CINXE.COM

Search results for: real-time PCR

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: real-time PCR</title> <meta name="description" content="Search results for: real-time PCR"> <meta name="keywords" content="real-time PCR"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="real-time PCR" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="real-time PCR"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: real-time PCR</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> 150 KVA Multifunction Laboratory Test Unit Based on Power-Frequency Converter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bartosz%20Kedra">Bartosz Kedra</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Malkowski"> Robert Malkowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides description and presentation of laboratory test unit built basing on 150 kVA power frequency converter and Simulink RealTime platform. Assumptions, based on criteria which load and generator types may be simulated using discussed device, are presented, as well as control algorithm structure. As laboratory setup contains transformer with thyristor controlled tap changer, a wider scope of setup capabilities is presented. Information about used communication interface, data maintenance, and storage solution as well as used Simulink real-time features is presented. List and description of all measurements are provided. Potential of laboratory setup modifications is evaluated. For purposes of Rapid Control Prototyping, a dedicated environment was used Simulink RealTime. Therefore, load model Functional Unit Controller is based on a PC computer with I/O cards and Simulink RealTime software. Simulink RealTime was used to create real-time applications directly from Simulink models. In the next step, applications were loaded on a target computer connected to physical devices that provided opportunity to perform Hardware in the Loop (HIL) tests, as well as the mentioned Rapid Control Prototyping process. With Simulink RealTime, Simulink models were extended with I/O cards driver blocks that made automatic generation of real-time applications and performing interactive or automated runs on a dedicated target computer equipped with a real-time kernel, multicore CPU, and I/O cards possible. Results of performed laboratory tests are presented. Different load configurations are described and experimental results are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area and arbitrary active and reactive power regulation basing on defined schedule. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title="MATLAB">MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20converter" title=" power converter"> power converter</a>, <a href="https://publications.waset.org/abstracts/search?q=Simulink%20Real-Time" title=" Simulink Real-Time"> Simulink Real-Time</a>, <a href="https://publications.waset.org/abstracts/search?q=thyristor-controlled%20tap%20changer" title=" thyristor-controlled tap changer"> thyristor-controlled tap changer</a> </p> <a href="https://publications.waset.org/abstracts/50924/150-kva-multifunction-laboratory-test-unit-based-on-power-frequency-converter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Performance of the Abbott RealTime High Risk HPV Assay with SurePath Liquid Based Cytology Specimens from Women with Low Grade Cytological Abnormalities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Sargent">Alexandra Sargent</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Ferris"> Sarah Ferris</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Theofanous"> Ioannis Theofanous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Abbott RealTime High Risk HPV test (RealTime HPV) is one of five assays clinically validated and approved by the English NHS Cervical Screening Programme (CSP) for HPV triage of low grade dyskaryosis and test-of-cure of treated Cervical Intraepithelial Neoplasia. The assay is a highly automated multiplex real-time PCR test for detecting 14 high risk (hr) HPV types, with simultaneous differentiation of HPV 16 and HPV 18 versus non-HPV 16/18 hrHPV. An endogenous internal control ensures sample cellularity, controls extraction efficiency and PCR inhibition. The original cervical specimen collected in SurePath (SP) liquid-based cytology (LBC) medium (BD Diagnostics) and the SP post-gradient cell pellets (SPG) after cytological processing are both CE marked for testing with the RealTime HPV test. During the 2011 NHSCSP validation of new tests only the original aliquot of SP LBC medium was investigated. Residual sample volume left after cytology slide preparation is low and may not always have sufficient volume for repeat HPV testing or for testing of other biomarkers that may be implemented in testing algorithms in the future. The SPG samples, however, have sufficient volumes to carry out additional testing and necessary laboratory validation procedures. This study investigates the correlation of RealTime HPV results of cervical specimens collected in SP LBC medium from women with low grade cytological abnormalities observed with matched pairs of original SP LBC medium and SP post-gradient cell pellets (SPG) after cytology processing. Matched pairs of SP and SPG samples from 750 women with borderline (N = 392) and mild (N = 351) cytology were available for this study. Both specimen types were processed and parallel tested for the presence of hrHPV with RealTime HPV according to the manufacturer´s instructions. HrHPV detection rates and concordance between test results from matched SP and SPGCP pairs were calculated. A total of 743 matched pairs with valid test results on both sample types were available for analysis. An overall-agreement of hrHPV test results of 97.5% (k: 0.95) was found with matched SP/SPG pairs and slightly lower concordance (96.9%; k: 0.94) was observed on 392 pairs from women with borderline cytology compared to 351 pairs from women with mild cytology (98.0%; k: 0.95). Partial typing results were highly concordant in matched SP/SPG pairs for HPV 16 (99.1%), HPV 18 (99.7%) and non-HPV16/18 hrHPV (97.0%), respectively. 