CINXE.COM

Search results for: classifiers

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: classifiers</title> <meta name="description" content="Search results for: classifiers"> <meta name="keywords" content="classifiers"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="classifiers" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="classifiers"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 203</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: classifiers</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> Lipschitz Classifiers Ensembles: Usage for Classification of Target Events in C-OTDR Monitoring Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrey%20V.%20Timofeev">Andrey V. Timofeev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces an original method for guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers. The solution was obtained as a finite closed set of alternative hypotheses, which contains an object of classification with a probability of not less than the specified value. Thus, the classification is represented by a set of hypothetical classes. In this case, the smaller the cardinality of the discrete set of hypothetical classes is, the higher is the classification accuracy. Experiments have shown that if the cardinality of the classifiers ensemble is increased then the cardinality of this set of hypothetical classes is reduced. The problem of the guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers is relevant in the multichannel classification of target events in C-OTDR monitoring systems. Results of suggested approach practical usage to accuracy control in C-OTDR monitoring systems are present. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lipschitz%20classifiers" title="Lipschitz classifiers">Lipschitz classifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=confidence%20set" title=" confidence set"> confidence set</a>, <a href="https://publications.waset.org/abstracts/search?q=C-OTDR%20monitoring" title=" C-OTDR monitoring"> C-OTDR monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=classifiers%20accuracy" title=" classifiers accuracy"> classifiers accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=classifiers%20ensemble" title=" classifiers ensemble"> classifiers ensemble</a> </p> <a href="https://publications.waset.org/abstracts/21073/lipschitz-classifiers-ensembles-usage-for-classification-of-target-events-in-c-otdr-monitoring-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> Deep Learning based Image Classifiers for Detection of CSSVD in Cacao Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atuhurra%20Jesse">Atuhurra Jesse</a>, <a href="https://publications.waset.org/abstracts/search?q=N%27guessan%20Yves-Roland%20Douha"> N&#039;guessan Yves-Roland Douha</a>, <a href="https://publications.waset.org/abstracts/search?q=Pabitra%20Lenka"> Pabitra Lenka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The detection of diseases within plants has attracted a lot of attention from computer vision enthusiasts. Despite the progress made to detect diseases in many plants, there remains a research gap to train image classifiers to detect the cacao swollen shoot virus disease or CSSVD for short, pertinent to cacao plants. This gap has mainly been due to the unavailability of high quality labeled training data. Moreover, institutions have been hesitant to share their data related to CSSVD. To fill these gaps, image classifiers to detect CSSVD-infected cacao plants are presented in this study. The classifiers are based on VGG16, ResNet50 and Vision Transformer (ViT). The image classifiers are evaluated on a recently released and publicly accessible KaraAgroAI Cocoa dataset. The best performing image classifier, based on ResNet50, achieves 95.39\% precision, 93.75\% recall, 94.34\% F1-score and 94\% accuracy on only 20 epochs. There is a +9.75\% improvement in recall when compared to previous works. These results indicate that the image classifiers learn to identify cacao plants infected with CSSVD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CSSVD" title="CSSVD">CSSVD</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title=" image classification"> image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=ResNet50" title=" ResNet50"> ResNet50</a>, <a href="https://publications.waset.org/abstracts/search?q=vision%20transformer" title=" vision transformer"> vision transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=KaraAgroAI%20cocoa%20dataset" title=" KaraAgroAI cocoa dataset"> KaraAgroAI cocoa dataset</a> </p> <a href="https://publications.waset.org/abstracts/169653/deep-learning-based-image-classifiers-for-detection-of-cssvd-in-cacao-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">201</span> Heart Ailment Prediction Using Machine Learning Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhigyan%20Hedau">Abhigyan Hedau</a>, <a href="https://publications.waset.org/abstracts/search?q=Priya%20Shelke"> Priya Shelke</a>, <a href="https://publications.waset.org/abstracts/search?q=Riddhi%20Mirajkar"> Riddhi Mirajkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shreyash%20Chaple"> Shreyash Chaple</a>, <a href="https://publications.waset.org/abstracts/search?q=Mrunali%20Gadekar"> Mrunali Gadekar</a>, <a href="https://publications.waset.org/abstracts/search?q=Himanshu%20Akula"> Himanshu Akula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title="logistic regression">logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20classifier" title=" support vector classifier"> support vector classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=k-nearest%20neighbour" title=" k-nearest neighbour"> k-nearest neighbour</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest%20and%20gradient%20boosting" title=" random forest and gradient boosting"> random forest and gradient boosting</a> </p> <a href="https://publications.waset.org/abstracts/184353/heart-ailment-prediction-using-machine-learning-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">200</span> Bilingualism: A Case Study of Assamese and Bodo Classifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samhita%20Bharadwaj">Samhita Bharadwaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This is an empirical study of classifiers in Assamese and Bodo, two genetically unrelated languages of India. The objective of the paper is to address the language contact between Assamese and Bodo as reflected in classifiers. The data has been collected through