CINXE.COM
Search results for: glass
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: glass</title> <meta name="description" content="Search results for: glass"> <meta name="keywords" content="glass"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="glass" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="glass"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1008</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: glass</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">858</span> Death Due to Ulnar Artery Injury by Glassdoor: A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kumar%20Rastogi">Ashok Kumar Rastogi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glass is a material commonly used for Glassdoor, glass bottles, cookware, and containers. It can be harmful, as it is a hard and blunt object. Glass has been associated with severe injury and is a common cause of injuries warranting hospital visits to the emergency department (ED). These injuries can be accidental or intentionally inflicted. Broken glass injuries can be severe, even deadly. If broken glass shards fall out on your arm, it may cause fatal injuries. Case history: A 20-year-old male dead body was found aside the road, police informed, and a video recording ceased during an investigation. In the video recording, the person was in a drunken state (unable to walk and disoriented), wandering in the residential area road. He saw a barber shop, the shop door made of Glass. Suddenly, he hit the Glassdoor with his right hand forcefully. The Glassdoor broke into multiple pieces, and multiple injuries were seen over the right hand. Observations: Multiple small and large lacerations were seen over the right anterior part of the elbow. The main injury looked like an incised wound caused by a hard and sharp object. The main injury was noted as a laceration of size 13 x 06 cm bone deep, placed obliquely over the anteromedial aspect of the right elbow joint, its medial end at medial end of elbow joint while its anterior end was 04 cm below the elbow joint with laceration of underline brachialis muscles and complete transaction of ulnar artery and vein, skin margins looking sharply cut with irregular margins with tiny cuts at the medial lower border of laceration. Injuries were antemortem and fresh in nature, caused by hard and blunt objects but looking like hard and sharp objects. All organs were found pale, and the cause of death was shock and hemorrhage because of ulnar vessel injury. Conclusion: The findings of this case report highlight the potentially lethal consequences of glass injuries, especially those involving Glassdoors. The study underscores the importance of accurate interpretation and identification of wounds caused by Glass, as they may resemble injuries caused by other objects. It emphasizes the challenges faced by autopsy surgeons when determining the cause and manner of death in cases where visual evidence of injury is absent or when the weapon is not recovered. Ultimately, this case report serves as a reminder of the potential dangers posed by Glass and the importance of comprehensive forensic examinations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glassdoor" title="glassdoor">glassdoor</a>, <a href="https://publications.waset.org/abstracts/search?q=incised" title=" incised"> incised</a>, <a href="https://publications.waset.org/abstracts/search?q=wound" title=" wound"> wound</a>, <a href="https://publications.waset.org/abstracts/search?q=laceration" title=" laceration"> laceration</a>, <a href="https://publications.waset.org/abstracts/search?q=autopsy" title=" autopsy"> autopsy</a> </p> <a href="https://publications.waset.org/abstracts/174242/death-due-to-ulnar-artery-injury-by-glassdoor-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">857</span> Anti-Reflective Nanostructured TiO2/SiO2 Multilayer Coatings </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najme%20lari">Najme lari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrokh%20Ahangarani"> Shahrokh Ahangarani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Shanaghi"> Ali Shanaghi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multilayer structure of thin films by the sol–gel process attracts great attention for antireflection applications. In this paper, antireflective nanometric multilayer SiO2-TiO2 films are formed on both sides of the glass substrates by combining the sol–gel method and the dip-coating technique. SiO2 and TiO2 sols were prepared using tetraethylorthosilicate (TEOS) and tetrabutylorthotitanate (TBOT) as precursors and also nitric acid as catalyst. Prepared coatings were investigated by Field-emission scanning electron microscope (FE-SEM), Fourier-transformed infrared spectrophotometer (FT-IR) and UV–visible spectrophotometer. After evaluation, all of SiO2 top layer coatings showed excellent antireflection in the wavelength range of 400-800 nm where the transmittance of glass substrate is significantly lower. By increasing the number of double TiO2-SiO2 layers, the transmission of the coated glass increases due to applied multilayer coating properties. 6-layer sol–gel TiO2-SiO2 shows the highest visible transmittance about 99.25% at the band of 550-650 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title="thin films">thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer" title=" multilayer"> multilayer</a> </p> <a href="https://publications.waset.org/abstracts/24215/anti-reflective-nanostructured-tio2sio2-multilayer-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">856</span> Static Relaxation of Glass Fiber Reinforced Pipes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Y.%20Abdellah">Mohammed Y. Abdellah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20K.%20Hassan"> Mohamed K. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Mohamed"> A. F. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Shadi%20M.%20Munshi"> Shadi M. Munshi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Hashem"> A. M. Hashem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pips made from glass fiber reinforced polymer has competitive role in petroleum industry. The need of evaluating the mechanical behavior of (GRP) pipes is essential objects. Stress relaxation illustrates how polymers relieve stress under constant strain. Static relaxation test is carried out at room temperature. The material gives poor static relaxation strength, two loading cycles have been observed for the tested specimen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GRP" title="GRP">GRP</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20composite%20material" title=" sandwich composite material"> sandwich composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20relaxation" title=" static relaxation"> static relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20relief" title=" stress relief"> stress relief</a> </p> <a href="https://publications.waset.org/abstracts/23225/static-relaxation-of-glass-fiber-reinforced-pipes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">625</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">855</span> Sol-Gel SiO2-TiO2 Multilayer Coatings for Anti-Reflective Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najme%20Lari">Najme Lari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrokh%20Ahangarani"> Shahrokh Ahangarani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Shanaghi"> Ali Shanaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multilayer structure of thin films by the sol–gel process attracts great attention for antireflection applications. In this paper, antireflective nanometric multilayer SiO2-TiO2 films are formed on both sides of the glass substrates by combining the sol–gel method and the dip-coating technique. SiO2 and TiO2 sols were prepared using tetraethylorthosilicate (TEOS) and tetrabutylorthotitanate (TBOT) as precursors and nitric acid as catalyst. Prepared coatings were investigated by Field-emission scanning electron microscope (FE-SEM), Fourier-transformed infrared spectrophotometer (FT-IR) and UV–visible spectrophotometer. After evaluation, all of SiO2 top layer coatings showed excellent antireflection in the wavelength range of 400-800 nm where the transmittance of glass substrate is significantly lower. By increasing the number of double TiO2-SiO2 layers, the transmission of the coated glass increases due to applied multilayer coating properties. 