CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;18 of 18 results for author: <span class="mathjax">Bailey, P</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Bailey%2C+P">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Bailey, P"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Bailey%2C+P&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Bailey, P"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16548">arXiv:2410.16548</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16548">pdf</a>, <a href="https://arxiv.org/ps/2410.16548">ps</a>, <a href="https://arxiv.org/format/2410.16548">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> On the Uniqueness of Nash Equilibria in Multiagent Matrix Games </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bailey%2C+J+P">James P. Bailey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16548v1-abstract-short" style="display: inline;"> We provide a complete characterization for uniqueness of equilibria in unconstrained polymatrix games. We show that while uniqueness is natural for coordination and general polymatrix games, zero-sum games require that the dimension of the combined strategy space is even. Therefore, non-uniqueness is common in zero-sum polymatrix games. In addition, we study the impact of non-uniqueness on classic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16548v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16548v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16548v1-abstract-full" style="display: none;"> We provide a complete characterization for uniqueness of equilibria in unconstrained polymatrix games. We show that while uniqueness is natural for coordination and general polymatrix games, zero-sum games require that the dimension of the combined strategy space is even. Therefore, non-uniqueness is common in zero-sum polymatrix games. In addition, we study the impact of non-uniqueness on classical learning dynamics for multiagent systems and show that the classical methods still yield unique estimates even when there is not a unique equilibrium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16548v1-abstract-full').style.display = 'none'; document.getElementById('2410.16548v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10788">arXiv:2410.10788</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10788">pdf</a>, <a href="https://arxiv.org/format/2410.10788">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> On the Approximability of the Yolk in the Spatial Model of Voting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Hu%2C+R">Ran Hu</a>, <a href="/search/cs?searchtype=author&amp;query=Bailey%2C+J+P">James P. Bailey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10788v1-abstract-short" style="display: inline;"> In the spatial model of voting, the yolk and LP (linear programming) yolk are important solution concepts for predicting outcomes for a committee of voters. McKelvey and Tovey showed that the LP yolk provides a lower bound approximation for the size of the yolk and there has been considerable debate on whether the LP yolk is a good approximation of the yolk. In this paper, we show that for an odd&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10788v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10788v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10788v1-abstract-full" style="display: none;"> In the spatial model of voting, the yolk and LP (linear programming) yolk are important solution concepts for predicting outcomes for a committee of voters. McKelvey and Tovey showed that the LP yolk provides a lower bound approximation for the size of the yolk and there has been considerable debate on whether the LP yolk is a good approximation of the yolk. In this paper, we show that for an odd number of voters in a two-dimensional space that the yolk radius is at most twice the size of the LP yolk radius. However, we also show that (1) even in this setting, the LP yolk center can be arbitrarily far away from the yolk center (relative to the radius of the yolk) and (2) for all other settings (an even number of voters or in dimension $k\geq 3$) that the LP yolk can be arbitrarily small relative to the yolk. Thus, in general, the LP yolk can be an arbitrarily poor approximation of the yolk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10788v1-abstract-full').style.display = 'none'; document.getElementById('2410.10788v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09305">arXiv:2410.09305</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09305">pdf</a>, <a href="https://arxiv.org/format/2410.09305">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> Analyzing Wage Theft in Day Labor Markets via Principal Agent Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bailey%2C+J+P">James P. Bailey</a>, <a href="/search/cs?searchtype=author&amp;query=Cavdar%2C+B">Bahar Cavdar</a>, <a href="/search/cs?searchtype=author&amp;query=Chang%2C+Y">Yanling Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09305v1-abstract-short" style="display: inline;"> In day labor markets, workers are particularly vulnerable to wage theft. This paper introduces a principal-agent model to analyze the conditions required to mitigate wage theft through fines and establishes the necessary and sufficient conditions to reduce theft. We find that the fines necessary to eliminate theft are significantly larger than those imposed by current labor laws, making wage theft&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09305v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09305v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09305v1-abstract-full" style="display: none;"> In day labor markets, workers are particularly vulnerable to wage theft. This paper introduces a principal-agent model to analyze the conditions required to mitigate wage theft through fines and establishes the necessary and sufficient conditions to reduce theft. We find that the fines necessary to eliminate theft are significantly larger than those imposed by current labor laws, making wage theft likely to persist