CINXE.COM
Search results for: Neeraj Sahu
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Neeraj Sahu</title> <meta name="description" content="Search results for: Neeraj Sahu"> <meta name="keywords" content="Neeraj Sahu"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Neeraj Sahu" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Neeraj Sahu"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 87</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Neeraj Sahu</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Comparative Study of Natural Coarse Aggregate Concrete with Recycled Concrete Aggregate Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Saadiq">Ahmad Saadiq</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Sahu"> Neeraj Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The partial or full replacement of natural coarse aggregate by recycled concrete aggregate (RCA) is of great benefit to the environment, as the demand of natural coarse aggregate reduces. In the modern construction and practice, the use of RCA is limited to backfilling and road construction. The establishment of RCA for its wide application can only be done after having an understanding of the use of RCA in conventional concrete. To have an insight to this, various tests to determine the compressive strength, elastic strength, workability, durability and drying shrinkage tests can be done and the test results may be different from that obtained from natural coarse aggregates, by using natural coarse aggregate in concrete. This paper gives a comprehensive review of the said tests done on RCA concrete. The results obtained from the tests indicate that RCA concrete gives comparable compressive strength, stiffness, and workability relative to the corresponding results obtained from the natural coarse aggregates. However, the durability and drying shrinkage had more variance but well within recommended limits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregate" title="aggregate">aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete" title=" recycled concrete"> recycled concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage" title=" shrinkage"> shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability"> workability</a> </p> <a href="https://publications.waset.org/abstracts/88714/comparative-study-of-natural-coarse-aggregate-concrete-with-recycled-concrete-aggregate-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Experimental Studies on Reactive Powder Concrete Containing Fly Ash and Steel Fibre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Shah">A. J. Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Kumar%20Sahu"> Neeraj Kumar Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reactive powder concrete (RPC) is high performance and high strength concrete which composes of very fine powdered materials like cement, sand, silica fume and quartz powder. It also constitutes steel fibre (optional) and super-plasticizer. The present study investigates the performance of reactive powder concrete with fly ash as a replacement of cement under hot water and normal water curing conditions. The replacement of cement with fly ash is done at 10%, 20%, 30% and 40%. To compare the results of cement replaced RPC and traditional RPC, the performance of various mixes is evaluated by compressive strength, flexural strength, split tensile strength and durability. The results show that with increasing percentage of fly ash, improvement in durability is observed and a slight decrease in compressive strength and flexural strength is also observed. It is observed that specimen under hot water curing showed 15 to 20 % more strength than specimens under normal water curing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title="high strength concrete">high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20flexural%20strength%20of%20RPC" title=" the flexural strength of RPC"> the flexural strength of RPC</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength%20of%20RPC" title=" compressive strength of RPC"> compressive strength of RPC</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/96189/experimental-studies-on-reactive-powder-concrete-containing-fly-ash-and-steel-fibre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> A Study on the Effect of Cod to Sulphate Ratio on Performance of Lab Scale Upflow Anaerobic Sludge Blanket Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Sahu">Neeraj Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Saadiq"> Ahmad Saadiq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anaerobic sulphate reduction has the potential for being effective and economically viable over conventional treatment methods for the treatment of sulphate-rich wastewater. However, a major challenge in anaerobic sulphate reduction is the diversion of a fraction of organic carbon towards methane production and some minor problem such as odour problems, corrosion, and increase of effluent chemical oxygen demand. A high-rate anaerobic technology has encouraged researchers to extend its application to the treatment of complex wastewaters with relatively low cost and energy consumption compared to physicochemical methods. Therefore, the aim of this study was to investigate the effects of COD/SO₄²⁻ ratio on the performance of lab scale UASB reactor. A lab-scale upflow anaerobic sludge blanket (UASB) reactor was operated for 170 days. In which first 60 days, for successful start-up with acclimation under methanogenesis and sulphidogenesis at COD/SO₄²⁻ of 18 and were operated at COD/SO₄²⁻ ratios of 12, 8, 4 and 1 to evaluate the effects of the presence of sulfate on the reactor performance. The reactor achieved maximum COD removal efficiency and biogas evolution at the end of acclimation (control). This phase lasted 53 days with 89.5% efficiency. The biogas was 0.6 L/d at (OLR) of 1.0 kg COD/m³d when it was treating synthetic wastewater with effective volume of reactor as 2.8 L. When COD/SO₄²⁻ ratio changed from 12 to 1, slight decrease in COD removal efficiencies (76.8–87.4%) was observed, biogas production decreased from 0.58 to 0.32 L/d, while the sulfate removal efficiency increased from 42.5% to 72.7%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic" title="anaerobic">anaerobic</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxygen%20demand" title=" chemical oxygen demand"> chemical oxygen demand</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20loading%20rate" title=" organic loading rate"> organic loading rate</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphate" title=" sulphate"> sulphate</a>, <a href="https://publications.waset.org/abstracts/search?q=up-flow%20anaerobic%20sludge%20blanket%20reactor" title=" up-flow anaerobic sludge blanket reactor"> up-flow anaerobic sludge blanket reactor</a> </p> <a href="https://publications.waset.org/abstracts/88716/a-study-on-the-effect-of-cod-to-sulphate-ratio-on-performance-of-lab-scale-upflow-anaerobic-sludge-blanket-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Unveiling the Detailed Turn Off-On Mechanism of Carbon Dots to Different Sized MnO₂ Nanosensor for Selective Detection of Glutathione </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Neeraj">Neeraj Neeraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumen%20Basu"> Soumen Basu</a>, <a href="https://publications.waset.org/abstracts/search?q=Banibrata%20Maity"> Banibrata Maity</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glutathione (GSH) is one of the most important biomolecules having small molecular weight, which helps in various cellular functions like regulation of gene, xenobiotic metabolism, preservation of intracellular redox activities, signal transduction, etc. Therefore, the detection of GSH requires huge attention by using extremely selective and sensitive techniques. Herein, a rapid fluorometric nanosensor is designed by combining carbon dots (Cdots) and MnO₂ nanoparticles of different sizes for the detection of GSH. The bottom-up approach, i.e., microwave method, was used for the preparation of the water soluble and greatly fluorescent Cdots by using ascorbic acid as a precursor. MnO₂ nanospheres of different sizes (large, medium, and small) were prepared by varying the ratio of concentration of methionine and KMnO₄ at room temperature, which was confirmed by HRTEM analysis. The successive addition of MnO₂ nanospheres in Cdots results fluorescence quenching. From the fluorescence intensity data, Stern-Volmer quenching constant values (KS-V) were evaluated. From the fluorescence intensity and lifetime analysis, it was found that the degree of fluorescence quenching of Cdots followed the order: large > medium > small. Moreover, fluorescence recovery studies were also performed in the presence of GSH. Fluorescence restoration studies also show the order of turn on follows the same order, i.e., large > medium > small, which was also confirmed by quantum yield and lifetime studies. The limits of detection (LOD) of GSH in presence of Cdots@different sized MnO₂ nanospheres were also evaluated. It was observed thatLOD values were in μM region and lowest in case of large MnO₂ nanospheres. The separation distance (d) between Cdots and the surface of different MnO₂ nanospheres was determined. The d values increase with increase in the size of the MnO₂ nanospheres. In summary, the synthesized Cdots@MnO₂ nanocomposites acted as a rapid, simple, economical as well as environmental-friendly nanosensor for the detection of GSH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dots" title="carbon dots">carbon dots</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=glutathione" title=" glutathione"> glutathione</a>, <a href="https://publications.waset.org/abstracts/search?q=MnO%E2%82%82%20nanospheres" title=" MnO₂ nanospheres"> MnO₂ nanospheres</a>, <a href="https://publications.waset.org/abstracts/search?q=turn%20off-on" title=" turn off-on"> turn off-on</a> </p> <a href="https://publications.waset.org/abstracts/123370/unveiling-the-detailed-turn-off-on-mechanism-of-carbon-dots-to-different-sized-mno2-nanosensor-for-selective-detection-of-glutathione" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Steady State Analysis of Distribution System with Wind Generation Uncertainity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakir%20Husain">Zakir Husain</a>, <a href="https://publications.waset.org/abstracts/search?q=Neem%20Sagar"> Neem Sagar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Gupta"> Neeraj Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the increased penetration of renewable energy resources in the distribution system, the system is no longer passive in nature. In this paper, a steady state analysis of the distribution system has been done with the inclusion of wind generation. The modeling of wind turbine generator system and wind generator has been made to obtain the average active and the reactive power injection into the system. The study has been conducted on a IEEE-33 bus system with two wind generators. The present research work is useful not only to utilities but also to customers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title="distributed generation">distributed generation</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20network" title=" distribution network"> distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20network" title=" radial network"> radial network</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20generating%20system" title=" wind turbine generating system"> wind turbine generating system</a> </p> <a href="https://publications.waset.org/abstracts/83863/steady-state-analysis-of-distribution-system-with-wind-generation-uncertainity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Comparison of Sediment Rating Curve and Artificial Neural Network in Simulation of Suspended Sediment Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Saadiq">Ahmad Saadiq</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Sahu"> Neeraj Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sediment, which comprises of solid particles of mineral and organic material are transported by water. In river systems, the amount of sediment transported is controlled by both the transport capacity of the flow and the supply of sediment. The transport of sediment in rivers is important with respect to pollution, channel navigability, reservoir ageing, hydroelectric equipment longevity, fish habitat, river aesthetics and scientific interests. The sediment load transported in a river is a very complex hydrological phenomenon. Hence, sediment transport has attracted the attention of engineers from various aspects, and different methods have been used for its estimation. So, several experimental equations have been submitted by experts. Though the results of these methods have considerable differences with each other and with experimental observations, because the sediment measures have some limits, these equations can be used in estimating sediment load. In this present study, two black box models namely, an SRC (Sediment Rating Curve) and ANN (Artificial Neural Network) are used in the simulation of the suspended sediment load. The study is carried out for Seonath subbasin. Seonath is the biggest tributary of Mahanadi river, and it carries a vast amount of sediment. The data is collected for Jondhra hydrological observation station from India-WRIS (Water Resources Information System) and IMD (Indian Meteorological Department). These data include the discharge, sediment concentration and rainfall for 10 years. In this study, sediment load is estimated from the input parameters (discharge, rainfall, and past sediment) in various combination of simulations. A sediment rating curve used the water discharge to estimate the sediment concentration. This estimated sediment concentration is converted to sediment load. Likewise, for the application of these data in ANN, they are normalised first and then fed in various combinations to yield the sediment load. RMSE (root mean square error) and R² (coefficient of determination) between the observed load and the estimated load are used as evaluating criteria. For an ideal model, RMSE is zero and R² is 1. However, as the models used in this study are black box models, they don’t carry the exact representation of the factors which causes sedimentation. Hence, a model which gives the lowest RMSE and highest