CINXE.COM
Search results for: Vibrio coralliilyticus
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Vibrio coralliilyticus</title> <meta name="description" content="Search results for: Vibrio coralliilyticus"> <meta name="keywords" content="Vibrio coralliilyticus"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Vibrio coralliilyticus" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Vibrio coralliilyticus"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 57</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Vibrio coralliilyticus</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Preventive Effect of Three Kinds of Bacteriophages to Control Vibrio coralliilyticus Infection in Oyster Larvae </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyoun%20Joong%20Kim">Hyoun Joong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Woo%20Jun"> Jin Woo Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Sib%20Sankar%20Giri"> Sib Sankar Giri</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Chi"> Cheng Chi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saekil%20Yun"> Saekil Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Guen%20Kim"> Sang Guen Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Wha%20Kim"> Sang Wha Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Woo%20Kang"> Jeong Woo Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Se%20Jin%20Han"> Se Jin Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Se%20Chang%20Park"> Se Chang Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vibrio corallilyticus is a well-known pathogen of coral. It is also infectious to a variety of shellfish species, including Pacific oyster (Crassostrea gigas) larvae. V. corallilyticus is remained to be a major constraint in marine bivalve aquaculture practice, especially in artificial seed production facility. Owing to the high mortality and contagious nature of the pathogen, large amount of antibiotics has been used for disease prevention and control. However, indiscriminate use of antibiotics may result in food and environmental pollution, and development of antibiotic resistant strains. Therefore, eco-friendly disease preventative measures are imperative for sustainable bivalve culture. The present investigation proposes the application of bacteriophage (phage) as an effective alternative method for controlling V. corallilyticus infection in marine bivalve hatcheries. Isolation of phages from sea water sample was carried out using drop or double layer agar methods. The host range, stability and morphology of the phage isolates were studied. In vivo phage efficacy to prevent V. corallilyticus infection in oyster larvae was also performed. The isolated phages, named pVco-5 and pVco-7 was classified as a podoviridae and pVco-14, was classified as a siphoviridae. Each phages were infective to four strains of seven V. corallilyticus strains tested. When oyster larvae were pre-treated with the phage before bacterial challenge, mortality of the treated oyster larvae was lower than that in the untreated control. This result suggests that each phages have the potential to be used as therapeutic agent for controlling V. corallilyticus infection in marine bivalve hatchery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteriophage" title="bacteriophage">bacteriophage</a>, <a href="https://publications.waset.org/abstracts/search?q=Vibrio%20coralliilyticus" title=" Vibrio coralliilyticus"> Vibrio coralliilyticus</a>, <a href="https://publications.waset.org/abstracts/search?q=Oyster%20larvae" title=" Oyster larvae"> Oyster larvae</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a> </p> <a href="https://publications.waset.org/abstracts/80489/preventive-effect-of-three-kinds-of-bacteriophages-to-control-vibrio-coralliilyticus-infection-in-oyster-larvae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> The Physicochemical Properties of Two Rivers in Eastern Cape South Africa as Relates to Vibrio Spp Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwatayo%20Abioye">Oluwatayo Abioye</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Okoh"> Anthony Okoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past view decades; human has experienced outbreaks of infections caused by pathogenic Vibrio spp which are commonly found in aquatic milieu. Asides the well-known Vibrio cholerae, discovery of other pathogens in this genus has been on the increase. While the dynamics of occurrence and distribution of Vibrio spp have been linked to some physicochemical parameters in salt water, data in relation to fresh water is limited. Hence, two rivers of importance in the Eastern Cape, South Africa were selected for this study. In all, eleven sampling sites were systematically identified and relevant physicochemical parameters, as well as Vibrio spp density, were determined for the period of six months using standard instruments and methods. Results were statistically analysed to determined key physicochemical parameters that determine the density of Vibrio spp in the selected rivers. Results: The density of Vibrio spp in all the sampling points ranges between < 1 CFU/mL to 174 x 10-2 CFU/mL. The physicochemical parameters of some of the sampling points were above the recommended standards. The regression analysis showed that Vibrio density in the selected rivers depends on a complex relationship between various physicochemical parameters. Conclusion: This study suggests that Vibrio spp density in fresh water does not depend on only temperature and salinity as suggested by earlier studies on salt water but rather on a complex relationship between several physicochemical parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibrio%20density" title="vibrio density">vibrio density</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20properties" title=" physicochemical properties"> physicochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogen" title=" pathogen"> pathogen</a>, <a href="https://publications.waset.org/abstracts/search?q=aquatic%20milieu" title=" aquatic milieu"> aquatic milieu</a> </p> <a href="https://publications.waset.org/abstracts/77315/the-physicochemical-properties-of-two-rivers-in-eastern-cape-south-africa-as-relates-to-vibrio-spp-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Isolation of Vibrio harveyi and Vibrio alginolyticus Strains from Cultured Seabass (Dicentrarchus labrax L.) and Seabream (Sparus auratus L.) in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khallaf">M. Khallaf</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Khalil"> R. Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ghetas"> H. Ghetas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, V. harveyi and V. alginolyticus were isolated from cultured seabass and seabream at Damietta Governorate, Egypt, during summer season. Isolates were biochemically and molecularly identified using primers for Vhh and Collagenase genes. The most prominent clinical observations of diseased fish were exophthalmia, abdominal distension, and multifocal cutaneous hemorrhagic ulceration on the dorsal musculature and caudal peduncle. Physicochemical characteristics of water samples indicated that the unionized ammonia, nitrate, and hydrogen sulphate concentrations were higher than the acceptable limits. Heavy metals concentrations in water samples exhibited higher concentrations than the permissible levels for fish culture, which was considered as chemical stressors that increase the prevalence of these bacterial diseases. Immune parameters were lower in diseased seabass and seabream than apparently healthy fish. Lesions of different fish organs were identified histopathologically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seabass" title="seabass">seabass</a>, <a href="https://publications.waset.org/abstracts/search?q=seabream" title=" seabream"> seabream</a>, <a href="https://publications.waset.org/abstracts/search?q=Vibrio%20alginolyticus" title=" Vibrio alginolyticus"> Vibrio alginolyticus</a>, <a href="https://publications.waset.org/abstracts/search?q=Vibrio%20harveyi" title=" Vibrio harveyi "> Vibrio harveyi </a> </p> <a href="https://publications.waset.org/abstracts/116257/isolation-of-vibrio-harveyi-and-vibrio-alginolyticus-strains-from-cultured-seabass-dicentrarchus-labrax-l-and-seabream-sparus-auratus-l-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Prevalence and Molecular Characterization of Vibrio parahaemolyticus in Estuarine Fish from Dhaka City Markets </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahmida%20Khalique%20Nitu">Fahmida Khalique Nitu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Little is known on the biosafety level of Vibrio parahaemolyticus in estuarine fish in Bangladesh. The purpose of this study was to investigate the prevalence and concentration of V. parahaemolyticus in estuarine fishes using the Polymerase Chain Reaction( PCR) method . The study was conducted on 37 fishes of different species from different types of estuarine fish commonly sold at city markets. Sampling was done on the intestinal tract and gills of each fish. The prevalence of V. parahaemolyticus was found to be 29.72% with higher percentages detected in samples from the gills (89.28%) followed by the intestinal tract (10.71%). The density of Vibrio spp. in the gill of estuarine fishes with an average was 4.4 x103CFU/g and in the intestine samples was 1.5x103 CFU/g. The outcome of the biosafety assessment V. parahaemolyticus in estuarine fish indicates another potential source of food safety issues to consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosafety" title="biosafety">biosafety</a>, <a href="https://publications.waset.org/abstracts/search?q=estuarine" title=" estuarine"> estuarine</a>, <a href="https://publications.waset.org/abstracts/search?q=prevalence" title=" prevalence"> prevalence</a>, <a href="https://publications.waset.org/abstracts/search?q=Vibrios" title=" Vibrios"> Vibrios</a> </p> <a href="https://publications.waset.org/abstracts/47113/prevalence-and-molecular-characterization-of-vibrio-parahaemolyticus-in-estuarine-fish-from-dhaka-city-markets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Effects of Allium Sativum Essential Oil on MIC, MBC and Growth Curve of Vibrio Parahaemolyticus ATCC 43996 and Its Thermostable Direct Hemolysin Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Akhondzadeh%20Basti">Afshin Akhondzadeh Basti</a>, <a href="https://publications.waset.org/abstracts/search?q=Zohreh%20Mashak"> Zohreh Mashak</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Khanjari"> Ali Khanjari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Adel%20Rezaei"> Mohammad Adel Rezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Mohammadkhan"> Fatemeh Mohammadkhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vibrio parahaemolyticus is a halophilic bacterium and often causes gastroenteritis because of consumption of raw or inadequately cooked seafood. Studies showed a strong association of thermostable direct hemolysin (TDH) produced by members of this species with its pathogenicity. The effects of garlic (Allium sativum) essential oil at concentrations of 0, 0.005, 0.015, 0.03 and 0.045% on the minimum inhibitiotory concentration (MIC), minimum bactericidal concentration (MBC), growth curve and production of TDH toxin of vibrio parahaemolyticus were studied in BHI model. MIC and MBC of Allium sativum essential oil was estimated 0.03%. The results of this study revealed that the TDH production was significantly affected by Allium sativum EO and titers of TDH production in 0 and 0.005 % were 1/256 whereas this titer in 0.015 % concentration of EO. Concentrations of 0.005 and 0/015 % of garlic essential oil reduced the bacterial growth rate significantly (P < 0.05) compared to the control group. According to the results Allium sativum essential oil showed to be effective against bacterial growth and production of TDH toxin. Its potential application in food systems may be suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allium%20sativum%20essential%20oil" title="allium sativum essential oil">allium sativum essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrio%20parahaemolyticus" title=" vibrio parahaemolyticus"> vibrio parahaemolyticus</a>, <a href="https://publications.waset.org/abstracts/search?q=TDH" title=" TDH"> TDH</a>, <a href="https://publications.waset.org/abstracts/search?q=consumption" title=" consumption"> consumption</a> </p> <a href="https://publications.waset.org/abstracts/22990/effects-of-allium-sativum-essential-oil-on-mic-mbc-and-growth-curve-of-vibrio-parahaemolyticus-atcc-43996-and-its-thermostable-direct-hemolysin-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Assessment of the Physicochemical Qualities and Prevalence of Vibrio Pathogens in the Final Effluents of Two Wastewater Treatment Plants in Eastern Cape Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20A%20Osunla">C. A Osunla</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Okoh"> A. I. Okoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Treated wastewater effluent has been found to encompass high levels of pollutants, including disease-causing bacteria such as Vibrio pathogens. The current study was designed to evaluate the physicochemical qualities and prevalence of Vibrio pathogens in treated effluents of two wastewater treatment plants (WWTP) in Eastern Cape Province, South Africa over the period of six months. Parameters measured include pH, temperature, electrical conductivity, salinity, turbidity, total dissolved solid (TDS), dissolved oxygen (DO), and free chlorine; and these parameters were simultaneously monitored in the treated final effluents of the two wastewater treatment plants using standard methods. The ranges of values for the physicochemical are: pH (7.0–8.6), total dissolved solids (286.3–916.5 mg/L), electrical conductivity (572.57–1704.5 mS/m), temperature (10.3–28.6 °C), turbidity (4.02–43.20 NTU), free chlorine (0.00–0.19 mg/L), dissolve oxygen (2.06–6.32 mg/L) and biochemical oxygen demand (0.1–9.0 mg/L). The microbiological assessment for both WWTPs revealed the presence of Vibrio counts ranging between 0 and 8.76×104 CFU/100 mL. The obtained values of the measured parameters and Vibrio loads of the treated wastewater effluents were found outside the compliance levels of the South African guidelines and World Health Organization tolerance limits for effluents intended to be discharged into receiving waterbodies. Hence, we conclude that these WWTPs are important point sources of pollution in surface water with potential public health and ecological risks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effluents" title="effluents">effluents</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20health" title=" public health"> public health</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title=" South Africa"> South Africa</a>, <a href="https://publications.waset.org/abstracts/search?q=Vibrio" title=" Vibrio"> Vibrio</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/77302/assessment-of-the-physicochemical-qualities-and-prevalence-of-vibrio-pathogens-in-the-final-effluents-of-two-wastewater-treatment-plants-in-eastern-cape-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Bacteremia Caused by Nontoxigenic Vibrio cholerae in an Immunocompromised Patient in Istanbul, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Koksal%20%C3%87akirlar">Fatma Koksal Çakirlar</a>, <a href="https://publications.waset.org/abstracts/search?q=Si%CC%87nem%20Ozdemir"> Si̇nem Ozdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=Selcan%20Akyol"> Selcan Akyol</a>, <a href="https://publications.waset.org/abstracts/search?q=Revazi%CC%87ye%20Gulesen"> Revazi̇ye Gulesen</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Gunaydin"> Murat Gunaydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nevri%CC%87ye%20Gonullu"> Nevri̇ye Gonullu</a>, <a href="https://publications.waset.org/abstracts/search?q=Belkis%20Levent"> Belkis Levent</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuri%CC%87%20Kiraz"> Nuri̇ Kiraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vibrio cholerae O1 and O139 are the causative agent of epidemic or pandemic cholera. V. cholerae O1 is generally accepted as a non-invasive enterotoxigenic organism causing gastroenteritis of various severities. Non-O1 V. cholerae can cause small outbreaks of diarrhea due to consumption of contaminated food and water. Particularly, the patients with achlorydria have a risk for vibrio infections. There are numerous case reports of bacteremia caused by vibrio in patients with predisposing conditions like cirrhosis, nephrotic syndrome, diabetes, hematologic malignancy, gastrectomy, and AIDS. We described in this study the first case of nontoxigenic, non-01/non-O139 V. cholerae isolated from the blood culture of a 77-year-old female patient with hipertension, diabetes, coronary artery disease, gout and about 9 years ago migrated breast cancer history. The patient with complaints of shortness of breath, fever and malaise admitted to our emergency clinic were evaluated. There was no diarrhea or abdominal symptoms in the patient. No growth in her urine culture, but blood culture (BACTEC 9120 system, Becton Dickinson, USA) was positive for non-01/non-O139 V. cholerae that was identified by conventional methods and Phoenix automated system (BD Diagnostic Systems, Sparks, MD). It does not secrete the cholera toxin. The agglutination test was negative with polyvalent O1 antisera and O139 antiserum. Empirically ceftriaxone was administered to the patient and she was discharged with improvement in general condition. In this study we report bacteremia by non-01/non-O139 V. cholerae that is rare in the worldwide and first in Turkey. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteremia" title="bacteremia">bacteremia</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20culture" title=" blood culture"> blood culture</a>, <a href="https://publications.waset.org/abstracts/search?q=immunocompromised%20patient" title=" immunocompromised patient"> immunocompromised patient</a>, <a href="https://publications.waset.org/abstracts/search?q=Non-O1%20vibrio%20cholerae" title=" Non-O1 vibrio cholerae "> Non-O1 vibrio cholerae </a> </p> <a href="https://publications.waset.org/abstracts/40506/bacteremia-caused-by-nontoxigenic-vibrio-cholerae-in-an-immunocompromised-patient-in-istanbul-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> In-silico Design of Riboswitch Based Potent Inhibitors for Vibrio cholera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somdutt%20Mujwar">Somdutt Mujwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Raj%20Pardasani"> Kamal Raj Pardasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cholera pandemics are caused by facultative pathogenic Vibrio cholera bacteria persisting in the countries having warmer climatic conditions as well as the presence of large water bodies with huge amount of organic matter, it is responsible for the millions of deaths annually. Presently the available therapy for cholera is Oral Rehydration Therapy (ORT) with an antibiotic drug. Excessive utilization of life saving antibiotics drugs leads to the development of resistance by the infectious micro-organism against the antibiotic drugs resulting in loss of effectiveness of these drugs. Also, many side effects are also associated with the use of these antibiotic drugs. This riboswitch is explored as an alternative drug target for Vibrio cholera bacteria to overcome the problem of drug resistance as well as side effects associated with the antibiotics drugs. The bacterial riboswitch is virtually screened with 24407 legends to get possible drug candidates. The 10 ligands showing best binding with the riboswitch are selected to design a pharmacophore, which can be utilized to design lead molecules by using the phenomenon of bioisosterism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cholera" title="cholera">cholera</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20design" title=" drug design"> drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=ligand" title=" ligand"> ligand</a>, <a href="https://publications.waset.org/abstracts/search?q=riboswitch" title=" riboswitch"> riboswitch</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacophore" title=" pharmacophore "> pharmacophore </a> </p> <a href="https://publications.waset.org/abstracts/39639/in-silico-design-of-riboswitch-based-potent-inhibitors-for-vibrio-cholera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Antimicrobial Activity of a Single Wap Domain (SWD)-Containing Protein from Litopenaeus vannamei against Vibrio parahaemolyticus Acute Hepatopancreatic Necrosis Disease (AHPND)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suchao%20Donpudsa">Suchao Donpudsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Suwattana%20Visetnan"> Suwattana Visetnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anchalee%20Tassanakajon"> Anchalee Tassanakajon</a>, <a href="https://publications.waset.org/abstracts/search?q=Vichien%20Rimphanitchayakit"> Vichien Rimphanitchayakit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Single Wap Domain (SWD) is a type III crustin antimicrobial peptide whose function is to defense the host animal against the bacterial infection by means of antimicrobial and antiproteinase activities. A study of LvSWD from Litopenaeus vannamei is reported herein about its activities and function against bacteria, particularly the Vibrio parahaemolyticus AHPND (VPAHPND) that causes acute hepatopancreatic necrosis disease. The over-expressed mature recombinant (r)LvSWD exhibits antimicrobial activity against both Gram-positive and Gram-negative bacteria, especially VPAHPND. With four times the MIC of rLvSWD, the treated post larval shrimp infected by VPAHPND is able to survive longer with the 50% survival rate as long as 78 h as compared to 36 h of the infected shrimp without rLvSWD. To a certain extent, we have demonstrated that the rLvSWD can be applied to protect the post larval shrimp. