in the second life cycle. However, based on previous surface tests conducted, the shaft needs surface treatments include re-carburizing and refining processes to ensure the reliable surface performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deflection" title="deflection">deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=FE%20analysis" title=" FE analysis"> FE analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft" title=" shaft"> shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=three-point%20bending" title=" three-point bending"> three-point bending</a> </p> <a href="https://publications.waset.org/abstracts/92854/experimental-and-numerical-evaluation-of-a-shaft-failure-behaviour-using-three-point-bending-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1520</span> Durability Assessment of Nanocomposite-Based Bone Fixation Device Consisting of Bioabsorbable Polymer and Ceramic Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jisoo%20Kim">Jisoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Young%20Choi"> Jin-Young Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=MinSu%20Lee"> MinSu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunmook%20Lee"> Sunmook Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effects of ceramic nanoparticles on the improvement of durability of bone fixation devices have been investigated by assessing the durability of nanocomposite materials consisting of bioabsorbable polymer and ceramic nanoparticles, which could be applied for bone fixation devices such as plates and screws. Various composite ratios were used for the synthesis of nanocomposite materials by blending polylactic acid (PLA) and polyglycolic acid (PGA) as bioabsorbable polymer, and hydroxyapatite (HA) and tri-calcium phosphate (TCP) as ceramic nanoparticles. It was found that the addition of ceramic nanoparticles significantly enhanced the mechanical properties of the bone fixation devices compared to those fabricated with pure biopolymers. Particularly, the layer-by-layer approach for the fabrication of nanocomposites also had an effect on the improvement of bending strength. Durability tests were performed by measuring the changes in the bending strength of nanocomposite samples under varied temperature conditions for the accelerated degradation tests. It was found that Weibull distribution was the most proper one for describing the life distribution of devices in the present study. The mean lifetime was predicted by adopting Arrhenius Eq. Model for Stress-Life relationship. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioabsorbable" title="bioabsorbable">bioabsorbable</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20fixation%20device" title=" bone fixation device"> bone fixation device</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20nanoparticles" title=" ceramic nanoparticles"> ceramic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=durability%20assessment" title=" durability assessment"> durability assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/53095/durability-assessment-of-nanocomposite-based-bone-fixation-device-consisting-of-bioabsorbable-polymer-and-ceramic-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1519</span> Finite Elemental Simulation of the Combined Process of Asymmetric Rolling and Plastic Bending</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Pesin">A. Pesin</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pustovoytov"> D. Pustovoytov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sverdlik"> M. Sverdlik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally, the need in items represents a large body of rotation (e.g. shrouds of various process units: a converter, a mixer, a scrubber, a steel ladle and etc.) is satisfied by using them at engineering enterprises. At these enterprises large parts of bodies of rotation are made on stamping units or bending and forming machines. In Nosov Magnitogorsk State Technical University in alliance with JSC "Magnitogorsk Metal and Steel Works" there was suggested and implemented the technology for producing such items based on a combination of asymmetric rolling processes and plastic bending under conditions of the plate mill. In this paper, based on finite elemental mathematical simulation in technology of a combined process of asymmetric rolling and bending plastic has been improved. It is shown that for the same curvature along the entire length of the metal sheet it is necessary to introduce additional asymmetry speed when rolling front end and tape trailer. Production of large bodies of rotation at mill 4500 JSC "Magnitogorsk Metal and Steel Works" showed good convergence of theoretical and experimental values of the curvature of the metal. Economic effect obtained more than 1.0 million dollars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20rolling" title="asymmetric rolling">asymmetric rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20bending" title=" plastic bending"> plastic bending</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20process" title=" combined process"> combined process</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a> </p> <a href="https://publications.waset.org/abstracts/13062/finite-elemental-simulation-of-the-combined-process-of-asymmetric-rolling-and-plastic-bending" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1518</span> Citation Analysis on the Articles published in Bayero Journal of Pure and Applied Sciences (BAJOPAS), from 2008-2020: An International Journal in Bayero University, Kano, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Babalola">G. A. Babalola</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Muhammad"> Yusuf Muhammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An analysis was carried out on 19,759 citations appended to the References Section of 881 research articles published in Bayero Journal of Pure and Applied Sciences. It was found that journals publications were the most cited source of information among pure and applied sciences scientists with 12,090 (61.2%). The study also revealed that researchers in the field of pure and applied sciences used very current and up to date information sources in writing theirs articles with 10,091 (51.1%) citations and an average mean 11.1 per article in the journal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=citation%20analysis" title="citation analysis">citation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=BAJOPAS" title=" BAJOPAS"> BAJOPAS</a>, <a href="https://publications.waset.org/abstracts/search?q=journal%20article" title=" journal article"> journal article</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayero%20University%20Kano" title=" Bayero University Kano"> Bayero University Kano</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/144699/citation-analysis-on-the-articles-published-in-bayero-journal-of-pure-and-applied-sciences-bajopas-from-2008-2020-an-international-journal-in-bayero-university-kano-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1517</span> Estimation of Effective Mechanical Properties of Linear Elastic Materials with Voids Due to Volume and Surface Defects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergey%20A.