under penalty-based methods alone. Through numerical analysis, we show how wage theft disproportionately affects workers with lower reservation utilities and observe that workers with similar reservation utilities experience comparable impacts, regardless of their skill levels. To address the limitations of penalty-based approaches, we extend the model to a dynamic game incorporating worker awareness. We prove that wage theft can be fully eliminated if workers accurately predict theft using historical data and employers follow optimal fixed wage strategy. Additionally, sharing wage theft information becomes an effective long-term solution when employers use any given fixed wage strategies, emphasizing the importance of raising worker awareness through various channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09305v1-abstract-full').style.display = 'none'; document.getElementById('2410.09305v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 91B43 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08295">arXiv:2403.08295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.08295">pdf</a>, <a href="https://arxiv.org/format/2403.08295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Gemma: Open Models Based on Gemini Research and Technology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Gemma+Team"> Gemma Team</a>, <a href="/search/cs?searchtype=author&amp;query=Mesnard%2C+T">Thomas Mesnard</a>, <a href="/search/cs?searchtype=author&amp;query=Hardin%2C+C">Cassidy Hardin</a>, <a href="/search/cs?searchtype=author&amp;query=Dadashi%2C+R">Robert Dadashi</a>, <a href="/search/cs?searchtype=author&amp;query=Bhupatiraju%2C+S">Surya Bhupatiraju</a>, <a href="/search/cs?searchtype=author&amp;query=Pathak%2C+S">Shreya Pathak</a>, <a href="/search/cs?searchtype=author&amp;query=Sifre%2C+L">Laurent Sifre</a>, <a href="/search/cs?searchtype=author&amp;query=Rivi%C3%A8re%2C+M">Morgane Rivi猫re</a>, <a href="/search/cs?searchtype=author&amp;query=Kale%2C+M+S">Mihir Sanjay Kale</a>, <a href="/search/cs?searchtype=author&amp;query=Love%2C+J">Juliette Love</a>, <a href="/search/cs?searchtype=author&amp;query=Tafti%2C+P">Pouya Tafti</a>, <a href="/search/cs?searchtype=author&amp;query=Hussenot%2C+L">L茅onard Hussenot</a>, <a href="/search/cs?searchtype=author&amp;query=Sessa%2C+P+G">Pier Giuseppe Sessa</a>, <a href="/search/cs?searchtype=author&amp;query=Chowdhery%2C+A">Aakanksha Chowdhery</a>, <a href="/search/cs?searchtype=author&amp;query=Roberts%2C+A">Adam Roberts</a>, <a href="/search/cs?searchtype=author&amp;query=Barua%2C+A">Aditya Barua</a>, <a href="/search/cs?searchtype=author&amp;query=Botev%2C+A">Alex Botev</a>, <a href="/search/cs?searchtype=author&amp;query=Castro-Ros%2C+A">Alex Castro-Ros</a>, <a href="/search/cs?searchtype=author&amp;query=Slone%2C+A">Ambrose Slone</a>, <a href="/search/cs?searchtype=author&amp;query=H%C3%A9liou%2C+A">Am茅lie H茅liou</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a>, <a href="/search/cs?searchtype=author&amp;query=Bulanova%2C+A">Anna Bulanova</a>, <a href="/search/cs?searchtype=author&amp;query=Paterson%2C+A">Antonia Paterson</a>, <a href="/search/cs?searchtype=author&amp;query=Tsai%2C+B">Beth Tsai</a>, <a href="/search/cs?searchtype=author&amp;query=Shahriari%2C+B">Bobak Shahriari</a> , et al. (83 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08295v4-abstract-short" style="display: inline;"> This work introduces Gemma, a family of lightweight, state-of-the art open models built from the research and technology used to create Gemini models. Gemma models demonstrate strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Ge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08295v4-abstract-full').style.display = 'inline'; document.getElementById('2403.08295v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08295v4-abstract-full" style="display: none;"> This work introduces Gemma, a family of lightweight, state-of-the art open models built from the research and technology used to create Gemini models. Gemma models demonstrate strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Gemma outperforms similarly sized open models on 11 out of 18 text-based tasks, and we present comprehensive evaluations of safety and responsibility aspects of the models, alongside a detailed description of model development. We believe the responsible release of LLMs is critical for improving the safety of frontier models, and for enabling the next wave of LLM innovations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08295v4-abstract-full').style.display = 'none'; document.getElementById('2403.08295v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.11805">arXiv:2312.11805</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.11805">pdf</a>, <a href="https://arxiv.org/format/2312.11805">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Gemini: A Family of Highly Capable Multimodal Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Gemini+Team"> Gemini Team</a>, <a href="/search/cs?searchtype=author&amp;query=Anil%2C+R">Rohan Anil</a>, <a href="/search/cs?searchtype=author&amp;query=Borgeaud%2C+S">Sebastian Borgeaud</a>, <a href="/search/cs?searchtype=author&amp;query=Alayrac%2C+J">Jean-Baptiste Alayrac</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+J">Jiahui Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Soricut%2C+R">Radu Soricut</a>, <a href="/search/cs?searchtype=author&amp;query=Schalkwyk%2C+J">Johan Schalkwyk</a>, <a href="/search/cs?searchtype=author&amp;query=Dai%2C+A+M">Andrew M. Dai</a>, <a href="/search/cs?searchtype=author&amp;query=Hauth%2C+A">Anja Hauth</a>, <a href="/search/cs?searchtype=author&amp;query=Millican%2C+K">Katie Millican</a>, <a href="/search/cs?searchtype=author&amp;query=Silver%2C+D">David Silver</a>, <a href="/search/cs?searchtype=author&amp;query=Johnson%2C+M">Melvin Johnson</a>, <a href="/search/cs?searchtype=author&amp;query=Antonoglou%2C+I">Ioannis Antonoglou</a>, <a href="/search/cs?searchtype=author&amp;query=Schrittwieser%2C+J">Julian Schrittwieser</a>, <a href="/search/cs?searchtype=author&amp;query=Glaese%2C+A">Amelia