fieldwork in Bodo recording narratives and folk tales and eliciting specific data from the speakers. The data for Assamese is self-produced as native speaker of the language. Assamese is the easternmost New-Indo-Aryan (henceforth NIA) language mainly spoken in the Brahmaputra valley of Assam and some other north-eastern states of India. It is the lingua franca of Assam and is creolised in the neighbouring state of Nagaland. Bodo, on the other hand, is a Tibeto-Burman (henceforth TB) language of the Bodo-Garo group. It has the highest number of speakers among the TB languages of Assam. However, compared to Assamese, it is still a lesser documented language and due to the prestige of Assamese, all the Bodo speakers are fluent bi-lingual in Assamese, though the opposite isn’t the case. With this context, classifiers, a characteristic phenomenon of TB languages, but not so much of NIA languages, presents an interesting case study on language contact caused by bilingualism. Assamese, as a result of its language contact with the TB languages which are rich in classifiers; has developed the richest classifier system among the IA languages in India. Yet, as a part of rampant borrowing of Assamese words and patterns into Bodo; Bodo is seen to borrow even Assamese classifiers into its system. This paper analyses the borrowed classifiers of Bodo and finds the route of this borrowing phenomenon in the number system of the languages. As the Bodo speakers start replacing the higher numbers from five with Assamese ones, they also choose the Assamese classifiers to attach to these numbers. Thus, the partial loss of number in Bodo as a result of language contact and bilingualism in Assamese is found to be the reason behind the borrowing of classifiers in Bodo. The significance of the study lies in exploring an interesting aspect of language contact in Assam. It is hoped that this will attract further research on bilingualism and classifiers in Assam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assamese" title="Assamese">Assamese</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-lingual" title=" bi-lingual"> bi-lingual</a>, <a href="https://publications.waset.org/abstracts/search?q=Bodo" title=" Bodo"> Bodo</a>, <a href="https://publications.waset.org/abstracts/search?q=borrowing" title=" borrowing"> borrowing</a>, <a href="https://publications.waset.org/abstracts/search?q=classifier" title=" classifier"> classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20contact" title=" language contact"> language contact</a> </p> <a href="https://publications.waset.org/abstracts/79775/bilingualism-a-case-study-of-assamese-and-bodo-classifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">199</span> Use of Fractal Geometry in Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuad%20M.%20Alkoot">Fuad M. Alkoot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main component of a machine learning system is the classifier. Classifiers are mathematical models that can perform classification tasks for a specific application area. Additionally, many classifiers are combined using any of the available methods to reduce the classifier error rate. The benefits gained from the combination of multiple classifier designs has motivated the development of diverse approaches to multiple classifiers. We aim to investigate using fractal geometry to develop an improved classifier combiner. Initially we experiment with measuring the fractal dimension of data and use the results in the development of a combiner strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractal%20geometry" title="fractal geometry">fractal geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=classifier" title=" classifier"> classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20dimension" title=" fractal dimension"> fractal dimension</a> </p> <a href="https://publications.waset.org/abstracts/141274/use-of-fractal-geometry-in-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">198</span> Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muthukumarasamy%20Govindarajan">Muthukumarasamy Govindarajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy" title="accuracy">accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=arcing" title=" arcing"> arcing</a>, <a href="https://publications.waset.org/abstracts/search?q=bagging" title=" bagging"> bagging</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Naive%20Bayes" title=" Naive Bayes"> Naive Bayes</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20mining" title=" sentiment mining"> sentiment mining</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/112240/sentiment-analysis-of-ensemble-based-classifiers-for-e-mail-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">197</span> Assessment of Planet Image for Land Cover Mapping Using Soft and Hard Classifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lamyaa%20Gamal%20El-Deen%20Taha">Lamyaa Gamal El-Deen Taha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Sharawi"> Ashraf Sharawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Planet image is a new data source from planet lab. This research is concerned with the assessment of Planet image for land cover mapping. Two pixel based classifiers and one subpixel based classifier were compared. Firstly, rectification of Planet image was performed. Secondly, a comparison between minimum distance, maximum likelihood and neural network classifications for classification of Planet image was performed. Thirdly, the overall accuracy of classification and kappa coefficient were calculated. Results indicate that neural network classification is best followed by maximum likelihood classifier then minimum distance classification for land cover mapping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=planet%20image" title="planet image">planet image</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover%20mapping" title=" land cover mapping"> land cover mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=rectification" title=" rectification"> rectification</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network%20classification" title=" neural network classification"> neural network classification</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20perceptron" title=" multilayer perceptron"> multilayer perceptron</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20classifiers" title=" soft classifiers"> soft classifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20classifiers" title=" hard