R² is the best model in this study. The lowest values of RMSE (based on normalised data) for sediment rating curve, feed forward back propagation, cascade forward back propagation and neural network fitting are 0.043425, 0.00679781, 0.0050089 and 0.0043727 respectively. The corresponding values of R² are 0.8258, 0.9941, 0.9968 and 0.9976. This implies that a neural network fitting model is superior to the other models used in this study. However, a drawback of neural network fitting is that it produces few negative estimates, which is not at all tolerable in the field of estimation of sediment load, and hence this model can’t be crowned as the best model among others, based on this study. A cascade forward back propagation produces results much closer to a neural network model and hence this model is the best model based on the present study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=Root%20mean%20squared%20error" title=" Root mean squared error"> Root mean squared error</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20rating%20curve" title=" sediment rating curve "> sediment rating curve </a> </p> <a href="https://publications.waset.org/abstracts/88718/comparison-of-sediment-rating-curve-and-artificial-neural-network-in-simulation-of-suspended-sediment-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Discerning of Antimicrobial Potential of Phenylpropanoic Acid Derived Oxadiazoles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Kumar%20Fuloria">Neeraj Kumar Fuloria</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivkanya%20Fuloria"> Shivkanya Fuloria</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20%20Singh"> Amit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 2-Phenyl propionic acid and oxadiazoles possess antimicrobial potential. 2-Phenyl propane hydrazide (1), on cyclization with aromatic acids offered 2-aryl-5-(1-phenylethyl)-1,3,4-oxadiazole derivatives (1A-E). The PPA derived oxadiazoles were characterized by elemental analysis and spectral studies. The compounds were screened for antimicrobial potential. The compound 1D bearing strong electron withdrawing group showed maximum antimicrobial potential. Other compounds also displayed antimicrobial potential to a certain extent. The SAR of newer oxadiazoles indicated that substitution of strong electronegative group in the PPA derived oxadiazoles enhanced their antimicrobial potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=imines" title=" imines"> imines</a>, <a href="https://publications.waset.org/abstracts/search?q=oxadiazoles" title=" oxadiazoles"> oxadiazoles</a>, <a href="https://publications.waset.org/abstracts/search?q=PPA" title=" PPA"> PPA</a> </p> <a href="https://publications.waset.org/abstracts/67533/discerning-of-antimicrobial-potential-of-phenylpropanoic-acid-derived-oxadiazoles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Synthesis and Antimicrobial Activity of Tolyloxy Derived Oxadiazoles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivkanya%20Fuloria">Shivkanya Fuloria</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Kumar%20Fuloria"> Neeraj Kumar Fuloria</a>, <a href="https://publications.waset.org/abstracts/search?q=Sokinder%20Kumar"> Sokinder Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> m-Cresol and oxadiazoles are the potent antimicrobial moieties. 2-(m-Tolyloxy)acetohydrazide (1) on cyclization with aromatic acids yielded 2-(aryl)-5-(m-tolyloxymethyl)-1,3,4-oxadiazole (1A-E). The structures of newer oxadiazoles were confirmed by elemental and spectral analysis. The newer compounds were evaluated for their antimicrobial potential. The compound 1E containing strong electron withdrawing group showed maximum antimicrobial potential. Other compounds also displayed antimicrobial potential to certain extent. The SAR of newer oxadiazoles indicated that substitution of strong electronegative group in the tolyloxy derived oxadiazoles enhanced their antimicrobial potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=cresol" title=" cresol"> cresol</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrazide" title=" hydrazide"> hydrazide</a>, <a href="https://publications.waset.org/abstracts/search?q=oxadiazoles" title=" oxadiazoles"> oxadiazoles</a> </p> <a href="https://publications.waset.org/abstracts/67547/synthesis-and-antimicrobial-activity-of-tolyloxy-derived-oxadiazoles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Study on the Controlled Growth of Lanthanum Hydroxide and Manganese Oxide Nano Composite under the Presence of Cationic Surfactant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Kumar%20Verma">Neeraj Kumar Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lanthanum hydroxide and manganese oxide nanocomposite are synthesized by chemical routes. Physical characterization is done by TEM to look at the size and dispersion of the nanoparticles in the composite. Chemical characterization is done by X-ray diffraction technique and FTIR to ascertain the attachment of the functionalities and bond stretching. Further thermal analysis is done by thermogravimetric analysis to find the tendency of the thermal decomposition in the elevated temperature range of 0-1000°C. Proper analysis and correlation of the various results obtained suggested the controlled growth of crystalline without agglomeration and good stability in the various temperature ranges of the composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanum%20hydroxide" title=" lanthanum hydroxide"> lanthanum hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese%20oxide" title=" manganese oxide"> manganese oxide</a> </p> <a href="https://publications.waset.org/abstracts/25803/study-on-the-controlled-growth-of-lanthanum-hydroxide-and-manganese-oxide-nano-composite-under-the-presence-of-cationic-surfactant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Quantum Confinement in LEEH Capped CdS Nanocrystalline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mihir%20Hota">Mihir Hota</a>, <a href="https://publications.waset.org/abstracts/search?q=Namita%20Jena"> Namita Jena</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Sahu"> S. N. Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> LEEH (L-cysteine ethyl ester hydrochloride) capped CdS semiconductor nanocrystals are grown at 800C using a simple chemical route. Photoluminescence (PL), Optical absorption (UV) and Transmission Electron Microscopy (TEM) have been carried out to evaluate the structural and optical properties of the nanocrystal. Optical absorption studies have been carried out to optimize the sample. XRD and TEM analysis shows that the nanocrystal belongs to FCC structure having average size of 3nm while a bandgap of 2.84eV is estimated from Photoluminescence analysis. The nanocrystal emits bluish light when excited with 355nm LASER. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium%20sulphide" title="cadmium sulphide">cadmium sulphide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a> </p> <a href="https://publications.waset.org/abstracts/59943/quantum-confinement-in-leeh-capped-cds-nanocrystalline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Polarization Insensitive Absorber with Increased Bandwidth Using Multilayer Metamaterial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srilaxmi%20Gangula">Srilaxmi Gangula</a>, <a href="https://publications.waset.org/abstracts/search?q=MahaLakshmi%20Vinukonda"> MahaLakshmi Vinukonda</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Rao"> Neeraj Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A wide band polarization insensitive metamaterial absorber with bandwidth enhancement in X and C band is proposed. The structure proposed here consists of a periodic unit cell of resonator arrangements in double layer. The proposed structure shows near unity absorption at frequencies of 6.21 GHz and 10.372 GHz spreading over a bandwidth of 1 GHz and 6.21 GHz respectively in X and C bands. The proposed metamaterial absorber is designed so as to increase the bandwidth. The proposed structure is also independent for TE and TM polarization. Because of its simple implementation, near unity absorption and wide bandwidth this dual band polarization insensitive metamaterial absorber can be used for EMI/EMC applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorber" title="absorber">absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=C-band" title=" C-band"> C-band</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterial" title=" metamaterial"> metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer" title=" multilayer"> multilayer</a>, <a href="https://publications.waset.org/abstracts/search?q=X-band" title=" X-band "> X-band </a> </p> <a href="https://publications.waset.org/abstracts/124968/polarization-insensitive-absorber-with-increased-bandwidth-using-multilayer-metamaterial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Influence of Rotation on Rayleigh-Type Wave in Piezoelectric Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soniya%20Chaudhary">Soniya Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Sahu"> Sanjeev Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propagation of Rayleigh-type waves in a rotating piezoelectric plate is investigated. The materials are assumed to be transversely isotropic crystals. The frequency equation have been derived for electrically open and short cases. Effect of rotation and piezoelectricity have been shown. It is also found that piezoelectric material properties have an important effect on Rayleigh wave propagation. The result is relevant to the analysis and design of various acoustic surface wave devices constructed from piezoelectric materials also in SAW devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotation" title="rotation">rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20equation" title=" frequency equation"> frequency equation</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectricity" title=" piezoelectricity"> piezoelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=rayleigh-type%20wave" title=" rayleigh-type wave"> rayleigh-type wave</a> </p> <a href="https://publications.waset.org/abstracts/60606/influence-of-rotation-on-rayleigh-type-wave-in-piezoelectric-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Influence of Initial Stress and Corrugation on Rayleigh-Type Wave in Piezomagnetic Half-Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhinav%20Singhal">Abhinav Singhal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20A.%20Sahu"> Sanjeev A. Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propagation of Rayleigh-type surface waves in an initially stressed piezomagnetic half- space with irregular boundary is investigated. The materials are assumed to be transversely isotropic crystals. The dispersion relations have been derived for electrically open and short cases. Effect of initial stress and corrugation have been shown graphically. It is also found that piezomagnetic material properties have an important effect on wave propagation. The result is relevant to the analysis and design of various acoustic surface wave devices constructed from piezomagnetic materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugation" title="corrugation">corrugation</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20equation" title=" frequency equation"> frequency equation</a>, <a href="https://publications.waset.org/abstracts/search?q=piezomagnetic" title=" piezomagnetic"> piezomagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=rayleigh-type%20wave" title=" rayleigh-type wave"> rayleigh-type wave</a> </p> <a href="https://publications.waset.org/abstracts/58182/influence-of-initial-stress-and-corrugation-on-rayleigh-type-wave-in-piezomagnetic-half-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Preparation and Characterization of Polyaniline (PANI) – Platinum Nanocomposite </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumar%20Neeraj">Kumar Neeraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjan%20Haldar"> Ranjan Haldar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Srivastava"> Ashok Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyaniline used as light-emitting devices (LEDs), televisions, cellular telephones, automotive, Corrosion-resistant coatings, actuators and ability to have micro- and nano-devices. the electrical conductivity properties can be increased by introduction of metal nano particles. In the present study, platinum nano particles have been utilized to achieve the improved properties. Polyaniline and Pt-polyaniline composite are synthesized by chemical routes. The samples characterized by X-ray diffractometer show the amorphous nature of polyaniline and Pt-polyaniline composite. The Bragg’s diffraction peaks correspond to platinum nano particles and thermogravimetric analyzer predicts its decomposition at certain temperature. The current-potential characteristics of the samples are also studied which indicate a significant increasing the value of conductivity after introduction of pt nanoparticles in the matrix of polyaniline (PANI). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title="polyaniline">polyaniline</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD%20and%20platinum%20nanoparticles" title=" XRD and platinum nanoparticles"> XRD and platinum nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20sciences" title=" pharmaceutical sciences"> pharmaceutical sciences</a> </p> <a href="https://publications.waset.org/abstracts/26283/preparation-and-characterization-of-polyaniline-pani-platinum-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Design of Broadband W-Slotted Microstrip Patch Antenna </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20G.