CINXE.COM
{"title":"Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution","authors":"Tomoaki Hashimoto","volume":105,"journal":"International Journal of Physical and Mathematical Sciences","pagesStart":534,"pagesEnd":539,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10002375","abstract":"In recent decades, probabilistic constrained optimal\r\ncontrol problems have attracted much attention in many research\r\nfields. Although probabilistic constraints are generally intractable\r\nin an optimization problem, several tractable methods haven been\r\nproposed to handle probabilistic constraints. In most methods,\r\nprobabilistic constraints are reduced to deterministic constraints\r\nthat are tractable in an optimization problem. However, there is a\r\ngap between the transformed deterministic constraints in case of\r\nknown and unknown probability distribution. This paper examines\r\nthe conservativeness of probabilistic constrained optimization method\r\nfor unknown probability distribution. The objective of this paper is\r\nto provide a quantitative assessment of the conservatism for tractable\r\nconstraints in probabilistic constrained optimization with unknown\r\nprobability distribution.","references":"[1] D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert,\r\nConstrained Model Predictive Control: Stability and Optimality,\r\nAutomatica, Vol. 36, 2000, pp.789-814.\r\n[2] T. Hashimoto, Y. Yoshioka, T. Ohtsuka, Receding Horizon Control with\r\nNumerical Solution for Thermal Fluid Systems, Proceedings of SICE\r\nAnnual Conference, 2012, pp.1298-1303.\r\n[3] T. Hashimoto, Y. Yoshioka, T. Ohtsuka, Receding Horizon Control with\r\nNumerical Solution for Spatiotemporal Dynamic Systems, Proceedings\r\nof IEEE Conference on Decision and Control, 2013, pp.2920-2925.\r\n[4] T. Hashimoto, Y. Yoshioka and T. Ohtsuka, Receding Horizon Control\r\nfor Hot Strip Mill Cooling Systems, IEEE\/ASME Transactions on\r\nMechatronics, vol. 18, 2013, pp. 998-1005.\r\n[5] T. Hashimoto, Y. Yoshioka and T. Ohtsuka, Receding Horizon Control\r\nWith Numerical Solution for Nonlinear Parabolic Partial Differential\r\nEquations, IEEE Transactions on Automatic Control, Vol. 58, 2013, pp.\r\n725-730.\r\n[6] T. Hashimoto, Y. Takiguchi and T. Ohtsuka, Receding Horizon Control\r\nfor High-Dimensional Burgers \u2019 Equations with Boundary Control\r\nInputs, Transactions of the Japan Society for Aeronautical and Space\r\nSciences, Vol. 56, 2013, pp. 137-144.\r\n[7] T. Hashimoto, Y. Takiguchi and T. Ohtsuka, Output Feedback Receding\r\nHorizon Control for Spatiotemporal Dynamic Systems, Proceedings of\r\nAsian Control Conference, 2013.\r\n[8] R. Satoh, T. Hashimoto and T. Ohtsuka, Receding Horizon Control for\r\nMass Transport Phenomena in Thermal Fluid Systems, Proceedings of\r\nAustralian Control Conference, 2014, pp.273-278.\r\n[9] T. Hashimoto, Receding Horizon Control for a Class of Discrete-time\r\nNonlinear Implicit Systems, Proceedings of IEEE Conference on\r\nDecision and Control, 2014, pp.5089-5094.\r\n[10] M. V. Kothare, V. Balakrishnan and M. Morari, Robust Constrained\r\nModel Predictive Control Using Linear Matrix Inequalities, Automatica,\r\nVol. 32, 1996, pp.1361-1379.\r\n[11] P. Scokaert and D. Mayne, Min-max Feedback Model Predictive Control\r\nfor Constrained Linear Systems, IEEE Trans. Automat. Contr., Vol. 43,\r\n1998, pp.1136-1142.\r\n[12] A. Bemporad, F. Borrelli and M. Morari, Min-max Control of\r\nConstrained Uncertain Discrete-time Linear Systems, IEEE Trans.\r\nAutomat. Contr., Vol. 48, 2003, pp.1600-1606.\r\n[13] T. Alamo, D. Pe\u02dcna, D. Limon and E. Camacho, Constrained Min-max\r\nPredictive Control: Modifications of the Objective Function Leading to\r\nPolynomial Complexity, IEEE Trans. Automat. Contr., Vol. 50, 2005,\r\npp.710-714.