classifiers"> hard classifiers</a> </p> <a href="https://publications.waset.org/abstracts/89202/assessment-of-planet-image-for-land-cover-mapping-using-soft-and-hard-classifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">196</span> Multi-Sensor Target Tracking Using Ensemble Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhekisipho%20Twala">Bhekisipho Twala</a>, <a href="https://publications.waset.org/abstracts/search?q=Mantepu%20Masetshaba"> Mantepu Masetshaba</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramapulana%20Nkoana"> Ramapulana Nkoana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfill requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20classifier" title="single classifier">single classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble%20learning" title=" ensemble learning"> ensemble learning</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-target%20tracking" title=" multi-target tracking"> multi-target tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20classifiers" title=" multiple classifiers"> multiple classifiers</a> </p> <a href="https://publications.waset.org/abstracts/140816/multi-sensor-target-tracking-using-ensemble-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">195</span> A Video Surveillance System Using an Ensemble of Simple Neural Network Classifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20S.%20Moreira">Rodrigo S. Moreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Nelson%20F.%20F.%20Ebecken"> Nelson F. F. Ebecken</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a maritime vessel tracker composed of an ensemble of WiSARD weightless neural network classifiers. A failure detector analyzes vessel movement with a Kalman filter and corrects the tracking, if necessary, using FFT matching. The use of the WiSARD neural network to track objects is uncommon. The additional contributions of the present study include a performance comparison with four state-of-art trackers, an experimental study of the features that improve maritime vessel tracking, the first use of an ensemble of classifiers to track maritime vessels and a new quantization algorithm that compares the values of pixel pairs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ram%20memory" title="ram memory">ram memory</a>, <a href="https://publications.waset.org/abstracts/search?q=WiSARD%20weightless%20neural%20network" title=" WiSARD weightless neural network"> WiSARD weightless neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20tracking" title=" object tracking"> object tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=quantization" title=" quantization"> quantization</a> </p> <a href="https://publications.waset.org/abstracts/49928/a-video-surveillance-system-using-an-ensemble-of-simple-neural-network-classifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">194</span> 2D Point Clouds Features from Radar for Helicopter Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danilo%20Habermann">Danilo Habermann</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Medella"> Aleksander Medella</a>, <a href="https://publications.waset.org/abstracts/search?q=Carla%20Cremon"> Carla Cremon</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusef%20Caceres"> Yusef Caceres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to analyze the ability of 2d point clouds features to classify different models of helicopters using radars. This method does not need to estimate the blade length, the number of blades of helicopters, and the period of their micro-Doppler signatures. It is also not necessary to generate spectrograms (or any other image based on time and frequency domain). This work transforms a radar return signal into a 2D point cloud and extracts features of it. Three classifiers are used to distinguish 9 different helicopter models in order to analyze the performance of the features used in this work. The high accuracy obtained with each of the classifiers demonstrates that the 2D point clouds features are very useful for classifying helicopters from radar signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helicopter%20classification" title="helicopter classification">helicopter classification</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20clouds%20features" title=" point clouds features"> point clouds features</a>, <a href="https://publications.waset.org/abstracts/search?q=radar" title=" radar"> radar</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20classifiers" title=" supervised classifiers"> supervised classifiers</a> </p> <a href="https://publications.waset.org/abstracts/85676/2d-point-clouds-features-from-radar-for-helicopter-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">193</span> Theater Metaphor in Event Quantification: A Corpus Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuo%20Jing-Schmidt">Zhuo Jing-Schmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Lang"> Jun Lang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numeral classifiers are common in Asian languages. Research on numeral classifiers primarily focuses on noun classifiers that quantify and individuate nominal referents. There is a scarcity of research on event quantification using verb classifiers. This study aims to understand the semantic and conceptual basis of event quantification in Chinese. From a usage-based Construction Grammar perspective, this study presents a corpus analysis of event quantification in Chinese. Drawing on a large balanced corpus of contemporary Chinese, we analyze 667 NOUN col-lexemes totaling 31136 tokens of a productive numeral classifier construction in Chinese. Using collostructional analysis of the collexemes, the results show that the construction quantifies and classifies dramatic events using a theater-based conceptual metaphor. We argue that the usage patterns reflect the cultural entrenchment of theater as in Chinese conceptualization and the construal of theatricality in linguistic expression. The study has implications for cognitive semantics and construction grammar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=event%20quantification" title="event quantification">event quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=classifier" title=" classifier"> classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=corpus" title=" corpus"> corpus</a>, <a href="https://publications.waset.org/abstracts/search?q=metaphor" title=" metaphor"> metaphor</a> </p> <a