%20Nahata">Neeraj G. Nahata</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Bhagat"> K. S. Bhagat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstrip patch antenna widely used in communication area because it offers low profile, narrow bandwidth, high gain, and compact in size. It has big disadvantage of narrow bandwidth. To improve the bandwidth a W-slot technique is used, it is efficient to enhance the bandwidth of antenna. The feeding point of antenna is very important for efficient operation, so coaxial feeding technique is applied to microstrip patch antenna for impedance matching. A broadband W-slot microstrip patch antenna is designed successfully which attains a bandwidth of 22.74% at 10dB return loss with centre frequency of 4.5GHz and also it attains maximum directivity 8.78dBi. It is designed by cutting a W-slot into the patch of antenna, because of this resonant slot, the antenna gives broad bandwidth. This antenna is best suitable for C-band frequency spectrum. The proposed antenna is designed and simulated using IE3D software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broadband" title="broadband">broadband</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20antenna" title=" microstrip antenna"> microstrip antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=VSWR" title=" VSWR"> VSWR</a>, <a href="https://publications.waset.org/abstracts/search?q=W-slotted%20patch" title=" W-slotted patch"> W-slotted patch</a> </p> <a href="https://publications.waset.org/abstracts/25341/design-of-broadband-w-slotted-microstrip-patch-antenna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Analysis of Slip Flow Heat Transfer between Asymmetrically Heated Parallel Plates </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hari%20Mohan%20Kushwaha">Hari Mohan Kushwaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Kumar%20Sahu"> Santosh Kumar Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, analysis of heat transfer is carried out in the slip flow region for the fluid flowing between two parallel plates by employing the asymmetric heat fluxes at surface of the plates. The flow is assumed to be hydrodynamically and thermally fully developed for the analysis. The second order velocity slip and viscous dissipation effects are considered for the analysis. Closed form expressions are obtained for the Nusselt number as a function of Knudsen number and modified Brinkman number. The limiting condition of the present prediction for Kn = 0, Kn2 = 0, and Brq1 = 0 is considered and found to agree well with other analytical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Knudsen%20number" title="Knudsen number">Knudsen number</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20Brinkman%20number" title=" modified Brinkman number"> modified Brinkman number</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20flow" title=" slip flow"> slip flow</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20slip" title=" velocity slip"> velocity slip</a> </p> <a href="https://publications.waset.org/abstracts/17458/analysis-of-slip-flow-heat-transfer-between-asymmetrically-heated-parallel-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Empirical and Indian Automotive Equity Portfolio Decision Support</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Sankar">P. Sankar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20James%20Daniel%20Paul"> P. James Daniel Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Siddhant%20Sahu"> Siddhant Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indian%20automotive%20sector" title="Indian automotive sector">Indian automotive sector</a>, <a href="https://publications.waset.org/abstracts/search?q=stock%20market%20decisions" title=" stock market decisions"> stock market decisions</a>, <a href="https://publications.waset.org/abstracts/search?q=equity%20portfolio%20analysis" title=" equity portfolio analysis"> equity portfolio analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree%20classifiers" title=" decision tree classifiers"> decision tree classifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20data%20analysis" title=" statistical data analysis"> statistical data analysis</a> </p> <a href="https://publications.waset.org/abstracts/6454/empirical-and-indian-automotive-equity-portfolio-decision-support" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Performance Comparison of Joint Diagonalization Structure (JDS) Method and Wideband MUSIC Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Santosh">Sandeep Santosh</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20P.%20Sahu"> O. P. Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We simulate an efficient multiple wideband and nonstationary source localization algorithm by exploiting both the non-stationarity of the signals and the array geometric information.This algorithm is based on joint diagonalization structure (JDS) of a set of short time power spectrum matrices at different time instants of each frequency bin. JDS can be used for quick and accurate multiple non-stationary source localization. The JDS algorithm is a one stage process i.e it directly searches the Direction of arrivals (DOAs) over the continuous location parameter space. The JDS method requires that the number of sensors is not less than the number of sources. By observing the simulation results, one can conclude that the JDS method can localize two sources when their difference is not less than 7 degree but the Wideband MUSIC is able to localize two sources for difference of 18 degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=joint%20diagonalization%20structure%20%28JDS%29" title="joint diagonalization structure (JDS)">joint diagonalization structure (JDS)</a>, <a href="https://publications.waset.org/abstracts/search?q=wideband%20direction%20of%20arrival%20%28DOA%29" title=" wideband direction of arrival (DOA)"> wideband direction of arrival (DOA)</a>, <a href="https://publications.waset.org/abstracts/search?q=wideband%20MUSIC" title=" wideband MUSIC"> wideband MUSIC</a> </p> <a href="https://publications.waset.org/abstracts/22212/performance-comparison-of-joint-diagonalization-structure-jds-method-and-wideband-music-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minto%20Rattan">Minto Rattan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tania%20Bose"> Tania Bose</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Chamoli"> Neeraj Chamoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creep" title="creep">creep</a>, <a href="https://publications.waset.org/abstracts/search?q=isotropic" title=" isotropic"> isotropic</a>, <a href="https://publications.waset.org/abstracts/search?q=steady-state" title=" steady-state"> steady-state</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20gradient" title=" thermal gradient"> thermal gradient</a> </p> <a href="https://publications.waset.org/abstracts/59198/effect-of-linear-thermal-gradient-on-steady-state-creep-behavior-of-isotropic-rotating-disc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Mixed Micellization Study of Adiphenine Hydrochloride with 1-Decyl-3-Methylimidazolium Chloride</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbul%20B.%20Khan">Abbul B. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Dohare"> Neeraj Dohare</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajan%20Patel"> Rajan Patel </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mixed micellization of adiphenine hydrochloride (ADP) with 1-decyl-3-methylimidazolium chloride (C10mim.Cl), was investigated at different mole fractions and temperatures by surface tension measurements. The synergistic behavior (i.e., non-ideal behavior) for binary mixtures was explained by the deviation of critical micelle concentration (cmc) from ideal critical micelle concentration (cmc*), micellar mole fraction (Xim) from ideal micellar mole fraction (Xiideal), the values of interaction parameter (β) and activity coefficients (fi) (for both mixed micelles and mixed monolayer). The excess free energy (∆Gex) for the ADP- C10mim.Cl binary mixtures explain the stability of mixed micelles in comparison to micelles of pure ADP and C10mim.Cl. Interfacial parameters, i.e., Gibbs surface excess (Гmax), minimum head group area at air/ water interface (Amin), and free energy of micellization (ΔG0m) were also evaluated for the systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adiphenine%20hydrochloride" title="adiphenine hydrochloride">adiphenine hydrochloride</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20micelle%20concentration" title=" critical micelle concentration"> critical micelle concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20parameter" title=" interaction parameter"> interaction parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=activity%20coefficient" title=" activity coefficient"> activity coefficient</a> </p> <a href="https://publications.waset.org/abstracts/21352/mixed-micellization-study-of-adiphenine-hydrochloride-with-1-decyl-3-methylimidazolium-chloride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Glucose Monitoring System Using Machine Learning Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangeeta%20Palekar">Sangeeta Palekar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Rangwani"> Neeraj Rangwani</a>, <a href="https://publications.waset.org/abstracts/search?q=Akash%20Poddar"> Akash Poddar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayu%20Kalambe"> Jayu Kalambe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence%20glucose%20detection" title="artificial intelligence glucose detection">artificial intelligence glucose detection</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20oxidase" title=" glucose oxidase"> glucose oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxidase" title=" peroxidase"> peroxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/141022/glucose-monitoring-system-using-machine-learning-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Dielectric, Energy Storage and Impedance Spectroscopic Studies of Tin Doped Ba₀.₉₈Ca₀.₀₂TiO₃ Lead-Free Ceramics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramovatar">Ramovatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Panwar"> Neeraj Panwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead free Ba₀.₉₈Ca₀.₀₂SnxTi₁₋ₓO₃ (x = 0.01 and 0.05 mole %) ferroelectric ceramics have been synthesized by the solid-state reaction method with sintering at 1400 °C for 2 h. The room temperature x-ray diffraction (XRD) patterns identified the tetragonal phase for x = 0.01 composition whereas co-existence of tetragonal and orthorhombic phases for x =0.05 composition. Raman spectroscopy results corroborated with the XRD results at room temperature. The maximum dielectric properties (ɛm ~ 8591, tanδ ~ 0.018) were obtained for the compound with x = 0.01 at 5 kHz. Further, the tetragonal to cubic (TC) transition temperature was observed at 122 °C and 102 °C for the ceramics with x =0.01 and x = 0.05, respectively. The temperature dependent P-E loops also revealed the existence of TC at these particular temperature values. The energy storage density (Ed) of both compounds was calculated from room temperature P – E loops at an applied electric field of 20 kV/cm. The maximum Ed ~ 224 kJ/m³ was achieved for the sample with x = 0.01 as compared to 164 kJ/m³ for the x =0.05 composition. The value of Ed is comparable to other BaTiO₃ based lead free ferroelectric systems. Impedance spectroscopy analysis exhibited the bulk and grain boundary contributions above 300 °C under the frequency range 100 Hz to 1 MHz. The above properties make these ceramics suitable for energy storage devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title="dielectric properties">dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20properties" title=" energy storage properties"> energy storage properties</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20spectroscopy" title=" impedance spectroscopy"> impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=lead%20free%20ceramics" title=" lead free ceramics"> lead free ceramics</a> </p> <a href="https://publications.waset.org/abstracts/99492/dielectric-energy-storage-and-impedance-spectroscopic-studies-of-tin-doped-ba098ca002tio3-lead-free-ceramics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Device Control Using Brain Computer Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Neeraj">P. Neeraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Anurag%20Sharma"> Anurag Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Harsukhpreet%20Singh"> Harsukhpreet Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In current years, Brain-Computer Interface (BCI) scheme based on steady-state Visual Evoked Potential (SSVEP) have earned much consideration. This study tries to evolve an SSVEP based BCI scheme that can regulate any gadget mock-up in two unique positions ON and OFF. In this paper, two distinctive gleam frequencies in low-frequency part were utilized to evoke the SSVEPs and were shown on a Liquid Crystal Display (LCD) screen utilizing Lab View. Two stimuli shading, Yellow, and Blue were utilized to prepare the system in SSVEPs. The Electroencephalogram (EEG) signals recorded from the occipital part. Elements of the brain were separated by utilizing discrete wavelet Transform. A prominent system for multilayer system diverse Neural Network Algorithm (NNA), is utilized to characterize SSVEP signals. During training of the network with diverse calculation Regression plot results demonstrated that when Levenberg-Marquardt preparing calculation was utilized the exactness turns out to be 93.9%, which is superior to another training algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20computer%20interface" title="brain computer interface">brain computer interface</a>, <a href="https://publications.waset.org/abstracts/search?q=electroencephalography" title=" electroencephalography"> electroencephalography</a>, <a href="https://publications.waset.org/abstracts/search?q=steady-state%20visual%20evoked%20potential" title=" steady-state visual evoked potential"> steady-state visual evoked potential</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20transform" title=" wavelet transform"> wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/47898/device-control-using-brain-computer-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Visualization of Quantitative Thresholds in Stocks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddhant%20Sahu">Siddhant Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20James%20Daniel%20Paul"> P. James Daniel Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technical analysis comprised by various technical indicators is a holistic way of representing price movement of stocks in the market. Various forms of indicators have evolved from the primitive ones in the past decades. There have been many attempts to introduce volume as a major determinant to determine strong patterns in market forecasting. The law of demand defines the relationship between the volume and price. Most