%20Lurie">Sergey A. Lurie</a>, <a href="https://publications.waset.org/abstracts/search?q=Yury%20O.%20Solyaev"> Yury O. Solyaev</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20B.%20Volkov-Bogorodsky"> Dmitry B. Volkov-Bogorodsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20V.%20Volkov"> Alexander V. Volkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The media with voids is considered and the method of the analytical estimation of the effective mechanical properties in the theory of elastic materials with voids is proposed. The variational model of the porous media is discussed, which is based on the model of the media with fields of conserved dislocations. It is shown that this model is fully consistent with the known model of the linear elastic materials with voids. In the present work, the generalized model of the porous media is proposed in which the specific surface properties are associated with the field of defects-pores in the volume of the deformed body. Unlike typical surface elasticity model, the strain energy density of the considered model includes the special part of the surface energy with the quadratic form of the free distortion tensor. In the result, the non-classical boundary conditions take modified form of the balance equations of volume and surface stresses. The analytical approach is proposed in the present work which allows to receive the simple enough engineering estimations for effective characteristics of the media with free dilatation. In particular, the effective flexural modulus and Poisson's ratio are determined for the problem of a beam pure bending. Here, the known voids elasticity solution was expanded on the generalized model with the surface effects. Received results allow us to compare the deformed state of the porous beam with the equivalent classic beam to introduce effective bending rigidity. Obtained analytical expressions for the effective properties depend on the thickness of the beam as a parameter. It is shown that the flexural modulus of the porous beam is decreased with an increasing of its thickness and the effective Poisson's ratio of the porous beams can take negative values for the certain values of the model parameters. On the other hand, the effective shear modulus is constant under variation of all values of the non-classical model parameters. Solutions received for a beam pure bending and the hydrostatic loading of the porous media are compared. It is shown that an analytical estimation for the bulk modulus of the porous material under hydrostatic compression gives an asymptotic value for the effective bulk modulus of the porous beam in the case of beam thickness increasing. Additionally, it is shown that the scale effects appear due to the surface properties of the porous media. Obtained results allow us to offer the procedure of an experimental identification of the non-classical parameters in the theory of the linear elastic materials with voids based on the bending tests for samples with different thickness. Finally, the problem of implementation of the Saint-Venant hypothesis for the transverse stresses in the porous beam are discussed. These stresses are different from zero in the solution of the voids elasticity theory, but satisfy the integral equilibrium equations. In this work, the exact value of the introduced surface parameter was found, which provides the vanishing of the transverse stresses on the free surfaces of a beam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effective%20properties" title="effective properties">effective properties</a>, <a href="https://publications.waset.org/abstracts/search?q=scale%20effects" title=" scale effects"> scale effects</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20defects" title=" surface defects"> surface defects</a>, <a href="https://publications.waset.org/abstracts/search?q=voids%20elasticity" title=" voids elasticity"> voids elasticity</a> </p> <a href="https://publications.waset.org/abstracts/36564/estimation-of-effective-mechanical-properties-of-linear-elastic-materials-with-voids-due-to-volume-and-surface-defects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1516</span> An Analytical Method for Bending Rectangular Plates with All Edges Clamped Supported</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhong">Yang Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Heng%20Liu"> Heng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The decoupling method and the modified Naiver method are combined for accurate bending analysis of rectangular thick plates with all edges clamped supported. The basic governing equations for Mindlin plates are first decoupled into independent partial differential equations which can be solved separately. Using modified Navier method, the analytic solution of rectangular thick plate with all edges clamped supported is then derived. The solution method used in this paper leave out the complicated derivation for calculating coefficients and obtain the solution to problems directly. Numerical comparisons show the correctness and accuracy of the results at last. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mindlin%20plates" title="Mindlin plates">Mindlin plates</a>, <a href="https://publications.waset.org/abstracts/search?q=decoupling%20method" title=" decoupling method"> decoupling method</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20Navier%20method" title=" modified Navier method"> modified Navier method</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20rectangular%20plates" title=" bending rectangular plates"> bending rectangular plates</a> </p> <a href="https://publications.waset.org/abstracts/22011/an-analytical-method-for-bending-rectangular-plates-with-all-edges-clamped-supported" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1515</span> Development of Probability Distribution Models for Degree of Bending (DoB) in Chord Member of Tubular X-Joints under Bending Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Ahmadi">Hamid Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirreza%20Ghaffari"> Amirreza Ghaffari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fatigue life of tubular joints in offshore structures is not only dependent on the value of hot-spot stress, but is also significantly influenced by the through-the-thickness stress distribution characterized by the degree of bending (DoB). The DoB exhibits considerable scatter calling for greater emphasis in accurate determination of its governing probability distribution which is a key input for the fatigue reliability analysis of a tubular joint. Although the tubular X-joints are commonly found in offshore jacket structures, as far as the authors are aware, no comprehensive research has been carried out on the probability distribution of the DoB in tubular X-joints. What has been used so far as the probability distribution of the DoB in reliability analyses is mainly based on assumptions and limited observations, especially in terms of distribution parameters. In the present paper, results of parametric equations available for the calculation of the DoB have been used to develop probability