CINXE.COM

Search results for: elastic light scattering spectroscopy

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: elastic light scattering spectroscopy</title> <meta name="description" content="Search results for: elastic light scattering spectroscopy"> <meta name="keywords" content="elastic light scattering spectroscopy"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="elastic light scattering spectroscopy" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="elastic light scattering spectroscopy"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6439</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: elastic light scattering spectroscopy</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6439</span> Interaction of Low-Energy Positrons with Mg Atoms: Elastic Scattering, Bound States, and Annihilation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahasen%20M.%20Abdel%20Mageed">Mahasen M. Abdel Mageed</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Zaghloul"> H. S. Zaghloul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Annihilations, phase shifts, scattering lengths, and elastic cross sections of low energy positrons scattering from magnesium atoms were studied using the least-squares variational method (LSVM). The possibility of positron binding to the magnesium atoms is investigated. A trial wavefunction is suggested to represent e+-Mg elastic scattering and scattering parameters were derived to estimate the binding energy and annihilation rates. The trial function is taken to depend on several adjustable parameters and is improved iteratively by increasing the number of terms. The present results have the same behavior as reported semi-empirical, theoretical, and experimental results. Especially, the estimated positive scattering length supports the possibility of positron-magnesium bound state system that was confirmed in previous experimental and theoretical work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bound%20wavefunction" title="bound wavefunction">bound wavefunction</a>, <a href="https://publications.waset.org/abstracts/search?q=positron%20annihilation" title=" positron annihilation"> positron annihilation</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering%20phase%20shift" title=" scattering phase shift"> scattering phase shift</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering%20length" title=" scattering length"> scattering length</a> </p> <a href="https://publications.waset.org/abstracts/20154/interaction-of-low-energy-positrons-with-mg-atoms-elastic-scattering-bound-states-and-annihilation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6438</span> Further Investigation of α+12C and α+16O Elastic Scattering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Hamada">Sh. Hamada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current work aims to study the rainbow like-structure observed in the elastic scattering of alpha particles on both <sup>12</sup>C and <sup>16</sup>O nuclei. We reanalyzed the experimental elastic scattering angular distributions data for α+<sup>12</sup>C and α+<sup>16</sup>O nuclear systems at different energies using both optical model and double folding potential of different interaction models such as: CDM3Y1, DDM3Y1, CDM3Y6 and BDM3Y1. Potential created by BDM3Y1 interaction model has the shallowest depth which reflects the necessity to use higher renormalization factor (<strong><em>N<sub>r</sub></em></strong>). Both optical model and double folding potential of different interaction models fairly reproduce the experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20distribution" title="density distribution">density distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20folding" title=" double folding"> double folding</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20scattering" title=" elastic scattering"> elastic scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20rainbow" title=" nuclear rainbow"> nuclear rainbow</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20model" title=" optical model"> optical model</a> </p> <a href="https://publications.waset.org/abstracts/61332/further-investigation-of-a12c-and-a16o-elastic-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6437</span> Light-Scattering Characteristics of Ordered Arrays Nobel Metal Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yassine%20Ait-El-Aoud">Yassine Ait-El-Aoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Okomoto"> Michael Okomoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20M.%20Luce"> Andrew M. Luce</a>, <a href="https://publications.waset.org/abstracts/search?q=Alkim%20Akyurtlu"> Alkim Akyurtlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20M.%20Osgood%20III"> Richard M. Osgood III</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Light scattering of metal nanoparticles (NPs) has a unique, and technologically important effect on enhancing light absorption in substrates because most of the light scatters into the substrate near the localized plasmon resonance of the NPs. The optical response, such as the resonant frequency and forward- and backward-scattering, can be tuned to trap light over a certain spectral region by adjusting the nanoparticle material size, shape, aggregation state, Metallic vs. insulating state, as well as local environmental conditions. In this work, we examined the light scattering characteristics of ordered arrays of metal nanoparticles and the light trapping, in order to enhance absorption, by measuring the forward- and backward-scattering using a UV/VIS/NIR spectrophotometer. Samples were fabricated using the popular self-assembly process method: dip coating, combined with nanosphere lithography. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dip%20coating" title="dip coating">dip coating</a>, <a href="https://publications.waset.org/abstracts/search?q=light-scattering" title=" light-scattering"> light-scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20nanoparticles" title=" metal nanoparticles"> metal nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosphere%20lithography" title=" nanosphere lithography"> nanosphere lithography</a> </p> <a href="https://publications.waset.org/abstracts/58313/light-scattering-characteristics-of-ordered-arrays-nobel-metal-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6436</span> Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=May%20Fadheel%20Estephan">May Fadheel Estephan</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Perks"> Richard Perks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. Research Aim: The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a noninvasive optical technique that can be used to characterize the size and concentration of particles in a solution. Methodology: An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2, 0.8, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. Findings: The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. Theoretical Importance: The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a noninvasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. Data Collection: The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. Analysis Procedures: The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. Question Addressed: The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. Conclusion: The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a noninvasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20light%20scattering%20spectroscopy" title="elastic light scattering spectroscopy">elastic light scattering spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene%20spheres%20in%20suspension" title=" polystyrene spheres in suspension"> polystyrene spheres in suspension</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20probe" title=" optical probe"> optical probe</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre%20optics" title=" fibre optics"> fibre optics</a> </p> <a href="https://publications.waset.org/abstracts/167454/developing-optical-sensors-with-application-of-cancer-detection-by-elastic-light-scattering-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6435</span> MONDO Neutron Tracker Characterisation by Means of Proton Therapeutical Beams and MonteCarlo Simulation Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Traini">G. Traini</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Giacometti"> V. Giacometti</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mirabelli"> R. Mirabelli</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Patera"> V. Patera</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pinci"> D. Pinci</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sarti"> A. Sarti</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sciubba"> A. Sciubba</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Marafini"> M. Marafini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The MONDO (MOnitor for Neutron Dose in hadrOntherapy) project aims a precise characterisation of the secondary fast and ultrafast neutrons produced in particle therapy treatments. The detector is composed of a matrix of scintillating fibres (250 um) readout by CMOS Digital-SPAD based sensors. Recoil protons from n-p elastic scattering are detected and used to track neutrons. A prototype was tested with proton beams (Trento Proton Therapy Centre): efficiency, light yield, and track-reconstruction capability were studied. The results of a MonteCarlo FLUKA simulation used to evaluated double scattering efficiency and expected backgrounds will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=secondary%20neutrons" title="secondary neutrons">secondary neutrons</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20therapy" title=" particle therapy"> particle therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking" title=" tracking"> tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20scattering" title=" elastic scattering"> elastic scattering</a> </p> <a href="https://publications.waset.org/abstracts/73773/mondo-neutron-tracker-characterisation-by-means-of-proton-therapeutical-beams-and-montecarlo-simulation-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6434</span> Modified Single-Folded Potentials for the Alpha-²⁴Mg and Alpha-²⁸Si Elastic Scattering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20A.