of the traders are familiar with the volume game. Including the time dimension to the law of demand provides a different visualization to the theory. While attempting the same, it was found that there are different thresholds in the market for different companies. These thresholds have a significant influence on the price. This article is an attempt in determining the thresholds for companies using the three dimensional graphs for optimizing the portfolios. It also emphasizes on the magnitude of importance of volumes as a key factor for determining of predicting strong price movements, bullish and bearish markets. It uses a comprehensive data set of major companies which form a major chunk of the Indian automotive sector and are thus used as an illustration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=technical%20analysis" title="technical analysis">technical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20system" title=" expert system"> expert system</a>, <a href="https://publications.waset.org/abstracts/search?q=law%20of%20demand" title=" law of demand"> law of demand</a>, <a href="https://publications.waset.org/abstracts/search?q=stocks" title=" stocks"> stocks</a>, <a href="https://publications.waset.org/abstracts/search?q=portfolio%20analysis" title=" portfolio analysis"> portfolio analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Indian%20automotive%20sector" title=" Indian automotive sector"> Indian automotive sector</a> </p> <a href="https://publications.waset.org/abstracts/6542/visualization-of-quantitative-thresholds-in-stocks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Model Based Simulation Approach to a 14-Dof Car Model Using Matlab/Simulink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishit%20Sheth">Ishit Sheth</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandrasekhar%20Jinendran"> Chandrasekhar Jinendran</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinmaya%20Ranjan%20Sahu"> Chinmaya Ranjan Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A fourteen degree of freedom (DOF) ride and handling control mathematical model is developed for a car using generalized boltzmann hamel equation which will create a basis for design of ride and handling controller. Mathematical model developed yield equations of motion for non-holonomic constrained systems in quasi-coordinates. The governing differential equation developed integrates ride and handling control of car. Model-based systems engineering approach is implemented for simulation using matlab/simulink, vehicle’s response in different DOF is examined and later validated using commercial software (ADAMS). This manuscript involves detailed derivation of full car vehicle model which provides response in longitudinal, lateral and yaw motion to demonstrate the advantages of the developed model over the existing dynamic model. The dynamic behaviour of the developed ride and handling model is simulated for different road conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Full%20Vehicle%20Model" title="Full Vehicle Model">Full Vehicle Model</a>, <a href="https://publications.waset.org/abstracts/search?q=MBSE" title=" MBSE"> MBSE</a>, <a href="https://publications.waset.org/abstracts/search?q=Non%20Holonomic%20Constraints" title=" Non Holonomic Constraints"> Non Holonomic Constraints</a>, <a href="https://publications.waset.org/abstracts/search?q=Boltzmann%20Hamel%20Equation" title=" Boltzmann Hamel Equation"> Boltzmann Hamel Equation</a> </p> <a href="https://publications.waset.org/abstracts/135319/model-based-simulation-approach-to-a-14-dof-car-model-using-matlabsimulink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Functional Instruction Set Simulator of a Neural Network IP with Native Brain Float-16 Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debajyoti%20Mukherjee">Debajyoti Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Arathy%20B.%20S."> Arathy B. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Arpita%20Sahu"> Arpita Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=Saranga%20P.%20Pogula"> Saranga P. Pogula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A functional model to mimic the functional correctness of a neural network compute accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of GCC compilers to the BF-16 datatype, which we addressed with a native BF-16 generator integrated into our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex neural network accelerator design by proposing a functional model-based scoreboard or software model using SystemC. The proposed functional model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT, bringing up micro-steps of execution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ISA" title="ISA">ISA</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=Brain%20Float-16" title=" Brain Float-16"> Brain Float-16</a>, <a href="https://publications.waset.org/abstracts/search?q=DUT" title=" DUT"> DUT</a> </p> <a href="https://publications.waset.org/abstracts/159455/functional-instruction-set-simulator-of-a-neural-network-ip-with-native-brain-float-16-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Synthesis of Biologically Active Heterocyclic Compounds via C-H Bond Activation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Kumar%20Mishra">Neeraj Kumar Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Su%20Kim"> In Su Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The isoindoline, indazole and indole heterocycles are ubiquitous structural motif found in heterocyclic compounds as they exhibit biological and medicinal applications. For example, isoindoline motif is present in molecules that act as endothelin-A receptor antagonists and dipeptidyl peptidase inhibitors. Moreover, isoindoline derivatives are very crucial constituents in the field of materials science as attractive candidates for organic light-emitting devices. However, compounds containing the indazole motif are known to exhibit to a variety of biological activities, such as estrogen receptor, HIV protease inhibition and anti-tumor activity. The prevalence of indazoles and indoles has led to the development of many useful methods for their preparation. Thus, isoindoline, indazole and indole heterocycles can be new candidates for the next generation of pharmaceuticals. Therefore, the development of highly efficient strategies for the formation of these heterocyclic architectures is an area of great interest in organic synthesis. The past years, transition-metal-catalyzed C−H activation followed by annulation reaction has been frequently used as a powerful tool to construct various heterocycles. Herein, we describe our recent achievements about the transition-metal-catalyzed tandem cyclization reactions of N-benzyltriflamides, 1,2-disubstituted arylhydrazines, acetanilides, etc. via C−H bond activation to access the corresponding bioactive heterocylic scaffolds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biologically%20active" title="biologically active">biologically active</a>, <a href="https://publications.waset.org/abstracts/search?q=C-H%20activation" title=" C-H activation"> C-H activation</a>, <a href="https://publications.waset.org/abstracts/search?q=heterocyclic%20compounds" title=" heterocyclic