6-layer sol–gel TiO2-SiO2 shows the highest visible transmittance about 99.25% at the band of 550-650 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title="thin films">thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer" title=" multilayer"> multilayer</a> </p> <a href="https://publications.waset.org/abstracts/23276/sol-gel-sio2-tio2-multilayer-coatings-for-anti-reflective-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">854</span> An Investigation into Sealing Materials for Vacuum Glazing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Onyegbule">Paul Onyegbule</a>, <a href="https://publications.waset.org/abstracts/search?q=Harjit%20Singh"> Harjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vacuum glazing is an innovative transparent thermal insulator that has application in high performance window, especially in renewable energy. Different materials as well as sealing methods have been adopted to seal windows with different temperatures. The impact of temperatures on sealing layers has been found to have significant effects on the microstructure of the seal. This paper seeks to investigate the effects of sealing materials specifically glass powder and flux compound (borax) for vacuum glazing. The findings of the experiment conducted show that the sealing material was rigid with some leakage around the edge, and we found that this could be stopped by enhancing the uniformity of the seal within the periphery. Also, we found that due to the intense tensile stress from the oven surface temperature of the seal at 200 <sup>0</sup>C, a crack was observed at the side of the glass. Based on the above findings, this study concludes that a glass powder with a lower melting temperature of below 250 <sup>0</sup>C with the addition of an adhesive (borax flux) should be used for future vacuum seals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20glazed%20windows" title="double glazed windows">double glazed windows</a>, <a href="https://publications.waset.org/abstracts/search?q=U-value" title=" U-value"> U-value</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20loss" title=" heat loss"> heat loss</a>, <a href="https://publications.waset.org/abstracts/search?q=borax%20powder" title=" borax powder"> borax powder</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20seal" title=" edge seal"> edge seal</a> </p> <a href="https://publications.waset.org/abstracts/85317/an-investigation-into-sealing-materials-for-vacuum-glazing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">853</span> Improving Productivity in a Glass Production Line through Applying Principles of Total Productive Maintenance (TPM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Bataineh">Omar Bataineh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Total productive maintenance (TPM) is a principle-based method that aims to get a high-level production with no breakdowns, no slow running and no defects. Key principles of TPM were applied in this work to improve the performance of the glass production line at United Beverage Company in Kuwait, which is producing bottles of soft drinks. Principles such as 5S as a foundation for TPM implementation, developing a program for equipment management, Cause and Effect Analysis (CEA), quality improvement, training and education of employees were employed. After the completion of TPM implementation, it was possible to increase the Overall Equipment Effectiveness (OEE) from 23% to 40%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OEE" title="OEE">OEE</a>, <a href="https://publications.waset.org/abstracts/search?q=TPM" title=" TPM"> TPM</a>, <a href="https://publications.waset.org/abstracts/search?q=FMEA" title=" FMEA"> FMEA</a>, <a href="https://publications.waset.org/abstracts/search?q=CEA" title=" CEA"> CEA</a> </p> <a href="https://publications.waset.org/abstracts/57710/improving-productivity-in-a-glass-production-line-through-applying-principles-of-total-productive-maintenance-tpm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">852</span> Silicon-To-Silicon Anodic Bonding via Intermediate Borosilicate Layer for Passive Flow Control Valves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luc%20Conti">Luc Conti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitry%20Dumont-Fillon"> Dimitry Dumont-Fillon</a>, <a href="https://publications.waset.org/abstracts/search?q=Harald%20van%20Lintel"> Harald van Lintel</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Chappel"> Eric Chappel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow control valves comprise a silicon flexible membrane that deflects against a substrate, usually made of glass, containing pillars, an outlet hole, and anti-stiction features. However, there is a strong interest in using silicon instead of glass as substrate material, as it would simplify the process flow by allowing the use of well controlled anisotropic etching. Moreover, specific devices demanding a bending of the substrate would also benefit from the inherent outstanding mechanical strength of monocrystalline silicon. Unfortunately, direct Si-Si bonding is not easily achieved with highly structured wafers since residual stress may prevent the good adhesion between wafers. Using a thermoplastic polymer, such as parylene, as intermediate layer is not well adapted to this design as the wafer-to-wafer alignment is critical. An alternative anodic bonding method using an intermediate borosilicate layer has been successfully tested. This layer has been deposited onto the silicon substrate. The bonding recipe has been adapted to account for the presence of the SOI buried oxide and intermediate glass layer in order not to exceed the breakdown voltage. Flow control valves dedicated to infusion of viscous fluids at very high pressure have been made and characterized. The results are compared to previous data obtained using the standard anodic bonding method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anodic%20bonding" title="anodic bonding">anodic bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporated%20glass" title=" evaporated glass"> evaporated glass</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control%20valve" title=" flow control valve"> flow control valve</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a> </p> <a href="https://publications.waset.org/abstracts/84030/silicon-to-silicon-anodic-bonding-via-intermediate-borosilicate-layer-for-passive-flow-control-valves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">851</span> Production of Composite Materials by Mixing Chromium-Rich Ash and Soda-Lime Glass Powder: Mechanical Properties and Microstructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Savvas%20Varitis">Savvas Varitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Kavouras"> Panagiotis Kavouras</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Vourlias"> George Vourlias</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleni%20Pavlidou"> Eleni Pavlidou</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodoros%20Karakostas"> Theodoros Karakostas</a>, <a href="https://publications.waset.org/abstracts/search?q=Philomela%20Komninou"> Philomela Komninou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A chromium-loaded ash originating from incineration of tannery sludge under anoxic conditions was mixed with low grade soda-lime glass powder coming from commercial glass bottles. The relative weight proportions of ash over glass powder tested were 30/70, 40/60 and 50/50. The solid mixtures, formed in green state compacts, were sintered at the temperature range of 800oC up to 1200oC. The resulting products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDXS) and micro-indentation. The above methods were employed to characterize the various phases, microstructure and hardness of the produced materials. Thermal treatment at 800oC and 1000oC produced opaque ceramic products composed of a variety of chromium-containing and chromium-free crystalline phases. Thermal treatment at 1200oC gave rise to composite products, where only chromium-containing crystalline phases were detected. Hardness results suggest that specific products are serious candidates for structural applications. Acknowledgement: This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: THALES “WasteVal”: Reinforcement of the interdisciplinary and/or inter-institutional research and innovation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium-rich%20tannery%20residues" title="chromium-rich tannery residues">chromium-rich tannery residues</a>, <a href="https://publications.waset.org/abstracts/search?q=glass-ceramic%20materials" title=" glass-ceramic materials"> glass-ceramic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/25649/production-of-composite-materials-by-mixing-chromium-rich-ash-and-soda-lime-glass-powder-mechanical-properties-and-microstructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">850</span> Effect of Non-Crimp Fabric Structure on Mechanical Properties of Laminates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hireni%20R.%20Mankodi">Hireni R. Mankodi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20J.