%20Abdullah">M. N. A. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Pritha%20Roy"> Pritha Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20Shil"> R. R. Shil</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20R.%20Sarker"> D. R. Sarker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alpha-nucleus interaction is obscured because it produces enhanced cross-sections at large scattering angles known as anomaly in large angle scattering (ALAS). ALAS is prominent in the elastic scattering of α-particles as well as in non-elastic processes involving α-particles for incident energies up to 50 MeV and for targets of mass A ≤ 50. The Woods-Saxon type of optical model potential fails to describe the processes in a consistent manner. Folded potential is a good candidate and often used to construct the potential which is derived from the microscopic as well as semi-microscopic folding calculations. The present work reports the analyses of the elastic scattering of α-particles from ²⁴Mg and ²⁸Si at Eα=22-100 MeV and 14.4-120 MeV incident energies respectively in terms of the modified single-folded (MSF) potential. To derive the MSF potential, we take the view that the nucleons in the target nuclei ²⁴Mg and ²⁸Si are primarily in α-like clusters and the rest of the time in unclustered nucleonic configuration. The MSF potential, found in this study, does not need any renormalization over the whole range of incident α energies, and the renormalization factor has been found to be exactly 1 for both the targets. The best-fit parameters yield 4Aα = 21 and AN = 3 for α-²⁴Mg potential, and 4Aα = 26 and AN = 2 for α-²⁸Si potential in time-average pictures. The root-mean-square radii of both ²⁴Mg and ²⁸Si are also deduced, and the results obtained from this work agree well with the outcomes of other studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20scattering" title="elastic scattering">elastic scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20model" title=" optical model"> optical model</a>, <a href="https://publications.waset.org/abstracts/search?q=folded%20potential" title=" folded potential"> folded potential</a>, <a href="https://publications.waset.org/abstracts/search?q=renormalization" title=" renormalization"> renormalization</a> </p> <a href="https://publications.waset.org/abstracts/76022/modified-single-folded-potentials-for-the-alpha-24mg-and-alpha-28si-elastic-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6433</span> Static Light Scattering Method for the Analysis of Raw Cow&#039;s Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Villa-Cruz">V. Villa-Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20P%C3%A9rez-Ladron%20de%20Guevara"> H. Pérez-Ladron de Guevara</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20E.%20Diaz-D%C3%ADaz"> J. E. Diaz-Díaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Static Light Scattering (SLS) was used as a method to analyse cow's milk raw, coming from the town of Lagos de Moreno, Jalisco, Mexico. This method is based on the analysis of the dispersion of light laser produced by a set of particles in solution. Based on the above, raw milk, which contains particles of fat globules, with a diameter of 2000 nm and particles of micelles of protein with 300 nm in diameter were analyzed. For this, dilutions of commercial milk were made (1.0%, 2.0% and 3.3%) to obtain a pattern of laser light scattering and also made measurements of raw cow's milk. Readings were taken in a sweep initial angle 10° to 170°, results were analyzed with the program OriginPro 7. The SLS method gives us an estimate of the percentage of fat content in milk samples. It can be concluded that the SLS method, is a quick method of analysis to detect adulteration in raw cow's milk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light%20scattering" title="light scattering">light scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20analysis" title=" milk analysis"> milk analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=adulteration%20in%20milk" title=" adulteration in milk"> adulteration in milk</a>, <a href="https://publications.waset.org/abstracts/search?q=micelles" title=" micelles"> micelles</a>, <a href="https://publications.waset.org/abstracts/search?q=OriginPro" title=" OriginPro "> OriginPro </a> </p> <a href="https://publications.waset.org/abstracts/28216/static-light-scattering-method-for-the-analysis-of-raw-cows-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6432</span> Measurements of Scattering Cross Sections for 5.895 keV Photons in Various Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Duggal">H. Duggal</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Singh"> G. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Singh"> G. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bhalla"> A. Bhalla</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kumar"> S. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Shahi"> J. S. Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Mehta"> D. Mehta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The total differential cross section for scattering of the 5.895 keV photons by various polymers has been measured at scattering angle of 135o. The experimental measurements were carried out using the energy dispersive setup involving annular source of the 55Fe radioisotope and a low energy germanium (LEGe) detector. The cross section values are measured for 20 polymer targets namely, Paraffin Wax, Polytetrafluoro ethylene (PTFE), Cellulose, Silicone oil, Polyvinyl alcohol (PVA), Polyvinyl purrolidone (PVP), Polymethyl methacrylate (PMMA), Kapton, Mylar, Chitosan, Polyvinyl chloride (PVC), Bakelite, Carbopol, Chlorobutyl rubber (CBR), Polyetylene glycol (PEG), Polysorbate-20, Nylon-6, Cetyl alcohol, Carboxyl methyl sodium cellulose and Sodium starch glucolate. The measurements were performed in vacuum so as to avoid scattering contribution due to air and strong absorption of low energy photons in the air column. In the present investigations, the geometrical factor and efficiency of the detector were determined by measuring the K x-rays emitted from the 22Ti and 23V targets excited by the Mn K x-rays in the same experimental set up. The measured scattering cross sections have been compared with the sum of theoretically calculated elastic and inelastic scattering cross sections. The theoretical elastic (Rayleigh) scattering cross sections based on the various form factor approximations, namely, non-relativistic form factor (NF), relativistic form factor (RF), modified form factor (MF), and MF with anomalous scattering factor (ASF) as well as the second order S-matrix formalisms, and the inelastic scattering differential cross sections based on the Klein-Nishina formula after including the inelastic scattering function (KN+ISF) have been calculated. The experimental results show fairly good agreement with theoretical cross sections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photon" title="photon">photon</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20and%20inelastic" title=" elastic and inelastic"> elastic and inelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering%20cross%20sections" title=" scattering cross sections"> scattering cross sections</a> </p> <a href="https://publications.waset.org/abstracts/15642/measurements-of-scattering-cross-sections-for-5895-kev-photons-in-various-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">689</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6431</span> Optical and Double Folding Model Analysis for Alpha Particles Elastically Scattered from 9Be and 11B Nuclei at Different Energies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20H.%20Amer">Ahmed H. Amer</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Amar"> A. Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Hamada"> Sh. Hamada</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20I.