19 matched pairs were found with discrepant results: 9 from women with borderline cytology and 4 from women with mild cytology were negative on SPG and positive on SP; 3 from women with borderline cytology and 3 from women with mild cytology were negative on SP and positive on SPG. Excellent correlation of hrHPV DNA test results was found between matched pairs of SP original fluid and post-gradient cell pellets from women with low grade cytological abnormalities tested with the Abbott RealTime High-Risk HPV assay, demonstrating robust performance of the test with both specimen types and reassuring the utility of the assay for cytology triage with both specimen types. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbott%20realtime%20test" title="Abbott realtime test">Abbott realtime test</a>, <a href="https://publications.waset.org/abstracts/search?q=HPV" title=" HPV"> HPV</a>, <a href="https://publications.waset.org/abstracts/search?q=SurePath%20liquid%20based%20cytology" title=" SurePath liquid based cytology"> SurePath liquid based cytology</a>, <a href="https://publications.waset.org/abstracts/search?q=surepath%20post-gradient%20cell%20pellet" title=" surepath post-gradient cell pellet"> surepath post-gradient cell pellet</a> </p> <a href="https://publications.waset.org/abstracts/61325/performance-of-the-abbott-realtime-high-risk-hpv-assay-with-surepath-liquid-based-cytology-specimens-from-women-with-low-grade-cytological-abnormalities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Developing a Multiagent-Based Decision Support System for Realtime Multi-Risk Disaster Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Moser">D. Moser</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pinto"> D. Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Cipriano"> A. Cipriano </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Disaster Management System (DMS) for countries with different disasters is very important. In the world different disasters like earthquakes, tsunamis, volcanic eruption, fire or other natural or man-made disasters occurs and have an effect on the population. It is also possible that two or more disasters arisen at the same time, this means to handle multi-risk situations. To handle such a situation a Decision Support System (DSS) based on multiagents is a suitable architecture. The most known DMSs deal with one (in the case of an earthquake-tsunami combination with two) disaster and often with one particular disaster. Nevertheless, a DSS helps for a better realtime response. Analyze the existing systems in the literature and expand them for multi-risk disasters to construct a well-organized system is the proposal of our work. The here shown work is an approach of a multi-risk system, which needs an architecture, and well-defined aims. In this moment our study is a kind of case study to analyze the way we have to follow to create our proposed system in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20support%20system" title="decision support system">decision support system</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20management%20system" title=" disaster management system"> disaster management system</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-risk" title=" multi-risk"> multi-risk</a>, <a href="https://publications.waset.org/abstracts/search?q=multiagent%20system" title=" multiagent system"> multiagent system</a> </p> <a href="https://publications.waset.org/abstracts/26119/developing-a-multiagent-based-decision-support-system-for-realtime-multi-risk-disaster-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Recommender System Based on Mining Graph Databases for Data-Intensive Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Gamal">Mostafa Gamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoda%20K.%20Mohamed"> Hoda K. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Islam%20El-Maddah"> Islam El-Maddah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Hamdi"> Ali Hamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, many digital documents on the web have been created due to the rapid growth of ’social applications’ communities or ’Data-intensive applications’. The evolution of online-based multimedia data poses new challenges in storing and querying large amounts of data for online recommender systems. Graph data models have been shown to be more efficient than relational data models for processing complex data. This paper will explain the key differences between graph and relational databases, their strengths and weaknesses, and why using graph databases is the best technology for building a realtime recommendation system. Also, The paper will discuss several similarity metrics algorithms that can be used to compute a similarity score of pairs of nodes based on their neighbourhoods or their properties. Finally, the paper will discover how NLP strategies offer the premise to improve the accuracy and coverage of realtime recommendations by extracting the information from the stored unstructured knowledge, which makes up the bulk of the world’s data to enrich the graph database with this information. As the size and number of data items are increasing rapidly, the proposed system should meet current and future needs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph%20databases" title="graph databases">graph databases</a>, <a href="https://publications.waset.org/abstracts/search?q=NLP" title=" NLP"> NLP</a>, <a href="https://publications.waset.org/abstracts/search?q=recommendation%20systems" title=" recommendation