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crustin" title="crustin">crustin</a>, <a href="https://publications.waset.org/abstracts/search?q=Litopenaeus%20vannamei" title=" Litopenaeus vannamei"> Litopenaeus vannamei</a>, <a href="https://publications.waset.org/abstracts/search?q=Vibrio%20parahaemolyticus%20AHPND" title=" Vibrio parahaemolyticus AHPND"> Vibrio parahaemolyticus AHPND</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/64929/antimicrobial-activity-of-a-single-wap-domain-swd-containing-protein-from-litopenaeus-vannamei-against-vibrio-parahaemolyticus-acute-hepatopancreatic-necrosis-disease-ahpnd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Genome-Wide Identification of Genes Resistance to Nitric Oxide in Vibrio parahaemolyticus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yantao%20Li">Yantao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Zheng"> Jun Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food poison caused by consumption of contaminated food, especially seafood, is one of most serious public health threats worldwide. Vibrio parahaemolyticus is emerging bacterial pathogen and the leading cause of human gastroenteritis associated with food poison, especially in the southern coastal region of China. To successfully cause disease in host, bacterial pathogens need to overcome the host-derived stresses encountered during infection. One of the toxic chemical species elaborated by the host is nitric oxide (NO). NO is generated by acidified nitrite in the stomach and by enzymes of the inducible NO synthase (iNOS) in the host cell, and is toxic to bacteria. Bacterial pathogens have evolved some mechanisms to battle with this toxic stress. Such mechanisms include genes to sense NO produced from immune system and activate others to detoxify NO toxicity, and genes to repair the damage caused by toxic reactive nitrogen species (RNS) generated during NO toxic stress. However, little is known about the NO resistance in V. parahaemolyticus. In this study, a transposon coupled with next generation sequencing (Tn-seq) technology will be utilized to identify genes for NO resistance in V. parahaemolyticus. Our strategy will include construction the saturating transposon insertion library, transposon library challenging with NO, next generation sequencing (NGS), bioinformatics analysis and verification of the identified genes in vitro and in vivo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibrio%20parahaemolyticus" title="vibrio parahaemolyticus">vibrio parahaemolyticus</a>, <a href="https://publications.waset.org/abstracts/search?q=nitric%20oxide" title=" nitric oxide"> nitric oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=tn-seq" title=" tn-seq"> tn-seq</a>, <a href="https://publications.waset.org/abstracts/search?q=virulence" title=" virulence"> virulence</a> </p> <a href="https://publications.waset.org/abstracts/52858/genome-wide-identification-of-genes-resistance-to-nitric-oxide-in-vibrio-parahaemolyticus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Wind Direction and Its Linkage with Vibrio cholerae Dissemination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shlomit%20Paz">Shlomit Paz</a>, <a href="https://publications.waset.org/abstracts/search?q=Meir%20Broza"> Meir Broza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cholera is an acute intestinal infection caused by ingestion of food or water contaminated with the bacterium Vibrio cholerae. It has a short incubation period and produces an enterotoxin that causes copious, painless, watery diarrhoea that can quickly lead to severe dehydration and death if treatment is not promptly given. In an epidemic, the source of the contamination is usually the feces of an infected person. The disease can spread rapidly in areas with poor treatment of sewage and drinking water. Cholera remains a global threat and is one of the key indicators of social development. An estimated 3-5 million cases and over 100,000 deaths occur each year around the world. The relevance of climatic events as causative factors for cholera epidemics is well known. However, the examination of the involvement of winds in intra-continental disease distribution is new. The study explore the hypothesis that the spreading of cholera epidemics may be related to the dominant wind direction over land by presenting the influence of the wind direction on windborn dissemination by flying insects, which may serve as vectors. Chironomids ("non-biting midges“) exist in the majority of freshwater aquatic habitats, especially in estuarine and organic-rich water bodies typical to Vibrio cholerae. Chironomid adults emerge into the air for mating and dispersion. They are highly mobile, huge in number and found frequently in the air at various elevations. The huge number of chironomid egg masses attached to hard substrate on the water surface, serve as a reservoir for the free-living Vibrio bacteria. Both male and female, while emerging from the water, may carry the cholera bacteria. In experimental simulation, it was demonstrated that the cholera-bearing adult midges are carried by the wind, and transmit the bacteria from one body of water to another. In our previous study, the geographic diffusions of three cholera outbreaks were examined through their linkage with the wind direction: a) the progress of Vibrio cholerae O1 biotype El Tor in Africa during 1970–1971 and b) again in 2005–2006; and c) the rapid spread of Vibrio cholerae O139 over India during 1992–1993. Using data and map of cholera dissemination (WHO database) and mean monthly SLP and geopotential data (NOAA NCEP-NCAR database), analysis of air pressure data at sea level and at several altitudes over Africa, India and Bangladesh show a correspondence between the dominant wind direction and the intra-continental spread of cholera. The results support the hypothesis that aeroplankton (the tiny life forms that float in the air and that may be caught and carried upward by the wind, landing far from their origin) carry the cholera bacteria from one body of water to an adjacent one. In addition to these findings, the current follow-up study will present new results regarding the possible involvement of winds in the spreading of cholera in recent outbreaks (2010-2013). The findings may improve the understanding of how climatic factors are involved in the rapid distribution of new strains throughout a vast continental area. Awareness of the aerial transfer of Vibrio cholerae may assist health authorities by improving the prediction of the disease’s geographic dissemination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cholera" title="cholera">cholera</a>, <a href="https://publications.waset.org/abstracts/search?q=Vibrio%20cholerae" title=" Vibrio cholerae"> Vibrio cholerae</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20direction" title=" wind direction"> wind direction</a>, <a href="https://publications.waset.org/abstracts/search?q=Vibrio%20cholerae%20dissemination" title=" Vibrio cholerae dissemination"> Vibrio cholerae dissemination</a> </p> <a href="https://publications.waset.org/abstracts/20099/wind-direction-and-its-linkage-with-vibrio-cholerae-dissemination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Mechanistic Understanding of the Difference in two Strains Cholerae Causing Pathogens and Predicting Therapeutic Strategies for Cholera Patients Affected with new Strain Vibrio Cholerae El.tor. Using Constrain-based Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faiz%20Khan%20Mohammad">Faiz Khan Mohammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Saumya%20Ray%20Chaudhari"> Saumya Ray Chaudhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Raghunathan%20Rengaswamy"> Raghunathan Rengaswamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Swagatika%20Sahoo"> Swagatika Sahoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cholera caused by pathogenic gut bacteria Vibrio Cholerae (VC), is a major health problem in developing countries. Different strains of VC exhibit variable responses subject to different extracellular medium (Nag et al, Infect Immun, 2018). In this study, we present a new approach to model the variable VC responses in mono- and co-cultures, subject to continuously changing growth medium, which is otherwise difficult via simple FBA model. Nine VC strain and seven E. coli (EC) models were assembled and considered. A continuously changing medium is modelled using a new iterative-based controlled medium technique (ITC). The medium is appropriately prefixed with the VC model secretome. As the flux through the bacteria biomass increases secretes certain by-products. These products shall add-on to the medium, either deviating the nutrient potential or block certain metabolic components of the model, effectively forming a controlled feed-back loop. Different VC models were setup as monoculture of VC in glucose enriched medium, and in co-culture with VC strains and EC. Constrained to glucose enriched medium, (i) VC_Classical model resulted in higher flux through acidic secretome suggesting a pH change of the medium, leading to lowering of its biomass. This is in consonance with the literature reports. (ii) When compared for neutral secretome, flux through acetoin exchange was higher in VC_El tor than the classical models, suggesting El tor requires an acidic partner to lower its biomass. (iii) Seven of nine VC models predicted 3-methyl-2-Oxovaleric acid, mysirtic acid, folic acid, and acetate significantly affect corresponding biomass reactions. (iv) V. parhemolyticus and vulnificus were found to be phenotypically similar to VC Classical strain, across the nine VC strains. The work addresses the advantage of the ITC over regular flux balance analysis for modelling varying growth medium. Future expansion to co-cultures, potentiates the identification of novel interacting partners as effective cholera therapeutics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cholera" title="cholera">cholera</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrio%20cholera%20El.%20tor" title=" vibrio cholera El. tor"> vibrio cholera El. tor</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrio%20cholera%20classical" title=" vibrio cholera classical"> vibrio cholera classical</a>, <a href="https://publications.waset.org/abstracts/search?q=acetate" title=" acetate"> acetate</a> </p> <a href="https://publications.waset.org/abstracts/144406/mechanistic-understanding-of-the-difference-in-two-strains-cholerae-causing-pathogens-and-predicting-therapeutic-strategies-for-cholera-patients-affected-with-new-strain-vibrio-cholerae-eltor-using-constrain-based-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Genetic and Phenotypic Variability Among the Vibrio Cholerae O1 Isolates of India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sreeja%20Shaw">Sreeja Shaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Prosenjit%20Samanta"> Prosenjit Samanta</a>, <a href="https://publications.waset.org/abstracts/search?q=Asish%20Kumar%20Mukhopadhyay"> Asish Kumar Mukhopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cholera is still a global public health burden and is caused by Vibrio cholerae O1 and O139 serogroups. Evidence from recent outbreaks in Haiti and Yemen suggested that circulating V. cholerae O1 El Tor variant strains are continuously changing to cause more ruinous outbreaks worldwide, and most of them have emerged from the Indian subcontinents. Therefore, we studied the changing virulence characteristics along with the antibiotic resistance profile of V. cholerae O1strains isolated from seasonal outbreaks in three cholera endemic regions during 2018, Gujarat and Maharashtra in Western India (87 strains), and to compare those features with the isolates of West Bengal in Eastern India (48 strains) collected during the same period. All the strains from Western India were of Ogawa serotype, polymyxin B-sensitive, hemolytic, and contained a large fragment deletion in VSP-II genomic region similar with Yemen outbreak strains and carried more virulent Haitian genetic alleles of major virulence associated genes ctxB, tcpA, and rtxA. Conversely, 14.6% (7/48) of the strains from Eastern India were belong to the Inaba serotype, polymyxin B-resistant, non-hemolytic, harbored intact VSP-II region, classical ctxB, Haitian tcpA, and El Tor rtxA alleles. Interestingly, resistance to tetracycline and chloramphenicol was seen in isolates from both regions, which are not very common among V. cholerae O1 isolates in India. Therefore, this study indicated West Bengal as a diverse region where two different types of El Tor variant hypervirulent strains are co-existed, probably competing for their better environmental survival, which may result in severe irrepressible disease outcome in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cholera" title="cholera">cholera</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrio%20cholerae" title=" vibrio cholerae"> vibrio cholerae</a>, <a href="https://publications.waset.org/abstracts/search?q=polymyxin%20B" title=" polymyxin B"> polymyxin B</a>, <a href="https://publications.waset.org/abstracts/search?q=Non-hemolytic" title=" Non-hemolytic"> Non-hemolytic</a>, <a