%20Bondouk"> I. I. Bondouk</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20El-Hussiny"> F. A. El-Hussiny</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elastic scattering of α-particles from 9Be and 11B nuclei at different alpha energies have been analyzed. Optical model parameters (OMPs) of α-particles elastic scattering by these nuclei at different energies have been obtained. In the present calculations, the real part of the optical potential are derived by folding of nucleon-nucleon (NN) interaction into nuclear matter density distribution of the projectile and target nuclei using computer code FRESCO. A density-dependent version of the M3Y interaction (CDM3Y6), which is based on the G-matrix elements of the Paris NN potential, has been used. Volumetric integrals of the real and imaginary potential depth (JR, JW) have been calculated and found to be energy dependent. Good agreement between the experimental data and the theoretical predictions in the whole angular range. In double folding (DF) calculations, the obtained normalization coefficient Nr is in the range 0.70–1.32. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20scattering" title="elastic scattering">elastic scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20model" title=" optical model"> optical model</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20folding%20model" title=" double folding model"> double folding model</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20distribution" title=" density distribution"> density distribution</a> </p> <a href="https://publications.waset.org/abstracts/45164/optical-and-double-folding-model-analysis-for-alpha-particles-elastically-scattered-from-9be-and-11b-nuclei-at-different-energies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6430</span> Electrophoretic Light Scattering Based on Total Internal Reflection as a Promising Diagnostic Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20A.%20Savchenko">Ekaterina A. Savchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20N.%20Velichko"> Elena N. Velichko</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgenii%20T.%20Aksenov"> Evgenii T. Aksenov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of pathological processes, such as cardiovascular and oncological diseases, are accompanied by changes in molecular parameters in cells, tissues, and serum. The study of the behavior of protein molecules in solutions is of primarily importance for diagnosis of such diseases. Various physical and chemical methods are used to study molecular systems. With the advent of the laser and advances in electronics, optical methods, such as scanning electron microscopy, sedimentation analysis, nephelometry, static and dynamic light scattering, have become the most universal, informative and accurate tools for estimating the parameters of nanoscale objects. The electrophoretic light scattering is the most effective technique. It has a high potential in the study of biological solutions and their properties. This technique allows one to investigate the processes of aggregation and dissociation of different macromolecules and obtain information on their shapes, sizes and molecular weights. Electrophoretic light scattering is an analytical method for registration of the motion of microscopic particles under the influence of an electric field by means of quasi-elastic light scattering in a homogeneous solution with a subsequent registration of the spectral or correlation characteristics of the light scattered from a moving object. We modified the technique by using the regime of total internal reflection with the aim of increasing its sensitivity and reducing the volume of the sample to be investigated, which opens the prospects of automating simultaneous multiparameter measurements. In addition, the method of total internal reflection allows one to study biological fluids on the level of single molecules, which also makes it possible to increase the sensitivity and the informativeness of the results because the data obtained from an individual molecule is not averaged over an ensemble, which is important in the study of bimolecular fluids. To our best knowledge the study of electrophoretic light scattering in the regime of total internal reflection is proposed for the first time, latex microspheres 1 μm in size were used as test objects. In this study, the total internal reflection regime was realized on a quartz prism where the free electrophoresis regime was set. A semiconductor laser with a wavelength of 655 nm was used as a radiation source, and the light scattering signal was registered by a pin-diode. Then the signal from a photodetector was transmitted to a digital oscilloscope and to a computer. The autocorrelation functions and the fast Fourier transform in the regime of Brownian motion and under the action of the field were calculated to obtain the parameters of the object investigated. The main result of the study was the dependence of the autocorrelation function on the concentration of microspheres and the applied field magnitude. The effect of heating became more pronounced with increasing sample concentrations and electric field. The results obtained in our study demonstrated the applicability of the method for the examination of liquid solutions, including biological fluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light%20scattering" title="light scattering">light scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=electrophoretic%20light%20scattering" title=" electrophoretic light scattering"> electrophoretic light scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=electrophoresis" title=" electrophoresis"> electrophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20internal%20reflection" title=" total internal reflection"> total internal reflection</a> </p> <a href="https://publications.waset.org/abstracts/80754/electrophoretic-light-scattering-based-on-total-internal-reflection-as-a-promising-diagnostic-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6429</span> Mueller Matrix Polarimetry for Analysis Scattering Biological Fluid Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Cherif">S. Cherif</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Medjahed"> A. Medjahed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouafia"> M. Bouafia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Manallah"> A. Manallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A light wave is characterized by 4 characteristics: its amplitude, its frequency, its phase and the direction of polarization of its luminous vector (the electric field). It is in this last characteristic that we will be interested. The polarization of the light was introduced in order to describe the vectorial behavior of the light; it describes the way in which the electric field evolves in a point of space. Our work consists in studying diffusing mediums. Different types of biological fluids were selected to study the evolution of each with increasing scattering power of the medium, and in the same time to make a comparison between them. When crossing these mediums, the light undergoes modifications and/or deterioration of its initial state of polarization. This phenomenon is related to the properties of the medium, the idea is to compare the characteristics of the entering and outgoing light from the studied medium by a white light. The advantage of this model is that it is experimentally accessible workable intensity measurements with CCD sensors and allows operation in 2D. The latter information is used to discriminate some physical properties of the studied areas. We chose four types of milk to study the evolution of each with increasing scattering power of the medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light%20polarization" title="light polarization">light polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=Mueller%20matrix" title=" Mueller matrix"> Mueller matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=Mueller%20images" title=" Mueller images"> Mueller images</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusing%20medium" title=" diffusing medium"> diffusing medium</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk "> milk </a> </p> <a href="https://publications.waset.org/abstracts/26216/mueller-matrix-polarimetry-for-analysis-scattering-biological-fluid-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6428</span> Computer Software for Calculating Electron Mobility of Semiconductors Compounds; Case Study for N-Gan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emad%20A.%20Ahmed">Emad A. Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computer software to calculate electron mobility with respect to different scattering mechanism has been developed. This software is adopted completely Graphical User Interface (GUI) technique and its interface has been designed by Microsoft Visual Basic 6.0. As a case study the electron mobility of n-GaN was performed using this software. The behaviour of the mobility for n-GaN due to elastic scattering processes and its relation to temperature and doping concentration were discussed. The results agree with other available theoretical and experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20mobility" title="electron mobility">electron mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation%20time" title=" relaxation time"> relaxation time</a>, <a href="https://publications.waset.org/abstracts/search?q=GaN" title=" GaN"> GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering" title=" scattering"> scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20software" title=" computer software"> computer software</a>, <a href="https://publications.waset.org/abstracts/search?q=computation%20physics" title=" computation physics"> computation physics</a> </p> <a href="https://publications.waset.org/abstracts/6777/computer-software-for-calculating-electron-mobility-of-semiconductors-compounds-case-study-for-n-gan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">670</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6427</span> An Improved Visible Range Absorption Spectroscopy on Soil Macronutrient </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suhaila%20Isaak">Suhaila Isaak</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusmeeraz%20Yusof"> Yusmeeraz Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairunnisa%20Mohd%20Yusof"> Khairunnisa Mohd Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Safuan%20Abdul%20Rashid"> Ahmad Safuan Abdul Rashid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil fertility is commonly evaluated by soil macronutrients such as nitrate, potassium, and phosphorus contents. Optical spectroscopy is an emerging technology which is rapid and simple has been widely used in agriculture to measure soil fertility. For visible and near infrared absorption spectroscopy, the absorbed light level in is useful for soil macro-nutrient measurement. This is because the absorption of light in a soil sample influences sensitivity of the measurement. This paper reports the performance of visible and near infrared absorption spectroscopy in the 400–1400 nm wavelength range using light-emitting diode as the excitation light source to predict the soil macronutrient content of nitrate, potassium, and phosphorus. The experimental results show an improved linear regression analysis of various soil specimens based on the Beer–Lambert law to determine sensitivity of soil spectroscopy by evaluating the absorption of characteristic peaks emitted from a light-emitting diode and detected by high sensitivity optical spectrometer. This would denote in developing a simple and low-cost soil spectroscopy with light-emitting diode for future implementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=macronutrients%20absorption" title="macronutrients absorption">macronutrients absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20spectroscopy" title=" optical spectroscopy"> optical spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption" title=" absorption"> absorption</a> </p> <a href="https://publications.waset.org/abstracts/78092/an-improved-visible-range-absorption-spectroscopy-on-soil-macronutrient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6426</span> The Scattering in Flexible Reactive Silencer Containing Rigid Partitioning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Afzal">Muhammad Afzal</a>, <a href="https://publications.waset.org/abstracts/search?q=Junaid%20Uzair%20Satti"> Junaid Uzair Satti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The noise emanating from the ducting of heating, ventilation, and air-conditioning (HVAC) system is often attenuated by using the dissipative silencers. Such devices work well for the high-frequency noise but are less operative in the low-frequency noise range. The present study analyzes a reactive silencer comprising expansion chamber of the elastic membranes partitioned symmetrically by a rigid plate. The Mode-Matching scheme has been developed to solve the governing boundary value problem. The orthogonal and non-orthogonal duct modes of acoustic pressures and normal velocities are matched at interfaces. It enables to recast the differential system into the infinite system of linear algebraic of equations, which is, then truncated and inverted for the solution. The truncated solution is validated through the conservation of energy and reconstruction of matching conditions. The results for scattering energy flux and transmission loss are shown against frequency and the dimensions of the chamber. It is seen that the stop-band of the silencer can be shifted to the broadband by changing the dimensions of the chamber and the properties of the elastic membranes. The modeled reactive silencer is more efficient in low frequency regime where the passive devices are least effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20scattering" title="acoustic scattering">acoustic scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20membranes%20mode-matching" title=" elastic membranes mode-matching"> elastic membranes mode-matching</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20silencer" title=" reactive silencer"> reactive silencer</a> </p> <a href="https://publications.waset.org/abstracts/93009/the-scattering-in-flexible-reactive-silencer-containing-rigid-partitioning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6425</span> Optical and Double Folding Analysis for 6Li+16O Elastic Scattering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abd%20Elrahman%20Elgamala">Abd Elrahman Elgamala</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Darwish"> N. Darwish</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Bondouk"> I. Bondouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Hamada"> Sh. Hamada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Available experimental angular distributions for <sup>6</sup>Li elastically scattered from <sup>16</sup>O nucleus in the energy range 13.0&ndash;50.0 MeV are investigated and reanalyzed using optical model of the conventional phenomenological potential and also using double folding optical model of different interaction models: DDM3Y1, CDM3Y1, CDM3Y2, and CDM3Y3. All the involved models of interaction are of M3Y Paris except DDM3Y1 which is of M3Y Reid and the main difference between them lies in the different values for the parameters of the incorporated density distribution function <em>F</em>(&rho;). We have extracted the renormalization factor <strong><em>N<sub>R</sub></em> </strong>for <sup>6</sup>Li+<sup>16</sup>O nuclear system in the energy range 13.0&ndash;50.0 MeV using the aforementioned interaction models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20scattering" title="elastic scattering">elastic scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20model" title=" optical model"> optical model</a>, <a href="https://publications.waset.org/abstracts/search?q=folding%20potential" title=" folding potential"> folding potential</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20distribution" title=" density distribution"> density distribution</a> </p> <a href="https://publications.waset.org/abstracts/132435/optical-and-double-folding-analysis-for-6li16o-elastic-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6424</span> Elaboration and Characterization of Silver Nanoparticles for Therapeutic and Environmental Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manel%20Bouloudenine">Manel Bouloudenine</a>, <a href="https://publications.waset.org/abstracts/search?q=Karima%20Djeddou"> Karima Djeddou</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadjer%20Ben%20Manser"> Hadjer Ben Manser</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Soualah%20Alila"> Hana Soualah Alila</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohmed%20Bououdina"> Mohmed Bououdina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This survey research involves the elaboration and characterization of silver nanoparticles for therapeutic and environmental applications. The silver nanoparticles "Ag NPs" were synthesized by reducing AgNO3 with microwaves. The characterization of nanoparticles was done by using Transmission Electron Microscopy " TEM ", Energy Dispersive Spectroscopy "EDS", Selected Area Electron Diffraction "SEAD", UV-Visible Spectroscopy and Dynamic Light Scattering "DLS". Transmission Electron Microscopy and Electron Diffraction have confirmed the nanoscale, the shape, and the crystalline quality of as synthesized silver nanoparticles. Elementary analysis has proved the purity of Ag NPs and the presence of the Surface Plasmon Resonance phenomenon "SPR". A strong absorption shift was observed in the visible range of the UV-visible spectrum of as synthesized Ag NPs, which indicates the presence of metallic silver. When the strong absorption in the ultraviolet range of the spectrum has revealed the presence of ionic Ag NPs ionic Ag aggregates species. The autocorrelation function measured by the Dynamic Light Scattering has shown a strong monodispersed character of Ag NPs, which is indicated by the presence of a single size population, with a minima and a maxima laying between 40 and 111 nm. Related to other research, our results confirm the performance properties of as synthesized Ag NPs, which allows them to