systems"> recommendation systems</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20metrics" title=" similarity metrics"> similarity metrics</a> </p> <a href="https://publications.waset.org/abstracts/163018/recommender-system-based-on-mining-graph-databases-for-data-intensive-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Visualization-Based Feature Extraction for Classification in Real-Time Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%81goston%20Nagy">Ágoston Nagy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a method of using unsupervised machine learning to visualize the feature space of a dataset in 2D, in order to find most characteristic segments in the set. After dimension reduction, users can select clusters by manual drawing. Selected clusters are recorded into a data model that is used for later predictions, based on realtime data. Predictions are made with supervised learning, using Gesture Recognition Toolkit. The paper introduces two example applications: a semantic audio organizer for analyzing incoming sounds, and a gesture database organizer where gestural data (recorded by a Leap motion) is visualized for further manipulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gesture%20recognition" title="gesture recognition">gesture recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20interaction" title=" real-time interaction"> real-time interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a> </p> <a href="https://publications.waset.org/abstracts/68382/visualization-based-feature-extraction-for-classification-in-real-time-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Evaluation of Fetal brain using Magnetic Resonance Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Farajzadeh%20Ajirlou">Mahdi Farajzadeh Ajirlou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ordinary fetal brain development can be considered by in vivo attractive reverberation imaging (MRI) from the 18th gestational week (GW) to term and depends fundamentally on T2-weighted and diffusion-weighted (DW) arrangements. The foremost commonly suspected brain pathologies alluded to fetal MRI for assist assessment are ventriculomegaly, lost corpus callosum, and anomalies of the posterior fossa. Brain division could be a crucial to begin with step in neuroimage examination. Within the case of fetal MRI it is especially challenging and critical due to the subjective introduction of the hatchling, organs that encompass the fetal head, and irregular fetal movement. A few promising strategies have been proposed but are constrained in their execution in challenging cases and in realtime division. Fetal MRI is routinely performed on a 1.5-Tesla scanner without maternal or fetal sedation. The mother lies recumbent amid the course of the examination, the length of which is ordinarily 45 to 60 minutes. The accessibility and continuous approval of standardizing fetal brain development directions will give critical devices for early discovery of impeded fetal brain development upon which to oversee high-risk pregnancies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain" title="brain">brain</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal" title=" fetal"> fetal</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a> </p> <a href="https://publications.waset.org/abstracts/173367/evaluation-of-fetal-brain-using-magnetic-resonance-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> A Building Structure Health Monitoring DeviceBased on Cost Effective 1-Axis Accelerometers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih%20Hsing%20Lin">Chih Hsing Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Ching%20Chen"> Wen-Ching Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ssu-Ying%20Chen"> Ssu-Ying Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Chyau%20Yang"> Chih-Chyau Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Ming%20Wu"> Chien-Ming Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Ming%20Huang"> Chun-Ming Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Critical structures such as buildings, bridges and dams require periodic inspections to ensure safe operation. The reliable inspection of structures can be achieved by combing temperature sensor and accelerometers. In this work, we propose a building structure health monitoring device (BSHMD) with using three 1-axis accelerometers, gateway, analog to digital converter (ADC), and data logger to monitoring the building structure. The proposed BSHMD achieves the features of low cost by using three 1-axis accelerometers with the data synchronization problem being solved, and easily installation and removal. Furthermore, we develop a packet acquisition program to receive the sensed data and then classify it based on time and date. Compared with 3-axis accelerometer, our proposed 1-axis accelerometers based device achieves 64.3% cost saving. Compared with previous structural monitoring device, the BSHMD achieves 89% area saving. Therefore, with using the proposed device, the realtime diagnosis system for building damage monitoring can be conducted effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20structure%20health%20monitoring" title="building structure health monitoring">building structure health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20effective" title=" cost effective"> cost effective</a>, <a href="https://publications.waset.org/abstracts/search?q=1-axis%20accelerometers" title=" 1-axis accelerometers"> 1-axis accelerometers</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20diagnosis" title=" real-time diagnosis"> real-time diagnosis</a> </p> <a href="https://publications.waset.org/abstracts/54760/a-building-structure-health-monitoring-devicebased-on-cost-effective-1-axis-accelerometers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Computer