href="https://publications.waset.org/abstracts/search?q=ctxB" title=" ctxB"> ctxB</a>, <a href="https://publications.waset.org/abstracts/search?q=tcpA" title=" tcpA"> tcpA</a>, <a href="https://publications.waset.org/abstracts/search?q=rtxA" title=" rtxA"> rtxA</a>, <a href="https://publications.waset.org/abstracts/search?q=VSP-II" title=" VSP-II"> VSP-II</a> </p> <a href="https://publications.waset.org/abstracts/143559/genetic-and-phenotypic-variability-among-the-vibrio-cholerae-o1-isolates-of-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Effect of Bactocellon White Leg Shrimp (Litopenaeusvannamei) Growth Performance and the Shrimp Survival to Vibrio paraheamolyticus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Soltani">M. Soltani</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Pakzad"> K. Pakzad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Haghigh-Khiyabani"> A. Haghigh-Khiyabani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Alavi"> M. Alavi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Naderi"> R. Naderi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Castex"> M. Castex</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of probiotic Bactocell (Pediococcus acidilactici) as a supplementary diet was studied on post-larvae 12-15 of white leg shrimp (Litopenaeus vannamei) (150000 PL/0.5 h pond, average body weight=0.02 g) growth performance under farm condition for 102 days at water quality parameters consisting of temperature at 30.5-36οC, dissolved oxygen 4.1-6.6 mg/l, salinity 40-54 g/l, turbidity 35-110 cm, ammonia 0.1-0.8 mg/l and nitrite 0.1-0.9 mg/l. Also, the resistance level of the treated shrimps was assessed against a virulent strain of Vibrio paraheamolyticus as intramuscular injection route at 1.4 x 106 cells/shrimp. Significantly higher growth rate (11.3±1.54 g) and lower feed conversion ratio (1.1) were obtained in shrimps fed diets supplemented with Bactocell at 350 g/ tone feed compared to other treatments of 250 g Bactocell/ton feed (10.8±2 g, 1.3), 500 g Bactocell/ton feed (10.3±1.7 g, 1.3) and untreated control (10.1±2 g, 1.4). Also, thermal growth coefficient (0.057%) and protein efficiency ratio (2.13) were significantly improved in shrimps fed diets supplemented with Bactocell at 350 g/ton feed compare to other groups. Shrimps fed diet supplemented with Bactocell at 350 g/tone feed showed significantly higher protein content (72.56%) in their carcass composition than treatments of 250 g/ton feed (65.9%), 500 g/ton feed (67.5%) and control group (65.9%), while the carcass contents of moisture, lipid and ash in all shrimp groups were not significantly affected by different concentrations of Bactocell. No mortality occurred in the experimentally infected shrimps fed with Bactocell at 500 g/tone feed after 7 hours post-challenge with V. parahemolyticus. The mortality levels of 100%, 40%, 50% and 70% were obtained in shrimps fed with 0.0, 500 g/tone feed, 350 g/ton feed and 250 g/ton feed, respectively 14 hours post-infection. Also, the cumulative mortalities were achieved in 100%, 92% and 81% in shrimps few with Bactocell at 500 g/ton feed, 250 g/ton feed and 350 g/ton feed, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=litopenaeus%20vannamei" title="litopenaeus vannamei">litopenaeus vannamei</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrio%20paraheamolyticus" title=" vibrio paraheamolyticus"> vibrio paraheamolyticus</a>, <a href="https://publications.waset.org/abstracts/search?q=pediococcus%20acidilactici" title=" pediococcus acidilactici"> pediococcus acidilactici</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20performance" title=" growth performance"> growth performance</a>, <a href="https://publications.waset.org/abstracts/search?q=bactocell" title=" bactocell "> bactocell </a> </p> <a href="https://publications.waset.org/abstracts/8858/effect-of-bactocellon-white-leg-shrimp-litopenaeusvannamei-growth-performance-and-the-shrimp-survival-to-vibrio-paraheamolyticus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">676</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Foodborne Outbreak Calendar: Application of Time Series Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ryan%20B.%20Simpson">Ryan B. Simpson</a>, <a href="https://publications.waset.org/abstracts/search?q=Margaret%20A.%20Waskow"> Margaret A. Waskow</a>, <a href="https://publications.waset.org/abstracts/search?q=Aishwarya%20Venkat"> Aishwarya Venkat</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20N.%20Naumova"> Elena N. Naumova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Centers for Disease Control and Prevention (CDC) estimate that 31 known foodborne pathogens cause 9.4 million cases of these illnesses annually in US. Over 90% of these illnesses are associated with exposure to Campylobacter, Cryptosporidium, Cyclospora, Listeria, Salmonella, Shigella, Shiga-Toxin Producing E.Coli (STEC), Vibrio, and Yersinia. Contaminated products contain parasites typically causing an intestinal illness manifested by diarrhea, stomach cramping, nausea, weight loss, fatigue and may result in deaths in fragile populations. Since 1998, the National Outbreak Reporting System (NORS) has allowed for routine collection of suspected and laboratory-confirmed cases of food poisoning. While retrospective analyses have revealed common pathogen-specific seasonal patterns, little is known concerning the stability of those patterns over time and whether they can be used for preventative forecasting. The objective of this study is to construct a calendar of foodborne outbreaks of nine infections based on the peak timing of outbreak incidence in the US from 1996 to 2017. Reported cases were abstracted from FoodNet for Salmonella (135115), Campylobacter (121099), Shigella (48520), Cryptosporidium (21701), STEC (18022), Yersinia (3602), Vibrio (3000), Listeria (2543), and Cyclospora (758). Monthly counts were compiled for each agent, seasonal peak timing and peak intensity were estimated, and the stability of seasonal peaks and synchronization of infections was examined. Negative Binomial harmonic regression models with the delta-method were applied to derive confidence intervals for the peak timing for each year and overall study period estimates. Preliminary results indicate that five infections continue to lead as major causes of outbreaks, exhibiting steady upward trends with annual increases in cases ranging from 2.71% (95%CI: [2.38, 3.05]) in Campylobacter, 4.78% (95%CI: [4.14, 5.41]) in Salmonella, 7.09% (95%CI: [6.38, 7.82]) in E.Coli, 7.71% (95%CI: [6.94, 8.49]) in Cryptosporidium, and 8.67% (95%CI: [7.55, 9.80]) in Vibrio. Strong synchronization of summer outbreaks were observed, caused by Campylobacter, Vibrio, E.Coli and Salmonella, peaking at 7.57 ± 0.33, 7.84 ± 0.47, 7.85 ± 0.37, and 7.82 ± 0.14 calendar months, respectively, with the serial cross-correlation ranging 0.81-0.88 (p < 0.001). Over 21 years, Listeria and Cryptosporidium peaks (8.43 ± 0.77 and 8.52 ± 0.45 months, respectively) have a tendency to arrive 1-2 weeks earlier, while Vibrio peaks (7.8 ± 0.47) delay by 2-3 weeks. These findings will be incorporated in the forecast models to predict common paths of the spread, long-term trends, and the synchronization of outbreaks across etiological agents. The predictive modeling of foodborne outbreaks should consider long-term changes in seasonal timing, spatiotemporal trends, and sources of contamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foodborne%20outbreak" title="foodborne outbreak">foodborne outbreak</a>, <a href="https://publications.waset.org/abstracts/search?q=national%20outbreak%20reporting%20system" title=" national outbreak reporting system"> national outbreak reporting system</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20modeling" title=" predictive modeling"> predictive modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonality" title=" seasonality"> seasonality</a> </p> <a href="https://publications.waset.org/abstracts/102947/foodborne-outbreak-calendar-application-of-time-series-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Determination of the Presence of Antibiotic Resistance from Vibrio Species in Northern Italy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tramuta%20Clara">Tramuta Clara</a>, <a href="https://publications.waset.org/abstracts/search?q=Masotti%20Chiara"> Masotti Chiara</a>, <a href="https://publications.waset.org/abstracts/search?q=Pitti%20Monica"> Pitti Monica</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriano%20Daniela"> Adriano Daniela</a>, <a href="https://publications.waset.org/abstracts/search?q=Battistini%20Roberta"> Battistini Roberta</a>, <a href="https://publications.waset.org/abstracts/search?q=Serraca%20Laura"> Serraca Laura</a>, <a href="https://publications.waset.org/abstracts/search?q=Decastelli%20Lucia"> Decastelli Lucia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oysters are considered filter organisms, and their raw consumption may increase health risks for consumers: it is often associated with outbreaks of gastroenteritis or enteric illnesses. Most of these foodborne diseases are caused by Vibrio strains, enteric pathogens also involved in the diffusion of genetic determinants of antibiotic resistance and their entrance along the food chain. The European Food Safety Authority (EFSA), during the European Union report on antimicrobial resistance in 2017, focused the attention about the role of food as a possible carrier of antibiotic-resistant bacteria or antibiotic-resistance genes that determine health risks for humans. This study wants to determine antibiotic resistance and antibiotic-resistance genes in Vibrio spp. isolated from Crassostrea gigas oysters collected in the Golfo della Spezia (Liguria, Italy). A total of 47 Vibrio spp. strains were isolated (ISO21872-2:2017) during the summer of 2021 from oysters of Crassostrea gigas. The strains were identified by MALDI-TOF (Bruker, Germany) mass spectrometry and tested for antibiotic susceptibility using a broth microdiluition method (ISO20776-1:2019) using Sensititre EUVSEC plates (Thermo-Fisher Scientific) to obtain the Minimum Inhibitory Concentration (MIC). The strains were tested with PCR-based biomolecular methods, according to previous works, to define the presence of 23 resistance genes of the main classes of antibiotics used in human and veterinary medicine: tet (B), tet (C), tet (D), tet (A), tet (E), tet (G ), tet (K), tet (L), tet (M), tet (O), tet (S) (tetracycline resistance); blaCTX-M, blaTEM, blaOXA, blaSHV (β-lactam resistance); mcr-1 and mcr-2 (colistin resistance); qnrA, qnrB, and qnrS (quinolone resistance); sul1, sul2 and sul3 (sulfonamide resistance). Six different species have been identified: V. alginolyticus 34% (n=16), V. harveyi 28% (n=13), V. fortis 15% (n=7), V. pelagius 8% (n=4), V. parahaemolyticus 11% (n=5) e V. chagasii 4% (n=2). The PCR assays showed the presence of the blaTEM gene on 40% of the strains (n=19). All the other genes were not detected, except for a V. alginolyticus positive for anrS gene. The broth microdiluition method results showed an high level of resistance for ciprofloxacin (62%; n=29), ampicillin (47%; n=22), and colistin (49%; n=23). Furthermore, 32% (n=15) of strains can be considered multiresistant bacteria for the simultaneous presence of resistance for three different antibiotic classes. Susceptibility towards meropenem, azithromycin, gentamicin, ceftazidime, cefotaxime, chloramphenicol, tetracycline and sulphamethoxazole reached 100%. The Vibrio species identified in this study are widespread in marine environments and can cause gastrointerstinal infections after the ingestion of raw fish products