be performing in many technological applications, including therapeutic and environmental ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silvers%20nanoparticles" title="silvers nanoparticles">silvers nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=microwaves" title=" microwaves"> microwaves</a>, <a href="https://publications.waset.org/abstracts/search?q=EDS" title=" EDS"> EDS</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a> </p> <a href="https://publications.waset.org/abstracts/146054/elaboration-and-characterization-of-silver-nanoparticles-for-therapeutic-and-environmental-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6423</span> Elastic Collisions of Electrons with DNA and Water From 10 eV to 100 KeV: Scar Macro Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aouina%20Nabila%20Yasmina">Aouina Nabila Yasmina</a>, <a href="https://publications.waset.org/abstracts/search?q=Zine%20El%20Abidine%20Chaoui"> Zine El Abidine Chaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, understanding the interactions of electrons with the DNA molecule and its components has attracted considerable interest because DNA is the main site damaged by ionizing radiation. The interactions of radiation with DNA induce a variety of molecular damage such as single-strand breaks, double-strand breaks, basic damage, cross-links between proteins and DNA, and others, or the formation of free radicals, which, by chemical reactions with DNA, can also lead to breakage of the strand. One factor that can contribute significantly to these processes is the effect of water hydration on the formation and reaction of radiation induced by these radicals in and / or around DNA. B-DNA requires about 30% by weight of water to maintain its native conformation in the crystalline state. The transformation depends on various factors such as sequence, ion composition, concentration and water activity. Partial dehydration converts it to DNA-A. The present study shows the results of theoretical calculations for positrons and electrons elastic scattering with DNA medium and water over a broad energy range from 10 eV to 100 keV. Indeed, electron elastic cross sections and elastic mean free paths are calculated using a corrected form of the independent atom method, taking into account the geometry of the biomolecule (SCAR macro). Moreover, the elastic scattering of electrons and positrons by atoms of the biomolecule was evaluated by means of relativistic (Dirac) partial wave analysis. Our calculated results are compared with theoretical data available in the literature in the absence of experimental data, in particular for positron. As a central result, our electron elastic cross sections are in good agreement with existing theoretical data in the range of 10 eV to 1 keV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20cross%20scrion" title="elastic cross scrion">elastic cross scrion</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20mean%20free%20path" title=" elastic mean free path"> elastic mean free path</a>, <a href="https://publications.waset.org/abstracts/search?q=scar%20macro%20method" title=" scar macro method"> scar macro method</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20collision" title=" electron collision"> electron collision</a> </p> <a href="https://publications.waset.org/abstracts/179787/elastic-collisions-of-electrons-with-dna-and-water-from-10-ev-to-100-kev-scar-macro-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6422</span> Analytical Approximations of the Differential Elastic Scattering Cross-Sections for Slow Electrons and Positrons Transport in Solids: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bentabet">A. Bentabet</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aydin"> A. Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Fenineche"> N. Fenineche </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we try to determine the best analytical approximation of differential cross sections, used generally in Monte Carlo simulation, to study the electron/positron slowing down in solid targets in the energy range up to 10 keV. Actually, our comparative study was carried out on the angular distribution of the scattering angle, the elastic total and the first transport cross sections which are the essential quantities used generally in the electron/positron transport study by using both stochastic and deterministic methods. Indeed, the obtained results using the relativistic partial wave expansion method and the backscattering coefficient experimental data are used as criteria to evaluate the used model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20cross-section" title="differential cross-section">differential cross-section</a>, <a href="https://publications.waset.org/abstracts/search?q=backscattering%20coefficient" title=" backscattering coefficient"> backscattering coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=Rutherford%20cross-section" title=" Rutherford cross-section"> Rutherford cross-section</a>, <a href="https://publications.waset.org/abstracts/search?q=Vicanek%20and%20Urbassek%20theory" title=" Vicanek and Urbassek theory"> Vicanek and Urbassek theory</a> </p> <a href="https://publications.waset.org/abstracts/16449/analytical-approximations-of-the-differential-elastic-scattering-cross-sections-for-slow-electrons-and-positrons-transport-in-solids-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6421</span> Radiative Reactions Analysis at the Range of Astrophysical Energies </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Amar">A. Amar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of the elastic scattering of protons on <sup>10</sup>B nuclei has been done in the framework of the optical model and single folding model at the beam energies up to 17 MeV. We could enhance the optical potential parameters using Esis88 Code, as well as SPI GENOA Code. Linear relationship between volume real potential (V<sub>0</sub>) and proton energy (E<sub>p</sub>) has been obtained. Also, surface imaginary potential W<sub>D</sub> is proportional to the proton energy (E<sub>p</sub>) in the range 0.400 and 17 MeV. The radiative reaction <sup>10</sup>B(p,&gamma;)<sup>11</sup>C has been analyzed using potential model. A comparison between <sup>10</sup>B(p,&gamma;)<sup>11</sup>C and <sup>6</sup>Li(p,&gamma;)<sup>7</sup>Be has been made. Good agreement has been found between theoretical and experimental results in the whole range of energy. The radiative resonance reaction <sup>7</sup>Li(p,&gamma;)<sup>8</sup>Be has been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20scattering%20of%20protons%20on%2010B%20nuclei" title="elastic scattering of protons on 10B nuclei">elastic scattering of protons on 10B nuclei</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20potential%20parameters" title=" optical potential parameters"> optical potential parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20model" title=" potential model"> potential model</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20reaction" title=" radiative reaction"> radiative reaction</a> </p> <a href="https://publications.waset.org/abstracts/88571/radiative-reactions-analysis-at-the-range-of-astrophysical-energies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6420</span> Model of Cosserat Continuum Dispersion in a Half-Space with a Scatterer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Velez">Francisco Velez</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20David%20Gomez"> Juan David Gomez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dispersion effects on the Scattering for a semicircular canyon in a micropolar continuum are analyzed, by using a computational finite element scheme. The presence of microrotational waves and the dispersive SV waves affects the propagation of elastic waves. Here, a contrast with the classic model is presented, and the dependence with the micropolar parameters is studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scattering" title="scattering">scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=semicircular%20canyon" title=" semicircular canyon"> semicircular canyon</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20dispersion" title=" wave dispersion"> wave dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=micropolar%20medium" title=" micropolar medium"> micropolar medium</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20modeling" title=" FEM modeling"> FEM modeling</a> </p> <a href="https://publications.waset.org/abstracts/11667/model-of-cosserat-continuum-dispersion-in-a-half-space-with-a-scatterer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6419</span> Physical Properties of Nano-Sized Poly-N-Isopropylacrylamide Hydrogels </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esra%20Alveroglu%20Durucu">Esra Alveroglu Durucu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenan%20Koc"> Kenan Koc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we synthesized and characterized nano-sized Poly- N-isopropylacrylamide (PNIPAM) hydrogels. N-isopropylacrylamide (NIPAM) micro and macro gels are known as a thermosensitive colloidal structure, and they respond to changes in the environmental conditions such as temperature and pH. Here, nano-sized gels were synthesized via precipitation copolymerization method. N,N-methylenebisacrylamide (BIS) and ammonium persulfate APS were used as crosslinker and initiator, respectively. 