compounds"> heterocyclic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=transition-metal%20catalysts" title=" transition-metal catalysts"> transition-metal catalysts</a> </p> <a href="https://publications.waset.org/abstracts/58546/synthesis-of-biologically-active-heterocyclic-compounds-via-c-h-bond-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Electrically Tuned Photoelectrochemical Properties of Ferroelectric PVDF/Cu/PVDF-NaNbO₃ Photoanode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simrjit%20Singh">Simrjit Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Khare"> Neeraj Khare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, photo-electrochemical (PEC) water splitting with an aim to generate hydrogen (H₂) as a clean and renewable fuel has been the subject of intense research interests. Ferroelectric semiconductors have been demonstrated to exhibit enhanced PEC properties as these can be polarized with the application of an external electric field resulting in a built-in potential which helps in separating out the photogenerated charge carriers. In addition to this, by changing the polarization direction, the energy band alignment at the electrode/electrolyte interface can be modulated in a way that it can help in the easy transfer of the charge carriers from the electrode to the electrolyte. In this paper, we investigated the photoelectrochemical properties of ferroelectric PVDF/Cu/PVDF-NaNbO₃ PEC cell and demonstrated that PEC properties can be tuned with ferroelectric polarization and piezophototronic effect. Photocurrent density is enhanced from ~0.71 mA/cm² to 1.97 mA/cm² by changing the polarization direction. Furthermore, due to flexibility and piezoelectric properties of PVDF/Cu/PVDF-NaNbO₃ PEC cell, a further ~26% enhancement in the photocurrent is obtained using the piezophototronic effect. A model depicting the modulation of band alignment between PVDF and NaNbO₃ with the electric field is proposed to explain the observed tuning of the PEC properties. Electrochemical Impedance spectroscopy measurements support the validity of the proposed model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20tuning" title="electrical tuning">electrical tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%82%82%20generation" title=" H₂ generation"> H₂ generation</a>, <a href="https://publications.waset.org/abstracts/search?q=photoelectrochemical" title=" photoelectrochemical"> photoelectrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=NaNbO%E2%82%83" title=" NaNbO₃"> NaNbO₃</a> </p> <a href="https://publications.waset.org/abstracts/97331/electrically-tuned-photoelectrochemical-properties-of-ferroelectric-pvdfcupvdf-nanbo3-photoanode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Factors Affecting the Profitability of Commercial Banks: An Empirical Study of Indian Banking Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Gupta">Neeraj Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Mahakud"> Jitendra Mahakud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The banking system plays a major role in the Indian economy. Banking system is the payment gateway of most of the financial transactions. Banking has gone a major transition that is still in progress. Recent banking reforms after liberalization in 1991 have led to the establishment of the foreign banks in the country. The foreign banks are not listed in the Indian stock markets and have increased the competition leading to the capture of the significant share in the revenue from the public sector banks which are still the major players in the Indian banking sector. The performance of the banking sector depends on the internal (bank specific) as well as the external (market specific and macroeconomic) factors. Profitability in banking sector is affected by numerous factors which can be internal or external. The present study examines these internal and external factors which are likely to effect the profitablilty of the Indian banks. The sample consists of a panel dataset of 64 commercial banks in India, consisting of 1088 observations over the years from 1998 to 2016. The GMM dynamic panel estimation given by Arellano and Bond has been used. The study revealed that the variables capital adequacy ratio, deposit, age, labour productivity, non-performing asset, inflation and concentration have significant effect on performance measured. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=banks%20in%20India" title="banks in India">banks in India</a>, <a href="https://publications.waset.org/abstracts/search?q=bank%20performance" title=" bank performance"> bank performance</a>, <a href="https://publications.waset.org/abstracts/search?q=bank%20productivity" title=" bank productivity"> bank productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=banking%20management" title=" banking management"> banking management</a> </p> <a href="https://publications.waset.org/abstracts/71535/factors-affecting-the-profitability-of-commercial-banks-an-empirical-study-of-indian-banking-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Functional Instruction Set Simulator (ISS) of a Neural Network (NN) IP with Native BF-16 Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debajyoti%20Mukherjee">Debajyoti Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Arathy%20B.%20S."> Arathy B. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Arpita%20Sahu"> Arpita Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=Saranga%20P.%20Pogula"> Saranga P. Pogula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Functional Model to mimic the functional correctness of a Neural Network Compute Accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of gcc compilers to BF-16 datatype, which we addressed with a native BF-16 generator integrated to our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex Neural Network Accelerator design by proposing a Functional Model-based scoreboard or Software model using SystemC. The proposed Functional Model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT bringing up micro-steps of execution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ISA%20%28instruction%20set%20architecture%29" title="ISA (instruction set architecture)">ISA (instruction set architecture)</a>, <a href="https://publications.waset.org/abstracts/search?q=NN%20%28neural%20network%29" title=" NN (neural network)"> NN (neural network)</a>, <a href="https://publications.waset.org/abstracts/search?q=TLM%20%28transaction-level%20modeling%29" title=" TLM (transaction-level modeling)"> TLM (transaction-level modeling)</a>, <a href="https://publications.waset.org/abstracts/search?q=GEMM%20%28general%20matrix%20multiplication%29" title=" GEMM (general matrix multiplication)"> GEMM (general matrix multiplication)</a> </p> <a href="https://publications.waset.org/abstracts/168875/functional-instruction-set-simulator-iss-of-a-neural-network-nn-ip-with-native-bf-16-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Neeraj%20Sahu&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Neeraj%20Sahu&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Neeraj%20Sahu&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>