and bivalve molluscs. The level of resistance to antibiotics such as ampicillin, ciprofloxacin and colistin can be connected to anthropic factors (industrial, agricultural and domestic wastes) that promote the spread of resistance to these antibiotics. It can be also observed a strong correlation between phenotypic (resistant MIC) and genotypic (positive blaTEM gene) resistance for ampicillin on the same strains, probably due to the transfer of genetic material between bacterial strains. Consumption of raw bivalve molluscs can represent a risk for consumers heath due to the potentially presence of foodborne pathogens, highly resistant to different antibiotics and source of transferable antibiotic-resistant genes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibrio%20species" title="vibrio species">vibrio species</a>, <a href="https://publications.waset.org/abstracts/search?q=blaTEM%20genes" title=" blaTEM genes"> blaTEM genes</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20resistance" title=" antimicrobial resistance"> antimicrobial resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a> </p> <a href="https://publications.waset.org/abstracts/166027/determination-of-the-presence-of-antibiotic-resistance-from-vibrio-species-in-northern-italy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Effect of Hypoxia on the Antimicrobial Activity of Corvina Drum (Cilus Gilberti) Epidermal Mucus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belinda%20Vega">Belinda Vega</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Alvarez"> Claudio Alvarez</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%A9ctor%20Flores"> Héctor Flores</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcia%20Oliva"> Marcia Oliva</a>, <a href="https://publications.waset.org/abstracts/search?q=Katherine%20Alveal"> Katherine Alveal</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20Toro"> Teresa Toro</a>, <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20Jos%C3%A9%20Tapia"> María José Tapia</a>, <a href="https://publications.waset.org/abstracts/search?q=Fanny%20Guzm%C3%A1n"> Fanny Guzmán</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increase in global temperatures and the decrease of oxygen (O2) concentration in the oceans, fish cultures are exposed to frequent fluctuations in dissolved O2 (DO) concentration that can cause chronic stress in the animals, altering the normal functioning of their immune system and making them vulnerable to infections, consequently increasing morbidity and mortality in the farms with economic losses. The mucosal organs (skin -and mucus-, gills, gut, and nasal mucosa) are the first line of defense of the fish against pathogens. Therefore, the objective of this study is to evaluate the effect of hypoxia on the antimicrobial activity of epidermal mucus from corvina drum (Cilus Gilberti), a native marine species with the potential for the diversification of aquaculture in Chile. To achieve this, the epidermal mucus of juveniles (~220g) kept under normoxia (7 mg/L DO) and hypoxia (2 mg/L DO) environmental conditions was collected after 6 weeks, as well as after 6 days of intraperitoneal inoculation with lipopolysaccharide from Vibrio anguillarum to induce an immune response in the fish. Total protein extracts of the mucus were used for bactericidal activity and lysozyme and peroxidase activity assays. Although the mucus from both experimental groups showed inhibitory effects on the bacterial growth of Vibrio anguillarum and Vibrio ordalli, this effect was more long-lasting in the normoxia group. We also observed a notable reduction in the presence of lysozyme in the mucus from fish exposed to hypoxia, with no differences in peroxidase content. Future proteomic studies of corvina mucus associated with the environmental conditions studied in this work will allow the isolation and identification of peptides with antimicrobial activity, those responsible for the results obtained. This will help establish strategies aimed at minimizing the impacts of hypoxia on the defense responses of corvina drum against potential pathogens. Funding: FONDECYT 3200440 and FONDECYT 1210056 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cilus%20gilberti" title="Cilus gilberti">Cilus gilberti</a>, <a href="https://publications.waset.org/abstracts/search?q=mucus" title=" mucus"> mucus</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=HYPOXIA" title=" HYPOXIA"> HYPOXIA</a> </p> <a href="https://publications.waset.org/abstracts/165891/effect-of-hypoxia-on-the-antimicrobial-activity-of-corvina-drum-cilus-gilberti-epidermal-mucus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Dietary Effect of Probiotic Bacteria, Bacillus amyloliquefaciens JFP-2 Isolate from Jeju Island`s Traditional Fermented Food, on Innate Immune Response of Oplegnathus fasciatus Challenged with Vibrio anguillarum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong%20Hwi%20Kim">Dong Hwi Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dharaneedharan%20Subramanian"> Dharaneedharan Subramanian</a>, <a href="https://publications.waset.org/abstracts/search?q=So%20Hyun%20Park"> So Hyun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Ha-Ri%20Choi"> Ha-Ri Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Hyung%20Kim"> Ji-Hyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Hoon%20Lee"> Dong-Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon%20Soo%20Heo"> Moon Soo Heo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was performed to evaluate the use of Bacillus amyloliquefaciens JFP-2 isolated from a traditional fermented sea food, as probiotic bacteria in the diets for Rock-bream, Oplegnathus faciatus. A total of 180 fish (187.4 ± 2.7 g) were divided into two groups, control (C) and probiotic (P) group (90 fish per group) in triplicate. C group was fed with basal diet without probiotic, while P group was fed with B. amyloliquefaciens spores at concentration of 1.4 x 106 colony forming units per gram (CFU/g) of feed. After two months of feeding experiments, P group fish showed significant improvements in body weight (BW), weight gain (WG), specific growth rate (SGR) and food conversion ratio (FCR) compared with C group. Also, bi-weekly assessment of serum protein, glucose, fatty acid profile showed a significant increase in probiotic fed fish than that of control fish group. Similar increase in serum antioxidant and lysozyme activity was found in probiotic fed fish group. Twenty days challenge experiment shows decrease mortality in probiotic fed fish group when compared with that of control group. Hence, these results indicate that the use of B. amyloliquefaciens JFP-2 as a feed supplement, is beneficial to improve the health status of Oplegnathus fasciatus challenged with Vibrio anguillarum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20amyloliquefaciens" title="Bacillus amyloliquefaciens">Bacillus amyloliquefaciens</a>, <a href="https://publications.waset.org/abstracts/search?q=Oplegnathus%20fasciatus" title=" Oplegnathus fasciatus"> Oplegnathus fasciatus</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic%20feed" title=" probiotic feed"> probiotic feed</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20bream" title=" rock bream"> rock bream</a> </p> <a href="https://publications.waset.org/abstracts/55873/dietary-effect-of-probiotic-bacteria-bacillus-amyloliquefaciens-jfp-2-isolate-from-jeju-islands-traditional-fermented-food-on-innate-immune-response-of-oplegnathus-fasciatus-challenged-with-vibrio-anguillarum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Evaluation of Immunostimulant Potential of Proteoliposomes Derived from Vibrio anguillarum Administered by Immersion in Zebrafish (Danio rerio)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Caruffo">M. Caruffo</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Navarrete"> P. Navarrete</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Feijoo"> C. G. Feijoo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20S%C3%A1enz"> L. Sáenz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Disease prevention through the use of vaccines has been crucial to achieve the current level of production in the salmon industry. However, vaccines have been developed based largely on inactivated bacterial formulations, using the whole pathogen. These formulations have demonstrated excellent efficacy against extracellular bacterial pathogens. However diseases with the greatest economic impacts correspond to intracellular bacterial and viral pathogens, vaccines based on these types of agents have shown a discrete effectiveness. It is for these reasons that the development of subunit vaccines based on defined antigens offers a promising solution. The main problem is that subunit vaccines offer a low immunogenicity, since they lack immunostimulatory elements, so that the development of new adjuvants platforms becomes an important challenge for this type of formulations. We evaluate the effect of a formulation based on proteoliposomes of Vibrio anguillarum administered by immersion as a new adjuvant strategy, allowing efficient stimulation of the innate immune system. Proteoliposomes physicochemical properties were evaluated in its ability to produce an inflammatory process. Using zebrafish (Danio rerio) larvae as a model species and the transgenic line (Tg(mpx: GFP)i114) allowed us to track the neutrophil migration in real time. Additionally we evaluated the gene expression of some molecular markers involved in the development of the innate immune response characterizing the adjuvant capacity of the formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adjuvants" title="adjuvants">adjuvants</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccine%20development" title=" vaccine development"> vaccine development</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish" title=" zebrafish"> zebrafish</a>, <a href="https://publications.waset.org/abstracts/search?q=innate%20immunity" title=" innate immunity"> innate immunity</a> </p> <a href="https://publications.waset.org/abstracts/33769/evaluation-of-immunostimulant-potential-of-proteoliposomes-derived-from-vibrio-anguillarum-administered-by-immersion-in-zebrafish-danio-rerio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Detection and Quantification of Viable but Not Culturable Vibrio Parahaemolyticus in Frozen Bivalve Molluscs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eleonora%20Di%20Salvo">Eleonora Di Salvo</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Panebianco"> Antonio Panebianco</a>, <a href="https://publications.waset.org/abstracts/search?q=Graziella%20Ziino"> Graziella Ziino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Vibrio parahaemolyticus is a human pathogen that is widely distributed in marine environments. It is frequently isolated from raw seafood, particularly shellfish. Consumption of raw or undercooked seafood contaminated with V. parahaemolyticus may lead to acute gastroenteritis. Vibrio spp. has excellent resistance to low temperatures so it can be found in frozen products for a long time. Recently, the viable but non-culturable state (VBNC) of bacteria has attracted great attention, and more than 85 species of bacteria have been demonstrated to be capable of entering this state. VBNC cells cannot grow in conventional culture medium but are viable and maintain metabolic activity, which may constitute an unrecognized source of food contamination and infection. Also V. parahaemolyticus could exist in VBNC state under nutrient starvation or low-temperature conditions. Aim: The aim of the present study was to optimize methods and investigate V. parahaemolyticus VBNC cells and their presence in frozen bivalve molluscs, regularly marketed. Materials and