Network Applications, Practical Implementations and Structural Control System Representations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Miloudi%20Djelloul">El Miloudi Djelloul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The computer network play an important position for practical implementations of the differently system. To implement a system into network above all is needed to know all the configurations, which is responsible to be a part of the system, and to give adequate information and solution in realtime. So if want to implement this system for example in the school or relevant institutions, the first step is to analyze the types of model which is needed to be configured and another important step is to organize the works in the context of devices, as a part of the general system. Often before configuration, as important point is descriptions and documentations from all the works into the respective process, and then to organize in the aspect of problem-solving. The computer network as critic infrastructure is very specific so the paper present the effectiveness solutions in the structured aspect viewed from one side, and another side is, than the paper reflect the positive aspect in the context of modeling and block schema presentations as an better alternative to solve the specific problem because of continually distortions of the system from the line of devices, programs and signals or packed collisions, which are in movement from one computer node to another nodes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=local%20area%20networks" title="local area networks">local area networks</a>, <a href="https://publications.waset.org/abstracts/search?q=LANs" title=" LANs"> LANs</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20schema%20presentations" title=" block schema presentations"> block schema presentations</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20network%20system" title=" computer network system"> computer network system</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20node" title=" computer node"> computer node</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20infrastructure%20packed%20collisions" title=" critical infrastructure packed collisions"> critical infrastructure packed collisions</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20control%20system%20representations" title=" structural control system representations"> structural control system representations</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20network" title=" computer network"> computer network</a>, <a href="https://publications.waset.org/abstracts/search?q=implementations" title=" implementations"> implementations</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20structural%20representations" title=" modeling structural representations"> modeling structural representations</a>, <a href="https://publications.waset.org/abstracts/search?q=companies" title=" companies"> companies</a>, <a href="https://publications.waset.org/abstracts/search?q=computers" title=" computers"> computers</a>, <a href="https://publications.waset.org/abstracts/search?q=context" title=" context"> context</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20systems" title=" control systems"> control systems</a>, <a href="https://publications.waset.org/abstracts/search?q=internet" title=" internet"> internet</a>, <a href="https://publications.waset.org/abstracts/search?q=software" title=" software"> software</a> </p> <a href="https://publications.waset.org/abstracts/18709/computer-network-applications-practical-implementations-and-structural-control-system-representations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Current Epizootic Situation of Q Fever in Polish Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20Szyma%C5%84ska-Czerwi%C5%84ska">Monika Szymańska-Czerwińska</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Jode%C5%82ko"> Agnieszka Jodełko</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Niemczuk"> Krzysztof Niemczuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Q fever (coxiellosis) is an infectious disease of animals and humans causes by C. burnetii and widely distributed throughout the world. Cattle and small ruminants are commonly known as shedders of C. burnetii. The aims of this study were the evaluation of seroprevalence and shedding of C. burnetii in cattle. Genotypes of the pathogen present in the tested specimens were also identified using MLVA (Multiple Locus Variable-Number Tandem Repeat Analysis) and MST (multispacer sequence typing) methods. Sampling was conducted in different regions of Poland in 2018-2021. In total, 2180 bovine serum samples from 801 cattle herds were tested by ELISA (enzyme-linked immunosorbent assay). 489 specimens from 157 cattle herds such as: individual milk samples (n=407), bulk tank milk (n=58), vaginal swabs (n=20), placenta (n=3) and feces (n=1) were subjected to C. burnetii specific qPCR. The qPCR (IS1111 transposon-like repetitive region) was performed using Adiavet COX RealTime PCR kit. Genotypic characterization of the strains was conducted utilizing MLVA and MST methods. MLVA was performed using 6 variable loci. The overall herd-level seroprevalence of C. burnetii infection was 36.74% (801/2180). Shedders were detected in 29.3% (46/157) cattle herds in all tested regions. ST 61 sequence type was identified in 10 out of 18 genotyped strains. Interestingly one strain represents sequence type which has never been recorded previously. MLVA method identified three previously known genotypes: most common was J but also I and BE were recognized. Moreover, a one genotype has never been described previously. Seroprevalence and shedding of C. burnetii in cattle is common and strains are