Glaese</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+J">Jilin Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Pitler%2C+E">Emily Pitler</a>, <a href="/search/cs?searchtype=author&amp;query=Lillicrap%2C+T">Timothy Lillicrap</a>, <a href="/search/cs?searchtype=author&amp;query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&amp;query=Firat%2C+O">Orhan Firat</a>, <a href="/search/cs?searchtype=author&amp;query=Molloy%2C+J">James Molloy</a>, <a href="/search/cs?searchtype=author&amp;query=Isard%2C+M">Michael Isard</a>, <a href="/search/cs?searchtype=author&amp;query=Barham%2C+P+R">Paul R. Barham</a>, <a href="/search/cs?searchtype=author&amp;query=Hennigan%2C+T">Tom Hennigan</a>, <a href="/search/cs?searchtype=author&amp;query=Lee%2C+B">Benjamin Lee</a> , et al. (1325 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.11805v4-abstract-short" style="display: inline;"> This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11805v4-abstract-full').style.display = 'inline'; document.getElementById('2312.11805v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.11805v4-abstract-full" style="display: none;"> This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of the Gemini family in cross-modal reasoning and language understanding will enable a wide variety of use cases. We discuss our approach toward post-training and deploying Gemini models responsibly to users through services including Gemini, Gemini Advanced, Google AI Studio, and Cloud Vertex AI. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11805v4-abstract-full').style.display = 'none'; document.getElementById('2312.11805v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.10403">arXiv:2305.10403</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.10403">pdf</a>, <a href="https://arxiv.org/format/2305.10403">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> PaLM 2 Technical Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Anil%2C+R">Rohan Anil</a>, <a href="/search/cs?searchtype=author&amp;query=Dai%2C+A+M">Andrew M. Dai</a>, <a href="/search/cs?searchtype=author&amp;query=Firat%2C+O">Orhan Firat</a>, <a href="/search/cs?searchtype=author&amp;query=Johnson%2C+M">Melvin Johnson</a>, <a href="/search/cs?searchtype=author&amp;query=Lepikhin%2C+D">Dmitry Lepikhin</a>, <a href="/search/cs?searchtype=author&amp;query=Passos%2C+A">Alexandre Passos</a>, <a href="/search/cs?searchtype=author&amp;query=Shakeri%2C+S">Siamak Shakeri</a>, <a href="/search/cs?searchtype=author&amp;query=Taropa%2C+E">Emanuel Taropa</a>, <a href="/search/cs?searchtype=author&amp;query=Bailey%2C+P">Paige Bailey</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Z">Zhifeng Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Chu%2C+E">Eric Chu</a>, <a href="/search/cs?searchtype=author&amp;query=Clark%2C+J+H">Jonathan H. Clark</a>, <a href="/search/cs?searchtype=author&amp;query=Shafey%2C+L+E">Laurent El Shafey</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+Y">Yanping Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Meier-Hellstern%2C+K">Kathy Meier-Hellstern</a>, <a href="/search/cs?searchtype=author&amp;query=Mishra%2C+G">Gaurav Mishra</a>, <a href="/search/cs?searchtype=author&amp;query=Moreira%2C+E">Erica Moreira</a>, <a href="/search/cs?searchtype=author&amp;query=Omernick%2C+M">Mark Omernick</a>, <a href="/search/cs?searchtype=author&amp;query=Robinson%2C+K">Kevin Robinson</a>, <a href="/search/cs?searchtype=author&amp;query=Ruder%2C+S">Sebastian Ruder</a>, <a href="/search/cs?searchtype=author&amp;query=Tay%2C+Y">Yi Tay</a>, <a href="/search/cs?searchtype=author&amp;query=Xiao%2C+K">Kefan Xiao</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+Y">Yuanzhong Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Y">Yujing Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Abrego%2C+G+H">Gustavo Hernandez Abrego</a> , et al. (103 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.10403v3-abstract-short" style="display: inline;"> We introduce PaLM 2, a new state-of-the-art language model that has better multilingual and reasoning capabilities and is more compute-efficient than its predecessor PaLM. PaLM 2 is a Transformer-based model trained using a mixture of objectives. Through extensive evaluations on English and multilingual language, and reasoning tasks, we demonstrate that PaLM 2 has significantly improved quality on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10403v3-abstract-full').style.display = 'inline'; document.getElementById('2305.10403v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.10403v3-abstract-full" style="display: none;"> We introduce PaLM 2, a new state-of-the-art language model that has better multilingual and reasoning capabilities and is more compute-efficient than its predecessor PaLM. PaLM 2 is a Transformer-based model trained using a mixture of objectives. Through extensive evaluations on English and multilingual language, and reasoning tasks, we demonstrate that PaLM 2 has significantly improved quality on downstream tasks across different model sizes, while simultaneously exhibiting faster and more efficient inference compared to PaLM. This improved efficiency enables broader deployment while also allowing the model to respond faster, for a more natural pace of interaction. PaLM 2 demonstrates robust reasoning capabilities exemplified by large improvements over PaLM on BIG-Bench and other reasoning tasks. PaLM 2 exhibits stable performance on a suite of responsible AI evaluations, and enables inference-time control over toxicity without additional overhead or impact on other capabilities. Overall, PaLM 2 achieves state-of-the-art performance across a diverse set of tasks and capabilities. When discussing the PaLM 2 family, it is important to distinguish between pre-trained models (of various sizes), fine-tuned variants of these models, and the user-facing products that use these models. In particular, user-facing products typically include additional pre- and post-processing steps. Additionally, the underlying models may evolve over time. Therefore, one should not expect the performance of user-facing products to exactly match the results reported in this report. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10403v3-abstract-full').style.display = 'none'; document.getElementById('2305.10403v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09248">arXiv:2212.09248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.09248">pdf</a>, <a href="https://arxiv.org/format/2212.09248">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> </div> <p class="title is-5 mathjax"> Natural Language to Code Generation in Interactive Data Science Notebooks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yin%2C+P">Pengcheng Yin</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+W">Wen-Ding Li</a>, <a href="/search/cs?searchtype=author&amp;query=Xiao%2C+K">Kefan Xiao</a>, <a href="/search/cs?searchtype=author&amp;query=Rao%2C+A">Abhishek Rao</a>, <a href="/search/cs?searchtype=author&amp;query=Wen%2C+Y">Yeming Wen</a>, <a href="/search/cs?searchtype=author&amp;query=Shi%2C+K">Kensen Shi</a>, <a href="/search/cs?searchtype=author&amp;query=Howland%2C+J">Joshua Howland</a>, <a href="/search/cs?searchtype=author&amp;query=Bailey%2C+P">Paige Bailey</a>, <a href="/search/cs?searchtype=author&amp;query=Catasta%2C+M">Michele Catasta</a>, <a href="/search/cs?searchtype=author&amp;query=Michalewski%2C+H">Henryk Michalewski</a>, <a href="/search/cs?searchtype=author&amp;query=Polozov%2C+A">Alex Polozov</a>, <a href="/search/cs?searchtype=author&amp;query=Sutton%2C+C">Charles Sutton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09248v1-abstract-short" style="display: inline;"> Computational notebooks, such as Jupyter notebooks, are interactive computing environments that are ubiquitous among data scientists to perform data wrangling and analytic tasks. To measure the performance of AI pair programmers that automatically synthesize programs for those tasks given natural language (NL) intents from users, we build ARCADE, a benchmark of 1082 code generation problems using&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09248v1-abstract-full').style.display = 'inline'; document.getElementById('2212.09248v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09248v1-abstract-full" style="display: none;"> Computational notebooks, such as Jupyter notebooks, are interactive computing environments that are ubiquitous among data scientists to perform data wrangling and analytic tasks. To measure the performance of AI pair programmers that automatically synthesize programs for those tasks given natural language (NL) intents from users, we build ARCADE, a benchmark of 1082 code generation problems using the pandas data analysis framework in data science notebooks. ARCADE features multiple rounds of NL-to-code problems from the same notebook. It requires a model to understand rich multi-modal contexts, such as existing notebook cells and their execution states as well as previous turns of interaction. To establish a strong baseline on this challenging task, we develop PaChiNCo, a 62B code language model (LM) for Python computational notebooks, which significantly outperforms public code LMs. Finally, we explore few-shot prompting strategies to elicit better code with step-by-step decomposition and NL explanation, showing the potential to improve the diversity and explainability of model predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09248v1-abstract-full').style.display = 'none'; document.getElementById('2212.09248v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages. 32 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03443">arXiv:2208.03443</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.03443">pdf</a>, <a href="https://arxiv.org/format/2208.03443">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> Imagining Future Digital Assistants at Work: A Study of Task Management Needs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Khaokaew%2C+Y">Yonchanok Khaokaew</a>, <a href="/search/cs?searchtype=author&amp;query=Holcombe-James%2C+I">Indigo Holcombe-James</a>, <a href="/search/cs?searchtype=author&amp;query=Rahaman%2C+M+S">Mohammad Saiedur Rahaman</a>, <a href="/search/cs?searchtype=author&amp;query=Liono%2C+J">Jonathan Liono</a>, <a href="/search/cs?searchtype=author&amp;query=Trippas%2C+J+R">Johanne R. Trippas</a>, <a href="/search/cs?searchtype=author&amp;query=Spina%2C+D">Damiano Spina</a>, <a href="/search/cs?searchtype=author&amp;query=Belkin%2C+N">Nicholas Belkin</a>, <a href="/search/cs?searchtype=author&amp;query=Bailey%2C+P">Peter Bailey</a>, <a href="/search/cs?searchtype=author&amp;query=Bennett%2C+P+N">Paul N. Bennett</a>, <a href="/search/cs?searchtype=author&amp;query=Ren%2C+Y">Yongli Ren</a>, <a href="/search/cs?searchtype=author&amp;query=Sanderson%2C+M">Mark Sanderson</a>, <a href="/search/cs?searchtype=author&amp;query=Scholer%2C+F">Falk Scholer</a>, <a href="/search/cs?searchtype=author&amp;query=White%2C+R+W">Ryen W. White</a>, <a href="/search/cs?searchtype=author&amp;query=Salim%2C+F+D">Flora D. Salim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03443v1-abstract-short" style="display: inline;"> Digital Assistants (DAs) can support workers in the workplace and beyond. However, target user needs are not fully understood, and the functions that workers would ideally want a DA to support require further study. A richer understanding of worker needs could help inform the design of future DAs. We investigate user needs of future workplace DAs using data from a user study of 40 workers over a f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03443v1-abstract-full').style.display = 'inline'; document.getElementById('2208.03443v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03443v1-abstract-full" style="display: none;"> Digital Assistants (DAs) can support workers in the workplace and beyond. However, target user needs are not fully understood, and the functions that workers would ideally want a DA to support require further study. A richer understanding of worker needs could help inform the design of future DAs. We investigate user needs of future workplace DAs using data from