8-Hydroxypyrene-1,3,6- trisulfonic Acid (Pyranine, Py) molecules were used for arranging the particle size and thus physical properties of the nano-sized hydrogels. Fluorescence spectroscopy, atomic force microscopy and light scattering methods were used for characterizing the synthesized hydrogels. The results show that the gel size was decreased with increasing amount of ionic molecule from 550 to 140 nm due to the electrostatic behavior of the ionic side groups of pyranine. Light scattering experiments demonstrate that lower critical solution temperature (LCST) of the gels shifts to the lower temperature with decreasing size of gel due to the hydrophobicity–hydrophilicity balance of the polymer chains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogels" title="hydrogels">hydrogels</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20critical%20solution%20temperature" title=" lower critical solution temperature"> lower critical solution temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=nanogels" title=" nanogels"> nanogels</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28n-isopropylacrylamide%29" title=" poly(n-isopropylacrylamide)"> poly(n-isopropylacrylamide)</a> </p> <a href="https://publications.waset.org/abstracts/54276/physical-properties-of-nano-sized-poly-n-isopropylacrylamide-hydrogels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6418</span> Non-Invasive Imaging of Tissue Using Near Infrared Radiations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwani%20Kumar%20Aggarwal">Ashwani Kumar Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> NIR Light is non-ionizing and can pass easily through living tissues such as breast without any harmful effects. Therefore, use of NIR light for imaging the biological tissue and to quantify its optical properties is a good choice over other invasive methods. Optical tomography involves two steps. One is the forward problem and the other is the reconstruction problem. The forward problem consists of finding the measurements of transmitted light through the tissue from source to detector, given the spatial distribution of absorption and scattering properties. The second step is the reconstruction problem. In X-ray tomography, there is standard method for reconstruction called filtered back projection method or the algebraic reconstruction methods. But this method cannot be applied as such, in optical tomography due to highly scattering nature of biological tissue. A hybrid algorithm for reconstruction has been implemented in this work which takes into account the highly scattered path taken by photons while back projecting the forward data obtained during Monte Carlo simulation. The reconstructed image suffers from blurring due to point spread function. This blurred reconstructed image has been enhanced using a digital filter which is optimal in mean square sense. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=least-squares%20optimization" title="least-squares optimization">least-squares optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=filtering" title=" filtering"> filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=tomography" title=" tomography"> tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20interaction" title=" laser interaction"> laser interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20scattering" title=" light scattering"> light scattering</a> </p> <a href="https://publications.waset.org/abstracts/33280/non-invasive-imaging-of-tissue-using-near-infrared-radiations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6417</span> Study of Proton-9,11Li Elastic Scattering at 60~75 MeV/Nucleon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arafa%20A.%20Alholaisi">Arafa A. Alholaisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20H.%20Madani"> Jamal H. Madani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Alvi"> M. A. Alvi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The radial form of nuclear matter distribution, charge and the shape of nuclei are essential properties of nuclei, and hence, are of great attention for several areas of research in nuclear physics. More than last three decades have witnessed a range of experimental means employing leptonic probes (such as muons, electrons etc.) for exploring nuclear charge distributions, whereas the hadronic probes (for example alpha particles, protons, etc.) have been used to investigate the nuclear matter distributions. In this paper, p-<sup>9,11</sup>Li elastic scattering differential cross sections in the energy range &nbsp;to &nbsp;MeV have been studied by means of Coulomb modified Glauber scattering formalism. By applying the semi-phenomenological Bhagwat-Gambhir-Patil [BGP] nuclear density for loosely bound neutron rich <sup>11</sup>Li nucleus, the estimated matter radius is found to be 3.446 <em>fm</em> which is quite large as compared to so known experimental value 3.12 <em>fm</em>. The results of microscopic optical model based calculation by applying Bethe-Brueckner&ndash;Hartree&ndash;Fock formalism (BHF) have also been compared. It should be noted that in most of phenomenological density model used to reproduce the p-<sup>11</sup>Li differential elastic scattering cross sections data, the calculated matter radius lies between 2.964 and 3.55 <em>fm</em>. The calculated results with phenomenological BGP model density and with nucleon density calculated in the relativistic mean-field (RMF) reproduces p-<sup>9</sup>Li and p-<sup>11</sup>Li experimental data quite nicely as compared to Gaussian- Gaussian or Gaussian-Oscillator densities at all energies under consideration. In the approach described here, no free/adjustable parameter has been employed to reproduce the elastic scattering data as against the well-known optical model based studies that involve at least four to six adjustable parameters to match the experimental data. Calculated reaction cross sections &sigma;<sub>R</sub> for p-<sup>11</sup>Li at these energies are quite large as compared to estimated values reported by earlier works though so far no experimental studies have been performed to measure it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhagwat-Gambhir-Patil%20density" title="Bhagwat-Gambhir-Patil density">Bhagwat-Gambhir-Patil density</a>, <a href="https://publications.waset.org/abstracts/search?q=Coulomb%20modified%20Glauber%20model" title=" Coulomb modified Glauber model"> Coulomb modified Glauber model</a>, <a href="https://publications.waset.org/abstracts/search?q=halo%20nucleus" title=" halo nucleus"> halo nucleus</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20limit%20approximation" title=" optical limit approximation"> optical limit approximation</a> </p> <a href="https://publications.waset.org/abstracts/114393/study-of-proton-911li-elastic-scattering-at-6075-mevnucleon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6416</span> 2D Numerical Modeling of Ultrasonic Measurements in Concrete: Wave Propagation in a Multiple-Scattering Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Yu">T. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Audibert"> L. Audibert</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20F.%20Chaix"> J. F. Chaix</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Komatitsch"> D. Komatitsch</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Garnier"> V. Garnier</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Henault"> J. M. Henault</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Linear Ultrasonic Techniques play a major role in Non-Destructive Evaluation (NDE) for civil engineering structures in concrete since they can meet operational requirements. Interpretation of ultrasonic measurements could be improved by a better understanding of ultrasonic wave propagation in a multiple scattering medium. This work aims to develop a 2D numerical model of ultrasonic wave propagation in a heterogeneous medium, like concrete, integrating the multiple scattering phenomena in SPECFEM software. The coherent field of multiple scattering is obtained by averaging numerical wave fields, and it is used to determine the effective phase velocity and attenuation corresponding to an equivalent homogeneous medium. First, this model is applied to one scattering element (a cylinder) in a homogenous medium in a linear-elastic system, and its validation is completed thanks to the comparison with analytical solution. Then, some cases of multiple scattering by a set of randomly located cylinders or polygons are simulated to perform parametric studies on the influence of frequency and scatterer size, concentration, and shape. Also, the effective properties are compared with the predictions of Waterman-Truell model to verify its validity. Finally, the mortar viscoelastic behavior is introduced in the simulation in order to considerer the dispersion and the attenuation due to