distribution models for the DoB in the chord member of tubular X-joints subjected to four types of bending loads. Based on a parametric study, a set of samples was prepared and density histograms were generated for these samples using Freedman-Diaconis method. Twelve different probability density functions (PDFs) were fitted to these histograms. The maximum likelihood method was utilized to determine the parameters of fitted distributions. In each case, Kolmogorov-Smirnov test was used to evaluate the goodness of fit. Finally, after substituting the values of estimated parameters for each distribution, a set of fully defined PDFs have been proposed for the DoB in tubular X-joints subjected to bending loads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tubular%20X-joint" title="tubular X-joint">tubular X-joint</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20bending%20%28DoB%29" title=" degree of bending (DoB)"> degree of bending (DoB)</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20density%20function%20%28PDF%29" title=" probability density function (PDF)"> probability density function (PDF)</a>, <a href="https://publications.waset.org/abstracts/search?q=Kolmogorov-Smirnov%20goodness-of-fit%20test" title=" Kolmogorov-Smirnov goodness-of-fit test"> Kolmogorov-Smirnov goodness-of-fit test</a> </p> <a href="https://publications.waset.org/abstracts/20736/development-of-probability-distribution-models-for-degree-of-bending-dob-in-chord-member-of-tubular-x-joints-under-bending-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">719</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1514</span> Sensitivity Analysis of Interference of Localised Corrosion on Bending Capacity of a Corroded RC Beam </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mahdi%20Kioumarsi">Mohammad Mahdi Kioumarsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, using the response surface method (RSM), tornado diagram method and non-linear finite element analysis, the effect of four parameters on residual bending capacity of a corroded RC beam was investigated. The parameters considered are amount of localised cross section reduction, ratio of pit distance on adjacent bars to rebar distance, concrete compressive strength, and rebar tensile strength. The focus is on the influence on the bending ultimate limit state. Based on the obtained results, the effects of the ratio of pit distance to rebar distance (Lp鈦凩r) and the ratio of the localised cross section reduction to the original area of the rebar (Apit鈦凙0) were found significant. The interference of localised corrosion on adjacent reinforcement bars reduces the bending capacity of under-reinforced concrete beam. Using the sensitivity analysis could lead to recognize uncertainty parameters, which have the most influences on the performance of the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=localised%20corrosion" title="localised corrosion">localised corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20beam" title=" concrete beam"> concrete beam</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analyses" title=" sensitivity analyses"> sensitivity analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20capacity" title=" ultimate capacity "> ultimate capacity </a> </p> <a href="https://publications.waset.org/abstracts/38618/sensitivity-analysis-of-interference-of-localised-corrosion-on-bending-capacity-of-a-corroded-rc-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1513</span> Review for Mechanical Tests of Corner Joints on Wooden Windows and Effects to the Stiffness </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milan%20Podlena">Milan Podlena</a>, <a href="https://publications.waset.org/abstracts/search?q=Stepan%20Hysek"> Stepan Hysek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20%20Prochazka"> Jiri Prochazka</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Bohm"> Martin Bohm</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Bomba"> Jan Bomba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corner joints are the weakest part of windows, where the members are connected together. Since the dimensions of the windows started become bigger, the strength requirements for corner joints started to increase as well. Therefore, the aim of this study was to test the samples of corner joints of wooden windows. Moisture content of test specimens was stabilized in the climate chamber. After conditioning, test specimens were loaded in the laboratory conditions onto an universal testing machine and the failure load was measured. Data was recalculated by using goniometric, bending moment and stiffness equation to the stiffness coefficients and the bending moments were investigated. The results showed difference that was observed for the mortise with tenon joint and the dowel joint. This difference was explained by a varied adhesive bond area, which is related to the dimensions of dowels (diameter and length) as well. The bending moments and stiffness ware (except of type of corner joint) also affected by type of used adhesive, type of dowels and wood species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corner%20joint" title="corner joint">corner joint</a>, <a href="https://publications.waset.org/abstracts/search?q=wooden%20window" title=" wooden window"> wooden window</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20moment" title=" bending moment"> bending moment</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a> </p> <a href="https://publications.waset.org/abstracts/82921/review-for-mechanical-tests-of-corner-joints-on-wooden-windows-and-effects-to-the-stiffness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1512</span> Pure Economic Loss: A Trouble Child</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Mousinho%20de%20Figueiredo">Isabel Mousinho de Figueiredo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pure economic loss can be brought into the 21st century and become a useful tool to keep the tort of negligence within reasonable limits, provided the concept is minutely reexamined. The term came about when wealth was physical, and Law wanted to be a modern science. As a tool to draw the line, it leads to satisfactory decisions in most cases, but needlessly creates distressing conundrums in others, and these are the ones parties bother to litigate about. Economic loss is deemed to be pure based on a blind negative criterion of physical harm, that inadvertently smelts vastly disparate problems into an indiscernible mass, with arbitrary outcomes. These shortcomings are usually dismissed as minor byproducts, for the lack of a better formula. Law could instead stick to the sound paradigms of the intended rule, and be more specific in identifying the losses deserving of compensation. This would provide a better service to Bench and Bar, and effectively assist everyone navigating the many challenges of Accident Law. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accident%20law" title="accident law">accident law</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20tort%20law" title=" comparative tort law"> comparative tort law</a>, <a href="https://publications.waset.org/abstracts/search?q=negligence" title=" negligence"> negligence</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20economic%20loss" title=" pure economic loss"> pure economic loss</a> </p> <a href="https://publications.waset.org/abstracts/154963/pure-economic-loss-a-trouble-child" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1511</span> Numerical and Experimental Investigation of Mixed-Mode Fracture of Cement Paste and Interface Under Three-Point Bending Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Al%20Dandachli">S. Al Dandachli</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Perales"> F. Perales</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Monerie"> Y. Monerie</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Jamin"> F. Jamin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20El%20Youssoufi"> M. S. El Youssoufi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Pelissou"> C. Pelissou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this research is to study the fracture process and mechanical behavior of concrete under I鈥揑I mixed-mode stress, which is essential for ensuring the safety of concrete structures. For this purpose, two-dimensional simulations of three-point bending tests under variable load and geometry on notched cement paste samples of composite samples (cement paste/siliceous aggregate) are modeled by employing Cohesive Zone Models (CZMs). As a result of experimental validation of these tests, the CZM model demonstrates its capacity to predict fracture propagation at the local scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20paste" title="cement paste">cement paste</a>, <a href="https://publications.waset.org/abstracts/search?q=interface" title=" interface"> interface</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesive%20zone%20model" title=" cohesive zone model"> cohesive zone model</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=three-point%20flexural%20test%20bending" title=" three-point flexural test bending"> three-point flexural test bending</a> </p> <a href="https://publications.waset.org/abstracts/152427/numerical-and-experimental-investigation-of-mixed-mode-fracture-of-cement-paste-and-interface-under-three-point-bending-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1510</span> The Grinding Influence on the Strength of Fan-Out Wafer-Level Packages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20W.%20Zhong">Z. W. Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Xu"> C. Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20K.%20Choi"> W. K. Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To build a thin fan-out wafer-level package, the package had to be ground to a thin level. In this work, the influence of the grinding processes on the strength of the fan-out wafer-level packages was investigated. After different grinding processes, all specimens were placed on a three-point-bending fixture installed on a universal tester for three-point-bending testing, and the strength of the fan-out wafer-level packages was measured. The experiments revealed that the average flexure strength increased with the decreasing surface roughness height of the fan-out wafer-level package tested. The grinding processes had a significant influence on the strength of the fan-out wafer-level packages investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FOWLP%20strength" title="FOWLP strength">FOWLP strength</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=three-point%20bending" title=" three-point bending"> three-point bending</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding" title=" grinding"> grinding</a> </p> <a href="https://publications.waset.org/abstracts/91441/the-grinding-influence-on-the-strength-of-fan-out-wafer-level-packages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1509</span> Durability Study of Pultruded CFRP Plates under Sustained Bending in Distilled Water and Seawater Immersions: Effects on the Visco-Elastic Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Innocent%20Kafodya">Innocent Kafodya</a>, <a href="https://publications.waset.org/abstracts/search?q=Guijun%20Xian"> Guijun Xian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents effects of distilled water, seawater and sustained bending strains of 30% and 50% ultimate strain at room temperature, on the durability of unidirectional pultruded carbon fiber reinforced polymer (CFRP) plates. In this study, dynamic mechanical analyzer (DMA) was used to investigate the synergic effects of the immersions and bending strains on the visco-elastic properties of (CFRP) such as storage modulus, tan delta and glass transition temperature. The study reveals that the storage modulus and glass transition temperature increase while tan delta peak decreases in the initial stage of both immersions due to the progression of curing. The storage modulus and Tg subsequently decrease and tan delta increases due to the matrix plasticization. The blister induced damages in the unstrained seawater samples enhance water uptake and cause more serious degradation of Tg and storage modulus than in water immersion. Increasing sustained bending decreases Tg and storage modulus in a long run for both immersions due to resin matrix cracking and debonding. The combined effects of immersions and strains are not clearly reflected due to the statistical effects of DMA sample sizes and competing processes of molecular reorientation and postcuring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pultruded%20CFRP%20plate" title="pultruded CFRP plate">pultruded CFRP plate</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20strain" title=" bending strain"> bending strain</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20transition%20temperature" title=" glass transition temperature"> glass transition temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20modulus" title=" storage modulus"> storage modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=tan%20delta" title=" tan delta"> tan delta</a> </p> <a href="https://publications.waset.org/abstracts/19878/durability-study-of-pultruded-cfrp-plates-under-sustained-bending-in-distilled-water-and-seawater-immersions-effects-on-the-visco-elastic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1508</span> Optimization of Tooth Root Profile and Drive Side Pressure Angle to Minimize Bending Stress at Root of Asymmetric Spur Gear Tooth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyakant%20Vaghela">Priyakant Vaghela</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagdish%20Prajapati"> Jagdish Prajapati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bending stress at the root of the gear tooth is the very important criteria in gear design and it should be kept the minimum. Minimization of bending stress at the root of the gear tooth is a recent demand from industry. This paper presents an innovative approach to obtain minimum bending stress at the root of a tooth by optimizing tooth root profile and drive side pressure angle. Circular-filleted at the root of the tooth is widely used in the design. Circular fillet creates discontinuity at the root of the tooth. So, at root stress concentration occurs. In order to minimize