href="https://publications.waset.org/abstracts/171981/theater-metaphor-in-event-quantification-a-corpus-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">192</span> Random Subspace Ensemble of CMAC Classifiers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somaiyeh%20Dehghan">Somaiyeh Dehghan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Kheirkhahan%20Haghighi"> Mohammad Reza Kheirkhahan Haghighi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid growth of domains that have data with a large number of features, while the number of samples is limited has caused difficulty in constructing strong classifiers. To reduce the dimensionality of the feature space becomes an essential step in classification task. Random subspace method (or attribute bagging) is an ensemble classifier that consists of several classifiers that each base learner in ensemble has subset of features. In the present paper, we introduce Random Subspace Ensemble of CMAC neural network (RSE-CMAC), each of which has training with subset of features. Then we use this model for classification task. For evaluation performance of our model, we compare it with bagging algorithm on 36 UCI datasets. The results reveal that the new model has better performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20subspace" title=" random subspace"> random subspace</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble" title=" ensemble"> ensemble</a>, <a href="https://publications.waset.org/abstracts/search?q=CMAC%20neural%20network" title=" CMAC neural network"> CMAC neural network</a> </p> <a href="https://publications.waset.org/abstracts/14371/random-subspace-ensemble-of-cmac-classifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">191</span> Performance Evaluation of Contemporary Classifiers for Automatic Detection of Epileptic EEG</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20E.%20Ch.%20Vidyasagar">K. E. Ch. Vidyasagar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Moghavvemi"> M. Moghavvemi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20S.%20T.%20Prabhat"> T. S. S. T. Prabhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epilepsy is a global problem, and with seizures eluding even the smartest of diagnoses a requirement for automatic detection of the same using electroencephalogram (EEG) would have a huge impact in diagnosis of the disorder. Among a multitude of methods for automatic epilepsy detection, one should find the best method out, based on accuracy, for classification. This paper reasons out, and rationalizes, the best methods for classification. Accuracy is based on the classifier, and thus this paper discusses classifiers like quadratic discriminant analysis (QDA), classification and regression tree (CART), support vector machine (SVM), naive Bayes classifier (NBC), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and artificial neural networks (ANN). Results show that ANN is the most accurate of all the above stated classifiers with 97.7% accuracy, 97.25% specificity and 98.28% sensitivity in its merit. This is followed closely by SVM with 1% variation in result. These results would certainly help researchers choose the best classifier for detection of epilepsy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=seizure" title=" seizure"> seizure</a>, <a href="https://publications.waset.org/abstracts/search?q=KNN" title=" KNN"> KNN</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=LDA" title=" LDA"> LDA</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=epilepsy" title=" epilepsy"> epilepsy</a> </p> <a href="https://publications.waset.org/abstracts/14692/performance-evaluation-of-contemporary-classifiers-for-automatic-detection-of-epileptic-eeg" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">190</span> A Study on the Acquisition of Chinese Classifiers by Vietnamese Learners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quoc%20Hung%20Le%20Pham">Quoc Hung Le Pham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of language study, classifier is an interesting research feature. In the world’s languages, some languages have classifier system, some do not. Mandarin Chinese and Vietnamese languages are a rich classifier system, however, because of the language system, the cognitive, cultural differences, so that the syntactic structure of classifier of them also dissimilar. When using Mandarin Chinese classifiers must collocate with nouns or verbs, in the lexical category it is not like nouns or verbs, belong to the open class. But some scholars believe that Mandarin Chinese measure words are similar to English and other Indo European languages. The word hanging on the structure and word formation (suffix), is a closed class. Compared to other languages, such as Chinese, Vietnamese, Thai and other Asian languages are still belonging to the classifier language’s second type, this type of language is classifier, it is in the majority of quantity must exist, and following deictic, anaphoric or quantity appearing together, not separation between its modified noun, also known as numeral classifier language. Main syntactic structure of Chinese classifiers are as follows: ‘quantity+measure+noun’, ‘pronoun+measure+noun’, ‘pronoun+quantity+measure+noun’, ‘prefix+quantity+measure +noun’, ‘quantity +adjective + measure +noun’, ‘ quantity (above 10 whole number), + duo (多)measure +noun’, ‘ quantity (around 10) + measure + duo (多) +noun’. Main syntactic structure of Vietnamese classifiers are: ‘quantity+measure+noun’, ‘ measure+noun+pronoun’, ‘quantity+measure+noun+pronoun’, ‘measure+noun+prefix+ quantity’, ‘quantity+measure+noun+adjective', ‘duo (多) +quanlity+measure+noun’, ‘quantity+measure+adjective+pronoun (quantity word could not be 1)’, ‘measure+adjective+pronoun’, ‘measure+pronoun’. In daily life, classifiers are commonly used, if Chinese learners failed to standardize this using catergory, because the negative impact might occur on their verbal communication. The richness of the Chinese classifier system contributes to the complexity in the study of the system by foreign learners, especially in the inter language of Vietnamese learners. As above mentioned, Vietnamese language also has a rich system of classifiers, however, the basic structure order of two languages are similar but both still have differences. These similarities and dissimilarities between Chinese and Vietnamese classifier systems contribute significantly to the common errors made by Vietnamese students while they acquire Chinese, which are distinct from the errors made by students from the other language background. This article from a comparative perspective of language, has an orientation towards Chinese and Vietnamese languages commonly used in classifiers semantics and structural form two aspects. This comparative study aims to identity Vietnamese students while learning Chinese classifiers may face some negative transference of mother language, beside that through the analysis of the classifiers questionnaire, find out the causes and patterns of the errors they made. As the preliminary analysis shows, Vietnamese students while learning Chinese classifiers made some errors such as: overuse classifier ‘ge’(个); misuse the other classifiers ‘*yi zhang ri ji’(yi pian ri ji), ‘*yi zuo fang zi’(yi jian fang zi), ‘*si zhang jin pai’(si mei jin pai); homonym words ‘dui, shuang, fu, tao’ (对、双、副、套), ‘ke, li’ (颗、粒). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acquisition" title="acquisition">acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=classifiers" title=" classifiers"> classifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20transfer" title=" negative transfer"> negative transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=Vietnamse%20learners" title=" Vietnamse learners"> Vietnamse learners</a> </p> <a href="https://publications.waset.org/abstracts/65522/a-study-on-the-acquisition-of-chinese-classifiers-by-vietnamese-learners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">189</span> The Use of Classifiers in Image Analysis of Oil Wells Profiling Process and the Automatic Identification of Events</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaqueline%20Maria%20Ribeiro%20Vieira">Jaqueline Maria Ribeiro Vieira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different strategies and tools are available at the oil and gas industry for detecting and analyzing tension and possible fractures in borehole walls. Most of these techniques are based on manual observation of the captured borehole images. While this strategy may be possible and convenient with small images and few data, it may become difficult and suitable to errors when big databases of images must be treated. While the patterns may differ among the image area, depending on many characteristics (drilling strategy, rock components, rock strength, etc.). Previously we developed and proposed a novel strategy capable of detecting patterns at borehole images that may point to regions that have tension and breakout characteristics, based on segmented images. In this work we propose the inclusion of data-mining classification strategies in order to create a knowledge database of the segmented curves. These classifiers allow that, after some time using and manually pointing parts of borehole images that correspond to tension regions and breakout areas, the system will indicate and suggest automatically new candidate regions, with higher accuracy. We suggest the use of different classifiers methods, in order to achieve different knowledge data set configurations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title="image segmentation">image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20well%20visualization" title=" oil well visualization"> oil well visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=classifiers" title=" classifiers"> classifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=data-mining" title=" data-mining"> data-mining</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20computer" title=" visual computer"> visual computer</a> </p> <a href="https://publications.waset.org/abstracts/13683/the-use-of-classifiers-in-image-analysis-of-oil-wells-profiling-process-and-the-automatic-identification-of-events" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">188</span> The Effect of Feature Selection on Pattern Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Fong%20Tsai">Chih-Fong Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya-Han%20Hu"> Ya-Han Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20classification" title=" pattern classification"> pattern classification</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction" title=" dimensionality reduction"> dimensionality reduction</a> </p> <a href="https://publications.waset.org/abstracts/5047/the-effect-of-feature-selection-on-pattern-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">669</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">187</span> Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajvir%20Kaur">Rajvir Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeewani%20Anupama%20Ginige"> Jeewani Anupama Ginige</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=classifiers" title=" classifiers"> classifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=cervical%20cancer" title=" cervical cancer"> cervical cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=f-score" title=" f-score"> f-score</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=precision" title=" precision"> precision</a>, <a href="https://publications.waset.org/abstracts/search?q=recall" title=" recall"> recall</a> </p> <a href="https://publications.waset.org/abstracts/92517/comparative-evaluation-of-accuracy-of-selected-machine-learning-classification-techniques-for-diagnosis-of-cancer-a-data-mining-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">186</span> Evaluation of Ensemble Classifiers for Intrusion Detection </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Govindarajan">M. Govindarajan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection.&nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble" title=" ensemble"> ensemble</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function" title=" radial basis function"> radial basis function</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy" title=" accuracy"> accuracy</a> </p> <a href="https://publications.waset.org/abstracts/43650/evaluation-of-ensemble-classifiers-for-intrusion-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">185</span> Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aishwarya%20Ravindra%20Fursule">Aishwarya Ravindra Fursule</a>, <a href="https://publications.waset.org/abstracts/search?q=Shruti%20Kshirsagar"> Shruti Kshirsagar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparison" title="comparison">comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=ML%20classifiers" title=" ML classifiers"> ML classifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=KNN" title=" KNN"> KNN</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble%20classifiers" title=" ensemble classifiers"> ensemble classifiers</a> </p> <a href="https://publications.waset.org/abstracts/185323/comparison-study-of-machine-learning-classifiers-for-speech-emotion-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">184</span> Semantic Differences between Bug Labeling of Different Repositories via Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Khanal">Pooja Khanal</a>, <a href="https://publications.waset.org/abstracts/search?q=Huaming%20Zhang"> Huaming Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Labeling of issues/bugs, also known as bug classification, plays a vital role in software engineering. Some known labels/classes of bugs are 'User Interface', 'Security', and 'API'. Most of the time, when a reporter reports a bug, they try to assign some predefined label to it. Those issues are reported for a project, and each project is a repository in GitHub/GitLab, which contains multiple issues. There are many software project repositories -ranging from individual projects to commercial projects. The labels assigned for different repositories may be dependent on various factors like human instinct, generalization of labels, label assignment policy followed by the reporter, etc. While the reporter of the issue may instinctively give that issue a label, another person reporting the same issue may label it differently. This way, it is not known mathematically if a label in one repository is similar or different to the label in another repository. Hence, the primary goal of this research is to find the semantic differences between bug labeling of different repositories via machine learning. Independent optimal classifiers for individual repositories are built first using the text features from the reported issues. The optimal classifiers may include a combination of multiple classifiers stacked together. Then, those classifiers are used to cross-test other repositories which leads the result to be deduced mathematically. The produce of this ongoing research includes a formalized open-source GitHub issues database that is used to deduce the similarity of the labels pertaining to the different repositories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bug%20classification" title="bug classification">bug classification</a>, <a href="https://publications.waset.org/abstracts/search?q=bug%20labels" title=" bug labels"> bug labels</a>, <a href="https://publications.waset.org/abstracts/search?q=GitHub%20issues" title=" GitHub issues"> GitHub issues</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20differences" title=" semantic differences"> semantic differences</a> </p> <a href="https://publications.waset.org/abstracts/133701/semantic-differences-between-bug-labeling-of-different-repositories-via-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">183</span> Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mehdi%20Ghezi">Seyed Mehdi Ghezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesam%20Hasanpoor"> Hesam Hasanpoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ensemble%20learning" title="ensemble learning">ensemble learning</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20signals" title=" brain signals"> brain signals</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20methods" title=" optimization methods"> optimization methods</a>, <a href="https://publications.waset.org/abstracts/search?q=influential%20features" title=" influential features"> influential features</a>, <a href="https://publications.waset.org/abstracts/search?q=influential%20electrodes" title=" influential electrodes"> influential electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-classifiers" title=" meta-classifiers"> meta-classifiers</a> </p> <a href="https://publications.waset.org/abstracts/177312/methods-for-enhancing-ensemble-learning-or-improving-classifiers-of-this-technique-in-the-analysis-and-classification-of-brain-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">182</span> Enhance the Power of Sentiment Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Zhang">Yu Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Desouza"> Pedro Desouza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modelling and testing work was done in R and Greenplum in-database analytic tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title="sentiment analysis">sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20media" title=" social media"> social media</a>, <a href="https://publications.waset.org/abstracts/search?q=Twitter" title=" Twitter"> Twitter</a>, <a href="https://publications.waset.org/abstracts/search?q=Amazon" title=" Amazon"> Amazon</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a> </p> <a href="https://publications.waset.org/abstracts/5977/enhance-the-power-of-sentiment-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">181</span> Rank-Based Chain-Mode Ensemble for Binary Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chongya%20Song">Chongya Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang%20Yen"> Kang Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Pons"> Alexander Pons</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Liu"> Jin Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called &ldquo;curse of correlation&rdquo; which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consensus" title="consensus">consensus</a>, <a href="https://publications.waset.org/abstracts/search?q=curse%20of%20correlation" title=" curse of correlation"> curse of correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=imbalance%20classification" title=" imbalance classification"> imbalance classification</a>, <a href="https://publications.waset.org/abstracts/search?q=rank-based%20chain-mode%20ensemble" title=" rank-based chain-mode ensemble"> rank-based chain-mode ensemble</a> </p> <a href="https://publications.waset.org/abstracts/112891/rank-based-chain-mode-ensemble-for-binary-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">180</span> Detection and Classification of Mammogram Images Using Principle Component Analysis and Lazy Classifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Kolangarakandy">Rajkumar Kolangarakandy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Feature extraction and selection is the primary part of any mammogram classification algorithms. The choice of feature, attribute or measurements have an important influence in any classification