CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;34 of 34 results for author: <span class="mathjax">Fernandez, R C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Fernandez%2C+R+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Fernandez, R C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Fernandez%2C+R+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Fernandez, R C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.13961">arXiv:2110.13961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.13961">pdf</a>, <a href="https://arxiv.org/format/2110.13961">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/01/P01037">10.1088/1748-0221/17/01/P01037 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wire-Cell 3D Pattern Recognition Techniques for Neutrino Event Reconstruction in Large LArTPCs: Algorithm Description and Quantitative Evaluation with MicroBooNE Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a> , et al. (163 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.13961v3-abstract-short" style="display: inline;"> Wire-Cell is a 3D event reconstruction package for liquid argon time projection chambers. Through geometry, time, and drifted charge from multiple readout wire planes, 3D space points with associated charge are reconstructed prior to the pattern recognition stage. Pattern recognition techniques, including track trajectory and $dQ/dx$ (ionization charge per unit length) fitting, 3D neutrino vertex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.13961v3-abstract-full').style.display = 'inline'; document.getElementById('2110.13961v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.13961v3-abstract-full" style="display: none;"> Wire-Cell is a 3D event reconstruction package for liquid argon time projection chambers. Through geometry, time, and drifted charge from multiple readout wire planes, 3D space points with associated charge are reconstructed prior to the pattern recognition stage. Pattern recognition techniques, including track trajectory and $dQ/dx$ (ionization charge per unit length) fitting, 3D neutrino vertex fitting, track and shower separation, particle-level clustering, and particle identification are then applied on these 3D space points as well as the original 2D projection measurements. A deep neural network is developed to enhance the reconstruction of the neutrino interaction vertex. Compared to traditional algorithms, the deep neural network boosts the vertex efficiency by a relative 30\% for charged-current $谓_e$ interactions. This pattern recognition achieves 80-90\% reconstruction efficiencies for primary leptons, after a 65.8\% (72.9\%) vertex efficiency for charged-current $谓_e$ ($谓_渭$) interactions. Based on the resulting reconstructed particles and their kinematics, we also achieve 15-20\% energy reconstruction resolutions for charged-current neutrino interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.13961v3-abstract-full').style.display = 'none'; document.getElementById('2110.13961v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-509-ND </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.06832">arXiv:2109.06832</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.06832">pdf</a>, <a href="https://arxiv.org/format/2109.06832">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.L051102">10.1103/PhysRevD.105.L051102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of Inclusive Electron-Neutrino and Antineutrino Charged Current Differential Cross Sections in Charged Lepton Energy on Argon in MicroBooNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a> , et al. (163 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.06832v2-abstract-short" style="display: inline;"> We present the first measurement of the single-differential $谓_e + \bar谓_e$ charged-current inclusive cross sections on argon in electron or positron energy and in electron or positron scattering cosine over the full angular range. Data were collected using the MicroBooNE liquid argon time projection chamber located off-axis from the Fermilab Neutrinos at the Main Injector beam over an exposure of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06832v2-abstract-full').style.display = 'inline'; document.getElementById('2109.06832v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.06832v2-abstract-full" style="display: none;"> We present the first measurement of the single-differential $谓_e + \bar谓_e$ charged-current inclusive cross sections on argon in electron or positron energy and in electron or positron scattering cosine over the full angular range. Data were collected using the MicroBooNE liquid argon time projection chamber located off-axis from the Fermilab Neutrinos at the Main Injector beam over an exposure of $2.0\times10^{20}$ protons on target. The signal definition includes a 60 MeV threshold on the $谓_e$ or $\bar谓_e$ energy and a 120 MeV threshold on the electron or positron energy. The measured total and differential cross sections are found to be in agreement with the GENIE, NuWro, and GiBUU neutrino generators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06832v2-abstract-full').style.display = 'none'; document.getElementById('2109.06832v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 Pages, 2 figures. Supplemental materials include cross section values, efficiencies, purity, flux, fractional uncertainties, additional smearing matrices, and unfolded covariance matrices</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-443-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, L051102 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.02460">arXiv:2109.02460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.02460">pdf</a>, <a href="https://arxiv.org/format/2109.02460">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2021)153">10.1007/JHEP12(2021)153 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calorimetric classification of track-like signatures in liquid argon TPCs using MicroBooNE data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Cerati%2C+G">G. Cerati</a> , et al. (157 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.02460v3-abstract-short" style="display: inline;"> The MicroBooNE liquid argon time projection chamber located at Fermilab is a neutrino experiment dedicated to the study of short-baseline oscillations, the measurements of neutrino cross sections in liquid argon, and to the research and development of this novel detector technology. Accurate and precise measurements of calorimetry are essential to the event reconstruction and are achieved by lever&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.02460v3-abstract-full').style.display = 'inline'; document.getElementById('2109.02460v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.02460v3-abstract-full" style="display: none;"> The MicroBooNE liquid argon time projection chamber located at Fermilab is a neutrino experiment dedicated to the study of short-baseline oscillations, the measurements of neutrino cross sections in liquid argon, and to the research and development of this novel detector technology. Accurate and precise measurements of calorimetry are essential to the event reconstruction and are achieved by leveraging the TPC to measure deposited energy per unit length along the particle trajectory, with mm resolution. We describe the non-uniform calorimetric reconstruction performance in the detector, showing dependence on the angle of the particle trajectory. Such non-uniform reconstruction directly affects the performance of the particle identification algorithms which infer particle type from calorimetric measurements. This work presents a new particle identification method which accounts for and effectively addresses such non-uniformity. The newly developed method shows improved performance compared to previous algorithms, illustrated by a 94% proton selection efficiency and a 10% muon mis-identification rate, with a fairly loose selection of tracks performed on beam data. The performance is further demonstrated by identifying exclusive final states in $谓_渭 CC$ interactions. While developed using MicroBooNE data and simulation, this method is easily applicable to future LArTPC experiments, such as SBND, ICARUS, and DUNE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.02460v3-abstract-full').style.display = 'none'; document.getElementById('2109.02460v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures The updated version contains a clearer fig 1, some better quantification of physics reach in section 6.3, while several typos have been fixed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-356-E </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of High Energy Physics volume 2021, Article number: 153 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.06551">arXiv:2104.06551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.06551">pdf</a>, <a href="https://arxiv.org/format/2104.06551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/09/P09025">10.1088/1748-0221/16/09/P09025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the Longitudinal Diffusion of Ionization Electrons in the MicroBooNE Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Cerati%2C+G">G. Cerati</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a> , et al. (157 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.06551v2-abstract-short" style="display: inline;"> Accurate knowledge of electron transport properties is vital to understanding the information provided by liquid argon time projection chambers (LArTPCs). Ionization electron drift-lifetime, local electric field distortions caused by positive ion accumulation, and electron diffusion can all significantly impact the measured signal waveforms. This paper presents a measurement of the effective longi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06551v2-abstract-full').style.display = 'inline'; document.getElementById('2104.06551v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.06551v2-abstract-full" style="display: none;"> Accurate knowledge of electron transport properties is vital to understanding the information provided by liquid argon time projection chambers (LArTPCs). Ionization electron drift-lifetime, local electric field distortions caused by positive ion accumulation, and electron diffusion can all significantly impact the measured