genetically diverse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coxiella%20burnetii" title="Coxiella burnetii">Coxiella burnetii</a>, <a href="https://publications.waset.org/abstracts/search?q=cattle" title=" cattle"> cattle</a>, <a href="https://publications.waset.org/abstracts/search?q=MST" title=" MST"> MST</a>, <a href="https://publications.waset.org/abstracts/search?q=MLVA" title=" MLVA"> MLVA</a>, <a href="https://publications.waset.org/abstracts/search?q=Q%20fever" title=" Q fever"> Q fever</a> </p> <a href="https://publications.waset.org/abstracts/159260/current-epizootic-situation-of-q-fever-in-polish-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Egg Yolk Peptide Stimulated Osteogenic Gene Expression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hye%20Kyung%20Kim">Hye Kyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Gyou%20Kim"> Myung-Gyou Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang-Hyun%20Leem"> Kang-Hyun Leem </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Postmenopausal osteoporosis is characterized by low bone density which leads to increased bone fragility and greater susceptibility to fracture. Current treatments for osteoporosis are dominated by drugs that inhibit bone resorption although they also suppress bone formation that may contribute to pathogenesis of osteonecrosis. To restore the extensive bone loss, there is a great need for anabolic treatments that induce osteoblasts to build new bone. Pre-osteoblastic cells produce proteins of the extra-cellular matrix, including type I collagen at first, and then to successively produce alkaline phosphatase (ALP) and osteocalcin during differentiation to osteoblasts. Finally, osteoblasts deposit calcium. Present study investigated the effects of egg yolk peptide (EYP) on osteogenic activities and bone matrix gene expressions in human osteoblastic MG-63 cells. The effects of EYP on cell proliferation, alkaline phosphatase (ALP) activity, collagen synthesis, and mineralization were measured. The expression of osteogenic genes including COL1A1 (collagen, type I, alpha 1), ALP, BGLAP (osteocalcin), and SPP1 (secreted phosphoprotein 1, osteopontin) were measured by quantitative realtime PCR. EYP dose-dependently increased MG-63 cell proliferation, ALP activity, collagen synthesis, and calcium deposition. Furthermore, COL1A1, ALP, and SPP1 gene expressions were increased by EYP treatment. Present study suggested that EYP treatment enhanced osteogenic activities and increased bone matrix osteogenicgenes. These results could provide a mechanistic explanation for the bone-strengthening effects of EYP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=egg%20yolk%20peptide" title="egg yolk peptide">egg yolk peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoblastic%20MG-63%20cells" title=" osteoblastic MG-63 cells"> osteoblastic MG-63 cells</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20phosphatase" title=" alkaline phosphatase"> alkaline phosphatase</a>, <a href="https://publications.waset.org/abstracts/search?q=collagen%20synthesis" title=" collagen synthesis"> collagen synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=osteogenic%20genes" title=" osteogenic genes"> osteogenic genes</a>, <a href="https://publications.waset.org/abstracts/search?q=COL1A1" title=" COL1A1"> COL1A1</a>, <a href="https://publications.waset.org/abstracts/search?q=osteocalcin" title=" osteocalcin"> osteocalcin</a>, <a href="https://publications.waset.org/abstracts/search?q=osteopontin" title=" osteopontin"> osteopontin</a> </p> <a href="https://publications.waset.org/abstracts/11286/egg-yolk-peptide-stimulated-osteogenic-gene-expression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> SynKit: A Event-Driven and Scalable Microservices-Based Kitting System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Nascimento">Bruno Nascimento</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Wanzeller"> Cristina Wanzeller</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Silva"> Jorge Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20A.%20Dias"> João A. Dias</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Barbosa"> André Barbosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Ribeiro"> José Ribeiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing complexity of logistics operations stems from evolving business needs, such as the shift from mass production to mass customization, which demands greater efficiency and flexibility. In response, Industry 4.0 and 5.0 technologies provide improved solutions to enhance operational agility and better meet market demands. The management of kitting zones, combined with the use of Autonomous Mobile Robots, faces challenges related to coordination, resource optimization, and rapid response to customer demand fluctuations. Additionally, implementing lean manufacturing practices in this context must be carefully orchestrated by intelligent systems and human operators to maximize efficiency without sacrificing the agility required in an advanced production environment. This paper proposes and implements a microservices-based architecture integrating principles from Industry 4.0 and 5.0 with lean manufacturing practices. The architecture enhances communication and coordination between autonomous vehicles and kitting management systems, allowing more efficient resource utilization and increased scalability. The proposed architecture focuses on the modularity and flexibility of operations, enabling seamless flexibility to change demands and the efficient allocation of resources in realtime. Conducting this approach is expected to significantly improve logistics operations’ efficiency and scalability by reducing waste and optimizing resource use while improving responsiveness to demand changes. The