porosity included in the cement paste. In the future, different steps will be developed: The comparisons with experimental results, the interpretation of NDE measurements, and the optimization of NDE parameters before an auscultation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attenuation" title="attenuation">attenuation</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-scattering%20medium" title=" multiple-scattering medium"> multiple-scattering medium</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20velocity" title=" phase velocity"> phase velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20measurements" title=" ultrasonic measurements"> ultrasonic measurements</a> </p> <a href="https://publications.waset.org/abstracts/61285/2d-numerical-modeling-of-ultrasonic-measurements-in-concrete-wave-propagation-in-a-multiple-scattering-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6415</span> The Light-Effect in Cylindrical Quantum Wire with an Infinite Potential for the Case of Electrons: Optical Phonon Scattering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoang%20Van%20Ngoc">Hoang Van Ngoc</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Vu%20Nhan"> Nguyen Vu Nhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Quang%20Bau"> Nguyen Quang Bau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The light-effect in cylindrical quantum wire with an infinite potential for the case of electrons, optical phonon scattering, is studied based on the quantum kinetic equation. The density of the direct current in a cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field, and an intense laser field is calculated. Analytic expressions for the density of the direct current are studied as a function of the frequency of the laser radiation field, the frequency of the linearly polarized electromagnetic wave, the temperature of system, and the size of quantum wire. The density of the direct current in cylindrical quantum wire with an infinite potential for the case of electrons &ndash; optical phonon scattering is nonlinearly dependent on the frequency of the linearly polarized electromagnetic wave. The analytic expressions are numerically evaluated and plotted for a specific quantum wire, GaAs/GaAsAl. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20light%E2%80%93effect" title="the light–effect">the light–effect</a>, <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20quantum%20wire%20with%20an%20infinite%20potential" title=" cylindrical quantum wire with an infinite potential"> cylindrical quantum wire with an infinite potential</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20density%20of%20the%20direct%20current" title=" the density of the direct current"> the density of the direct current</a>, <a href="https://publications.waset.org/abstracts/search?q=electrons-optical%20phonon%20scattering" title=" electrons-optical phonon scattering"> electrons-optical phonon scattering</a> </p> <a href="https://publications.waset.org/abstracts/75022/the-light-effect-in-cylindrical-quantum-wire-with-an-infinite-potential-for-the-case-of-electrons-optical-phonon-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6414</span> An Improved Multiple Scattering Reflectance Model Based on Specular V-Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongbin%20Yang">Hongbin Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingxue%20Liao"> Mingxue Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Changwen%20Zheng"> Changwen Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Mengyao%20Kong"> Mengyao Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaohui%20Liu"> Chaohui Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microfacet-based reflection models are widely used to model light reflections for rough surfaces. Microfacet models have become the standard surface material building block for describing specular components with varying roughness; and yet, while they possess many desirable properties as well as produce convincing results, their design ignores important sources of scattering, which can cause a significant loss of energy. Specifically, they only simulate the single scattering on the microfacets and ignore the subsequent interactions. As the roughness increases, the interaction will become more and more important. So a multiple-scattering microfacet model based on specular V-cavity is presented for this important open problem. However, it spends much unnecessary rendering time because of setting the same number of scatterings for different roughness surfaces. In this paper, we design a geometric attenuation term G to compute the BRDF (Bidirectional reflection distribution function) of multiple scattering of rough surfaces. Moreover, we consider determining the number of scattering by deterministic heuristics for different roughness surfaces. As a result, our model produces a similar appearance of the objects with the state of the art model with significantly improved rendering efficiency. Finally, we derive a multiple scattering BRDF based on the original microfacet framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bidirectional%20reflection%20distribution%20function" title="bidirectional reflection distribution function">bidirectional reflection distribution function</a>, <a href="https://publications.waset.org/abstracts/search?q=BRDF" title=" BRDF"> BRDF</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20attenuation%20term" title=" geometric attenuation term"> geometric attenuation term</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20scattering" title=" multiple scattering"> multiple scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=V-cavity%20model" title=" V-cavity model"> V-cavity model</a> </p> <a href="https://publications.waset.org/abstracts/127074/an-improved-multiple-scattering-reflectance-model-based-on-specular-v-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6413</span> Non-Invasive Imaging of Human Tissue Using NIR Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwani%20Kumar">Ashwani Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of NIR light for imaging the biological tissue and to quantify its optical properties is a good choice over other invasive methods. Optical tomography involves two steps. One is the forward problem and the other is the reconstruction problem. The forward problem consists of finding the measurements of transmitted light through the tissue from source to detector, given the spatial distribution of absorption and scattering properties. The second step is the reconstruction problem. In X-ray tomography, there is standard method for reconstruction called filtered back projection method or the algebraic reconstruction methods. But this method cannot be applied as such, in optical tomography due to highly scattering nature of biological tissue. A hybrid algorithm for reconstruction has been implemented in this work which takes into account the highly scattered path taken by photons while back projecting the forward data obtained during Monte Carlo simulation. The reconstructed image suffers from blurring due to point spread function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NIR%20light" title="NIR light">NIR light</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue" title=" tissue"> tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=blurring" title=" blurring"> blurring</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/33453/non-invasive-imaging-of-human-tissue-using-nir-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6412</span> Design of Bacterial Pathogens Identification System Based on Scattering of Laser Beam Light and Classification of Binned Plots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mubashir%20Hussain">Mubashir Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Mu%20Lv"> Mu Lv</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohan%20Dong"> Xiaohan Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiyang%20Li"> Zhiyang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Liu"> Bin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nongyue%20He"> Nongyue He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detection and classification of microbes have a vast range of applications in biomedical engineering especially in detection, characterization, and quantification of bacterial contaminants. For identification of pathogens, different techniques are emerging in the field of biomedical engineering. Latest technology uses light scattering, capable of identifying different pathogens without any need for biochemical processing. Bacterial Pathogens Identification System (BPIS) which uses a laser beam, passes through the sample and light scatters off. An assembly of photodetectors surrounded by the sample at different angles to detect the scattering of light. The algorithm of the system consists of two parts: (a) Library files, and (b) Comparator. Library files contain data of known species of bacterial microbes in the form of binned plots, while comparator compares data of unknown sample with library files. Using collected data of unknown bacterial species, highest voltage values stored in the