%20Chudasama"> D. J. Chudasama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The textile preforms play a key role in providing the mechanical properties and gives the idea about selection parameter of preforms to improve the quality and performance of laminates. The main objectives of this work are to study the effect of non-crimp fabric preform structure in final properties of laminates. It has been observed that the multi-axial preform give better mechanical properties of laminates as compared to woven and biaxial fabrics. This study investigated the effect of different non-crimp glass preform structure on tensile strength, bending and compression properties of glass laminates. The different woven, bi-axial and multi-axial fabrics with similar GSM used to manufacture the laminates using polyester resin. The structural and mechanical properties of preform and laminates were studied using standard methods. It has been observed that the glass fabric geometry, including type of weaves, warps and filling density and number of layer plays significant role in deciding mechanical properties of laminates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=preform" title="preform">preform</a>, <a href="https://publications.waset.org/abstracts/search?q=non-crimp%20structure" title=" non-crimp structure"> non-crimp structure</a>, <a href="https://publications.waset.org/abstracts/search?q=laminates" title=" laminates"> laminates</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-axial" title=" bi-axial"> bi-axial</a>, <a href="https://publications.waset.org/abstracts/search?q=multiaxial" title=" multiaxial"> multiaxial</a> </p> <a href="https://publications.waset.org/abstracts/26770/effect-of-non-crimp-fabric-structure-on-mechanical-properties-of-laminates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">849</span> Mechanical Tests and Analyzes of Behaviors of High-Performance of Polyester Resins Reinforced With Unifilo Fiberglass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B%C4%83il%C4%83%20Diana%20Irinel">Băilă Diana Irinel</a>, <a href="https://publications.waset.org/abstracts/search?q=P%C4%83curar%20R%C4%83zvan"> Păcurar Răzvan</a>, <a href="https://publications.waset.org/abstracts/search?q=P%C4%83curar%20Ancu%C8%9Ba"> Păcurar Ancuța</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last years, composite materials are increasingly used in automotive, aeronautic, aerospace, construction applications. Composite materials have been used in aerospace in applications such as engine blades, brackets, interiors, nacelles, propellers/rotors, single aisle wings, wide body wings. The fields of use of composite materials have multiplied with the improvement of material properties, such as stability and adaptation to the environment, mechanical tests, wear resistance, moisture resistance, etc. The composite materials are classified concerning type of matrix materials, as metallic, polymeric and ceramic based composites and are grouped according to the reinforcement type as fibre, obtaining particulate and laminate composites. Production of a better material is made more likely by combining two or more materials with complementary properties. The best combination of strength and ductility may be accomplished in solids that consist of fibres embedded in a host material. Polyester is a suitable component for composite materials, as it adheres so readily to the particles, sheets, or fibres of the other components. The important properties of the reinforcing fibres are their high strength and high modulus of elasticity. For applications, as in automotive or in aeronautical domain, in which a high strength-to-weight ratio is important, non-metallic fibres such as fiberglass have a distinct advantage because of their low density. In general, the glass fibres content varied between 9 to 33% wt. in the composites. In this article, high-performance types of composite materials glass-epoxy and glass-polyester used in automotive domain will be analyzed, performing tensile and flexural tests and SEM analyzes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass-polyester%20composite" title="glass-polyester composite">glass-polyester composite</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fibre" title=" glass fibre"> glass fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=traction%20and%20flexion%20tests" title=" traction and flexion tests"> traction and flexion tests</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM%20analyzes" title=" SEM analyzes"> SEM analyzes</a> </p> <a href="https://publications.waset.org/abstracts/152033/mechanical-tests-and-analyzes-of-behaviors-of-high-performance-of-polyester-resins-reinforced-with-unifilo-fiberglass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">848</span> Photoluminescence of Barium and Lithium Silicate Glasses and Glass Ceramics Doped with Rare Earth Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Augustas%20Vaitkevicius">Augustas Vaitkevicius</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Korjik"> Mikhail Korjik</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Tretyak"> Eugene Tretyak</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20Trusova"> Ekaterina Trusova</a>, <a href="https://publications.waset.org/abstracts/search?q=Gintautas%20Tamulaitis"> Gintautas Tamulaitis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silicate materials are widely used as luminescent materials in amorphous and crystalline phase. Lithium silicate glass is popular for making neutron sensitive scintillation glasses. Cerium-doped single crystalline silicates of rare earth elements and yttrium have been demonstrated to be good scintillation materials. Due to their high thermal and photo-stability, silicate glass ceramics are supposed to be suitable materials for producing light converters for high power white light emitting diodes. In this report, the influence of glass composition and crystallization on photoluminescence (PL) of different silicate glasses was studied. Barium (BaO-2SiO₂) and lithium (Li₂O-2SiO₂) glasses were under study. Cerium, dysprosium, erbium and europium ions as well as their combinations were used for doping. The influence of crystallization was studied after transforming the doped glasses into glass ceramics by heat treatment in the temperature range of 550-850 degrees Celsius for 1 hour. The study was carried out by comparing the photoluminescence (PL) spectra, spatial distributions of PL parameters and quantum efficiency in the samples under study. The PL spectra and spatial distributions of their parameters were obtained by using confocal PL microscopy. A WITec Alpha300 S confocal microscope coupled with an air cooled CCD camera was used. A CW laser diode emitting at 405 nm was exploited for excitation. The spatial resolution was in sub-micrometer domain in plane and ~1 micrometer perpendicularly to the sample surface. An integrating sphere with a xenon lamp coupled with a monochromator was used to measure the external quantum efficiency. All measurements were performed at room temperature. Chromatic properties of the light emission from the glasses and glass ceramics have been evaluated. We observed that the quantum efficiency of the glass ceramics is higher than that of the corresponding glass. The investigation of spatial distributions of PL parameters revealed that heat treatment of the glasses leads to a decrease in sample homogeneity. In the case of BaO-2SiO₂: Eu, 10 micrometer long needle-like objects are formed, when transforming the glass into glass ceramics. The comparison of PL spectra from within and outside the needle-like structure reveals that the ratio between intensities of PL bands associated with Eu²⁺ and Eu³⁺ ions is larger in the bright needle-like structures. This indicates a higher degree of crystallinity in the needle-like objects. We observed that the spectral positions of the PL bands are the same in the background and the needle-like areas, indicating that heat treatment imposes no significant change to the valence state of the europium ions. The evaluation of chromatic properties confirms applicability of the glasses under study for fabrication of white light sources with high thermal stability. The ability to combine barium and lithium glass matrixes and doping by Eu, Ce, Dy, and Tb enables optimization of chromatic properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20ceramics" title="glass ceramics">glass ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphor" title=" phosphor"> phosphor</a>, <a href="https://publications.waset.org/abstracts/search?q=silicate" title=" silicate "> silicate </a> </p> <a href="https://publications.waset.org/abstracts/51777/photoluminescence-of-barium-and-lithium-silicate-glasses-and-glass-ceramics-doped-with-rare-earth-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">847</span> Finite Element Analysis of a Glass Facades Supported by Pre-Tensioned Cable Trusses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khair%20Al-Deen%20Bsisu">Khair Al-Deen Bsisu</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20Mahmoud%20Abuzeid"> Osama Mahmoud Abuzeid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Significant technological advances have been achieved in the design and building construction of steel and glass in the last two decades. The metal glass support frame has been replaced by further sophisticated technological solutions, for example, the point fixed glazing systems. The minimization of the visual mass has reached extensive possibilities through the evolution of technology in glass production and the better understanding of the structural potential of glass itself, the technological development of bolted fixings, the introduction of the glazing support attachments of the glass suspension systems and the use for structural stabilization of cables that reduce to a minimum the amount of metal used. The variability of solutions of tension structures, allied to the difficulties related to geometric and material non-linear