Methods: propidium monoazide (PMA) was integrated with real-time polymerase chain reaction (qPCR) targeting the tl gene to detect and quantify V. parahaemolyticus in the VBNC state. PMA-qPCR resulted highly specific to V. parahaemolyticus with a limit of detection (LOD) of 10-1 log CFU/mL in pure bacterial culture. A standard curve for V. parahaemolyticus cell concentrations was established with the correlation coefficient of 0.9999 at the linear range of 1.0 to 8.0 log CFU/mL. A total of 77 samples of frozen bivalve molluscs (35 mussels; 42 clams) were subsequently subjected to the qualitative (on alkaline phosphate buffer solution) and quantitative research of V. parahaemolyticus on thiosulfate-citrate-bile salts-sucrose (TCBS) agar (DIFCO) NaCl 2.5%, and incubation at 30°C for 24-48 hours. Real-time PCR was conducted on homogenate samples, in duplicate, with and without propidium monoazide (PMA) dye, and exposed for 45 min under halogen lights (650 W). Total DNA was extracted from cell suspension in homogenate samples according to bolliture protocol. The Real-time PCR was conducted with species-specific primers for V. parahaemolitycus. The RT-PCR was performed in a final volume of 20 µL, containing 10 µL of SYBR Green Mixture (Applied Biosystems), 2 µL of template DNA, 2 µL of each primer (final concentration 0.6 mM), and H2O 4 µL. The qPCR was carried out on CFX96 TouchTM (Bio-Rad, USA). Results: All samples were negative both to the quantitative and qualitative detection of V. parahaemolyticus by the classical culturing technique. The PMA-qPCR let us individuating VBNC V. parahaemolyticus in the 20,78% of the samples evaluated with a value between the Log 10-1 and Log 10-3 CFU/g. Only clams samples were positive for PMA-qPCR detection. Conclusion: The present research is the first evaluating PMA-qPCR assay for detection of VBNC V. parahaemolyticus in bivalve molluscs samples, and the used method was applicable to the rapid control of marketed bivalve molluscs. We strongly recommend to use of PMA-qPCR in order to identify VBNC forms, undetectable by the classic microbiological methods. A precise knowledge of the V.parahaemolyticus in a VBNC form is fundamental for the correct risk assessment not only in bivalve molluscs but also in other seafood. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title="food safety">food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=frozen%20bivalve%20molluscs" title=" frozen bivalve molluscs"> frozen bivalve molluscs</a>, <a href="https://publications.waset.org/abstracts/search?q=PMA%20dye" title=" PMA dye"> PMA dye</a>, <a href="https://publications.waset.org/abstracts/search?q=Real-time%20PCR" title=" Real-time PCR"> Real-time PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=VBNC%20state" title=" VBNC state"> VBNC state</a>, <a href="https://publications.waset.org/abstracts/search?q=Vibrio%20parahaemolyticus" title=" Vibrio parahaemolyticus"> Vibrio parahaemolyticus</a> </p> <a href="https://publications.waset.org/abstracts/135106/detection-and-quantification-of-viable-but-not-culturable-vibrio-parahaemolyticus-in-frozen-bivalve-molluscs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Development of a Bioprocess Technology for the Production of Vibrio midae, a Probiotic for Use in Abalone Aquaculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghaneshree%20Moonsamy">Ghaneshree Moonsamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Nodumo%20N.%20Zulu"> Nodumo N. Zulu</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Lalloo"> Rajesh Lalloo</a>, <a href="https://publications.waset.org/abstracts/search?q=Suren%20Singh"> Suren Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Santosh%20O.%20Ramchuran"> Santosh O. Ramchuran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The abalone industry of South Africa is under severe pressure due to illegal harvesting and poaching of this seafood delicacy. These abalones are harvested excessively; as a result, these animals do not have a chance to replace themselves in their habitats, ensuing in a drastic decrease in natural stocks of abalone. Abalone has an extremely slow growth rate and takes approximately four years to reach a size that is market acceptable; therefore, it was imperative to investigate methods to boost the overall growth rate and immunity of the animal. The University of Cape Town (UCT) began to research, which resulted in the isolation of two microorganisms, a yeast isolate Debaryomyces hansenii and a bacterial isolate Vibrio midae, from the gut of the abalone and characterised them for their probiotic abilities. This work resulted in an internationally competitive concept technology that was patented. The next stage of research was to develop a suitable bioprocess to enable commercial production. Numerous steps were taken to develop an efficient production process for V. midae, one of the isolates found by UCT. The initial stages of research involved the development of a stable and robust inoculum and the optimization of physiological growth parameters such as temperature and pH. A range of temperature and pH conditions were evaluated, and data obtained revealed an optimum growth temperature of 30ᵒC and a pH of 6.5. Once these critical growth parameters were established further media optimization studies were performed. Corn steep liquor (CSL) and high test molasses (HTM) were selected as suitable alternatives to more expensive, conventionally used growth medium additives. The optimization of CSL (6.4 g.l⁻¹) and HTM (24 g.l⁻¹) concentrations in the growth medium resulted in a 180% increase in cell concentration, a 5716-fold increase in cell productivity and a 97.2% decrease in the material cost of production in comparison to conventional growth conditions and parameters used at the onset of the study. In addition, a stable market-ready liquid probiotic product, encompassing the viable but not culturable (VBNC) state of Vibrio midae cells, was developed during the downstream processing aspect of the study. The demonstration of this technology at a full manufacturing scale has further enhanced the attractiveness and commercial feasibility of this production process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probiotics" title="probiotics">probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=abalone%20aquaculture" title=" abalone aquaculture"> abalone aquaculture</a>, <a href="https://publications.waset.org/abstracts/search?q=bioprocess%20technology" title=" bioprocess technology"> bioprocess technology</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20scale%20technology%20development" title=" manufacturing scale technology development"> manufacturing scale technology development</a> </p> <a href="https://publications.waset.org/abstracts/115137/development-of-a-bioprocess-technology-for-the-production-of-vibrio-midae-a-probiotic-for-use-in-abalone-aquaculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Toxicity and Biodegradability of Veterinary Antibiotic Tiamulin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20Kalcikova">Gabriela Kalcikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20Bosevski"> Igor Bosevski</a>, <a href="https://publications.waset.org/abstracts/search?q=Ula%20Rozman"> Ula Rozman</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreja%20Zgajnar%20Gotvajn"> Andreja Zgajnar Gotvajn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antibiotics are extensively used in human medicine and also in animal husbandry to prevent or control infections. Recently, a lot of attention has been put on veterinary antibiotics, because their global consumption is increasing and it is expected to be 106.600 tons in 2030. Most of veterinary antibiotics are introduced into the environment via animal manure, which is used as fertilizer. One of such veterinary antibiotics is tiamulin. It is used the form of fumarate for treatment of pig and poultry. It is used against prophylaxis of dysentery, pneumonia and mycroplasmal infections, but its environmental impact is practically unknown. Tiamulin has been found very persistent in animal manure and thus it is expected that can be, during rainfalls, transported into the aquatic environment and affect various organisms. For assessment of its environmental impact, it is necessary to evaluate its biodegradability and toxicity to various organisms from different levels of a food chain. Therefore, the aim of our study was to evaluate ready biodegradability and toxicity of tiamulin fumarate to various organisms. Bioassay used included luminescent bacterium Vibrio fischeri heterotrophic and nitrifying microorganisms of activated sludge, water flea Daphnia magna and duckweed Lemna minor. For each species, EC₅₀ values were calculated. Biodegradability test was used for determination of ready biodegradability and it provides information about biodegradability of tiamulin under the most common environmental conditions. Results of our study showed that tiamulin differently affects selected organisms. The most sensitive organisms were water fleas with 48hEC₅₀ = 14.2 ± 4.8 mg/L and duckweed with 168hEC₅₀ = 22.6 ± 0.8 mg/L. Higher concentrations of tiamulin (from 10 mg/L) significantly affected photosynthetic pigments content in duckweed and concentrations above 80 mg/L cause visible chlorosis. It is in agreement with previous studies showing significant effect of tiamulin on green algae and cyanobacteria. Tiamuline has a low effect on microorganisms. The lower toxicity was observed for heterotrophic microorganisms (30minEC₅₀ = 1656 ± 296 mg/L), than Vibrio fisheri (30minEC₅₀ = 492 ± 21) and the most sensitive organisms were nitrifying microorganisms (30minEC₅₀ = 183 ± 127 mg/L). The reason is most probably the mode of action of tiamulin being effective to gram-positive bacteria while gram-negative (e.g., Vibrio fisheri) are more tolerant to tiamulin. Biodegradation of tiamulin was very slow with a long lag-phase being 20 days. The maximal degradation reached 40 ± 2 % in 43 days of the test and tiamulin as other antibiotics (e.g. ciprofloxacin) are not easily biodegradable. Tiamulin is widely used antibiotic in veterinary medicine and thus present in the environment. According to our results, tiamulin can have negative effect on water fleas and duckweeds, but the concentrations are several magnitudes higher than that found in any environmental compartment. Tiamulin is low toxic to tested microorganisms, but it is very low biodegradable and thus possibly persistent in the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title="antibiotics">antibiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title=" biodegradability"> biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=tiamulin" title=" tiamulin"> tiamulin</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/81001/toxicity-and-biodegradability-of-veterinary-antibiotic-tiamulin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> The Use of Non-Parametric Bootstrap in Computing of Microbial Risk Assessment from Lettuce Consumption Irrigated with Contaminated Water by Sanitary Sewage in Infulene Valley </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mario%20Tauzene%20Afonso%20Matangue">Mario Tauzene Afonso Matangue</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Andres%20Sanchez%20Ortiz"> Ivan Andres Sanchez Ortiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Metropolitan area of Maputo (Mozambique Capital City) is located in semi-arid zone (800 mm annual rainfall) with 1101170 million inhabitants. On the west side, there are the flatlands of Infulene where the Mulauze River flows towards to the Indian Ocean, receiving at this site, the storm water contaminated with sanitary sewage from Maputo, transported through a concrete open channel. In Infulene, local