stress concentration, an important criterion is a G2 continuity at the blending of the gear tooth. A Bezier curve is used with G2 continuity at the root of asymmetric spur gear tooth. The comparison has been done between normal and modified tooth using ANSYS simulation. Tooth root profile and drive side pressure angle are optimized to minimize bending stress at the root of the tooth of the asymmetric involute spur gear. Von Mises stress of optimized profile is analyzed and compared with normal profile symmetric gear. Von Mises stress is reducing by 31.27% by optimization of drive side pressure angle and root profile. Stress concentration of modified gear was significantly reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20spur%20gear%20tooth" title="asymmetric spur gear tooth">asymmetric spur gear tooth</a>, <a href="https://publications.waset.org/abstracts/search?q=G2%20continuity" title=" G2 continuity"> G2 continuity</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20angle" title=" pressure angle"> pressure angle</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20at%20the%20root%20of%20tooth" title=" stress concentration at the root of tooth"> stress concentration at the root of tooth</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20root%20stress" title=" tooth root stress"> tooth root stress</a> </p> <a href="https://publications.waset.org/abstracts/95043/optimization-of-tooth-root-profile-and-drive-side-pressure-angle-to-minimize-bending-stress-at-root-of-asymmetric-spur-gear-tooth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1507</span> Lateral Torsional Buckling: Tests on Glued Laminated Timber Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vera%20Wilden">Vera Wilden</a>, <a href="https://publications.waset.org/abstracts/search?q=Benno%20Hoffmeister"> Benno Hoffmeister</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Feldmann"> Markus Feldmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glued laminated timber (glulam) is a preferred choice for long span girders, e.g., for gyms or storage halls. While the material provides sufficient strength to resist the bending moments, large spans lead to increased slenderness of such members and to a higher susceptibility to stability issues, in particular to lateral torsional buckling (LTB). Rules for the determination of the ultimate LTB resistance are provided by Eurocode 5. The verifications of the resistance may be performed using the so called equivalent member method or by means of theory 2nd order calculations (direct method), considering equivalent imperfections. Both methods have significant limitations concerning their applicability; the equivalent member method is limited to rather simple cases; the direct method is missing detailed provisions regarding imperfections and requirements for numerical modeling. In this paper, the results of a test series on slender glulam beams in three- and four-point bending are presented. The tests were performed in an innovative, newly developed testing rig, allowing for a very precise definition of loading and boundary conditions. The load was introduced by a hydraulic jack, which follows the lateral deformation of the beam by means of a servo-controller, coupled with the tested member and keeping the load direction vertically. The deformation-controlled tests allowed for the identification of the ultimate limit state (governed by elastic stability) and the corresponding deformations. Prior to the tests, the structural and geometrical imperfections were determined and used later in the numerical models. After the stability tests, the nearly undamaged members were tested again in pure bending until reaching the ultimate moment resistance of the cross-section. These results, accompanied by numerical studies, were compared to resistance values obtained using both methods according to Eurocode 5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20tests" title="experimental tests">experimental tests</a>, <a href="https://publications.waset.org/abstracts/search?q=glued%20laminated%20timber" title=" glued laminated timber"> glued laminated timber</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20torsional%20buckling" title=" lateral torsional buckling"> lateral torsional buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/141065/lateral-torsional-buckling-tests-on-glued-laminated-timber-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1506</span> Study Properties of Bamboo Composite after Treatment Surface by Chemical Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiatnarong%20Supapanmanee">Kiatnarong Supapanmanee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekkarin%20Phongphinittana"> Ekkarin Phongphinittana</a>, <a href="https://publications.waset.org/abstracts/search?q=Pongsak%20Nimdum"> Pongsak Nimdum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural fibers are readily available raw materials that are widely used as composite materials. The most common problem facing many researchers with composites made from this fiber is the adhesion between the natural fiber contact surface and the matrix material. Part of the problem is due to the hydrophilic properties of natural fibers and the hydrophobic properties of the matrix material. Based on the aforementioned problems, this research selected bamboo fiber, which is a strong natural fiber in the research study. The first step was to study the effect of the mechanical properties of the pure bamboo strip by testing the tensile strength of different measurement lengths. The bamboo strip was modified surface with sodium hydroxide (NaOH) at 6wt% concentrations for different soaking periods. After surface modification, the physical and mechanical properties of the pure bamboo strip fibers were studied. The modified and unmodified bamboo strips were molded into a composite material using epoxy as a matrix to compare the mechanical properties and adhesion between the fiber surface and the material with tensile and bending tests. In addition, the results of these tests were compared with the finite element method (FEM). The results showed that the length of the bamboo strip affects the strength of the fibers, with shorter fibers causing higher tensile stress. Effects of surface modification of bamboo strip with NaOH, this chemical eliminates lignin and hemicellulose, resulting in the smaller dimension of the bamboo strip and increased density. From the pretreatment results above, it was found that the treated bamboo strip and composite material had better Ultimate tensile stress and Young's modulus. Moreover, that results in better adhesion between bamboo fiber and matrix material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20fiber" title="bamboo fiber">bamboo fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo%20strip" title=" bamboo strip"> bamboo strip</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title=" composite material"> composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo%20composite" title=" bamboo composite"> bamboo composite</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20bamboo" title=" pure bamboo"> pure bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties%20of%20bamboo" title=" mechanical