\r\n[14] D. Pe\u02dcna, T. Alamo, A. Bemporad and E. Camacho, A Decomposition\r\nAlgorithm for Feedback Min-max Model Predictive Control, IEEE\r\nTrans. Automat. Contr., Vol. 51, 2006, pp.1688-1692.\r\n[15] D. Bertsimas and D. B. Brown, Constrained Stochastic LQC: A\r\nTractable Approach, IEEE Trans. Automat. Contr., Vol. 52, 2007,\r\npp.1826-1841.\r\n[16] P. Hokayema, E. Cinquemani, D. Chatterjee, F Ramponid and J.\r\nLygeros, Stochastic Receding Horizon Control with Output Feedback\r\nand Bounded Controls, Automatica, Vol. 48, 2012, pp.77-88.\r\n[17] M. Cannon, B. Kouvaritakis and D. Ng, Probabilistic Tubes in Linear\r\nStochastic Model Predictive Control, Systems & Control Letters, Vol.\r\n58, 2009, pp.747-753.\r\n[18] M. Cannon, B. Kouvaritakis and X. Wu, Model Predictive Control for\r\nSystems with Stochastic Multiplicative Uncertainty and Probabilistic\r\nConstraints, Automatica, Vol. 45, 2009, pp.167-172.\r\n[19] M. Cannon, B. Kouvaritakis and X. Wu, Probabilistic Constrained MPC\r\nfor Multiplicative and Additive Stochastic Uncertainty, IEEE Trans.\r\nAutomat. Contr., Vol. 54, 2009, pp.1626-1632.\r\n[20] E. Cinquemani, M. Agarwal, D. Chatterjee and J. Lygeros, Convexity\r\nand Convex Approximations of Discrete-time Stochastic Control\r\nProblems with Constraints, Automatica, Vol. 47, 2011, pp.2082-2087.\r\n[21] M. Ono, L. Blackmore and B. C. Williams, Chance Constrained Finite\r\nHorizon Optimal Control with Nonconvex Constraints, Proceedings of\r\nAmerican Control Conference, 2010, pp.1145-1152.\r\n[22] G. C. Calafiore and M. C. Campi, The Scenario Approach to Robust\r\nControl Design, IEEE Trans. Automat. Contr., Vol. 51, 2006, pp.742-753.\r\n[23] J. Matu\u02c7sko and F. Borrelli, Scenario-Based Approach to Stochastic\r\nLinear Predictive Control, Proceedings of the 51st IEEE Conference\r\non Decision and Control, 2012, pp.5194-5199.\r\n[24] A. Nemirovski and A. Shapiro, Convex Approximations of Chance\r\nConstrained Programs, SIAM J. Control Optim., Vol. 17, 2006,\r\npp.969-996.\r\n[25] Z. Zhou and R. Cogill, An Algorithm for State Constrained Stochastic\r\nLinear-Quadratic Control, Proceedings of American Control Conference,\r\n2011, pp.1476-1481.\r\n[26] T. Hashimoto, I. Yoshimoto, T. Ohtsuka, Probabilistic Constrained\r\nModel Predictive Control for Schr\u00a8odinger Equation with Finite\r\nApproximation, Proceedings of SICE Annual Conference, 2012,\r\npp.1613-1618.\r\n[27] T. Hashimoto, Probabilistic Constrained Model Predictive Control for\r\nLinear Discrete-time Systems with Additive Stochastic Disturbances,\r\nProceedings of IEEE Conference on Decision and Control, 2013,\r\npp.6434-6439.\r\n[28] T. Hashimoto, Computational Simulations on Stability of Model\r\nPredictive Control for Linear Discrete-time Stochastic Systems,\r\nInternational Journal of Computer, Electrical, Automation, Control and\r\nInformation Engineering, 2015, pp.1385-1390.\r\n[29] M. Farina, L. Giulioni, L. Magni and R. Scattolini, A Probabilistic\r\nApproach to Model Predictive Control, Proceedings of the 52nd IEEE\r\nConference on Decision and Control, 2013, pp.7734-7739.\r\n[30] B. \u00d8ksendal, Stochastic Differential Equations: An Introduction with\r\nApplications, Springer, 6th edition, 2010.\r\n[31] S. Boucheron, G. Lugosi and P. Massart Concentration Inequalities: A\r\nNonasymptotic Thepry of Independence, Oxford University Press, 2013.\r\n[32] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series\r\nin Operation Research and Financial Engineering, Springer, 2006.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 105, 2015"}