behavior, usually overrules the use of analytical solutions, letting numerical analysis as the only general approach to the design and analysis of tension structures. With the characteristics of low stiffness, lightweight, and small damping, tension structures are obviously geometrically nonlinear. In fact, analysis of cable truss is not only one of the most difficult nonlinear analyses because the analysis path may have rigid-body modes, but also a time consuming procedure. Non-linear theory allowing for large deflections is used. The flexibility of supporting members was observed to influence the stresses in the pane considerably in some cases. No other class of architectural structural systems is as dependent upon the use of digital computers as are tensile structures. Besides complexity, the process of design and analysis of tension structures presents a series of specificities, which usually lead to the use of special purpose programs, instead of general purpose programs (GPPs), such as ANSYS. In a special purpose program, part of the design know how is embedded in program routines. It is very probable that this type of program will be the option of the final user, in design offices. GPPs offer a range of types of analyses and modeling options. Besides, traditional GPPs are constantly being tested by a large number of users, and are updated according to their actual demands. This work discusses the use of ANSYS for the analysis and design of tension structures, such as cable truss structures under wind and gravity loadings. A model to describe the glass panels working in coordination with the cable truss was proposed. Under the proposed model, a FEM model of the glass panels working in coordination with the cable truss was established. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Glass%20Construction%20material" title="Glass Construction material">Glass Construction material</a>, <a href="https://publications.waset.org/abstracts/search?q=Facades" title=" Facades"> Facades</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element" title=" Finite Element"> Finite Element</a>, <a href="https://publications.waset.org/abstracts/search?q=Pre-Tensioned%20Cable%20Truss" title=" Pre-Tensioned Cable Truss"> Pre-Tensioned Cable Truss</a> </p> <a href="https://publications.waset.org/abstracts/53823/finite-element-analysis-of-a-glass-facades-supported-by-pre-tensioned-cable-trusses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">846</span> BTG-BIBA: A Flexibility-Enhanced Biba Model Using BTG Strategies for Operating System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gang%20Liu">Gang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Can%20Wang"> Can Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Runnan%20Zhang"> Runnan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Quan%20Wang"> Quan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Huimin%20Song"> Huimin Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaomin%20Ji"> Shaomin Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biba model can protect information integrity but might deny various non-malicious access requests of the subjects, thereby decreasing the availability in the system. Therefore, a mechanism that allows exceptional access control is needed. Break the Glass (BTG) strategies refer an efficient means for extending the access rights of users in exceptional cases. These strategies help to prevent a system from stagnation. An approach is presented in this work for integrating Break the Glass strategies into the Biba model. This research proposes a model, BTG-Biba, which provides both an original Biba model used in normal situations and a mechanism used in emergency situations. The proposed model is context aware, can implement a fine-grained type of access control and primarily solves cross-domain access problems. Finally, the flexibility and availability improvement with the use of the proposed model is illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biba%20model" title="Biba model">Biba model</a>, <a href="https://publications.waset.org/abstracts/search?q=break%20the%20glass" title=" break the glass"> break the glass</a>, <a href="https://publications.waset.org/abstracts/search?q=context" title=" context"> context</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-domain" title=" cross-domain"> cross-domain</a>, <a href="https://publications.waset.org/abstracts/search?q=fine-grained" title=" fine-grained"> fine-grained</a> </p> <a href="https://publications.waset.org/abstracts/65281/btg-biba-a-flexibility-enhanced-biba-model-using-btg-strategies-for-operating-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">845</span> Experimental and Numerical Modeling of Dynamic Axial Crushing of a Composite Glass/PEHD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoudi%20Noureddine">Mahmoudi Noureddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaou%20Abdellah"> Kaou Abdellah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy absorption is a major requirement for automotive structures. Although crashworthy structures of composite based glass fiber have exhibited energy absorption greater than similar at other composites structures, the crush process in many cases is accompanied by fracture, rather than by plastic deformation. The crash experiments show that the tubes are crushed in progressive manner start from one end of the tubes and delamination takes place between the layers. To better understand details of the crash process, ABAQUS finite element code is used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Energy%20absorption" title="Energy absorption">Energy absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=crash" title=" crash"> crash</a>, <a href="https://publications.waset.org/abstracts/search?q=PEHD" title=" PEHD "> PEHD </a> </p> <a href="https://publications.waset.org/abstracts/23329/experimental-and-numerical-modeling-of-dynamic-axial-crushing-of-a-composite-glasspehd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">844</span> Inherent Relation Between Atomic-Level Stresses and Nanoscale Spatial Heterogeneity in a Rejuvenated Bulk Metallic Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Samavatian">Majid Samavatian</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Gholamipour"> Reza Gholamipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Samavatian"> Vahid Samavatian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study addresses the role of rejuvenation on the fluctuation of atomic-level stresses and nanoscale topological heterogeneity in ZrCuNiAl bulk metallic glass (BMG). Based on atomic force microscopy (AFM) results, the rejuvenation process leads to an increase in nanoscale spatial heterogeneity manifested by the intensification of the local viscoelastic response of the BMG nanostructure. It means that the rejuvenation process induces more loose-packing structures which behave towards an external load in a viscoelastic way. Hence, it is suggested that the alteration of such heterogeneity may be attributed to the variation of positional atomic rearrangement during the evolution of structural rejuvenation. On the other side, the synchrotron X-ray diffraction (XRD) results indicate that the rejuvenation intensifies the variation of internal stresses at the atomic level. This conclusion unfolds that the increase of atomic-level stresses during rejuvenation induces structural disordering and nanoscale heterogeneity in the amorphous material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bulk%20metallic%20glass" title="bulk metallic glass">bulk metallic glass</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title=" heterogeneity"> heterogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=rejuvenation" title=" rejuvenation"> rejuvenation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a> </p> <a href="https://publications.waset.org/abstracts/121311/inherent-relation-between-atomic-level-stresses-and-nanoscale-spatial-heterogeneity-in-a-rejuvenated-bulk-metallic-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">843</span> The Impact of Glass Additives on the Functional and Microstructural Properties of Sand-Lime Bricks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Stepien">Anna Stepien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the results of research on modifications of sand-lime bricks, especially using glass additives (glass fiber and glass sand) and other additives (e.g.:basalt&barite aggregate, lithium silicate and microsilica) as well. The main goal of this paper is to answer the question ‘How to use glass additives in the sand-lime mass and get a better bricks?’ The article contains information on modification of sand-lime bricks using glass fiber, glass sand, microsilica (different structure of silica). It also presents the results of the conducted compression tests, which were focused on compressive strength, water absorption, bulk density, and their microstructure. The Scanning Electron Microscope, spectrum EDS, X-ray diffractometry and DTA analysis helped to define the microstructural changes of modified products. The interpretation of the products structure revealed the existence of diversified phases i.e.the C-S-H and tobermorite. CaO-SiO2-H2O system is the object of intensive research due to its meaning in chemistry and technologies of mineral binding materials. Because the blocks are the autoclaving materials, the temperature of hydrothermal treatment of the products is around 200°C, the pressure - 1,6-1,8 MPa and the time - up to 8hours (it means: 1h heating + 6h autoclaving + 1h cooling). The microstructure of the products consists mostly of hydrated calcium silicates with a different level of structural arrangement. The X-ray diffraction indicated that the type of used sand is an important factor in the manufacturing of sand-lime elements. Quartz sand of a high hardness is also a substrate hardly reacting with other possible modifiers, which may cause deterioration of certain physical and mechanical properties. TG and DTA curves show the changes in the weight loss of the sand-lime bricks specimen against time as well as the endo- and exothermic reactions that took place. The endothermic effect with the maximum at T=573°C is related to isomorphic transformation of quartz. This effect is not accompanied by a change of the specimen weight. The next endothermic effect with the maximum at T=730-760°C is related to the decomposition of the calcium carbonates. The bulk density of the brick it is 1,73kg/dm3, the presence of xonotlite in the microstructure and significant weight loss during DTA and TG tests (around 0,6% after 70 minutes) have been noticed. Silicate elements were assessed on the basis of their compressive property. Orthogonal compositional plan type 3k (with k=2), i.e.full two-factor experiment was applied in order to carry out the experiments both, in the compression strength test and bulk density test. Some modification (e.g.products with barite and basalt aggregate) have improved the compressive strength around 41.3 MPa and water absorption due to capillary raising have been limited to 12%. The next modification was adding glass fiber to sand-lime mass, then glass sand. The results show that the compressive strength was higher than in the case of traditional bricks, while modified bricks were lighter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bricks" title="bricks">bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=glass" title=" glass"> glass</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/63525/the-impact-of-glass-additives-on-the-functional-and-microstructural-properties-of-sand-lime-bricks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">842</span> An Experimental Modeling of Steel Surfaces Wear in Injection of Plastic Materials with SGF</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Capitanu">L. Capitanu</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Floresci"> V. Floresci</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20L.%20Badita"> L. L. Badita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starting from the idea that the greatest pressure and velocity of composite melted is in the die nozzle, was an experimental nozzle with wear samples of sizes and weights which can be measured with precision as good. For a larger accuracy of measurements, we used a method for radiometric measuring, extremely accurate. Different nitriding steels have been studied as nitriding treatments, as well as some special steels and alloyed steels. Besides these, there have been preliminary attempts made to describe and checking corrosive action of thermoplastics on metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plastics" title="plastics">plastics</a>, <a href="https://publications.waset.org/abstracts/search?q=composites%20with%20short%20glass%20fibres" title=" composites with short glass fibres"> composites with short glass fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=moulding" title=" moulding"> moulding</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20modelling" title=" experimental modelling"> experimental modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fibres%20content%20influence" title=" glass fibres content influence"> glass fibres content influence</a> </p> <a href="https://publications.waset.org/abstracts/47299/an-experimental-modeling-of-steel-surfaces-wear-in-injection-of-plastic-materials-with-sgf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">841</span> Mechanical Characterization and CNC Rotary Ultrasonic Grinding of Crystal Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Torcato">Ricardo Torcato</a>, <a href="https://publications.waset.org/abstracts/search?q=Helder%20Morais"> Helder Morais</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The manufacture of crystal glass parts is based on obtaining the rough geometry by blowing and/or injection, generally followed by a set of manual finishing operations using cutting and grinding tools. The forming techniques used do not allow the obtainment, with repeatability, of parts with complex shapes and the finishing operations use intensive specialized labor resulting in high cycle times and production costs. This work aims to explore the digital manufacture of crystal glass parts by investigating new subtractive techniques for the automated, flexible finishing of these parts. Finishing operations are essential to respond to customer demands in terms of crystal feel and shine. It is intended to investigate the applicability of different computerized finishing technologies, namely milling and grinding in a CNC machining center with or without ultrasonic assistance, to crystal processing. Research in the field of grinding hard and brittle materials, despite not being extensive, has increased in recent years, and scientific knowledge about the machinability of crystal glass is still very limited. However, it can be said that the unique properties of glass, such as high hardness and very low toughness, make any glass machining technology a very challenging process. This work will measure the performance improvement brought about by the use of ultrasound compared to conventional crystal grinding. This presentation is focused on the mechanical characterization and analysis of the cutting forces in CNC machining of superior crystal glass (Pb ≥ 30%). For the mechanical characterization, the Vickers hardness test provides an estimate of the material hardness (Hv) and the fracture toughness based on cracks that appear in the indentation. Mechanical impulse excitation test estimates the Young’s Modulus, shear modulus and Poisson ratio of the material. For the cutting forces, it a dynamometer was used to measure the forces in the face grinding process. The tests were made based on the Taguchi method to correlate the input parameters (feed rate, tool rotation speed and depth of cut) with the output parameters (surface roughness and cutting forces) to optimize the process (better roughness using the cutting forces that do not compromise the material structure and the tool life) using ANOVA. This study was conducted for conventional grinding and for the ultrasonic grinding process with the same cutting tools. It was possible to determine the optimum cutting parameters for minimum cutting forces and for minimum surface roughness in both grinding processes. Ultrasonic-assisted grinding provides a better surface roughness than conventional grinding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNC%20machining" title="CNC machining">CNC machining</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20glass" title=" crystal glass"> crystal glass</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20forces" title=" cutting forces"> cutting forces</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/143427/mechanical-characterization-and-cnc-rotary-ultrasonic-grinding-of-crystal-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">840</span> Application of Ultrasonic Assisted Machining Technique for Glass-Ceramic Milling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Lin">S. Y. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Kuan"> C. H. Kuan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20She"> C. H. She</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20T.%20Wang"> W. T. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, ultrasonic assisted machining (UAM) technique is applied in side-surface milling experiment for glass-ceramic workpiece material. The tungsten carbide cutting-tool with diamond coating is used in conjunction with two kinds of cooling/lubrication mediums such as water-soluble (WS) cutting fluid and minimum quantity lubricant (MQL). Full factorial process parameter combinations on the milling experiments are planned to investigate the effect of process parameters on cutting performance. From the experimental results, it tries to search for the better process parameter combination which the edge-indentation and the surface roughness are acceptable. In the machining experiments, ultrasonic oscillator was used to excite a cutting-tool along the radial direction producing a very small amplitude of vibration frequency of 20KHz to assist the machining process. After processing, toolmaker microscope was used to detect the side-surface morphology, edge-indentation and cutting tool wear under different combination of cutting parameters, and analysis and discussion were also conducted for experimental results. The results show that the main leading parameters to edge-indentation of glass ceramic are cutting depth and feed rate. In order to reduce edge-indentation, it needs to use lower cutting depth and feed rate. Water-soluble cutting fluid provides a better cooling effect in the primary cutting area; it may effectively reduce the edge-indentation and improve the surface morphology of the glass ceramic. The use of ultrasonic assisted technique can effectively enhance the surface finish cleanness and reduce cutting tool wear and edge-indentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass-ceramic" title="glass-ceramic">glass-ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20assisted%20machining" title=" ultrasonic assisted machining"> ultrasonic assisted machining</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20performance" title=" cutting performance"> cutting performance</a>, <a href="https://publications.waset.org/abstracts/search?q=edge-indentation" title=" edge-indentation"> edge-indentation</a> </p> <a href="https://publications.waset.org/abstracts/31245/application-of-ultrasonic-assisted-machining-technique-for-glass-ceramic-milling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">839</span> Dynamic Mechanical Analysis of Supercooled Water in Nanoporous Confinement and Biological Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viktor%20Soprunyuk">Viktor Soprunyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Wilfried%20Schranz"> Wilfried Schranz</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Huber"> Patrick Huber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, we show that Dynamic Mechanical Analysis (DMA) with a measurement frequency range f= 0.2 - 100 Hz is a rather powerful technique for the study of phase transitions (freezing and melting) and glass transitions of water in geometrical confinement. Inserting water into nanoporous host matrices, like e.g. Gelsil (size of pores 2.6 nm and 5 nm) or Vycor (size of pores 10 nm) allows one to study size effects occurring at the nanoscale conveniently in macroscopic bulk samples. One obtains valuable insight concerning confinement induced changes of the dynamics by measuring the temperature and frequency dependencies of the complex Young's modulus Y* for various pore sizes. Solid-liquid transitions or glass-liquid transitions show up in a softening or the real part Y' of the complex Young's modulus, yet with completely different frequency dependencies. Analysing the frequency dependent imaginary part of the Young´s modulus in the glass transition regions for different pore sizes we find a clear-cut 1/d-dependence of the calculated glass transition temperatures which extrapolates to Tg(1/d=0)=136 K, in agreement with the traditional value of water. The results indicate that the main role of the pore diameter is the relative amount of water molecules that are near an interface within a length scale of the order of the dynamic correlation length x. Thus we argue that the observed strong pore size dependence of Tg is an interfacial effect, rather than a finite size effect. We obtained similar signatures of Y* near glass transitions in different biological objects (fruits, vegetables, and bread). The values of the activation energies for these biological materials in the region of glass transition are quite similar to the values of the activation energies of supercooled water in the nanoporous confinement in this region. The present work was supported by the Austrian Science Fund (FWF, project Nr. P 28672 – N36). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20systems" title="biological systems">biological systems</a>, <a href="https://publications.waset.org/abstracts/search?q=liquids" title=" liquids"> liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=glasses" title=" glasses"> glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous%20systems" title=" amorphous systems"> amorphous systems</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoporous%20materials" title=" nanoporous materials"> nanoporous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title=" phase transition"> phase transition</a> </p> <a href="https://publications.waset.org/abstracts/56486/dynamic-mechanical-analysis-of-supercooled-water-in-nanoporous-confinement-and-biological-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">838</span> The Fit of the Partial Pair Distribution Functions of BaMnFeF7 Fluoride Glass Using the Buckingham Potential by the Hybrid RMC Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sidi%20Mohamed%20Mesli">Sidi Mohamed Mesli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Habchi"> Mohamed Habchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arslane%20Boudghene%20Stambouli"> Arslane Boudghene Stambouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafik%20Benallal"> Rafik Benallal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The BaMnMF7 (M=Fe,V, transition metal fluoride glass, assuming isomorphous replacement) have been structurally studied through the simultaneous simulation of their neutron diffraction patterns by reverse Monte Carlo (RMC) and by the Hybrid Reverse Monte Carlo (HRMC) analysis. This last is applied to remedy the problem of the artificial satellite peaks that appear in the partial pair distribution functions (PDFs) by the RMC simulation. The HRMC simulation is an extension of the RMC algorithm, which introduces an energy penalty term (potential) in acceptance criteria. The idea of this work is to apply the Buckingham potential at the title glass by ignoring the van der Waals terms, in order to make a fit of the partial pair distribution functions and give the most possible realistic features. When displaying the partial PDFs, we suggest that the Buckingham potential is useful to describe average correlations especially in similar interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluoride%20glasses" title="fluoride glasses">fluoride glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=RMC%20simulation" title=" RMC simulation"> RMC simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20RMC%20simulation" title=" hybrid RMC simulation"> hybrid RMC simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Buckingham%20potential" title=" Buckingham potential"> Buckingham potential</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20pair%20distribution%20functions" title=" partial pair distribution functions"> partial pair distribution functions</a> </p> <a href="https://publications.waset.org/abstracts/38108/the-fit-of-the-partial-pair-distribution-functions-of-bamnfef7-fluoride-glass-using-the-buckingham-potential-by-the-hybrid-rmc-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">837</span> Effect of TEOS Electrospun Nanofiber Modified Resin on Interlaminar Shear Strength of Glass Fiber/Epoxy Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dattaji%20K.%20Shinde">Dattaji K. Shinde</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajit%20D.%20Kelkar"> Ajit D. Kelkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interlaminar shear strength (ILSS) of fiber reinforced polymer composite is an important property for most of the structural applications. Matrix modification is an effective method used to improve the interlaminar shear strength of composite. In this paper, EPON 862/w epoxy system was modified using Tetraethyl orthosilicate (TEOS) electrospun nanofibers (ENFs) which were produced using electrospinning method. Unmodified and nanofibers modified resins were used to fabricate glass fiber reinforced polymer composite (GFRP) using H-VARTM method. The ILSS of the Glass Fiber Reinforced Polymeric Composites (GFRP) was investigated. The study shows that introduction of TEOS ENFs in the epoxy resin enhanced the ILSS of GFRPby 15% with 0.6% wt. fraction of TEOS ENFs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospun%20nanofibers" title="electrospun nanofibers">electrospun nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=H-VARTM" title=" H-VARTM"> H-VARTM</a>, <a href="https://publications.waset.org/abstracts/search?q=interlaminar%20shear%20strength" title=" interlaminar shear strength"> interlaminar shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20modification" title=" matrix modification"> matrix modification</a> </p> <a href="https://publications.waset.org/abstracts/1508/effect-of-teos-electrospun-nanofiber-modified-resin-on-interlaminar-shear-strength-of-glass-fiberepoxy-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">836</span> Hydration Behavior of Belitic Cement in the Presence of Na₂CO₃, NaOH, KOH, and Water Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Amor">F. Amor</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouregba"> A. Bouregba</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20El%20Fami"> N. El Fami</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Diouri"> A. Diouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study provides insights into the role of alkalis in modifying the hydration kinetics and microstructural development of β-dicalcium silicate, highlighting potential pathways for enhancing the performance of belite-based cements in various construction applications. It investigates the behavior of β-dicalcium silicates (β-Ca₂SiO₄) when hydrated in various alkaline environments, including deionized water and solutions containing 2M concentrations of Na₂CO₃, NaOH, KOH, and water glass. The dicalcium silicate was synthesized with laboratory reagents, calcium carbonate, and gel silica. The hydration process was carried out over different periods, ranging from 7 to 90 days. The hydrated samples were characterized using X-ray diffraction, infrared spectroscopy, and scanning electron microscopy, while the mechanical strength tests were performed at 28 and 90 days. The results indicate that the presence of alkalis significantly influences the hydration of belite cement. Early hydration is accelerated, which is evident from the faster dissolution of C₂S, a decrease in C₂S peaks, and the formation of C-S-H products, including sodium-containing C-(N)-S-H and potassium-containing C-(K)-S-H. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dicalcium%20silicate" title="dicalcium silicate">dicalcium silicate</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20activator" title=" alkali activator"> alkali activator</a>, <a href="https://publications.waset.org/abstracts/search?q=hydration" title=" hydration"> hydration</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20glass" title=" water glass"> water glass</a>, <a href="https://publications.waset.org/abstracts/search?q=Na%E2%82%82CO%E2%82%83" title=" Na₂CO₃"> Na₂CO₃</a>, <a href="https://publications.waset.org/abstracts/search?q=NaOH" title=" NaOH"> NaOH</a>, <a href="https://publications.waset.org/abstracts/search?q=KOH" title=" KOH"> KOH</a> </p> <a href="https://publications.waset.org/abstracts/193548/hydration-behavior-of-belitic-cement-in-the-presence-of-na2co3-naoh-koh-and-water-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">835</span> Aging Time Effect of 58s Microstructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nattawipa%20Pakasri">Nattawipa Pakasri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 58S (60SiO2-36CaO-4P2O5), three-dimensionally ordered macroporous bioactive glasses (3DOM-BGs) were synthesized by the sol-gel method using dual templating methods. non-ionic surfactant Brij56 used as templates component produced mesoporous and the spherical PMMA colloidal crystals as one template component yielded either three-dimensionally ordered microporous products or shaped bioactive glass nanoparticles. The bioactive glass with aging step for 12 h at room temperature, no structure transformation occurred and the 3DOM structure was produced (Figure a) due to no shrinkage process between the aging step. After 48 h time of o 3DOM structure remained and, nanocube with ∼120 nm edge lengths and nanosphere particle with ∼50 nm was obtained (Figure c, d). PMMA packing templates have octahedral and tetrahedral holes to make 2 final shapes of 3DOM-BGs which is rounded and cubic, respectively. The ageing time change from 12h, 24h and 48h affected to the thickness of interconnecting macropores network. The wall thickness was gradually decrease after increase aging time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=three-dimensionally%20ordered%20macroporous%20bioactive%20glasses" title="three-dimensionally ordered macroporous bioactive glasses">three-dimensionally ordered macroporous bioactive glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title=" sol-gel method"> sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=PMMA" title=" PMMA"> PMMA</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20glass" title=" bioactive glass"> bioactive glass</a> </p> <a href="https://publications.waset.org/abstracts/121415/aging-time-effect-of-58s-microstructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">834</span> Environmental Pb-Free Cu Front Electrode for Si-Base Solar Cell Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen-Hsi%20Lee">Wen-Hsi Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=C.G.%20Kao"> C.G. Kao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Cu paste was prepared and printed with narrow line screen printing process on polycrystalline Si solar cell which has already finished the back Al printing and deposition of double anti-reflection coatings (DARCs). Then, two-step firing process was applied to sinter the front electrode and obtain the ohmic contact between front electrode and solar cell. The first step was in air atmosphere. In this process, PbO-based glass frit etched the DARCs and Ag recrystallized at the surface of Si, constructing the preliminary contact. The second step was in reducing atmosphere. In this process, CuO reduced to Cu and sintered. Besides, Ag nanoparticles recrystallized in the glass layer at interface due to the interactions between H2, Ag and PbO-based glass frit and the volatility of Pb, constructing the ohmic contact between electrode and solar cell. By experiment and analysis, reaction mechanism in each stage was surmised, and it was also proven that ohmic contact and good sheet resistance for front electrode could both be obtained by applying newly-invented paste and process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=front%20electrode" title="front electrode">front electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=ohmic%20contact" title=" ohmic contact"> ohmic contact</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20printing" title=" screen printing"> screen printing</a>, <a href="https://publications.waset.org/abstracts/search?q=paste" title=" paste"> paste</a> </p> <a href="https://publications.waset.org/abstracts/32923/environmental-pb-free-cu-front-electrode-for-si-base-solar-cell-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">833</span> Silver Nanoparticles Loaded Cellulose Nanofibers (Cnf)/mesoporous Bioactive Glass Hydrogels For Periodontitis Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anika%20Pallapothu">Anika Pallapothu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Periodontitis, a severe gum disease, poses a significant threat to the integrity of bone and soft tissues supporting teeth, primarily initiated by bacterial accumulation around the gum line. Conventional treatments like scaling/root planning and plaque removal are widely employed, but integrating modern technologies such as nanotechnology holds promise for innovative therapeutic approaches. This study explores the utilization of silver nanoparticles encapsulated within cellulose nanofiber (CNF) and mesoporous bioactive glass hydrogel matrices for periodontitis management. Silver nanoparticles exhibit potent antimicrobial properties by disrupting microbial cell membranes, inducing reactive oxygen species (ROS) generation, and interfering with vital cellular processes like ATP production and nucleic acid synthesis. Mesoporous bioactive glass, renowned for its high surface area, osteoconductive, and bioactivity, presents a favorable platform for pharmaceutical applications. Incorporating CNF enhances the properties of the hydrogel due to its biocompatibility, biodegradability, and water absorption capacity. The proposed composite material is anticipated to exert beneficial effects in periodontitis treatment by demonstrating antibacterial and anti-inflammatory activities, offering a promising avenue for future therapeutic interventions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=periodontitis" title="periodontitis">periodontitis</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20nanofibers" title=" cellulose nanofibers"> cellulose nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20bioactive%20glass" title=" mesoporous bioactive glass"> mesoporous bioactive glass</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory%20activity" title=" anti-inflammatory activity"> anti-inflammatory activity</a> </p> <a href="https://publications.waset.org/abstracts/185316/silver-nanoparticles-loaded-cellulose-nanofibers-cnfmesoporous-bioactive-glass-hydrogels-for-periodontitis-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">832</span> Influence of Single Source Irradiation on the Homogeneous Alignment of Liquid Crystals Molecules on Glass Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Akhtar">Sarah Akhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizwan%20Mahmood"> Rizwan Mahmood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A detailed study of homogeneous alignment of liquid crystal molecules on a glass substrate will be presented. Thin films of polyimide were coated on several glass substrates. Various methods were employed to prepare coated surfaces to achieve desired alignment; these include traditionally rubbing the surface with a felt cloth then exposing them perpendicular to the easy axis with incandescent light (IL), linearly polarized ultraviolet (LPUVR) and un-polarized ultraviolet (UPUVR) radiation. The quality of the alignment was tested by measuring the tilt angle in the temperature range between 30°C to 55°C. Regression analysis of the data using ‘SigmaPlot’ suggests a gradual increase in tilt angle (1.1°-1.8°) for the rubbed, 0.6° to 3.6° increase for the rubbed plus IL