system. Discrete Wavelet Transformation (DWT) coefficients are one of the prominent features for representing images in frequency domain. The features obtained after the decomposition of the mammogram images using wavelet transformations have higher dimension. Even though the features are higher in dimension, they were highly correlated and redundant in nature. The dimensionality reduction techniques play an important role in selecting the optimum number of features from the higher dimension data, which are highly correlated. PCA is a mathematical tool that reduces the dimensionality of the data while retaining most of the variation in the dataset. In this paper, a multilevel classification of mammogram images using reduced discrete wavelet transformation coefficients and lazy classifiers is proposed. The classification is accomplished in two different levels. In the first level, mammogram ROIs extracted from the dataset is classified as normal and abnormal types. In the second level, all the abnormal mammogram ROIs is classified into benign and malignant too. A further classification is also accomplished based on the variation in structure and intensity distribution of the images in the dataset. The Lazy classifiers called Kstar, IBL and LWL are used for classification. The classification results obtained with the reduced feature set is highly promising and the result is also compared with the performance obtained without dimension reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PCA" title="PCA">PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20transformation" title=" wavelet transformation"> wavelet transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=lazy%20classifiers" title=" lazy classifiers"> lazy classifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=Kstar" title=" Kstar"> Kstar</a>, <a href="https://publications.waset.org/abstracts/search?q=IBL" title=" IBL"> IBL</a>, <a href="https://publications.waset.org/abstracts/search?q=LWL" title=" LWL"> LWL</a> </p> <a href="https://publications.waset.org/abstracts/36911/detection-and-classification-of-mammogram-images-using-principle-component-analysis-and-lazy-classifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">179</span> Development of Fake News Model Using Machine Learning through Natural Language Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Ahmed">Sajjad Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Knut%20Hinkelmann"> Knut Hinkelmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Corradini"> Flavio Corradini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Na&iuml;ve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fake%20news%20detection" title="fake news detection">fake news detection</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20techniques." title=" classification techniques. "> classification techniques. </a> </p> <a href="https://publications.waset.org/abstracts/127894/development-of-fake-news-model-using-machine-learning-through-natural-language-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">178</span> Detecting Hate Speech And Cyberbullying Using Natural Language Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N%C3%A1dia%20Pereira">Nádia Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20Ferreira"> Paula Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Francisco"> Sofia Francisco</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Oliveira"> Sofia Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Sidclay%20Souza"> Sidclay Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20Paulino"> Paula Paulino</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Margarida%20Veiga%20Sim%C3%A3o"> Ana Margarida Veiga Simão</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Social media has progressed into a platform for hate speech among its users, and thus, there is an increasing need to develop automatic detection classifiers of offense and conflicts to help decrease the prevalence of such incidents. Online communication can be used to intentionally harm someone, which is why such classifiers could be essential in social networks. A possible application of these classifiers is the automatic detection of cyberbullying. Even though identifying the aggressive language used in online interactions could be important to build cyberbullying datasets, there are other criteria that must be considered. Being able to capture the language, which is indicative of the intent to harm others in a specific context of online interaction is fundamental. Offense and hate speech may be the foundation of online conflicts, which have become commonly used in social media and are an emergent research focus in machine learning and natural language processing. This study presents two Portuguese language offense-related datasets which serve as examples for future research and extend the study of the topic. The first is similar to other offense detection related datasets and is entitled Aggressiveness dataset. The second is a novelty because of the use of the history of the interaction between users and is entitled the Conflicts/Attacks dataset. Both datasets were developed in different phases. Firstly, we performed a content analysis of verbal aggression witnessed by adolescents in situations of cyberbullying. Secondly, we computed frequency analyses from the previous phase to gather lexical and linguistic cues used to identify potentially aggressive conflicts and attacks which were posted on Twitter. Thirdly, thorough annotation of real tweets was performed byindependent postgraduate educational psychologists with experience in cyberbullying research. Lastly, we benchmarked these datasets with other machine learning classifiers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggression" title="aggression">aggression</a>, <a href="https://publications.waset.org/abstracts/search?q=classifiers" title=" classifiers"> classifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=cyberbullying" title=" cyberbullying"> cyberbullying</a>, <a href="https://publications.waset.org/abstracts/search?q=datasets" title=" datasets"> datasets</a>, <a href="https://publications.waset.org/abstracts/search?q=hate%20speech" title=" hate speech"> hate speech</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/142382/detecting-hate-speech-and-cyberbullying-using-natural-language-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">177</span> Multi-Channel Information Fusion in C-OTDR Monitoring Systems: Various Approaches to Classify of Targeted Events</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrey%20V.