form of peaks and arranged in 3D histograms to find the frequency of occurrence. Resulting data compared with library files of known bacterial species. If sample data matching with any library file of known bacterial species, sample identified as a matched microbe. An experiment performed to identify three different bacteria particles: Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli. By applying algorithm using library files of given samples, results were compromising. This system is potentially applicable to several biomedical areas, especially those related to cell morphology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20identification" title="microbial identification">microbial identification</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20scattering" title=" laser scattering"> laser scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20identification" title=" peak identification"> peak identification</a>, <a href="https://publications.waset.org/abstracts/search?q=binned%20plots%20classification" title=" binned plots classification"> binned plots classification</a> </p> <a href="https://publications.waset.org/abstracts/95711/design-of-bacterial-pathogens-identification-system-based-on-scattering-of-laser-beam-light-and-classification-of-binned-plots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6411</span> Rheolaser: Light Scattering Characterization of Viscoelastic Properties of Hair Cosmetics That Are Related to Performance and Stability of the Respective Colloidal Soft Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heitor%20Oliveira">Heitor Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriele%20De-Waal"> Gabriele De-Waal</a>, <a href="https://publications.waset.org/abstracts/search?q=Juergen%20Schmenger"> Juergen Schmenger</a>, <a href="https://publications.waset.org/abstracts/search?q=Lynsey%20Godfrey"> Lynsey Godfrey</a>, <a href="https://publications.waset.org/abstracts/search?q=Tibor%20Kovacs"> Tibor Kovacs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rheolaser MASTER™ makes use of multiple scattering of light, caused by scattering objects in a continuous medium (such as droplets and particles in colloids), to characterize the viscoelasticity of soft materials. It offers an alternative to conventional rheometers to characterize viscoelasticity of products such as hair cosmetics. Up to six simultaneous measurements at controlled temperature can be carried out simultaneously (10-15 min), and the method requires only minor sample preparation work. Conversely to conventional rheometer based methods, no mechanical stress is applied to the material during the measurements. Therefore, the properties of the exact same sample can be monitored over time, like in aging and stability studies. We determined the elastic index (EI) of water/emulsion mixtures (1 ≤ fat alcohols (FA) ≤ 5 wt%) and emulsion/gel-network mixtures (8 ≤ FA ≤ 17 wt%) and compared with the elastic/sorage mudulus (G’) for the respective samples using a TA conventional rheometer with flat plates geometry. As expected, it was found that log(EI) vs log(G’) presents a linear behavior. Moreover, log(EI) increased in a linear fashion with solids level in the entire range of compositions (1 ≤ FA ≤ 17 wt%), while rheometer measurements were limited to samples down to 4 wt% solids level. Alternatively, a concentric cilinder geometry would be required for more diluted samples (FA > 4 wt%) and rheometer results from different sample holder geometries are not comparable. The plot of the rheolaser output parameters solid-liquid balance (SLB) vs EI were suitable to monitor product aging processes. These data could quantitatively describe some observations such as formation of lumps over aging time. Moreover, this method allowed to identify that the different specifications of a key raw material (RM < 0.4 wt%) in the respective gel-network (GN) product has minor impact on product viscoelastic properties and it is not consumer perceivable after a short aging time. Broadening of a RM spec range typically has a positive impact on cost savings. Last but not least, the photon path length (λ*)—proportional to droplet size and inversely proportional to volume fraction of scattering objects, accordingly to the Mie theory—and the EI were suitable to characterize product destabilization processes (e.g., coalescence and creaming) and to predict product stability about eight times faster than our standard methods. Using these parameters we could successfully identify formulation and process parameters that resulted in unstable products. In conclusion, Rheolaser allows quick and reliable characterization of viscoelastic properties of hair cosmetics that are related to their performance and stability. It operates in a broad range of product compositions and has applications spanning from the formulation of our hair cosmetics to fast release criteria in our production sites. Last but not least, this powerful tool has positive impact on R&D development time—faster delivery of new products to the market—and consequently on cost savings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colloids" title="colloids">colloids</a>, <a href="https://publications.waset.org/abstracts/search?q=hair%20cosmetics" title=" hair cosmetics"> hair cosmetics</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20scattering" title=" light scattering"> light scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20and%20stability" title=" performance and stability"> performance and stability</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20materials" title=" soft materials"> soft materials</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20properties" title=" viscoelastic properties"> viscoelastic properties</a> </p> <a href="https://publications.waset.org/abstracts/89387/rheolaser-light-scattering-characterization-of-viscoelastic-properties-of-hair-cosmetics-that-are-related-to-performance-and-stability-of-the-respective-colloidal-soft-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6410</span> Determination of the Local Elastic Moduli of Shungite by Laser Ultrasonic Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20B.%20Cherepetskaya">Elena B. Cherepetskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20A.Karabutov"> Alexander A.Karabutov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20A.%20Makarov"> Vladimir A. Makarov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20A.%20Mironova"> Elena A. Mironova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20A.%20Shibaev"> Ivan A. Shibaev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In our study, the object of laser ultrasonic testing was plane-parallel plate of shungit (length 41 mm, width 31 mm, height 15 mm, medium exchange density 2247 kg/m3). We used laser-ultrasonic defectoscope with wideband opto-acoustic transducer in our investigation of the velocities of longitudinal and shear elastic ultrasound waves. The duration of arising elastic pulses was less than 100 ns. Under known material thickness, the values of the velocities were determined by the time delay of the pulses reflected from the bottom surface of the sample with respect to reference pulses. The accuracy of measurement was 0.3% in the case of longitudinal wave velocity and 0.5% in the case of shear wave velocity (scanning pitch along the surface was 2 mm). On the base of found velocities of elastic waves, local elastic moduli of shungit (Young modulus, shear modulus and Poisson's ratio) were uniquely determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20ultrasonic%20testing" title="laser ultrasonic testing ">laser ultrasonic testing </a>, <a href="https://publications.waset.org/abstracts/search?q=local%20elastic%20moduli" title=" local elastic moduli"> local elastic moduli</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=shungit" title=" shungit"> shungit</a> </p> <a href="https://publications.waset.org/abstracts/54585/determination-of-the-local-elastic-moduli-of-shungite-by-laser-ultrasonic-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20light%20scattering%20spectroscopy&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20light%20scattering%20spectroscopy&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20light%20scattering%20spectroscopy&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20light%20scattering%20spectroscopy&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20light%20scattering%20spectroscopy&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20light%20scattering%20spectroscopy&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20light%20scattering%20spectroscopy&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20light%20scattering%20spectroscopy&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20light%20scattering%20spectroscopy&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20light%20scattering%20spectroscopy&amp;page=214">214</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20light%20scattering%20spectroscopy&amp;page=215">215</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20light%20scattering%20spectroscopy&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10