radiated and 1.6° to 4.6° for the rubbed plus UPUVL radiated samples, respectively. However to our surprise, we found tilt angle to be decreasing from 2.4° to 1.6° for the rubbed plus LPUVL radiated samples. We hope that these findings will be helpful in the fabrication of display panels and other electro-optic devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homogeneous" title="homogeneous">homogeneous</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystals" title=" liquid crystals"> liquid crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=polyimide" title=" polyimide"> polyimide</a>, <a href="https://publications.waset.org/abstracts/search?q=tilt%20angle" title=" tilt angle"> tilt angle</a> </p> <a href="https://publications.waset.org/abstracts/102033/influence-of-single-source-irradiation-on-the-homogeneous-alignment-of-liquid-crystals-molecules-on-glass-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">831</span> Synthesis and Characterization of Fluorine-Free, Hydrophobic and Highly Transparent Coatings </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderrahmane%20Hamdi">Abderrahmane Hamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Julie%20Chalon"> Julie Chalon</a>, <a href="https://publications.waset.org/abstracts/search?q=Benoit%20Dodin"> Benoit Dodin</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Champagne"> Philippe Champagne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work concerns the synthesis of hydrophobic and self-cleaning coatings as an alternative to fluorine-based coatings used on glass. The developed, highly transparent coatings are produced by a chemical route (sol-gel method) using two silica-based precursors, hexamethyldisilazane and tetraethoxysilane (HMDS/TEOS). The addition of zinc oxide nanoparticles (ZnO NPs) within the gel provides a photocatalytic property to the final coating. The prepared gels were deposited on glass slides using different methods. The properties of the coatings were characterized by optical microscopy, scanning electron microscopy, UV-VIS-NIR spectrophotometer, and water contact angle method. The results show that the obtained coatings are homogeneous and have a hydrophobic character. In particular, after thermal treatment, the HMDS/TEOS@ZnO charged gel deposited on glass constitutes a coating capable of degrading methylene blue (MB) under UV irradiation. Optical transmission reaches more than 90% in most of the visible light spectrum. Synthetized coatings have also demonstrated their mechanical durability and self-cleaning ability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning" title=" self-cleaning"> self-cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=transparence" title=" transparence"> transparence</a> </p> <a href="https://publications.waset.org/abstracts/122907/synthesis-and-characterization-of-fluorine-free-hydrophobic-and-highly-transparent-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">830</span> Reducing the Chemical Activity of Ceramic Casting Molds for Producing Decorated Glass Moulds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilgun%20Kuskonmaz">Nilgun Kuskonmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ceramic molding can produce castings with fine detail, smooth surface and high degree of dimensional accuracy. All these features are the key factors for producing decorated glass moulds. In the ceramic mold casting process, the fundamental parameters affecting the mold-metal reactions are the composition and the properties of the refractory materials used in the production of ceramic mold. As a result of the reactions taking place between the liquid metal and mold surface, it is not possible to achieve a perfect surface quality, a fine surface detail and maintain a high standard dimensional tolerances. The present research examines the effects of the binder composition on the structural and physical properties of the zircon ceramic mold. In the experiment, the ceramic slurry was prepared by mixing the refractory powders (zircon(ZrSiO4), mullit(3Al2O32SiO2) and alumina (Al2O3)) with the low alkaline silica (ethyl silicate (C8H20O4Si)) and acidic type gelling material suitable binder and gelling agent. This was followed by pouring that ceramic slurry on to a silicon pattern. After being gelled, the mold was removed from the silicon pattern and dried. Then, the ceramic mold was subjected to the reaction sintering at 1600°C for 2 hours in the furnace. The stainless steel (SS) was cast into the sintered ceramic mold. At the end of this process it was observed that the surface quality of decorated glass mold. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20mold" title="ceramic mold">ceramic mold</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20casting" title=" stainless steel casting"> stainless steel casting</a>, <a href="https://publications.waset.org/abstracts/search?q=decorated%20glass%20mold" title=" decorated glass mold"> decorated glass mold</a> </p> <a href="https://publications.waset.org/abstracts/68215/reducing-the-chemical-activity-of-ceramic-casting-molds-for-producing-decorated-glass-moulds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">829</span> Characterizing Solid Glass in Bending, Torsion and Tension: High-Temperature Dynamic Mechanical Analysis up to 950 °C</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Walluch">Matthias Walluch</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Alberto%20Rodr%C3%ADguez"> José Alberto Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Giehl"> Christopher Giehl</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunther%20Arnold"> Gunther Arnold</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Ehgartner"> Daniela Ehgartner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic mechanical analysis (DMA) is a powerful method to characterize viscoelastic properties and phase transitions for a wide range of materials. It is often used to characterize polymers and their temperature-dependent behavior, including thermal transitions like the glass transition temperature Tg, via determination of storage and loss moduli in tension (Young’s modulus, E) and shear or torsion (shear modulus, G) or other testing modes. While production and application temperatures for polymers are often limited to several hundred degrees, material properties of glasses usually require characterization at temperatures exceeding 600 °C. This contribution highlights a high temperature setup for rotational and oscillatory rheometry as well as for DMA in different modes. The implemented standard convection oven enables the characterization of glass in different loading modes at temperatures up to 950 °C. Three-point bending, tension and torsional measurements on different glasses, with E and G moduli as a function of frequency and temperature, are presented. Additional tests include superimposing several frequencies in a single temperature sweep (“multiwave”). This type of test results in a considerable reduction of the experiment time and allows to evaluate structural changes of the material and their frequency dependence. Furthermore, DMA in torsion and tension was performed to determine the complex Poisson’s ratio as a function of frequency and temperature within a single test definition. Tests were performed in a frequency range from 0.1 to 10 Hz and temperatures up to the glass transition. While variations in the frequency did not reveal significant changes of the complex Poisson’s ratio of the glass, a monotonic increase of this parameter was observed when increasing the temperature. This contribution outlines the possibilities of DMA in bending, tension and torsion for an extended temperature range. It allows the precise mechanical characterization of material behavior from room temperature up to the glass transition and the softening temperature interval. Compared to other thermo-analytical methods, like Dynamic Scanning Calorimetry (DSC) where mechanical stress is neglected, the frequency-dependence links measurement results (e.g. relaxation times) to real applications <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mechanical%20analysis" title="dynamic mechanical analysis">dynamic mechanical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillatory%20rheometry" title=" oscillatory rheometry"> oscillatory rheometry</a>, <a href="https://publications.waset.org/abstracts/search?q=Poisson%27s%20ratio" title=" Poisson's ratio"> Poisson's ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20glass" title=" solid glass"> solid glass</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a> </p> <a href="https://publications.waset.org/abstracts/156665/characterizing-solid-glass-in-bending-torsion-and-tension-high-temperature-dynamic-mechanical-analysis-up-to-950-c" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass&page=5" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass&page=5">5</a></li> <li class="page-item active"><span class="page-link">6</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass&page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass&page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass&page=7" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>