properties of bamboo"> mechanical properties of bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo%20finite%20element%20method" title=" bamboo finite element method"> bamboo finite element method</a> </p> <a href="https://publications.waset.org/abstracts/150083/study-properties-of-bamboo-composite-after-treatment-surface-by-chemical-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1505</span> Optimization of Process Parameters Affecting on Spring-Back in V-Bending Process for High Strength Low Alloy Steel HSLA 420 Using FEA (HyperForm) and Taguchi Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navajyoti%20Panda">Navajyoti Panda</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Pawar"> R. S. Pawar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, process parameters like punch angle, die opening, grain direction, and pre-bend condition of the strip for deep draw of high strength low alloy steel HSLA 420 are investigated. The finite element method (FEM) in association with the Taguchi and the analysis of variance (ANOVA) techniques are carried out to investigate the degree of importance of process parameters in V-bending process for HSLA 420&ST12 grade material. From results, it is observed that punch angle had a major influence on the spring-back. Die opening also showed very significant role on spring back. On the other hand, it is revealed that grain direction had the least impact on spring back; however, if strip from flat sheet is taken, then it is less prone to spring back as compared to the strip from sheet metal coil. HyperForm software is used for FEM simulation and experiments are designed using Taguchi method. Percentage contribution of the parameters is obtained through the ANOVA techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending" title="bending">bending</a>, <a href="https://publications.waset.org/abstracts/search?q=spring-back" title=" spring-back"> spring-back</a>, <a href="https://publications.waset.org/abstracts/search?q=v-bending" title=" v-bending"> v-bending</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi" title=" Taguchi"> Taguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=HSLA%20420%20and%20St12%20materials" title=" HSLA 420 and St12 materials"> HSLA 420 and St12 materials</a>, <a href="https://publications.waset.org/abstracts/search?q=HyperForm" title=" HyperForm"> HyperForm</a>, <a href="https://publications.waset.org/abstracts/search?q=profile%20projector" title=" profile projector"> profile projector</a> </p> <a href="https://publications.waset.org/abstracts/82474/optimization-of-process-parameters-affecting-on-spring-back-in-v-bending-process-for-high-strength-low-alloy-steel-hsla-420-using-fea-hyperform-and-taguchi-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1504</span> Analysis of Risk Factors Affecting the Motor Insurance Pricing with Generalized Linear Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Puttharapong%20Sakulwaropas">Puttharapong Sakulwaropas</a>, <a href="https://publications.waset.org/abstracts/search?q=Uraiwan%20%20Jaroengeratikun"> Uraiwan Jaroengeratikun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Casualty insurance business, the optimal premium pricing and adequate cost for an insurance company are important in risk management. Normally, the insurance pure premium can be determined by multiplying the claim frequency with the claim cost. The aim of this research was to study in the application of generalized linear models to select the risk factor for model of claim frequency and claim cost for estimating a pure premium. In this study, the data set was the claim of comprehensive motor insurance, which was provided by one of the insurance company in Thailand. The results of this study found that the risk factors significantly related to pure premium at the 0.05 level consisted of no claim bonus (NCB) and used of the car (Car code). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20linear%20models" title="generalized linear models">generalized linear models</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factor" title=" risk factor"> risk factor</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20premium" title=" pure premium"> pure premium</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20model" title=" regression model"> regression model</a> </p> <a href="https://publications.waset.org/abstracts/65636/analysis-of-risk-factors-affecting-the-motor-insurance-pricing-with-generalized-linear-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1503</span> Torsional Rigidities of Reinforced Concrete Beams Subjected to Elastic Lateral Torsional Buckling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilker%20Kalkan">Ilker Kalkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Saruhan%20Kartal"> Saruhan Kartal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete (RC) beams rarely undergo lateral-torsional buckling (LTB), since these beams possess large lateral bending and torsional rigidities owing to their stocky cross-sections, unlike steel beams. However, the problem of LTB is becoming more and more pronounced in the last decades as the span lengths of concrete beams increase and the cross-sections become more slender with the use of pre-stressed concrete. The buckling moment of a beam mainly depends on its lateral bending rigidity and torsional rigidity. The nonhomogeneous and elastic-inelastic nature of RC complicates estimation of the buckling moments of concrete beams. Furthermore, the lateral bending and torsional rigidities of RC beams and the buckling moments are affected from different forms of concrete cracking, including flexural, torsional and restrained shrinkage cracking. The present study pertains to the effects of concrete cracking on the torsional rigidities of RC beams prone to elastic LTB. A series of tests on rather slender RC beams indicated that torsional cracking does not initiate until buckling in elastic LTB, while flexural cracking associated with lateral bending takes place even at the initial stages of loading. Hence, the present study clearly indicated that the un-cracked torsional rigidity needs to be used for estimating the buckling moments of RC beams liable to elastic LTB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lateral%20stability" title="lateral stability">lateral stability</a>, <a href="https://publications.waset.org/abstracts/search?q=post-cracking%20torsional%20rigidity" title=" post-cracking torsional rigidity"> post-cracking torsional rigidity</a>, <a href="https://publications.waset.org/abstracts/search?q=uncracked%20torsional%20rigidity" title=" uncracked torsional rigidity"> uncracked torsional rigidity</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20moment" title=" critical moment"> critical moment</a> </p> <a href="https://publications.waset.org/abstracts/72558/torsional-rigidities-of-reinforced-concrete-beams-subjected-to-elastic-lateral-torsional-buckling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1502</span> Investigating the Characteristics of Correlated Parking-Charging Behaviors for Electric Vehicles: A