implementation of this architecture provides a robust foundation for the continuous evolution of kitting management and process optimization. It is designed to adapt to dynamic environments marked by rapid shifts in production demands and real-time decision-making. It also ensures seamless integration with automated systems, aligning with Industry 4.0 and 5.0 needs while reinforcing Lean Manufacturing principles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microservices" title="microservices">microservices</a>, <a href="https://publications.waset.org/abstracts/search?q=event-driven" title=" event-driven"> event-driven</a>, <a href="https://publications.waset.org/abstracts/search?q=kitting" title=" kitting"> kitting</a>, <a href="https://publications.waset.org/abstracts/search?q=AMR" title=" AMR"> AMR</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20manufacturing" title=" lean manufacturing"> lean manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title=" industry 4.0"> industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%205.0" title=" industry 5.0"> industry 5.0</a> </p> <a href="https://publications.waset.org/abstracts/192380/synkit-a-event-driven-and-scalable-microservices-based-kitting-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Furkan%20Ozkan">Furkan Ozkan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Selcuk%20Arslan"> M. Selcuk Arslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatice%20Mercan"> Hatice Mercan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20wave%20control" title=" green wave control"> green wave control</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title=" model predictive control"> model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a> </p> <a href="https://publications.waset.org/abstracts/185303/green-wave-control-strategy-for-optimal-energy-consumption-by-model-predictive-control-in-electric-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Annexing the Strength of Information and Communication Technology (ICT) for Real-time TB Reporting Using TB Situation Room (TSR) in Nigeria: Kano State Experience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Umar">Ibrahim Umar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashiru%20Rajab"> Ashiru Rajab</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumayya%20Chindo"> Sumayya Chindo</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Olashore"> Emmanuel Olashore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> INTRODUCTION: Kano is the most populous state in Nigeria and one of the two states with the highest TB burden in the country. The state notifies an average of 8,000+ TB cases quarterly and has the highest yearly notification of all the states in Nigeria from 2020 to 2022. The contribution of the state TB program to the National TB notification varies from 9% to 10% quarterly between the first quarter of 2022 and second quarter of 2023. The Kano State TB Situation Room is an innovative platform for timely data collection, collation and analysis for informed decision in health system. During the 2023 second National TB Testing week (NTBTW) Kano TB program aimed at early TB detection, prevention and treatment. The state TB Situation room provided avenue to the state for coordination and surveillance through real time data reporting, review, analysis and use during the NTBTW. OBJECTIVES: To assess the role of innovative information and communication technology platform for real-time TB reporting during second National TB Testing week in Nigeria 2023. To showcase the NTBTW data cascade analysis using TSR as innovative ICT platform. METHODOLOGY: The State TB deployed a real-time virtual dashboard for NTBTW reporting, analysis and feedback. A data room team was set up who received realtime data using google link. Data received was analyzed using power BI analytic tool with statistical alpha level of significance of <0.05. RESULTS: At the end of the week-long activity and using the real-time dashboard with onsite mentorship of the field workers, the state TB program was able to screen a total of 52,054 people were screened for TB from 72,112 individuals eligible for screening (72% screening rate). A total of 9,910 presumptive TB clients were identified and evaluated for TB leading to diagnosis of 445 TB patients with TB (5% yield from presumptives) and placement of 435 TB patients on treatment (98% percentage enrolment). CONCLUSION: The TB Situation Room (TBSR) has been a great asset to Kano State TB Control Program in meeting up with the growing demand for timely data reporting in TB and other global health responses. The use of real time surveillance data during the 2023 NTBTW has in no small measure improved the TB response and feedback in Kano State. Scaling up this intervention to other disease areas, states and nations is a positive step in the right direction towards global TB eradication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tuberculosis%20%28tb%29" title="tuberculosis (tb)">tuberculosis (tb)</a>, <a href="https://publications.waset.org/abstracts/search?q=national%20tb%20testing%20week%20%28ntbtw%29" title=" national tb testing week (ntbtw)"> national tb testing week (ntbtw)</a>, <a href="https://publications.waset.org/abstracts/search?q=tb%20situation%20rom%20%28tsr%29" title=" tb situation rom (tsr)"> tb situation rom (tsr)</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20communication%20technology%20%28ict%29" title=" information communication technology (ict)"> information communication technology (ict)</a> </p> <a href="https://publications.waset.org/abstracts/179032/annexing-the-strength-of-information-and-communication-technology-ict-for-real-time-tb-reporting-using-tb-situation-room-tsr-in-nigeria-kano-state-experience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10