signal waveforms. This paper presents a measurement of the effective longitudinal electron diffusion coefficient, $D_L$, in MicroBooNE at the nominal electric field strength of 273.9 V/cm. Historically, this measurement has been made in LArTPC prototype detectors. This represents the first measurement in a large-scale (85 tonne active volume) LArTPC operating in a neutrino beam. This is the largest dataset ever used for this measurement. Using a sample of $\sim$70,000 through-going cosmic ray muon tracks tagged with MicroBooNE&#39;s cosmic ray tagger system, we measure $D_L = 3.74^{+0.28}_{-0.29}$ cm$^2$/s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06551v2-abstract-full').style.display = 'none'; document.getElementById('2104.06551v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Changes following feedback from journal referee. Some wording changes, clarifications. Merged several figures to save on space</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.05076">arXiv:2101.05076</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.05076">pdf</a>, <a href="https://arxiv.org/format/2101.05076">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.15.064071">10.1103/PhysRevApplied.15.064071 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmic Ray Background Rejection with Wire-Cell LArTPC Event Reconstruction in the MicroBooNE Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.05076v3-abstract-short" style="display: inline;"> For a large liquid argon time projection chamber (LArTPC) operating on or near the Earth&#39;s surface to detect neutrino interactions, the rejection of cosmogenic background is a critical and challenging task because of the large cosmic ray flux and the long drift time of the TPC. We introduce a superior cosmic background rejection procedure based on the Wire-Cell three-dimensional (3D) event reconst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05076v3-abstract-full').style.display = 'inline'; document.getElementById('2101.05076v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.05076v3-abstract-full" style="display: none;"> For a large liquid argon time projection chamber (LArTPC) operating on or near the Earth&#39;s surface to detect neutrino interactions, the rejection of cosmogenic background is a critical and challenging task because of the large cosmic ray flux and the long drift time of the TPC. We introduce a superior cosmic background rejection procedure based on the Wire-Cell three-dimensional (3D) event reconstruction for LArTPCs. From an initial 1:20,000 neutrino to cosmic-ray background ratio, we demonstrate these tools on data from the MicroBooNE experiment and create a high performance generic neutrino event selection with a cosmic contamination of 14.9\% (9.7\%) for a visible energy region greater than O(200)~MeV. The neutrino interaction selection efficiency is 80.4\% and 87.6\% for inclusive $谓_渭$ charged-current and $谓_e$ charged-current interactions, respectively. This significantly improved performance compared to existing reconstruction algorithms, marks a major milestone toward reaching the scientific goals of LArTPC neutrino oscillation experiments operating near the Earth&#39;s surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05076v3-abstract-full').style.display = 'none'; document.getElementById('2101.05076v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 15, 064071 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.14324">arXiv:2012.14324</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.14324">pdf</a>, <a href="https://arxiv.org/format/2012.14324">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/04/P04004">10.1088/1748-0221/16/04/P04004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the Atmospheric Muon Rate with the MicroBooNE Liquid Argon TPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a> , et al. (165 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.14324v2-abstract-short" style="display: inline;"> MicroBooNE is a near-surface liquid argon (LAr) time projection chamber (TPC) located at Fermilab. We measure the characterisation of muons originating from cosmic interactions in the atmosphere using both the charge collection and light readout detectors. The data is compared with the CORSIKA cosmic-ray simulation. Good agreement is found between the observation, simulation and previous results.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14324v2-abstract-full').style.display = 'inline'; document.getElementById('2012.14324v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.14324v2-abstract-full" style="display: none;"> MicroBooNE is a near-surface liquid argon (LAr) time projection chamber (TPC) located at Fermilab. We measure the characterisation of muons originating from cosmic interactions in the atmosphere using both the charge collection and light readout detectors. The data is compared with the CORSIKA cosmic-ray simulation. Good agreement is found between the observation, simulation and previous results. Furthermore, the angular resolution of the reconstructed muons inside the TPC is studied in simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14324v2-abstract-full').style.display = 'none'; document.getElementById('2012.14324v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-626-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MicroBooNE et al 2021 JINST 16 P04004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.08513">arXiv:2012.08513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.08513">pdf</a>, <a href="https://arxiv.org/format/2012.08513">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.052012">10.1103/PhysRevD.103.052012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Semantic Segmentation with a Sparse Convolutional Neural Network for Event Reconstruction in MicroBooNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (158 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.08513v2-abstract-short" style="display: inline;"> We present the performance of a semantic segmentation network, SparseSSNet, that provides pixel-level classification of MicroBooNE data. The MicroBooNE experiment employs a liquid argon time projection chamber for the study of neutrino properties and interactions. SparseSSNet is a submanifold sparse convolutional neural network, which provides the initial machine learning based algorithm utilized&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08513v2-abstract-full').style.display = 'inline'; document.getElementById('2012.08513v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.08513v2-abstract-full" style="display: none;"> We present the performance of a semantic segmentation network, SparseSSNet, that provides pixel-level classification of MicroBooNE data. The MicroBooNE experiment employs a liquid argon time projection chamber for the study of neutrino properties and interactions. SparseSSNet is a submanifold sparse convolutional neural network, which provides the initial machine learning based algorithm utilized in one of MicroBooNE&#39;s $谓_e$-appearance oscillation analyses. The network is trained to categorize pixels into five classes, which are re-classified into two classes more relevant to the current analysis. The output of SparseSSNet is a key input in further analysis steps. This technique, used for the first time in liquid argon time projection chambers data and is an improvement compared to a previously used convolutional neural network, both in accuracy and computing resource utilization. The accuracy achieved on the test sample is $\geq 99\%$. For full neutrino interaction simulations, the time for processing one image is $\approx$ 0.5 sec, the memory usage is at 1 GB level, which allows utilization of most typical CPU worker machine. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08513v2-abstract-full').style.display = 'none'; document.getElementById('2012.08513v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 052012 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.07928">arXiv:2012.07928</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.07928">pdf</a>, <a href="https://arxiv.org/format/2012.07928">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.15.064071">10.1103/PhysRevApplied.15.064071 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-performance Generic Neutrino Detection in a LArTPC near the Earth&#39;s Surface with the MicroBooNE Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.07928v3-abstract-short" style="display: inline;"> Large Liquid Argon Time Projection Chambers (LArTPCs) are being increasingly adopted in neutrino oscillation experiments because of their superb imaging capabilities through the combination of both tracking and calorimetry in a fully active volume. Active LArTPC neutrino detectors at or near the Earth&#39;s surface, such as the MicroBooNE experiment, present a unique analysis challenge because of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07928v3-abstract-full').style.display = 'inline'; document.getElementById('2012.07928v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.07928v3-abstract-full" style="display: none;"> Large Liquid Argon Time Projection Chambers (LArTPCs) are being increasingly adopted in neutrino oscillation experiments because of their superb imaging capabilities through the combination of both tracking and calorimetry in a fully active volume. Active LArTPC neutrino detectors at or near the Earth&#39;s surface, such as the MicroBooNE experiment, present a unique analysis challenge because of the large flux of cosmic-ray muons and the slow drift of ionization electrons. We present a novel Wire-Cell-based high-performance generic neutrino-detection technique implemented in MicroBooNE. The cosmic-ray background is reduced by a factor of 1.4$\times10^{5}$ resulting in a 9.7\% cosmic contamination in the selected neutrino candidate events, for visible energies greater than 200~MeV, while the neutrino signal efficiency is retained at 88.4\% for $谓_渭$ charged-current interactions in the fiducial volume in the same energy region. This significantly improved performance compared to existing reconstruction algorithms, marks a major milestone toward reaching the scientific goals of LArTPC neutrino oscillation experiments operating near the Earth&#39;s surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07928v3-abstract-full').style.display = 'none'; document.getElementById('2012.07928v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Expanded into a long paper and published in Phys. Rev. Applied 15, 064071 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.01375">arXiv:2011.01375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.01375">pdf</a>, <a href="https://arxiv.org/format/2011.01375">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/06/P06043">10.1088/1748-0221/16/06/P06043 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutrino Event Selection in the MicroBooNE Liquid Argon Time Projection Chamber using Wire-Cell 3-D Imaging, Clustering, and Charge-Light Matching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (160 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.01375v4-abstract-short" style="display: inline;"> An accurate and efficient event reconstruction is required to realize the full scientific capability of liquid argon time projection chambers (LArTPCs). The current and future neutrino experiments that rely on massive LArTPCs create a need for new ideas and reconstruction approaches. Wire-Cell, proposed in recent years, is a novel tomographic event reconstruction method for LArTPCs. The Wire-Cell&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01375v4-abstract-full').style.display = 'inline'; document.getElementById('2011.01375v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.01375v4-abstract-full" style="display: none;"> An accurate and efficient event reconstruction is required to realize the full scientific capability of liquid argon time projection chambers (LArTPCs). The current and future neutrino experiments that rely on massive LArTPCs create a need for new ideas and reconstruction approaches. Wire-Cell, proposed in recent years, is a novel tomographic event reconstruction method for LArTPCs. The Wire-Cell 3D imaging approach capitalizes on charge, sparsity, time, and geometry information to reconstruct a topology-agnostic 3D image of the ionization electrons prior to pattern recognition. A second novel method, the many-to-many charge-light matching, then pairs the TPC charge activity to the detected scintillation light signal, thus enabling a powerful rejection of cosmic-ray muons in the MicroBooNE detector. A robust processing of the scintillation light signal and an appropriate clustering of the reconstructed 3D image are fundamental to this technique. In this paper, we describe the principles and algorithms of these techniques and their successful application in the MicroBooNE experiment. A quantitative evaluation of the performance of these techniques is presented. Using these techniques, a 95% efficient pre-selection of neutrino charged-current events is achieved with a 30-fold reduction of non-beam-coincident cosmic-ray muons, and about 80\% of the selected neutrino charged-current events are reconstructed with at least 70% completeness and 80% purity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01375v4-abstract-full').style.display = 'none'; document.getElementById('2011.01375v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-578-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 16 P06043 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.10940">arXiv:2010.10940</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.10940">pdf</a>, <a href="https://arxiv.org/format/2010.10940">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Possibilities to generation of optical non-diffracting beams by holographic metasurfaces using surface impedance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+S+R+C">Santiago R. C. Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Gesualdi%2C+M+R+R">Marcos R. R. Gesualdi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.10940v1-abstract-short" style="display: inline;"> In this work, we present the computational simulations of holographic metasurfaces to generation of the optical non-diffracting beams. The metasurfaces are designed by the holographic technique and the computer-generated holograms (CGHs) of optical non-diffracting beams are generated computationally. These holographic metasurfaces (HMS) are obtained by modeling a periodic lattice of metallic patch&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.10940v1-abstract-full').style.display = 'inline'; document.getElementById('2010.10940v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.10940v1-abstract-full" style="display: none;"> In this work, we present the computational simulations of holographic metasurfaces to generation of the optical non-diffracting beams. The metasurfaces are designed by the holographic technique and the computer-generated holograms (CGHs) of optical non-diffracting beams are generated computationally. These holographic metasurfaces (HMS) are obtained by modeling a periodic lattice of metallic patches on dielectric substrates with sub-wavelength dimensions, where each one of those unit cells change the phase of the incoming wave. We use the surface impedance (Z) to control the phase of the electromagnetic wave through the metasurface in each unit cell. The sub-wavelength dimensions guarantees that the effective medium theory is fulfilled. The results is according to the predicted by non-diffracting beams theory. These results are important given the possibilities of applications in optical tweezers, optics communications, optical metrology, 3D imaging, and others in optics and photonics <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.10940v1-abstract-full').style.display = 'none'; document.getElementById('2010.10940v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 22 figures. arXiv admin note: substantial text overlap with arXiv:1908.09624</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.02390">arXiv:2010.02390</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.02390">pdf</a>, <a href="https://arxiv.org/format/2010.02390">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.112013">10.1103/PhysRevD.102.112013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of Differential Cross Sections for $谓_渭$-Ar Charged-Current Interactions with Protons and no Pions in the Final State with the MicroBooNE Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (160 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.02390v1-abstract-short" style="display: inline;"> We present an analysis of MicroBooNE data with a signature of one muon, no pions, and at least one proton above a momentum threshold of 300 MeV/c (CC0$蟺$Np). This is the first differential cross section measurement of this topology in neutrino-argon interactions. We achieve a significantly lower proton momentum threshold than previous carbon and scintillator-based experiments. Using data collected&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02390v1-abstract-full').style.display = 'inline'; document.getElementById('2010.02390v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.02390v1-abstract-full" style="display: none;"> We present an analysis of MicroBooNE data with a signature of one muon, no pions, and at least one proton above a momentum threshold of 300 MeV/c (CC0$蟺$Np). This is the first differential cross section measurement of this topology in neutrino-argon interactions. We achieve a significantly lower proton momentum threshold than previous carbon and scintillator-based experiments. Using data collected from a total of approximately $1.6 \times 10^{20}$ protons-on-target, we measure the muon neutrino cross section for the CC0$蟺$Np interaction channel in argon at MicroBooNE in the Booster Neutrino Beam which has a mean energy of around 800 MeV. We present the results from a data sample with estimated efficiency of 29\% and purity of 76\% as differential cross sections in five reconstructed variables: the muon momentum and polar angle, the leading proton momentum and polar angle, and the muon-proton opening angle. We include smearing matrices that can be used to &#34;forward-fold&#34; theoretical predictions for comparison with these data. We compare the measured differential cross sections to a number of recent theory predictions demonstrating largely good agreement with this first-ever data set on argon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02390v1-abstract-full').style.display = 'none'; document.getElementById('2010.02390v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 43 figures, 1 table and supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-505-AD-ND-SCD-TD </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 112013 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.13761">arXiv:2008.13761</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.13761">pdf</a>, <a href="https://arxiv.org/format/2008.13761">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/02/P02008">10.1088/1748-0221/16/02/P02008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Continuous Readout Stream of the MicroBooNE Liquid Argon Time Projection Chamber for Detection of Supernova Burst Neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (163 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.13761v2-abstract-short" style="display: inline;"> The MicroBooNE continuous readout stream is a parallel readout of the MicroBooNE liquid argon time projection chamber (LArTPC) which enables detection of non-beam events such as those from a supernova neutrino burst. The low energies of the supernova neutrinos and the intense cosmic-ray background flux due to the near-surface detector location makes triggering on these events very challenging. Ins&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.13761v2-abstract-full').style.display = 'inline'; document.getElementById('2008.13761v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.13761v2-abstract-full" style="display: none;"> The MicroBooNE continuous readout stream is a parallel readout of the MicroBooNE liquid argon time projection chamber (LArTPC) which enables detection of non-beam events such as those from a supernova neutrino burst. The low energies of the supernova neutrinos and the intense cosmic-ray background flux due to the near-surface detector location makes triggering on these events very challenging. Instead, MicroBooNE relies on a delayed trigger generated by SNEWS (the Supernova Early Warning System) for detecting supernova neutrinos. The continuous readout of the LArTPC generates large data volumes, and requires the use of real-time compression algorithms (zero suppression and Huffman compression) implemented in an FPGA (field-programmable gate array) in the readout electronics. We present the results of the optimization of the data reduction algorithms, and their operational performance. To demonstrate the capability of the continuous stream to detect low-energy electrons, a sample of Michel electrons from stopping cosmic-ray muons is reconstructed and compared to a similar sample from the lossless triggered readout stream. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.13761v2-abstract-full').style.display = 'none'; document.getElementById('2008.13761v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 21 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-446-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 16 P02008 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.09765">arXiv:2008.09765</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.09765">pdf</a>, <a href="https://arxiv.org/format/2008.09765">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/12/P12037">10.1088/1748-0221/15/12/P12037 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of Space Charge Effects in the MicroBooNE LArTPC Using Cosmic Muons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (162 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.09765v2-abstract-short" style="display: inline;"> Large liquid argon time projection chambers (LArTPCs), especially those operating near the surface, are susceptible to space charge effects. In the context of LArTPCs, the space charge effect is the build-up of slow-moving positive ions in the detector primarily due to ionization from cosmic rays, leading to a distortion of the electric field within the detector. This effect leads to a displacemen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09765v2-abstract-full').style.display = 'inline'; document.getElementById('2008.09765v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.09765v2-abstract-full" style="display: none;"> Large liquid argon time projection chambers (LArTPCs), especially those operating near the surface, are susceptible to space charge effects. In the context of LArTPCs, the space charge effect is the build-up of slow-moving positive ions in the detector primarily due to ionization from cosmic rays, leading to a distortion of the electric field within the detector. This effect leads to a displacement in the reconstructed position of signal ionization electrons in LArTPC detectors (&#34;spatial distortions&#34;), as well as to variations in the amount of electron-ion recombination experienced by ionization throughout the volume of the TPC. We present techniques that can be used to measure and correct for space charge effects in large LArTPCs by making use of cosmic muons, including the use of track pairs to unambiguously pin down spatial distortions in three dimensions. The performance of these calibration techniques are studied using both Monte Carlo simulation and MicroBooNE data, utilizing a UV laser system as a means to estimate the systematic bias associated with the calibration methodology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09765v2-abstract-full').style.display = 'none'; document.getElementById('2008.09765v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 25 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.09375">arXiv:2002.09375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.09375">pdf</a>, <a href="https://arxiv.org/format/2002.09375">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/02/P02017">10.1088/1748-0221/16/02/P02017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vertex-Finding and Reconstruction of Contained Two-track Neutrino Events in the MicroBooNE Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Cerati%2C+G">G. Cerati</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.09375v5-abstract-short" style="display: inline;"> We describe algorithms developed to isolate and accurately reconstruct two-track events that are contained within the MicroBooNE detector. This method is optimized to reconstruct two tracks of lengths longer than 5 cm. This code has applications to searches for neutrino oscillations and measurements of cross sections using quasi-elastic-like charged current events. The algorithms we discuss will b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09375v5-abstract-full').style.display = 'inline'; document.getElementById('2002.09375v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.09375v5-abstract-full" style="display: none;"> We describe algorithms developed to isolate and accurately reconstruct two-track events that are contained within the MicroBooNE detector. This method is optimized to reconstruct two tracks of lengths longer than 5 cm. This code has applications to searches for neutrino oscillations and measurements of cross sections using quasi-elastic-like charged current events. The algorithms we discuss will be applicable to all detectors running in Fermilab&#39;s Short Baseline Neutrino program (SBN), and to any future liquid argon time projection chamber (LArTPC) experiment with beam energies ~1 GeV. The algorithms are publicly available on a GITHUB repository. This reconstruction offers a complementary and independent alternative to the Pandora reconstruction package currently in use in LArTPC experiments, and provides similar reconstruction performance for two-track events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09375v5-abstract-full').style.display = 'none'; document.getElementById('2002.09375v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 26 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-073-ND </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.08424">arXiv:2002.08424</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.08424">pdf</a>, <a href="https://arxiv.org/format/2002.08424">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/06/P06033">10.1088/1748-0221/15/06/P06033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Construction of precision wire readout planes for the Short-Baseline Near Detector (SBND) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&amp;query=Backhouse%2C+C">C. Backhouse</a>, <a href="/search/physics?searchtype=author&amp;query=Badgett%2C+W">W. Badgett</a>, <a href="/search/physics?searchtype=author&amp;query=Bagby%2C+L+F">L. F. Bagby</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D">D. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Basharina-Freshville%2C+A">A. Basharina-Freshville</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A">A. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bazetto%2C+M+C+Q">M. C. Q. Bazetto</a>, <a href="/search/physics?searchtype=author&amp;query=Beltramello%2C+O">O. Beltramello</a>, <a href="/search/physics?searchtype=author&amp;query=Betancourt%2C+M">M. Betancourt</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M+R+M">M. R. M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Bitadze%2C+A">A. Bitadze</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A+S+T">A. S. T. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Boissevain%2C+J">J. Boissevain</a>, <a href="/search/physics?searchtype=author&amp;query=Bonifazi%2C+C">C. Bonifazi</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Brailsford%2C+D">D. Brailsford</a> , et al. (170 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.08424v2-abstract-short" style="display: inline;"> The Short-Baseline Near Detector time projection chamber is unique in the design of its charge readout planes. These anode plane assemblies (APAs) have been fabricated and assembled to meet strict accuracy and precision requirements: wire spacing of 3 mm +/- 0.5 mm and wire tension of 7 N +/- 1 N across 3,964 wires per APA, and flatness within 0.5 mm over the 4 m +/- 2.5 m extent of each APA. This&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.08424v2-abstract-full').style.display = 'inline'; document.getElementById('2002.08424v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.08424v2-abstract-full" style="display: none;"> The Short-Baseline Near Detector time projection chamber is unique in the design of its charge readout planes. These anode plane assemblies (APAs) have been fabricated and assembled to meet strict accuracy and precision requirements: wire spacing of 3 mm +/- 0.5 mm and wire tension of 7 N +/- 1 N across 3,964 wires per APA, and flatness within 0.5 mm over the 4 m +/- 2.5 m extent of each APA. This paper describes the design, manufacture and assembly of these key detector components, with a focus on the quality assurance at each stage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.08424v2-abstract-full').style.display = 'none'; document.getElementById('2002.08424v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 45 figures. Prepared for submission to JINST</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.10545">arXiv:1911.10545</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.10545">pdf</a>, <a href="https://arxiv.org/format/1911.10545">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.052001">10.1103/PhysRevD.101.052001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for heavy neutral leptons decaying into muon-pion pairs in the MicroBooNE detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Cerati%2C+G">G. Cerati</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Church%2C+E">E. Church</a> , et al. (159 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.10545v2-abstract-short" style="display: inline;"> We present upper limits on the production of heavy neutral leptons (HNLs) decaying to $渭蟺$ pairs using data collected with the MicroBooNE liquid-argon time projection chamber (TPC) operating at Fermilab. This search is the first of its kind performed in a liquid-argon TPC. We use data collected in 2017 and 2018 corresponding to an exposure of $2.0 \times 10^{20}$ protons on target from the Fermila&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10545v2-abstract-full').style.display = 'inline'; document.getElementById('1911.10545v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.10545v2-abstract-full" style="display: none;"> We present upper limits on the production of heavy neutral leptons (HNLs) decaying to $渭蟺$ pairs using data collected with the MicroBooNE liquid-argon time projection chamber (TPC) operating at Fermilab. This search is the first of its kind performed in a liquid-argon TPC. We use data collected in 2017 and 2018 corresponding to an exposure of $2.0 \times 10^{20}$ protons on target from the Fermilab Booster Neutrino Beam, which produces mainly muon neutrinos with an average energy of $\approx 800$ MeV. HNLs with higher mass are expected to have a longer time-of-flight to the liquid-argon TPC than Standard Model neutrinos. The data are therefore recorded with a dedicated trigger configured to detect HNL decays that occur after the neutrino spill reaches the detector. We set upper limits at the $90\%$ confidence level on the element $\lvert U_{\mu4}\rvert^2$ of the extended PMNS mixing matrix in the range $\lvert U_{\mu4}\rvert^2&lt;(6.6$-$0.9)\times 10^{-7}$ for Dirac HNLs and $\lvert U_{\mu4}\rvert^2&lt;(4.7$-$0.7)\times 10^{-7}$ for Majorana HNLs, assuming HNL masses between $260$ and $385$ MeV and $\lvert U_{e 4}\rvert^2 = \lvert U_{蟿4}\rvert^2 = 0$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10545v2-abstract-full').style.display = 'none'; document.getElementById('1911.10545v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures. Final accepted version by Phys. Rev. D, minor textual changes</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-19-581-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 052001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.10379">arXiv:1911.10379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.10379">pdf</a>, <a href="https://arxiv.org/format/1911.10379">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/04/P04026">10.1088/1748-0221/15/04/P04026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Liquid Argon In A Testbeam (LArIAT) Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=LArIAT+Collaboration"> LArIAT Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C+J">C. J. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Backfish%2C+M">M. Backfish</a>, <a href="/search/physics?searchtype=author&amp;query=Badgett%2C+W">W. Badgett</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Blaszczyk%2C+F+d+M">F. d. M. Blaszczyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bouabid%2C+R">R. Bouabid</a>, <a href="/search/physics?searchtype=author&amp;query=Bromberg%2C+C">C. Bromberg</a>, <a href="/search/physics?searchtype=author&amp;query=Carey%2C+R">R. Carey</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Aleman%2C+J+I+C">J. I. Cevallos Aleman</a>, <a href="/search/physics?searchtype=author&amp;query=Chatterjee%2C+A">A. Chatterjee</a>, <a href="/search/physics?searchtype=author&amp;query=Neto%2C+P+D">P. Dedin Neto</a>, <a href="/search/physics?searchtype=author&amp;query=Santos%2C+M+V+D">M. V. Dos Santos</a>, <a href="/search/physics?searchtype=author&amp;query=Dytman%2C+S">S. Dytman</a>, <a href="/search/physics?searchtype=author&amp;query=Edmunds%2C+D">D. Edmunds</a>, <a href="/search/physics?searchtype=author&amp;query=Elkins%2C+M">M. Elkins</a>, <a href="/search/physics?searchtype=author&amp;query=Escobar%2C+C+O">C. O. Escobar</a>, <a href="/search/physics?searchtype=author&amp;query=Esquivel%2C+J">J. Esquivel</a>, <a href="/search/physics?searchtype=author&amp;query=Evans%2C+J">J. Evans</a>, <a href="/search/physics?searchtype=author&amp;query=Falcone%2C+A">A. Falcone</a> , et al. (81 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.10379v2-abstract-short" style="display: inline;"> The LArIAT liquid argon time projection chamber, placed in a tertiary beam of charged particles at the Fermilab Test Beam Facility, has collected large samples of pions, muons, electrons, protons, and kaons in the momentum range 300-1400 MeV/c. This paper describes the main aspects of the detector and beamline, and also reports on calibrations performed for the detector and beamline components. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.10379v2-abstract-full" style="display: none;"> The LArIAT liquid argon time projection chamber, placed in a tertiary beam of charged particles at the Fermilab Test Beam Facility, has collected large samples of pions, muons, electrons, protons, and kaons in the momentum range 300-1400 MeV/c. This paper describes the main aspects of the detector and beamline, and also reports on calibrations performed for the detector and beamline components. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10379v2-abstract-full').style.display = 'none'; document.getElementById('1911.10379v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-19-460-ND </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.02166">arXiv:1910.02166</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.02166">pdf</a>, <a href="https://arxiv.org/format/1910.02166">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/02/P02007">10.1088/1748-0221/15/02/P02007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconstruction and Measurement of $\mathcal{O}$(100) MeV Energy Electromagnetic Activity from $蟺^0 \rightarrow 纬纬$ Decays in the MicroBooNE LArTPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.02166v1-abstract-short" style="display: inline;"> We present results on the reconstruction of electromagnetic (EM) activity from photons produced in charged current $谓_渭$ interactions with final state $蟺^0$s. We employ a fully-automated reconstruction chain capable of identifying EM showers of $\mathcal{O}$(100) MeV energy, relying on a combination of traditional reconstruction techniques together with novel machine-learning approaches. These stu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02166v1-abstract-full').style.display = 'inline'; document.getElementById('1910.02166v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.02166v1-abstract-full" style="display: none;"> We present results on the reconstruction of electromagnetic (EM) activity from photons produced in charged current $谓_渭$ interactions with final state $蟺^0$s. We employ a fully-automated reconstruction chain capable of identifying EM showers of $\mathcal{O}$(100) MeV energy, relying on a combination of traditional reconstruction techniques together with novel machine-learning approaches. These studies demonstrate good energy resolution, and good agreement between data and simulation, relying on the reconstructed invariant $蟺^0$ mass and other photon distributions for validation. The reconstruction techniques developed are applied to a selection of $谓_渭 + {\rm Ar} \rightarrow 渭+ 蟺^0 + X$ candidate events to demonstrate the potential for calorimetric separation of photons from electrons and reconstruction of $蟺^0$ kinematics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02166v1-abstract-full').style.display = 'none'; document.getElementById('1910.02166v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.01430">arXiv:1910.01430</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.01430">pdf</a>, <a href="https://arxiv.org/format/1910.01430">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/07/P07010">10.1088/1748-0221/15/07/P07010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Method to Determine the Electric Field of Liquid Argon Time Projection Chambers Using a UV Laser System and its Application in MicroBooNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a> , et al. (165 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.01430v2-abstract-short" style="display: inline;"> Liquid argon time projection chambers (LArTPCs) are now a standard detector technology for making accelerator neutrino measurements, due to their high material density, precise tracking, and calorimetric capabilities. An electric field (E-field) is required in such detectors to drift ionized electrons to the anode to be collected. The E-field of a TPC is often approximated to be uniform between th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.01430v2-abstract-full').style.display = 'inline'; document.getElementById('1910.01430v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.01430v2-abstract-full" style="display: none;"> Liquid argon time projection chambers (LArTPCs) are now a standard detector technology for making accelerator neutrino measurements, due to their high material density, precise tracking, and calorimetric capabilities. An electric field (E-field) is required in such detectors to drift ionized electrons to the anode to be collected. The E-field of a TPC is often approximated to be uniform between the anode and the cathode planes. However, significant distortions can appear from effects such as mechanical deformations, electrode failures, or the accumulation of space charge generated by cosmic rays. The latter is particularly relevant for detectors placed near the Earth&#39;s surface and with large drift distances and long drift time. To determine the E-field in situ, an ultraviolet (UV) laser system is installed in the MicroBooNE experiment at Fermi National Accelerator Laboratory. The purpose of this system is to provide precise measurements of the E-field, and to make it possible to correct for 3D spatial distortions due to E-field non-uniformities. Here we describe the methodology developed for deriving spatial distortions, the drift velocity and the E-field from UV-laser measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.01430v2-abstract-full').style.display = 'none'; document.getElementById('1910.01430v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.09624">arXiv:1908.09624</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.09624">pdf</a>, <a href="https://arxiv.org/format/1908.09624">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Holographic metasurfaces simulations applied to realization of non-diffracting waves in the microwave regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+S+R+C">Santiago R. C. Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Gesualdi%2C+M+R+R">Marcos R. R. Gesualdi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.09624v1-abstract-short" style="display: inline;"> In this work, we present the computational realization of holographic metasurfaces to generation of the non-diffracting waves. These holographic metasurfaces (HMS) are simulated by modeling a periodic lattice of metallic patches on dielectric substrates with sub-wavelength dimensions, where each one of those unit cells alter the phase of the incoming wave. We use the surface impedance (Z) to contr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09624v1-abstract-full').style.display = 'inline'; document.getElementById('1908.09624v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.09624v1-abstract-full" style="display: none;"> In this work, we present the computational realization of holographic metasurfaces to generation of the non-diffracting waves. These holographic metasurfaces (HMS) are simulated by modeling a periodic lattice of metallic patches on dielectric substrates with sub-wavelength dimensions, where each one of those unit cells alter the phase of the incoming wave. We use the surface impedance (Z) to control the phase of the electromagnetic wave through the metasurface in each unit cell. The sub-wavelength dimensions guarantees that the effective medium theory is fulfilled. The metasurfaces are designed by the holographic technique and the computer-generated holograms (CGHs) of non-diffracting waves are generated and reproduced using such HMS in the microwave regime. The results is according to the theoretically predicted by non-diffracting wave theory. These results are important given the possibilities of applications of these types of electromagnetic waves in several areas of telecommunications and bioengineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09624v1-abstract-full').style.display = 'none'; document.getElementById('1908.09624v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.11736">arXiv:1907.11736</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.11736">pdf</a>, <a href="https://arxiv.org/format/1907.11736">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/03/P03022">10.1088/1748-0221/15/03/P03022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.11736v2-abstract-short" style="display: inline;"> We describe a method used to calibrate the position- and time-dependent response of the MicroBooNE liquid argon time projection chamber anode wires to ionization particle energy loss. The method makes use of crossing cosmic-ray muons to partially correct anode wire signals for multiple effects as a function of time and position, including cross-connected TPC wires, space charge effects, electron a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11736v2-abstract-full').style.display = 'inline'; document.getElementById('1907.11736v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.11736v2-abstract-full" style="display: none;"> We describe a method used to calibrate the position- and time-dependent response of the MicroBooNE liquid argon time projection chamber anode wires to ionization particle energy loss. The method makes use of crossing cosmic-ray muons to partially correct anode wire signals for multiple effects as a function of time and position, including cross-connected TPC wires, space charge effects, electron attachment to impurities, diffusion, and recombination. The overall energy scale is then determined using fully-contained beam-induced muons originating and stopping in the active region of the detector. Using this method, we obtain an absolute energy scale uncertainty of 2\% in data. We use stopping protons to further refine the relation between the measured charge and the energy loss for highly-ionizing particles. This data-driven detector calibration improves both the measurement of total deposited energy and particle identification based on energy loss per unit length as a function of residual range. As an example, the proton selection efficiency is increased by 2\% after detector calibration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11736v2-abstract-full').style.display = 'none'; document.getElementById('1907.11736v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-19-357-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 15, P03022 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.02862">arXiv:1901.02862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.02862">pdf</a>, <a href="https://arxiv.org/format/1901.02862">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/04/P04004">10.1088/1748-0221/14/04/P04004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and construction of the MicroBooNE Cosmic Ray Tagger system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+M">M. Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+K">K. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (149 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.02862v2-abstract-short" style="display: inline;"> The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.02862v2-abstract-full').style.display = 'inline'; document.getElementById('1901.02862v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.02862v2-abstract-full" style="display: none;"> The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.02862v2-abstract-full').style.display = 'none'; document.getElementById('1901.02862v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.05679">arXiv:1812.05679</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.05679">pdf</a>, <a href="https://arxiv.org/format/1812.05679">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Rejecting cosmic background for exclusive neutrino interaction studies with Liquid Argon TPCs; a case study with the MicroBooNE detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+M">M. Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+K">K. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (150 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.05679v2-abstract-short" style="display: inline;"> Cosmic ray (CR) interactions can be a challenging source of background for neutrino oscillation and cross-section measurements in surface detectors. We present methods for CR rejection in measurements of charged-current quasielastic-like (CCQE-like) neutrino interactions, with a muon and a proton in the final state, measured using liquid argon time projection chambers (LArTPCs). Using a sample of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05679v2-abstract-full').style.display = 'inline'; document.getElementById('1812.05679v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.05679v2-abstract-full" style="display: none;"> Cosmic ray (CR) interactions can be a challenging source of background for neutrino oscillation and cross-section measurements in surface detectors. We present methods for CR rejection in measurements of charged-current quasielastic-like (CCQE-like) neutrino interactions, with a muon and a proton in the final state, measured using liquid argon time projection chambers (LArTPCs). Using a sample of cosmic data collected with the MicroBooNE detector, mixed with simulated neutrino scattering events, a set of event selection criteria is developed that produces an event sample with minimal contribution from CR background. Depending on the selection criteria used a purity between 50% and 80% can be achieved with a signal selection efficiency between 50% and 25%, with higher purity coming at the expense of lower efficiency. While using a specific dataset from the MicroBooNE detector and selection criteria values optimized for CCQE-like events, the concepts presented here are generic and can be adapted for various studies of exclusive 谓渭 interactions in LArTPCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05679v2-abstract-full').style.display = 'none'; document.getElementById('1812.05679v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-18-677-E </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.02700">arXiv:1811.02700</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.02700">pdf</a>, <a href="https://arxiv.org/format/1811.02700">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.091102">10.1103/PhysRevD.99.091102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of $谓_渭$ Charged-Current $蟺^{0}$ Production on Argon with a LArTPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+M">M. Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+K">K. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (150 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.02700v1-abstract-short" style="display: inline;"> We report the first measurement of the flux-integrated cross section of $谓_渭$ charged-current single $蟺^{0}$ production on argon. This measurement is performed with the MicroBooNE detector, an 85 ton active mass liquid argon time projection chamber exposed to the Booster Neutrino Beam at Fermilab. This result on argon is compared to past measurements on lighter nuclei to investigate the scaling as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02700v1-abstract-full').style.display = 'inline'; document.getElementById('1811.02700v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.02700v1-abstract-full" style="display: none;"> We report the first measurement of the flux-integrated cross section of $谓_渭$ charged-current single $蟺^{0}$ production on argon. This measurement is performed with the MicroBooNE detector, an 85 ton active mass liquid argon time projection chamber exposed to the Booster Neutrino Beam at Fermilab. This result on argon is compared to past measurements on lighter nuclei to investigate the scaling assumptions used in models of the production and transport of pions in neutrino-nucleus scattering. The techniques used are an important demonstration of the successful reconstruction and analysis of neutrino interactions producing electromagnetic final states using a liquid argon time projection chamber operating at the earth&#39;s surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02700v1-abstract-full').style.display = 'none'; document.getElementById('1811.02700v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 091102 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.07269">arXiv:1808.07269</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.07269">pdf</a>, <a href="https://arxiv.org/format/1808.07269">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.092001">10.1103/PhysRevD.99.092001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+M">M. Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+K">K. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (148 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.07269v1-abstract-short" style="display: inline;"> We have developed a convolutional neural network (CNN) that can make a pixel-level prediction of objects in image data recorded by a liquid argon time projection chamber (LArTPC) for the first time. We describe the network design, training techniques, and software tools developed to train this network. The goal of this work is to develop a complete deep neural network based data reconstruction cha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07269v1-abstract-full').style.display = 'inline'; document.getElementById('1808.07269v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.07269v1-abstract-full" style="display: none;"> We have developed a convolutional neural network (CNN) that can make a pixel-level prediction of objects in image data recorded by a liquid argon time projection chamber (LArTPC) for the first time. We describe the network design, training techniques, and software tools developed to train this network. The goal of this work is to develop a complete deep neural network based data reconstruction chain for the MicroBooNE detector. We show the first demonstration of a network&#39;s validity on real LArTPC data using MicroBooNE collection plane images. The demonstration is performed for stopping muon and a $谓_渭$ charged current neutral pion data samples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07269v1-abstract-full').style.display = 'none'; document.getElementById('1808.07269v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 092001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.06887">arXiv:1805.06887</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.06887">pdf</a>, <a href="https://arxiv.org/format/1805.06887">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-019-6742-3">10.1140/epjc/s10052-019-6742-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comparison of 谓渭-Ar multiplicity distributions observed by MicroBooNE to GENIE model predictions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+M">M. Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+K">K. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Cerati%2C+G">G. Cerati</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Church%2C+E">E. Church</a>, <a href="/search/physics?searchtype=author&amp;query=Cianci%2C+D">D. Cianci</a> , et al. (140 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.06887v3-abstract-short" style="display: inline;"> We measure a large set of observables in inclusive charged current muon neutrino scattering on argon with the MicroBooNE liquid argon time projection chamber operating at Fermilab. We evaluate three neutrino interaction models based on the widely used GENIE event generator using these observables. The measurement uses a data set consisting of neutrino interactions with a final state muon candidate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.06887v3-abstract-full').style.display = 'inline'; document.getElementById('1805.06887v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.06887v3-abstract-full" style="display: none;"> We measure a large set of observables in inclusive charged current muon neutrino scattering on argon with the MicroBooNE liquid argon time projection chamber operating at Fermilab. We evaluate three neutrino interaction models based on the widely used GENIE event generator using these observables. The measurement uses a data set consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2016 with the Fermilab Booster Neutrino Beam, which has an average neutrino energy of 800 MeV, using an exposure corresponding to 5E19 protons-on-target. The analysis employs fully automatic event selection and charged particle track reconstruction and uses a data-driven technique to separate neutrino interactions from cosmic ray background events. We find that GENIE models consistently describe the shapes of a large number of kinematic distributions for fixed observed multiplicity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.06887v3-abstract-full').style.display = 'none'; document.getElementById('1805.06887v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 39 figures, 10 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2019) 79:248 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.02583">arXiv:1804.02583</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.02583">pdf</a>, <a href="https://arxiv.org/format/1804.02583">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/13/07/P07007">10.1088/1748-0221/13/07/P07007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+M">M. Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+K">K. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Cerati%2C+G">G. Cerati</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">H. Chen</a> , et al. (146 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.02583v3-abstract-short" style="display: inline;"> The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cry&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.02583v3-abstract-full').style.display = 'inline'; document.getElementById('1804.02583v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.02583v3-abstract-full" style="display: none;"> The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.02583v3-abstract-full').style.display = 'none'; document.getElementById('1804.02583v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">54 pages, 36 figures; the first part of this work can be found at arXiv:1802.08709</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 13 P07007 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.08709">arXiv:1802.08709</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.08709">pdf</a>, <a href="https://arxiv.org/format/1802.08709">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/13/07/P07006">10.1088/1748-0221/13/07/P07006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ionization Electron Signal Processing in Single Phase LArTPCs I. Algorithm Description and Quantitative Evaluation with MicroBooNE Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+M">M. Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Bagby%2C+L">L. Bagby</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+K">K. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Cerati%2C+G">G. Cerati</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a> , et al. (144 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.08709v3-abstract-short" style="display: inline;"> We describe the concept and procedure of drifted-charge extraction developed in the MicroBooNE experiment, a single-phase liquid argon time projection chamber (LArTPC). This technique converts the raw digitized TPC waveform to the number of ionization electrons passing through a wire plane at a given time. A robust recovery of the number of ionization electrons from both induction and collection a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.08709v3-abstract-full').style.display = 'inline'; document.getElementById('1802.08709v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.08709v3-abstract-full" style="display: none;"> We describe the concept and procedure of drifted-charge extraction developed in the MicroBooNE experiment, a single-phase liquid argon time projection chamber (LArTPC). This technique converts the raw digitized TPC waveform to the number of ionization electrons passing through a wire plane at a given time. A robust recovery of the number of ionization electrons from both induction and collection anode wire planes will augment the 3D reconstruction, and is particularly important for tomographic reconstruction algorithms. A number of building blocks of the overall procedure are described. The performance of the signal processing is quantitatively evaluated by comparing extracted charge with the true charge through a detailed TPC detector simulation taking into account position-dependent induced current inside a single wire region and across multiple wires. Some areas for further improvement of the performance of the charge extraction procedure are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.08709v3-abstract-full').style.display = 'none'; document.getElementById('1802.08709v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">60 pages, 36 figures. The second part of this work can be found at arXiv:1804.02583</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 13 P07006 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.03135">arXiv:1708.03135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.03135">pdf</a>, <a href="https://arxiv.org/format/1708.03135">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+M">M. Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Bagby%2C+L">L. Bagby</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carls%2C+B">B. Carls</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Church%2C+E">E. Church</a>, <a href="/search/physics?searchtype=author&amp;query=Cianci%2C+D">D. Cianci</a> , et al. (123 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.03135v1-abstract-short" style="display: inline;"> The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pando&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03135v1-abstract-full').style.display = 'inline'; document.getElementById('1708.03135v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.03135v1-abstract-full" style="display: none;"> The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03135v1-abstract-full').style.display = 'none'; document.getElementById('1708.03135v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Preprint to be submitted to The European Physical Journal C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.07341">arXiv:1705.07341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.07341">pdf</a>, <a href="https://arxiv.org/format/1705.07341">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/12/08/P08003">10.1088/1748-0221/12/08/P08003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+M">M. Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Bagby%2C+L">L. Bagby</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Bullard%2C+B">B. Bullard</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carls%2C+B">B. Carls</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Church%2C+E">E. Church</a> , et al. (130 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.07341v1-abstract-short" style="display: inline;"> The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE&#39;s single-phase LArTPC comprises t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.07341v1-abstract-full').style.display = 'inline'; document.getElementById('1705.07341v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.07341v1-abstract-full" style="display: none;"> The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE&#39;s single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.07341v1-abstract-full').style.display = 'none'; document.getElementById('1705.07341v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 20 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 12 P08003 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.02927">arXiv:1704.02927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.02927">pdf</a>, <a href="https://arxiv.org/format/1704.02927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/12/09/P09014">10.1088/1748-0221/12/09/P09014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Michel Electron Reconstruction Using Cosmic-Ray Data from the MicroBooNE LArTPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+M">M. Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Bagby%2C+L">L. Bagby</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Bugel%2C+L">L. Bugel</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carls%2C+B">B. Carls</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Church%2C+E">E. Church</a> , et al. (121 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.02927v2-abstract-short" style="display: inline;"> The MicroBooNE liquid argon time projection chamber (LArTPC) has been taking data at Fermilab since 2015 collecting, in addition to neutrino beam, cosmic-ray muons. Results are presented on the reconstruction of Michel electrons produced by the decay at rest of cosmic-ray muons. Michel electrons are abundantly produced in the TPC, and given their well known energy spectrum can be used to study Mic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.02927v2-abstract-full').style.display = 'inline'; document.getElementById('1704.02927v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.02927v2-abstract-full" style="display: none;"> The MicroBooNE liquid argon time projection chamber (LArTPC) has been taking data at Fermilab since 2015 collecting, in addition to neutrino beam, cosmic-ray muons. Results are presented on the reconstruction of Michel electrons produced by the decay at rest of cosmic-ray muons. Michel electrons are abundantly produced in the TPC, and given their well known energy spectrum can be used to study MicroBooNE&#39;s detector response to low-energy electrons (electrons with energies up to ~50 MeV). We describe the fully-automated algorithm developed to reconstruct Michel electrons, with which a sample of ~14,000 Michel electron candidates is obtained. Most of this article is dedicated to studying the impact of radiative photons produced by Michel electrons on the accuracy and resolution of their energy measurement. In this energy range, ionization and bremsstrahlung photon production contribute similarly to electron energy loss in argon, leading to a complex electron topology in the TPC. By profiling the performance of the reconstruction algorithm on simulation we show that the ability to identify and include energy deposited by radiative photons leads to a significant improvement in the energy measurement of low-energy electrons. The fractional energy resolution we measure improves from over 30% to ~20% when we attempt to include radiative photons in the reconstruction. These studies are relevant to a large number of analyses which aim to study neutrinos by measuring electrons produced by $谓_e$ interactions over a broad energy range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.02927v2-abstract-full').style.display = 'none'; document.getElementById('1704.02927v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 12 P09014 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.06187">arXiv:1703.06187</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.06187">pdf</a>, <a href="https://arxiv.org/format/1703.06187">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/12/10/P10010">10.1088/1748-0221/12/10/P10010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Determination of muon momentum in the MicroBooNE LArTPC using an improved model of multiple Coulomb scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+M">M. Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Bagby%2C+L">L. Bagby</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Bugel%2C+L">L. Bugel</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carls%2C+B">B. Carls</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Church%2C+E">E. Church</a> , et al. (123 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.06187v3-abstract-short" style="display: inline;"> We discuss a technique for measuring a charged particle&#39;s momentum by means of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber (LArTPC). This method does not require the full particle ionization track to be contained inside of the detector volume as other track momentum reconstruction methods do (range-based momentum reconstruction and calorimetric momentum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.06187v3-abstract-full').style.display = 'inline'; document.getElementById('1703.06187v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.06187v3-abstract-full" style="display: none;"> We discuss a technique for measuring a charged particle&#39;s momentum by means of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber (LArTPC). This method does not require the full particle ionization track to be contained inside of the detector volume as other track momentum reconstruction methods do (range-based momentum reconstruction and calorimetric momentum reconstruction). We motivate use of this technique, describe a tuning of the underlying phenomenological formula, quantify its performance on fully contained beam-neutrino-induced muon tracks both in simulation and in data, and quantify its performance on exiting muon tracks in simulation. Using simulation, we have shown that the standard Highland formula should be re-tuned specifically for scattering in liquid argon, which significantly improves the bias and resolution of the momentum measurement. With the tuned formula, we find agreement between data and simulation for contained tracks, with a small bias in the momentum reconstruction and with resolutions that vary as a function of track length, improving from about 10% for the shortest (one meter long) tracks to 5% for longer (several meter) tracks. For simulated exiting muons with at least one meter of track contained, we find a similarly small bias, and a resolution which is less than 15% for muons with momentum below 2 GeV/c. Above 2 GeV/c, results are given as a first estimate of the MCS momentum measurement capabilities of MicroBooNE for high momentum exiting tracks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.06187v3-abstract-full').style.display = 'none'; document.getElementById('1703.06187v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.05824">arXiv:1612.05824</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.05824">pdf</a>, <a href="https://arxiv.org/format/1612.05824">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/12/02/P02017">10.1088/1748-0221/12/02/P02017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and Construction of the MicroBooNE Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+Collaboration"> MicroBooNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Aparicio%2C+A">A. Aparicio</a>, <a href="/search/physics?searchtype=author&amp;query=Aponte%2C+S">S. Aponte</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+M">M. Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Ayoub%2C+N">N. Ayoub</a>, <a href="/search/physics?searchtype=author&amp;query=Bagby%2C+L">L. Bagby</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barger%2C+R">R. Barger</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Biery%2C+K">K. Biery</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bocean%2C+V">V. Bocean</a>, <a href="/search/physics?searchtype=author&amp;query=Boehnlein%2C+D">D. Boehnlein</a>, <a href="/search/physics?searchtype=author&amp;query=Bogert%2C+V+D">V. D. Bogert</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Bugel%2C+L">L. Bugel</a>, <a href="/search/physics?searchtype=author&amp;query=Callahan%2C+C">C. Callahan</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a> , et al. (215 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.05824v2-abstract-short" style="display: inline;"> This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.05824v2-abstract-full').style.display = 'inline'; document.getElementById('1612.05824v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.05824v2-abstract-full" style="display: none;"> This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.05824v2-abstract-full').style.display = 'none'; document.getElementById('1612.05824v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.05531">arXiv:1611.05531</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.05531">pdf</a>, <a href="https://arxiv.org/format/1611.05531">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/12/03/P03011">10.1088/1748-0221/12/03/P03011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+M">M. Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Bagby%2C+L">L. Bagby</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Bugel%2C+L">L. Bugel</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carls%2C+B">B. Carls</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Church%2C+E">E. Church</a>, <a href="/search/physics?searchtype=author&amp;query=Cianci%2C+D">D. Cianci</a>, <a href="/search/physics?searchtype=author&amp;query=Collin%2C+G+H">G. H. Collin</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J+M">J. M. Conrad</a> , et al. (114 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.05531v1-abstract-short" style="display: inline;"> We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.05531v1-abstract-full').style.display = 'inline'; document.getElementById('1611.05531v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.05531v1-abstract-full" style="display: none;"> We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.05531v1-abstract-full').style.display = 'none'; document.getElementById('1611.05531v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10