communities grow salads crops such as tomato, onion, garlic, lettuce, and cabbage, which are then commercialized and consumed in several markets in Maputo City. Lettuce is the most daily consumed salad crop in different meals, generally in fast-foods, breakfasts, lunches, and dinners. However, the risk of infection by several pathogens due to the consumption of lettuce, using the Quantitative Microbial Risk Assessment (QMRA) tools, is still unknown since there are few studies or publications concerning to this matter in Mozambique. This work is aimed at determining the annual risk arising from the consumption of lettuce grown in Infulene valley, in Maputo, using QMRA tools. The exposure model was constructed upon the volume of contaminated water remaining in the lettuce leaves, the empirical relations between the number of pathogens and the indicator of microorganisms (E. coli), the consumption of lettuce (g) and reduction of pathogens (days). The reference pathogens were Vibrio cholerae, Cryptosporidium, norovirus, and Ascaris. The water quality samples (E. coli) were collected in the storm water channel from January 2016 to December 2018, comprising 65 samples, and the urban lettuce consumption data were collected through inquiry in Maputo Metropolis covering 350 persons. A non-parametric bootstrap was performed involving 10,000 iterations over the collected dataset, namely, water quality (E. coli) and lettuce consumption. The dose-response models were: Exponential for Cryptosporidium, Kummer Confluent hypergeomtric function (1F1) for Vibrio and Ascaris Gaussian hypergeometric function (2F1-(a,b;c;z) for norovirus. The annual infection risk estimates were performed using R 3.6.0 (CoreTeam) software by Monte Carlo (Latin hypercubes), a sampling technique involving 10,000 iterations. The annual infection risks values expressed by Median and the 95th percentile, per person per year (pppy) arising from the consumption of lettuce are as follows: Vibrio cholerae (1.00, 1.00), Cryptosporidium (3.91x10⁻³, 9.72x 10⁻³), nororvirus (5.22x10⁻¹, 9.99x10⁻¹) and Ascaris (2.59x10⁻¹, 9.65x10⁻¹). Thus, the consumption of the lettuce would result in greater risks than the tolerable levels ( < 10⁻³ pppy or 10⁻⁶ DALY) for all pathogens, and the Vibrio cholerae is the most virulent pathogens, according to the hit-single models followed by the Ascaris lumbricoides and norovirus. The sensitivity analysis carried out in this work pointed out that in the whole QMRA, the most important input variable was the reduction of pathogens (Spearman rank value was 0.69) between harvest and consumption followed by water quality (Spearman rank value was 0.69). The decision-makers (Mozambique Government) must strengthen the prevention measures related to pathogens reduction in lettuce (i.e., washing) and engage in wastewater treatment engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annual%20infections%20risk" title="annual infections risk">annual infections risk</a>, <a href="https://publications.waset.org/abstracts/search?q=lettuce" title=" lettuce"> lettuce</a>, <a href="https://publications.waset.org/abstracts/search?q=non-parametric%20bootstrapping" title=" non-parametric bootstrapping"> non-parametric bootstrapping</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20microbial%20risk%20assessment%20tools" title=" quantitative microbial risk assessment tools"> quantitative microbial risk assessment tools</a> </p> <a href="https://publications.waset.org/abstracts/123837/the-use-of-non-parametric-bootstrap-in-computing-of-microbial-risk-assessment-from-lettuce-consumption-irrigated-with-contaminated-water-by-sanitary-sewage-in-infulene-valley" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Outbreak of Cholera, Jalgaon District, Maharastra, 2013</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yogita%20Tulsian">Yogita Tulsian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Yadav"> A. Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: India reports 3,600 cholera cases annually. In August 2013, a cholera outbreak was reported in Jalgaon district, Maharashtra state. We sought to describe the epidemiological characteristics,identify risk factors, and recommend control measures. Methods: We collected existing stool and water testing laboratory results, and conducted a1: 1 matched case-control study. A cholera case was defined as a resident of Vishnapur or Malapur villagewith onset of acute watery diarrhea on/ after 1-July-2013. Controls were matched by age, gender and village and had not experienced any diarrhea for 3 months. We collected socio-demographic characteristics, clinical presentation, and food/travel/water exposure history and conducted conditional logistic regression. Results: Of 50 people who met the cholera case definition, 40 (80%) were from Vishnapur village and 30 (60%) were female. The median age was 8.5 years (range; 0.3-75). Twenty (45%) cases were hospitalized, twelve (60%) with severe dehydration. Three of five stool samples revealed Vibrio cholerae 01 El Tor, Ogawa and samples from 7 of 14 Vishnapur water sources contained fecal coliforms. Cases from Vishnapur were significantly more likely to drink from identified contaminated water sources (matched odds ratio (MOR) 3.5; 95% confidence interval (CI): 1-13), or from a river/canal (MOR=18.4;95%CI: 2-504). Cases from Malapur were more likely to drink from a river/canal (MOR=6.2; 95%CI: 0.6-196). Cases from both villages were significantly more likely to visit the forest (MOR 6.3; 95%CI: 2-30) or another village (MOR 3.5; 95%CI; 0.9-17). Conclusions: This outbreak was caused by Vibrio cholerae, likely through contamination of water in Vishnapur village and/or through drinking river/canal water. We recommended safe drinking water for forest visitors and all residents of these villages and use of regular water testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cholera" title="cholera">cholera</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20control%20study" title=" case control study"> case control study</a>, <a href="https://publications.waset.org/abstracts/search?q=contaminated%20water" title=" contaminated water"> contaminated water</a>, <a href="https://publications.waset.org/abstracts/search?q=river" title=" river"> river</a> </p> <a href="https://publications.waset.org/abstracts/30228/outbreak-of-cholera-jalgaon-district-maharastra-2013" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Evaluating Antimicrobial Activity of Selenium Nanoparticles Against Food-Borne Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qunying%20Yuan">Qunying Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Manjula%20Bomma"> Manjula Bomma</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Rhoden"> Adrian Rhoden</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhigang%20Xiao"> Zhigang Xiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selenium is an essential micronutrient for all mammals and plays an important role in maintaining human physiological functions. The potential applications of selenium as food supplements, cancer-prevention, antimicrobial and anti-inflammatory agents have been investigated in biomedicine and food sciences. Nanoscale of selenium is of particular interest due to its better biocompatibility, higher bioavailability, lower toxicity, more homogeneous distribution, and presumptive controlled release of substances. The objective of this study is to explore whether selenium nanoparticle (SeNP) has the potential to be used as a food preservative to reduce food spoilage. SeNPs were synthesized through ascorbic acid reduction of sodium selenite using the bovine serum albumin (BSA) as capping and stabilizing agent. The chemically synthesized SeNPs had a spherical conformation and a size of 22.8 ± 4.7 nm. FTIR analysis confirmed that the nanoparticles were covered with BSA. We further tested the antimicrobial activity of these SeNPs against common food-borne bacteria. Colony forming unit assay showed that SeNPs exhibited good inhibition on the growth of Listeria Monocytogens (ATCC15313), Staphylococcus epidermidis (ATCC 700583) starting at 0.5µg/mL, but only a moderate inhibitory effect on the growth of Staphylococcus aureus (ATCC12600) and Vibrio alginolyticus (ATCC 33787) at a concentration higher than 10µg/mL and 2.5µg/mL, respectively. There was a mild effect against the growth Salmonella enterica (ATCC19585) when the concentration reached 15µg/mL. No inhibition was observed in the growth of Enterococcus faecalis (ATCC 19433). Surprisingly, SeNPs appeared to promote the growth of Vibrio parahaemolyticus (ATCC43996) and Salmonella enterica (ATCC49284) at 30 µg/mL and above. Our preliminary data suggested that the chemically synthesized SeNPs may be able to inhibit some food-borne bacteria, and SeNP as a food preservative should be used with caution. We will explore the mechanisms of the inhibitory action of chemically synthesized SeNPs on bacterial growth and whether the SeNPs are able to inhibit the development of biofilm and antibiotic resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=food-borne%20bacteria" title=" food-borne bacteria"> food-borne bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=selenium" title=" selenium"> selenium</a> </p> <a href="https://publications.waset.org/abstracts/153686/evaluating-antimicrobial-activity-of-selenium-nanoparticles-against-food-borne-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Evaluation of Microbiological Quality and Safety of Two Types of Salads Prepared at Libyan Airline Catering Center in Tripoli </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20A.%20Kwildi">Elham A. Kwildi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahia%20S.%20Abugnah"> Yahia S. Abugnah</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuri%20S.%20Madi"> Nuri S. Madi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was designed to evaluate the microbiological quality and safety of two types of salads prepared at a catering center affiliated with Libyan Airlines in Tripoli, Libya. Two hundred and twenty-one (221) samples (132 economy-class and 89 first- class) were used in this project which lasted for ten months. Biweekly, microbiological tests were performed which included total plate count (TPC) and total coliforms (TCF), in addition to enumeration and/or detection of some pathogenic bacteria mainly Escherichia coli, Staphylococcus aureus, Bacillus cereus, Salmonella sp, Listeria sp and Vibrio parahaemolyticus parahaemolyticus, By using conventional as well as compact dry methods. Results indicated that TPC of type 1 salad ranged between (<10 – 62 x 103 cfu/gm) and (<10 to 36 x103 cfu/g), while TCF were (<10 – 41 x 103 cfu/gm) and (< 10 to 66 x102 cfu/g) using both methods of detection respectively. On the other hand, TPC of type 2 salad were: (1 × 10 – 52 x 103) and (<10 – 55 x 103 cfu/gm) and in the range of (1 x10 to 45x103 cfu/g), and the (TCF) counts were between (< 10 to 55x103 cfu/g) and (< 10 to 34 x103 cfu/g) using the 1st and the 2nd methods of detection respectively. Also, the pathogens mentioned above were detected in both types of salads, but their levels varied according to the type of salad and the method of detection. The level of Staphylococcus aureus, for instance, was 17.4% using conventional method versus 14.4% using the compact dry method. Similarly, E. coli was 7.6% and 9.8%, while Salmonella sp. recorded the least percentage i.e. 3% and 3.8% with the two mentioned methods respectively. First class salads were also found to contain the same pathogens, but the level of E. coli was relatively higher in this case (14.6% and 16.9%) using conventional and compact dry methods respectively. The second rank came Staphylococcus aureus (13.5%) and (11.2%), followed by Salmonella (6.74%) and 6.70%). The least percentage was for Vibrio parahaemolyticus (4.9%) which was detected in the first class salads only. The other two pathogens Bacillus cereus and Listeria sp. were not detected in either one of the salads. Finally, it is worth mentioning that there was a significant decline in TPC and TCF counts in addition to the disappearance of pathogenic bacteria after the 6-7th month of the study which coincided with the first trial of the HACCP system at the center. The ups and downs in the counts along the early stages of the study reveal that there is a need for some important correction measures including more emphasis on training of the personnel in applying the HACCP system effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20travel" title="air travel">air travel</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20salads" title=" vegetable salads"> vegetable salads</a>, <a href="https://publications.waset.org/abstracts/search?q=foodborne%20outbreaks" title=" foodborne outbreaks"> foodborne outbreaks</a>, <a href="https://publications.waset.org/abstracts/search?q=Libya" title=" Libya"> Libya</a> </p> <a href="https://publications.waset.org/abstracts/21544/evaluation-of-microbiological-quality-and-safety-of-two-types-of-salads-prepared-at-libyan-airline-catering-center-in-tripoli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Microbiological Analysis of Soil from Onu-Ebonyi Contaminated with Inorganic Fertilizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Alo">M. N. Alo</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20C.