a user study of 40 workers over a four-week period. Our qualitative analysis confirms existing research and generates new insight on the role of DAs in managing people&#39;s time, tasks, and information. Placing these insights in relation to quantitative analysis of self-reported task data, we highlight how different occupation roles require DAs to take varied approaches to these domains and the effect of task characteristics on the imagined features. Our findings have implications for the design of future DAs in work settings, and we offer some recommendations for reduction to practice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03443v1-abstract-full').style.display = 'none'; document.getElementById('2208.03443v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">59 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.02482">arXiv:2110.02482</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.02482">pdf</a>, <a href="https://arxiv.org/format/2110.02482">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> </div> </div> <p class="title is-5 mathjax"> $O\left(1/T\right)$ Time-Average Convergence in a Generalization of Multiagent Zero-Sum Games </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bailey%2C+J+P">James P. Bailey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.02482v1-abstract-short" style="display: inline;"> We introduce a generalization of zero-sum network multiagent matrix games and prove that alternating gradient descent converges to the set of Nash equilibria at rate $O(1/T)$ for this set of games. Alternating gradient descent obtains this convergence guarantee while using fixed learning rates that are four times larger than the optimistic variant of gradient descent. Experimentally, we show with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02482v1-abstract-full').style.display = 'inline'; document.getElementById('2110.02482v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.02482v1-abstract-full" style="display: none;"> We introduce a generalization of zero-sum network multiagent matrix games and prove that alternating gradient descent converges to the set of Nash equilibria at rate $O(1/T)$ for this set of games. Alternating gradient descent obtains this convergence guarantee while using fixed learning rates that are four times larger than the optimistic variant of gradient descent. Experimentally, we show with 97.5% confidence that, on average, these larger learning rates result in time-averaged strategies that are 2.585 times closer to the set of Nash equilibria than optimistic gradient descent. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02482v1-abstract-full').style.display = 'none'; document.getElementById('2110.02482v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.02134">arXiv:2110.02134</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.02134">pdf</a>, <a href="https://arxiv.org/format/2110.02134">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> </div> </div> <p class="title is-5 mathjax"> Stochastic Multiplicative Weights Updates in Zero-Sum Games </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bailey%2C+J+P">James P. Bailey</a>, <a href="/search/cs?searchtype=author&amp;query=Nagarajan%2C+S+G">Sai Ganesh Nagarajan</a>, <a href="/search/cs?searchtype=author&amp;query=Piliouras%2C+G">Georgios Piliouras</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.02134v1-abstract-short" style="display: inline;"> We study agents competing against each other in a repeated network zero-sum game while applying the multiplicative weights update (MWU) algorithm with fixed learning rates. In our implementation, agents select their strategies probabilistically in each iteration and update their weights/strategies using the realized vector payoff of all strategies, i.e., stochastic MWU with full information. We sh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02134v1-abstract-full').style.display = 'inline'; document.getElementById('2110.02134v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.02134v1-abstract-full" style="display: none;"> We study agents competing against each other in a repeated network zero-sum game while applying the multiplicative weights update (MWU) algorithm with fixed learning rates. In our implementation, agents select their strategies probabilistically in each iteration and update their weights/strategies using the realized vector payoff of all strategies, i.e., stochastic MWU with full information. We show that the system results in an irreducible Markov chain where agent strategies diverge from the set of Nash equilibria. Further, we show that agents will play pure strategies with probability 1 in the limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02134v1-abstract-full').style.display = 'none'; document.getElementById('2110.02134v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.04381">arXiv:2108.04381</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.04381">pdf</a>, <a href="https://arxiv.org/ps/2108.04381">ps</a>, <a href="https://arxiv.org/format/2108.04381">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> </div> </div> <p class="title is-5 mathjax"> Conditions for Stability in Strategic Matching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bailey%2C+J+P">James P. Bailey</a>, <a href="/search/cs?searchtype=author&amp;query=Tovey%2C+C+A">Craig A. Tovey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.04381v1-abstract-short" style="display: inline;"> We consider the stability of matchings when individuals strategically submit preference information to a publicly known algorithm. Most pure Nash equilibria of the ensuing game yield a matching that is unstable with respect to the individuals&#39; sincere preferences. We introduce a well-supported minimal dishonesty constraint, and obtain conditions under which every pure Nash equilibrium yields a mat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.04381v1-abstract-full').style.display = 'inline'; document.getElementById('2108.04381v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.04381v1-abstract-full" style="display: none;"> We consider the stability of matchings when individuals strategically submit preference information to a publicly known algorithm. Most pure Nash equilibria of the ensuing game yield a matching that is unstable with respect to the individuals&#39; sincere preferences. We introduce a well-supported minimal dishonesty constraint, and obtain conditions under which every pure Nash equilibrium yields a matching that is stable with respect to the sincere preferences. The conditions on the matching algorithm are to be either fully-randomized, or monotonic and independent of non-spouses (INS), an IIA-like property. These conditions are significant because they support the use of algorithms other than the Gale-Shapley (man-optimal) algorithm for kidney exchange and other applications. We prove that the Gale-Shapley algorithm always yields the woman-optimal matching when individuals are minimally dishonest. However, we give a negative answer to one of Gusfield and Irving&#39;s open questions: there is no monotonic INS or fully-randomized stable matching algorithm that is certain to yield the egalitarian-optimal matching when individuals are strategic and minimally dishonest. Finally, we show that these results extend to the student placement problem, where women are polyandrous but must be honest but do not extend to the admissions problem, where women are both polyandrous and strategic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.04381v1-abstract-full').style.display = 'none'; document.getElementById('2108.04381v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.12954">arXiv:2103.12954</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.12954">pdf</a>, <a href="https://arxiv.org/ps/2103.12954">ps</a>, <a href="https://arxiv.org/format/2103.12954">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Convergence Analysis of Nonconvex Distributed Stochastic Zeroth-order Coordinate Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+S">Shengjun Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Dong%2C+Y">Yunlong Dong</a>, <a href="/search/cs?searchtype=author&amp;query=Xie%2C+D">Dong Xie</a>, <a href="/search/cs?searchtype=author&amp;query=Yao%2C+L">Lisha Yao</a>, <a href="/search/cs?searchtype=author&amp;query=Bailey%2C+C+P">Colleen P. Bailey</a>, <a href="/search/cs?searchtype=author&amp;query=Fu%2C+S">Shengli Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.12954v4-abstract-short" style="display: inline;"> This paper investigates the stochastic distributed nonconvex optimization problem of minimizing a global cost function formed by the summation of $n$ local cost functions. We solve such a problem by involving zeroth-order (ZO) information exchange. In this paper, we propose a ZO distributed primal-dual coordinate method (ZODIAC) to solve the stochastic optimization problem. Agents approximate thei&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12954v4-abstract-full').style.display = 'inline'; document.getElementById('2103.12954v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.12954v4-abstract-full" style="display: none;"> This paper investigates the stochastic distributed nonconvex optimization problem of minimizing a global cost function formed by the summation of $n$ local cost functions. We solve such a problem by involving zeroth-order (ZO) information exchange. In this paper, we propose a ZO distributed primal-dual coordinate method (ZODIAC) to solve the stochastic optimization problem. Agents approximate their own local stochastic ZO oracle along with coordinates with an adaptive smoothing parameter. We show that the proposed algorithm achieves the convergence rate of $\mathcal{O}(\sqrt{p}/\sqrt{T})$ for general nonconvex cost functions. We demonstrate the efficiency of proposed algorithms through a numerical example in comparison with the existing state-of-the-art centralized and distributed ZO algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12954v4-abstract-full').style.display = 'none'; document.getElementById('2103.12954v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.12863">arXiv:2003.12863</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.12863">pdf</a>, <a href="https://arxiv.org/format/2003.12863">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Obstacle Avoidance and Navigation Utilizing Reinforcement Learning with Reward Shaping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+D">Daniel Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Bailey%2C+C+P">Colleen P. Bailey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.12863v2-abstract-short" style="display: inline;"> In this paper, we investigate the obstacle avoidance and navigation problem in the robotic control area. For solving such a problem, we propose revised Deep Deterministic Policy Gradient (DDPG) and Proximal Policy Optimization algorithms with an improved reward shaping technique. We compare the performances between the original DDPG and PPO with the revised version of both on simulations with a re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12863v2-abstract-full').style.display = 'inline'; document.getElementById('2003.12863v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.12863v2-abstract-full" style="display: none;"> In this paper, we investigate the obstacle avoidance and navigation problem in the robotic control area. For solving such a problem, we propose revised Deep Deterministic Policy Gradient (DDPG) and Proximal Policy Optimization algorithms with an improved reward shaping technique. We compare the performances between the original DDPG and PPO with the revised version of both on simulations with a real mobile robot and demonstrate that the proposed algorithms achieve better results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12863v2-abstract-full').style.display = 'none'; document.getElementById('2003.12863v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.08525">arXiv:2003.08525</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Extremal Region Analysis based Deep Learning Framework for Detecting Defects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Deng%2C+Z">Zelin