%20Timofeev">Andrey V. Timofeev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents new results concerning selection of optimal information fusion formula for ensembles of C-OTDR channels. The goal of information fusion is to create an integral classificator designed for effective classification of seismoacoustic target events. The LPBoost (LP-β and LP-B variants), the Multiple Kernel Learning, and Weighing of Inversely as Lipschitz Constants (WILC) approaches were compared. The WILC is a brand new approach to optimal fusion of Lipschitz Classifiers Ensembles. Results of practical usage are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lipschitz%20Classifier" title="Lipschitz Classifier">Lipschitz Classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=classifiers%20ensembles" title=" classifiers ensembles"> classifiers ensembles</a>, <a href="https://publications.waset.org/abstracts/search?q=LPBoost" title=" LPBoost"> LPBoost</a>, <a href="https://publications.waset.org/abstracts/search?q=C-OTDR%20systems" title=" C-OTDR systems"> C-OTDR systems</a> </p> <a href="https://publications.waset.org/abstracts/21072/multi-channel-information-fusion-in-c-otdr-monitoring-systems-various-approaches-to-classify-of-targeted-events" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">176</span> Multi-Class Text Classification Using Ensembles of Classifiers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Basit%20Ali%20Shah%20Bukhari">Syed Basit Ali Shah Bukhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20%20Qiang"> Yan Qiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20Abdul%20Rauf"> Saad Abdul Rauf</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Saqlaina%20Bukhari"> Syed Saqlaina Bukhari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Text Classification is the methodology to classify any given text into the respective category from a given set of categories. It is highly important and vital to use proper set of pre-processing , feature selection and classification techniques to achieve this purpose. In this paper we have used different ensemble techniques along with variance in feature selection parameters to see the change in overall accuracy of the result and also on some other individual class based features which include precision value of each individual category of the text. After subjecting our data through pre-processing and feature selection techniques , different individual classifiers were tested first and after that classifiers were combined to form ensembles to increase their accuracy. Later we also studied the impact of decreasing the classification categories on over all accuracy of data. Text classification is highly used in sentiment analysis on social media sites such as twitter for realizing people’s opinions about any cause or it is also used to analyze customer’s reviews about certain products or services. Opinion mining is a vital task in data mining and text categorization is a back-bone to opinion mining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natural%20Language%20Processing" title="Natural Language Processing">Natural Language Processing</a>, <a href="https://publications.waset.org/abstracts/search?q=Ensemble%20Classifier" title=" Ensemble Classifier"> Ensemble Classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=Bagging%20Classifier" title=" Bagging Classifier"> Bagging Classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=AdaBoost" title=" AdaBoost"> AdaBoost</a> </p> <a href="https://publications.waset.org/abstracts/123394/multi-class-text-classification-using-ensembles-of-classifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">175</span> Evaluate the Changes in Stress Level Using Facial Thermal Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Derakhshan">Amin Derakhshan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mikaili"> Mohammad Mikaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Khalilzadeh"> Mohammad Ali Khalilzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Mohammadian"> Amin Mohammadian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a stress recognition system from multi-modal bio-potential signals. For stress recognition, Support Vector Machines (SVM) and LDA are applied to design the stress classifiers and its characteristics are investigated. Using gathered data under psychological polygraph experiments, the classifiers are trained and tested. The pattern recognition method classifies stressful from non-stressful subjects based on labels which come from polygraph data. The successful classification rate is 96% for 12 subjects. It means that facial thermal imaging due to its non-contact advantage could be a remarkable alternative for psycho-physiological methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress" title="stress">stress</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20imaging" title=" thermal imaging"> thermal imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=face" title=" face"> face</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=polygraph" title=" polygraph"> polygraph</a> </p> <a href="https://publications.waset.org/abstracts/8628/evaluate-the-changes-in-stress-level-using-facial-thermal-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">174</span> Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Kirandziska">Vesna Kirandziska</a>, <a href="https://publications.waset.org/abstracts/search?q=Nevena%20Ackovska"> Nevena Ackovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Madevska%20Bogdanova"> Ana Madevska Bogdanova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emotion%20recognition" title="emotion recognition">emotion recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20recognition" title=" facial recognition"> facial recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/42384/comparing-emotion-recognition-from-voice-and-facial-data-using-time-invariant-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=classifiers&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=classifiers&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=classifiers&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=classifiers&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=classifiers&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=classifiers&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=classifiers&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10