%20C.%20Egbule"> U. C. C. Egbule</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20O.%20Orji"> J. O. Orji</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Aneke"> C. J. Aneke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbiological analysis of soil from Onu-Ebonyi Izzi local government area of Ebonyi State, Nigeria contaminated with inorganic fertilizer was carried out with a view to determine the effect of the fertilizer on the microbial flora of the soil. soil samples were analyzed for microbial burden. the result showed that the following organisms were isolated with their frequency of their occurrence as follows:pseudomonas species (33.3%) and aspergillus species (54.4%) had the highest frequncy of occurence in the whole sample of batches, while streptococcus species had 6.0% and Geotrichum species (5.3%) had the least and other predominant microorganism isolated: bacillus species,staphylococcus species and vibrio species, Escherichia species, rhzizopus species, mucor species and fusaruim species. From the result, it could be concluded that the soil was contaminated and this could affect adversely the fertility of the soil . <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20fertilizer" title=" inorganic fertilizer"> inorganic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=Onu-%20Ebonyi" title=" Onu- Ebonyi "> Onu- Ebonyi </a> </p> <a href="https://publications.waset.org/abstracts/15269/microbiological-analysis-of-soil-from-onu-ebonyi-contaminated-with-inorganic-fertilizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Pond Site Diagnosis: Monoclonal Antibody-Based Farmer Level Tests to Detect the Acute Hepatopancreatic Necrosis Disease in Shrimp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20T.%20Naveen%20Kumar">B. T. Naveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Anuj%20Tyagi"> Anuj Tyagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Niraj%20Kumar%20Singh"> Niraj Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Visanu%20Boonyawiwat"> Visanu Boonyawiwat</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Shanthanagouda"> A. H. Shanthanagouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Orawan%20Boodde"> Orawan Boodde</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Shankar"> K. M. Shankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakash%20Patil"> Prakash Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubhkaramjeet%20Kaur"> Shubhkaramjeet Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Early mortality syndrome (EMS)/Acute Hepatopancreatic Necrosis Disease (AHPND) has emerged as a major obstacle for the shrimp farming around the world. It is caused by a strain of Vibrio parahaemolyticus. The possible preventive and control measure is, early and rapid detection of the pathogen in the broodstock, post-larvae and monitoring the shrimp during the culture period. Polymerase chain reaction (PCR) based early detection methods are good, but they are costly, time taking and requires a sophisticated laboratory. The present study was conducted to develop a simple, sensitive and rapid diagnostic farmer level kit for the reliable detection of AHPND in shrimp. A panel of monoclonal antibodies (MAbs) were raised against the recombinant Pir B protein (rPirB). First, an immunodot was developed by using MAbs G3B8 and Mab G3H2 which showed specific reactivity to purified r-PirB protein with no cross-reactivity to other shrimp bacterial pathogens (AHPND free Vibrio parahaemolyticus (Indian strains), V. anguillarum, WSSV, Aeromonas hydrophila, and Aphanomyces invadans). Immunodot developed using Mab G3B8 is more sensitive than that with the Mab G3H2. However, immunodot takes almost 2.5 hours to complete with several hands-on steps. Therefore, the flow-through assay (FTA) was developed by using a plastic cassette containing the nitrocellulose membrane with absorbing pads below. The sample was dotted in the test zone on the nitrocellulose membrane followed by continuos addition of five solutions in the order of i) blocking buffer (BSA) ii) primary antibody (MAb) iii) washing Solution iv) secondary antibody and v) chromogen substrate (TMB) clear purple dots against a white background were considered as positive reactions. The FTA developed using MAbG3B8 is more sensitive than that with MAb G3H2. In FTA the two MAbs showed specific reactivity to purified r-PirB protein and not to other shrimp bacterial pathogens. The FTA is simple to farmer/field level, sensitive and rapid requiring only 8-10 min for completion. Tests can be developed to kits, which will be ideal for use in biosecurity, for the first line of screening (at the port or pond site) and during monitoring and surveillance programmes overall for the good management practices to reduce the risk of the disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20hepatopancreatic%20necrosis%20disease" title="acute hepatopancreatic necrosis disease">acute hepatopancreatic necrosis disease</a>, <a href="https://publications.waset.org/abstracts/search?q=AHPND" title=" AHPND"> AHPND</a>, <a href="https://publications.waset.org/abstracts/search?q=flow-through%20assay" title=" flow-through assay"> flow-through assay</a>, <a href="https://publications.waset.org/abstracts/search?q=FTA" title=" FTA"> FTA</a>, <a href="https://publications.waset.org/abstracts/search?q=farmer%20level" title=" farmer level"> farmer level</a>, <a href="https://publications.waset.org/abstracts/search?q=immunodot" title=" immunodot"> immunodot</a>, <a href="https://publications.waset.org/abstracts/search?q=pond%20site" title=" pond site"> pond site</a>, <a href="https://publications.waset.org/abstracts/search?q=shrimp" title=" shrimp"> shrimp</a> </p> <a href="https://publications.waset.org/abstracts/100090/pond-site-diagnosis-monoclonal-antibody-based-farmer-level-tests-to-detect-the-acute-hepatopancreatic-necrosis-disease-in-shrimp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Pathogenic Bacteria Isolated from Diseased Giant Freshwater Prawn in Shrimp Culture Ponds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kusumawadee%20Thancharoen">Kusumawadee Thancharoen</a>, <a href="https://publications.waset.org/abstracts/search?q=Rungrat%20Nontawong"> Rungrat Nontawong</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanawat%20Junsom"> Thanawat Junsom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pathogenic bacterial flora was isolated from giant freshwater prawns, Macrobrachium rosenbergii. Infected shrimp samples were collected from BuaBan Aquafarm in Kalasin Province, Thailand, between June and September 2018. Bacterial species were isolated by serial dilution and plated on Thiosulfate Citrate Bile Salt Sucrose (TCBS) agar medium. A total 89 colonies were isolated and identified using the API 20E biochemical tests. Results showed the presence of genera Aeromonas, Citrobacter, Chromobacterium, Providencia, Pseudomonas, Stenotrophomonas and Vibrio. Maximum number of species was recorded in Pseudomonas (50.57%) with minimum observed in Chromobacterium and Providencia (1.12%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochemical%20test" title="biochemical test">biochemical test</a>, <a href="https://publications.waset.org/abstracts/search?q=giant%20freshwater%20prawn" title=" giant freshwater prawn"> giant freshwater prawn</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation" title=" isolation"> isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20tolerance" title=" salt tolerance"> salt tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=shrimp%20diseases" title=" shrimp diseases"> shrimp diseases</a> </p> <a href="https://publications.waset.org/abstracts/94049/pathogenic-bacteria-isolated-from-diseased-giant-freshwater-prawn-in-shrimp-culture-ponds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Bacteria Flora in the Gut and Respiratory Organs of Clarias gariepinus in Fresh and Brackish Water Habitats of Ondo State, South/West Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nelson%20R.%20Osungbemiro">Nelson R. Osungbemiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafiu%20O.%20Sanni"> Rafiu O. Sanni</a>, <a href="https://publications.waset.org/abstracts/search?q=Rotimi%20F.%20Olaniyan"> Rotimi F. Olaniyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abayomi%20O.%20Olajuyigbe"> Abayomi O. Olajuyigbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacteria flora of Clarias gariepinus collected from two natural habitats namely Owena River (freshwater) and Igbokoda lagoon (brackish water) were examined using standard microbiological procedures. Thirteen bacterial species were identified. The result indicated that from the identified bacteria isolated, Vibrio sp, Proteus sp. Shigella sp. and E. coli were present in both habitats (fresh and brackish waters). Others were habitat-selective such as Salmonella sp., Pseudomonas sp, Enterococcus sp, Staphylococcus sp. that were found only in freshwater habitat. While Branhamella sp, Streptococcus sp. and Micrococcus sp. were found in brackish water habitat. Bacteria load from Owena river (freshwater) was found to be the highest load recorded at 6.21 x 104cfu. T-test analysis also revealed that there was a marked significant difference between bacterial load in guts of sampled Clarias from fresh water and brackish water habitats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria%20flora" title="bacteria flora">bacteria flora</a>, <a href="https://publications.waset.org/abstracts/search?q=gut" title=" gut"> gut</a>, <a href="https://publications.waset.org/abstracts/search?q=Clarias%20gariepinus" title=" Clarias gariepinus"> Clarias gariepinus</a>, <a href="https://publications.waset.org/abstracts/search?q=Owena%20river" title=" Owena river"> Owena river</a> </p> <a href="https://publications.waset.org/abstracts/6024/bacteria-flora-in-the-gut-and-respiratory-organs-of-clarias-gariepinus-in-fresh-and-brackish-water-habitats-of-ondo-state-southwest-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Vibrio%20coralliilyticus&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Vibrio%20coralliilyticus&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>