Data-Driven Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xizhen%20Zhou">Xizhen Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanjie%20Ji"> Yanjie Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In advancing the management of integrated electric vehicle (EV) parking-charging behaviors, this study uses Changshu City in Suzhou as a case study to establish a data association mechanism for parking-charging platforms and to develop a database for EV parking-charging behaviors. Key indicators, such as charging start time, initial state of charge, final state of charge, and parking-charging time difference, are considered. Utilizing the K-S test method, the paper examines the heterogeneity of parking-charging behavior preferences among pure EV and non-pure EV users. The K-means clustering method is employed to analyze the characteristics of parking-charging behaviors for both user groups, thereby enhancing the overall understanding of these behaviors. The findings of this study reveal that using a classification model, the parking-charging behaviors of pure EVs can be classified into five distinct groups, while those of non-pure EVs can be separated into four groups. Among them, both types of EV users exhibit groups with low range anxiety for complete charging with special journeys, complete charging at destination, and partial charging. Additionally, both types have a group with high range anxiety, characterized by pure EV users displaying a preference for complete charging with specific journeys, while non-pure EV users exhibit a preference for complete charging. Notably, pure EV users also display a significant group engaging in nocturnal complete charging. The findings of this study can provide technical support for the scientific and rational layout and management of integrated parking and charging facilities for EVs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20engineering" title="traffic engineering">traffic engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20preferences" title=" potential preferences"> potential preferences</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20analysis" title=" cluster analysis"> cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=EV" title=" EV"> EV</a>, <a href="https://publications.waset.org/abstracts/search?q=parking-charging%20behavior" title=" parking-charging behavior"> parking-charging behavior</a> </p> <a href="https://publications.waset.org/abstracts/174576/investigating-the-characteristics-of-correlated-parking-charging-behaviors-for-electric-vehicles-a-data-driven-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1501</span> Bending Behaviour of Fiber Reinforced Polymer Composite Stiffened Panel Subjected to Transverse Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kumar">S. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar"> Rajesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mandal"> S. Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber Reinforced Polymer (FRP) is gaining popularity in many branch of engineering and various applications due to their light weight, specific strength per unit weight and high stiffness in particular direction. As the strength of material is high it can be used in thin walled structure as industrial roof sheds satisfying the strength constraint with comparatively lesser thickness. Analysis of bending behavior of FRP panel has been done here with variation in oriented angle of stiffener panels, fiber orientation, aspect ratio and boundary conditions subjected to transverse loading by using Finite Element Method. The effect of fiber orientation and thickness of ply has also been studied to determine the minimum thickness of ply for optimized section of stiffened FRP panel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20behavior" title="bending behavior">bending behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20polymer" title=" fiber reinforced polymer"> fiber reinforced polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation%20of%20stiffeners" title=" orientation of stiffeners"> orientation of stiffeners</a> </p> <a href="https://publications.waset.org/abstracts/61179/bending-behaviour-of-fiber-reinforced-polymer-composite-stiffened-panel-subjected-to-transverse-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1500</span> Pitch Processing in Autistic Mandarin-Speaking Children with Hypersensitivityand Hypo-Sensitivity: An Event-Related Potential Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaiying%20Lai">Kaiying Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Suiping%20Wang"> Suiping Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Luodi%20Yu"> Luodi Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhang"> Yang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengmin%20Qin"> Pengmin Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abnormalities in auditory processing are one of the most commonly reported sensory processing impairments in children with Autism Spectrum Disorder (ASD). Tonal language speaker with autism has enhanced neural sensitivity to pitch changes in pure tone. However, not all children with ASD exhibit the same performance in pitch processing due to different auditory sensitivity. The current study aimed to examine auditory change detection in ASD with different auditory sensitivity. K-means clustering method was adopted to classify ASD participants into two groups according to the auditory processing scores of the Sensory Profile, 11 autism with hypersensitivity (mean age = 11.36 ; SD = 1.46) and 18 with hypo-sensitivity (mean age = 10.64; SD = 1.89) participated in a passive auditory oddball paradigm designed for eliciting mismatch negativity (MMN) under the pure tone condition. Results revealed that compared to hypersensitive autism, the children with hypo-sensitivity showed smaller MMN responses to pure tone stimuli. These results suggest that ASD with auditory hypersensitivity and hypo-sensitivity performed differently in processing pure tone, so neural responses to pure tone hold promise for predicting the auditory sensitivity of ASD and targeted treatment in children with ASD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ASD" title="ASD">ASD</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20profile" title=" sensory profile"> sensory profile</a>, <a href="https://publications.waset.org/abstracts/search?q=pitch%20processing" title=" pitch processing"> pitch processing</a>, <a href="https://publications.waset.org/abstracts/search?q=mismatch%20negativity" title=" mismatch negativity"> mismatch negativity</a>, <a href="https://publications.waset.org/abstracts/search?q=MMN" title=" MMN"> MMN</a> </p> <a href="https://publications.waset.org/abstracts/87043/pitch-processing-in-autistic-mandarin-speaking-children-with-hypersensitivityand-hypo-sensitivity-an-event-related-potential-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1499</span> Effect of Tube Thickness on the Face Bending for Blind-Bolted Connection to Concrete Filled Tubular Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Mahmood">Mohammed Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Walid%20Tizani"> Walid Tizani</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlo%20Sansour"> Carlo Sansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, experimental testing and numerical analysis were used to investigate the effect of tube thickness on the face bending for concrete filled hollow sections connected to other structural members using Extended Hollobolts. Six samples were tested experimentally by applying pull-out load on the bolts. These samples were designed to fail by column face bending. The main variable in all tests is the column face thickness. Finite element analyses were also performed using ABAQUS 6.11 to extend the experimental results and to quantify the effect of column face thickness. Results show that, the column face thickness has a clear impact on the connection strength and stiffness. However, the amount of improvement in the connection stiffness by changing the column face thickness from 5 mm to 6.3 mm seems to be higher than that when increasing it from 6.3 mm to 8 mm. The displacement at which the bolts start pulling-out from their holes increased with the use of thinner column face due to the high flexibility of the section. At the ultimate strength, the yielding of the column face propagated to the column corner and there was no yielding in its walls. After the ultimate resistance is reached, the propagation of the yielding was mainly in the column face with a miner yielding in the walls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anchored%20bolted%20connection" title="anchored bolted connection">anchored bolted connection</a>, <a href="https://publications.waset.org/abstracts/search?q=Extended%20Hollobolt" title=" Extended Hollobolt"> Extended Hollobolt</a>, <a href="https://publications.waset.org/abstracts/search?q=column%20faces%20bending" title=" column faces bending"> column faces bending</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20filled%20hollow%20sections" title=" concrete filled hollow sections "> concrete filled hollow sections </a> </p> <a href="https://publications.waset.org/abstracts/9404/effect-of-tube-thickness-on-the-face-bending-for-blind-bolted-connection-to-concrete-filled-tubular-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1498</span> Flame Acceleration of Premixed Natural Gas/Air Explosion in Closed Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Mat%20Kiah">H. Mat Kiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafiziana%20M.%20Kasmani"> Rafiziana M. Kasmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Norazana%20Ibrahim"> Norazana Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Roshafima%20R.%20Ali"> Roshafima R. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Aziatul%20N.Sadikin"> Aziatul N.Sadikin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study has been done to investigate the flame acceleration in a closed pipe. A horizontal steel pipe, 2m long and 0.1 m in diameter (L/D of 20), was used in this work. For tests with 90 degree bends, the bend had a radius of 0.1 m and thus, the pipe was lengthened 1 m (based on the centreline length of the segment). Ignition was affected one end of the vessel while the other end was closed. Only stoichiometric concentration (肖, = 1.0) of natural gas/air mixtures will be reported in this paper. It was demonstrated that bend pipe configuration gave three times higher in maximum over-pressure (5.5 bars) compared to straight pipe (2.0 bars). From the results, the highest flame speed of 63 m s-1 was observed in a gas explosion with bent pipe, greater by a factor of ~3 as compared with straight pipe (23 m s-1). This occurs because bending acts similar to an obstacle, in which this mechanism can induce more turbulence, initiating combustion in an unburned pocket at the corner region and causing a high mass burning rate which increases the flame speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending" title="bending">bending</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20explosion" title=" gas explosion"> gas explosion</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20acceleration" title=" flame acceleration"> flame acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=over-pressure" title=" over-pressure"> over-pressure</a> </p> <a href="https://publications.waset.org/abstracts/3266/flame-acceleration-of-premixed-natural-gasair-explosion-in-closed-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1497</span> Dynamic Relaxation and Isogeometric Analysis for Finite Deformation Elastic Sheets with Combined Bending and Stretching</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20%20Padhye">Nikhil Padhye</a>, <a href="https://publications.waset.org/abstracts/search?q=Ellen%20%20Kintz"> Ellen Kintz</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20%20Dorci"> Dan Dorci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent years have seen a rising interest in study and applications of materially uniform thin-structures (plates/shells) subject to finite-bending and stretching deformations. We introduce a well-posed 2D-model involving finite-bending and stretching of thin-structures to approximate the three-dimensional equilibria. Key features of this approach include: Non-Uniform Rational B-Spline (NURBS)-based spatial discretization for finite elements, method of dynamic relaxation to predict stable equilibria, and no a priori kinematic assumption on the deformation fields. The approach is validated against the benchmark problems,and the use of NURBS for spatial discretization facilitates exact spatial representation and computation of curvatures (due to C1-continuity of interpolated displacements) for this higher-order accuracy 2D-model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isogeometric%20Analysis" title="Isogeometric Analysis">Isogeometric Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Plates%2FShells" title=" Plates/Shells "> Plates/Shells </a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Methods" title=" Finite Element Methods"> Finite Element Methods</a>, <a href="https://publications.waset.org/abstracts/search?q=Dynamic%20Relaxation" title=" Dynamic Relaxation"> Dynamic Relaxation</a> </p> <a href="https://publications.waset.org/abstracts/123757/dynamic-relaxation-and-isogeometric-analysis-for-finite-deformation-elastic-sheets-with-combined-bending-and-stretching" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pure%20bending&page=1" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pure%20bending&page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pure%20bending&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pure%20bending&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pure%20bending&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pure%20bending&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pure%20bending&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pure%20bending&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pure%20bending&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pure%20bending&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pure%20bending&page=51">51</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pure%20bending&page=52">52</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pure%20bending&page=3" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>