Deng</a>, <a href="/search/cs?searchtype=author&amp;query=Yan%2C+X">Xiaolong Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+S">Shengjun Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Bailey%2C+C+P">Colleen P. Bailey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.08525v2-abstract-short" style="display: inline;"> A maximally stable extreme region (MSER) analysis based convolutional neural network (CNN) for unified defect detection framework is proposed in this paper. Our proposed framework utilizes the generality and stability of MSER to generate the desired defect candidates. Then a specific trained binary CNN classifier is adopted over the defect candidates to produce the final defect set. Defect dataset&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08525v2-abstract-full').style.display = 'inline'; document.getElementById('2003.08525v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.08525v2-abstract-full" style="display: none;"> A maximally stable extreme region (MSER) analysis based convolutional neural network (CNN) for unified defect detection framework is proposed in this paper. Our proposed framework utilizes the generality and stability of MSER to generate the desired defect candidates. Then a specific trained binary CNN classifier is adopted over the defect candidates to produce the final defect set. Defect datasets over different categories \blue{are used} in the experiments. More generally, the parameter settings in MSER can be adjusted to satisfy different requirements in various industries (high precision, high recall, etc). Extensive experimental results have shown the efficacy of the proposed framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08525v2-abstract-full').style.display = 'none'; document.getElementById('2003.08525v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Unsatisfied with results</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.04392">arXiv:1907.04392</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.04392">pdf</a>, <a href="https://arxiv.org/format/1907.04392">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Finite Regret and Cycles with Fixed Step-Size via Alternating Gradient Descent-Ascent </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bailey%2C+J+P">James P. Bailey</a>, <a href="/search/cs?searchtype=author&amp;query=Gidel%2C+G">Gauthier Gidel</a>, <a href="/search/cs?searchtype=author&amp;query=Piliouras%2C+G">Georgios Piliouras</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.04392v1-abstract-short" style="display: inline;"> Gradient descent is arguably one of the most popular online optimization methods with a wide array of applications. However, the standard implementation where agents simultaneously update their strategies yields several undesirable properties; strategies diverge away from equilibrium and regret grows over time. In this paper, we eliminate these negative properties by introducing a different implem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.04392v1-abstract-full').style.display = 'inline'; document.getElementById('1907.04392v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.04392v1-abstract-full" style="display: none;"> Gradient descent is arguably one of the most popular online optimization methods with a wide array of applications. However, the standard implementation where agents simultaneously update their strategies yields several undesirable properties; strategies diverge away from equilibrium and regret grows over time. In this paper, we eliminate these negative properties by introducing a different implementation to obtain finite regret via arbitrary fixed step-size. We obtain this surprising property by having agents take turns when updating their strategies. In this setting, we show that an agent that uses gradient descent obtains bounded regret -- regardless of how their opponent updates their strategies. Furthermore, we show that in adversarial settings that agents&#39; strategies are bounded and cycle when both are using the alternating gradient descent algorithm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.04392v1-abstract-full').style.display = 'none'; document.getElementById('1907.04392v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.04532">arXiv:1905.04532</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.04532">pdf</a>, <a href="https://arxiv.org/format/1905.04532">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> </div> </div> <p class="title is-5 mathjax"> Fast and Furious Learning in Zero-Sum Games: Vanishing Regret with Non-Vanishing Step Sizes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bailey%2C+J+P">James P. Bailey</a>, <a href="/search/cs?searchtype=author&amp;query=Piliouras%2C+G">Georgios Piliouras</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.04532v1-abstract-short" style="display: inline;"> We show for the first time, to our knowledge, that it is possible to reconcile in online learning in zero-sum games two seemingly contradictory objectives: vanishing time-average regret and non-vanishing step sizes. This phenomenon, that we coin ``fast and furious&#34; learning in games, sets a new benchmark about what is possible both in max-min optimization as well as in multi-agent systems. Our ana&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04532v1-abstract-full').style.display = 'inline'; document.getElementById('1905.04532v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.04532v1-abstract-full" style="display: none;"> We show for the first time, to our knowledge, that it is possible to reconcile in online learning in zero-sum games two seemingly contradictory objectives: vanishing time-average regret and non-vanishing step sizes. This phenomenon, that we coin ``fast and furious&#34; learning in games, sets a new benchmark about what is possible both in max-min optimization as well as in multi-agent systems. Our analysis does not depend on introducing a carefully tailored dynamic. Instead we focus on the most well studied online dynamic, gradient descent. Similarly, we focus on the simplest textbook class of games, two-agent two-strategy zero-sum games, such as Matching Pennies. Even for this simplest of benchmarks the best known bound for total regret, prior to our work, was the trivial one of $O(T)$, which is immediately applicable even to a non-learning agent. Based on a tight understanding of the geometry of the non-equilibrating trajectories in the dual space we prove a regret bound of $螛(\sqrt{T})$ matching the well known optimal bound for adaptive step sizes in the online setting. This guarantee holds for all fixed step-sizes without having to know the time horizon in advance and adapt the fixed step-size accordingly. As a corollary, we establish that even with fixed learning rates the time-average of mixed strategies, utilities converge to their exact Nash equilibrium values. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04532v1-abstract-full').style.display = 'none'; document.getElementById('1905.04532v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.10630">arXiv:1903.10630</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.10630">pdf</a>, <a href="https://arxiv.org/format/1903.10630">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Diversifying Reply Suggestions using a Matching-Conditional Variational Autoencoder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Deb%2C+B">Budhaditya Deb</a>, <a href="/search/cs?searchtype=author&amp;query=Bailey%2C+P">Peter Bailey</a>, <a href="/search/cs?searchtype=author&amp;query=Shokouhi%2C+M">Milad Shokouhi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.10630v1-abstract-short" style="display: inline;"> We consider the problem of diversifying automated reply suggestions for a commercial instant-messaging (IM) system (Skype). Our conversation model is a standard matching based information retrieval architecture, which consists of two parallel encoders to project messages and replies into a common feature representation. During inference, we select replies from a fixed response set using nearest ne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.10630v1-abstract-full').style.display = 'inline'; document.getElementById('1903.10630v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.10630v1-abstract-full" style="display: none;"> We consider the problem of diversifying automated reply suggestions for a commercial instant-messaging (IM) system (Skype). Our conversation model is a standard matching based information retrieval architecture, which consists of two parallel encoders to project messages and replies into a common feature representation. During inference, we select replies from a fixed response set using nearest neighbors in the feature space. To diversify responses, we formulate the model as a generative latent variable model with Conditional Variational Auto-Encoder (M-CVAE). We propose a constrained-sampling approach to make the variational inference in M-CVAE efficient for our production system. In offline experiments, M-CVAE consistently increased diversity by ~30-40% without significant impact on relevance. This translated to a 5% gain in click-rate in our online production system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.10630v1-abstract-full').style.display = 'none'; document.getElementById('1903.10630v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.01720">arXiv:1903.01720</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.01720">pdf</a>, <a href="https://arxiv.org/ps/1903.01720">ps</a>, <a href="https://arxiv.org/format/1903.01720">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> </div> </div> <p class="title is-5 mathjax"> Multi-Agent Learning in Network Zero-Sum Games is a Hamiltonian System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bailey%2C+J+P">James P. Bailey</a>, <a href="/search/cs?searchtype=author&amp;query=Piliouras%2C+G">Georgios Piliouras</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.01720v1-abstract-short" style="display: inline;"> Zero-sum games are natural, if informal, analogues of closed physical systems where no energy/utility can enter or exit. This analogy can be extended even further if we consider zero-sum network (polymatrix) games where multiple agents interact in a closed economy. Typically, (network) zero-sum games are studied from the perspective of Nash equilibria. Nevertheless, this comes in contrast with the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.01720v1-abstract-full').style.display = 'inline'; document.getElementById('1903.01720v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.01720v1-abstract-full" style="display: none;"> Zero-sum games are natural, if informal, analogues of closed physical systems where no energy/utility can enter or exit. This analogy can be extended even further if we consider zero-sum network (polymatrix) games where multiple agents interact in a closed economy. Typically, (network) zero-sum games are studied from the perspective of Nash equilibria. Nevertheless, this comes in contrast with the way we typically think about closed physical systems, e.g., Earth-moon systems which move perpetually along recurrent trajectories of constant energy. We establish a formal and robust connection between multi-agent systems and Hamiltonian dynamics -- the same dynamics that describe conservative systems in physics. Specifically, we show that no matter the size, or network structure of such closed economies, even if agents use different online learning dynamics from the standard class of Follow-the-Regularized-Leader, they yield Hamiltonian dynamics. This approach generalizes the known connection to Hamiltonians for the special case of replicator dynamics in two agent zero-sum games developed by Hofbauer. Moreover, our results extend beyond zero-sum settings and provide a type of a Rosetta stone (see e.g. Table 1) that helps to translate results and techniques between online optimization, convex analysis, games theory, and physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.01720v1-abstract-full').style.display = 'none'; document.getElementById('1903.01720v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10