CINXE.COM

Insulating electromagnetic-shielding silicone compound enables direct potting electronics - Peeref

<!DOCTYPE html> <html lang="en"> <head> <link rel="dns-prefetch" href="//www.peeref.com"> <link rel="dns-prefetch" href="//peeref-open.s3.amazonaws.com"> <link rel="dns-prefetch" href="//pagead2.googlesyndication.com"> <link rel="dns-prefetch" href="//www.w3.org"> <link rel="dns-prefetch" href="//doi.org"> <link rel="dns-prefetch" href="//www.linkedin.com"> <link rel="dns-prefetch" href="//twitter.com"> <link rel="dns-prefetch" href="//api.qrserver.com"> <link rel="dns-prefetch" href="//www.facebook.com"> <link rel="dns-prefetch" href="//www.googletagmanager.com"> <meta charset="utf-8"> <title>Insulating electromagnetic-shielding silicone compound enables direct potting electronics - Peeref</title> <meta http-equiv="X-UA-Compatible" content="IE=edge, chrome=1"> <meta name="keywords" content="manuscript, research article, comment, full text"> <meta name="description" content="Insulating electromagnetic-shielding silicone compound enables direct potting electronics"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no" /> <meta property="og:locale" content="en"> <meta property="og:title" content="Insulating electromagnetic-shielding silicone compound enables direct potting electronics - Peeref"> <meta property="og:description" content="Insulating electromagnetic-shielding silicone compound enables direct potting electronics"> <meta property="og:url" content="https://www.peeref.com/works/85268069"> <meta property="og:site_name" content="Peeref"> <meta property="og:image" content=""> <meta name="csrf-token" content="rfWYJnqsSzQY2bXPzqkzcjd1HrgP6JVdEZTnNo5H"> <meta http-equiv="Cache-Control" content="no-transform" /> <meta http-equiv="Cache-Control" content="no-siteapp" /> <link rel="shortcut icon" href="https://www.peeref.com/favicon.ico"> <link href="https://peeref-open.s3.amazonaws.com/css/frameworks.bd380c8996823ba04442.css" rel="stylesheet"> <link href="https://peeref-open.s3.amazonaws.com/css/app.3cfd9992ceaf352e0491.css" rel="stylesheet"> <script> if(window.self !== window.top) { location.href = '/static/html/forbidden.html'; } </script> <script> window.Config = { token: "rfWYJnqsSzQY2bXPzqkzcjd1HrgP6JVdEZTnNo5H", url: "https://www.peeref.com/works/85268069", lang: "en", prefix: "", isMobile: "", assetDomain: "https://peeref-open.s3.amazonaws.com/" }; </script> <script async src="https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js?client=ca-pub-6244001236711438" crossorigin="anonymous"></script> </head> <body> <div id="app"> <div class="bg-warning position-relative w-100 text-center py-2" style="top: 0; z-index: 100000;"> <strong class="text-danger">Peeref no longer supports Internet Explorer. </strong> <a href="/static/html/browser.html">Please upgrade your browser.</a> </div> <nav id="nav" class="navbar navbar-default navbar-static-top navbar-inverse"> <div class="container"> <div class="navbar-header"> <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#app-navbar-collapse" aria-expanded="false"> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <a class="navbar-brand p-3" href="https://www.peeref.com"> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="108px" viewBox="0 0 1052 302"><g fill="#FFF"><path d="M227.6,92.9c5.2,13,17.9,22.1,32.7,22.1c19.4,0,35.2-15.8,35.2-35.2s-15.8-35.2-35.2-35.2 c-19.4,0-35.2,15.8-35.2,35.2c0,2.3,0.2,4.5,0.6,6.7l-98.1,24.6L154,59c3.2,1.1,6.6,1.8,10.1,1.8c16.4,0,29.7-13.3,29.7-29.7c0-16.4-13.3-29.7-29.7-29.7s-29.7,13.3-29.7,29.7c0,10.5,5.4,19.7,13.6,25l-27.9,55.1L90.5,94.2c1.4-3.2,2.1-6.8,2.1-10.6 c0-14.9-12.1-27-27-27c-14.9,0-27,12.1-27,27c0,14.9,12.1,27,27,27c8.8,0,16.6-4.2,21.6-10.7l28.5,16.3l-62.2,49.9 c-5.6-5.3-13.1-8.6-21.4-8.6c-17.1,0-30.9,13.8-30.9,30.9c0,17.1,13.8,30.9,30.9,30.9S63,205.4,63,188.4c0-6.3-1.9-12.3-5.2-17.2 l60-48.1l-7.5,106.4c-19.1,0.6-34.4,16.2-34.4,35.5c0,19.6,15.9,35.5,35.5,35.5c19.6,0,35.5-15.9,35.5-35.5c0-17.7-13-32.4-30-35.1 l7.6-107.5l87,67.9c-4.1,6.1-6.4,13.5-6.4,21.4c0,21.4,17.4,38.8,38.8,38.8s38.8-17.4,38.8-38.8c0-21.4-17.4-38.8-38.8-38.8 c-11.1,0-21.2,4.7-28.2,12.2L129,117.6L227.6,92.9z"></path></g><g fill="#FFF"><path d="M368.2,232.3V70.6h52.4c19.9,0,32.8,0.8,38.8,2.4c9.3,2.4,17,7.7,23.3,15.8c6.2,8.1,9.4,18.6,9.4,31.5c0,9.9-1.8,18.3-5.4,25c-3.6,6.8-8.2,12.1-13.7,15.9c-5.6,3.9-11.2,6.4-16.9,7.7c-7.8,1.5-19.1,2.3-33.9,2.3h-21.3v61H368.2z M400.8,98v45.9h17.9c12.9,0,21.5-0.8,25.8-2.5c4.3-1.7,7.7-4.3,10.2-7.9c2.5-3.6,3.7-7.8,3.7-12.6c0-5.9-1.7-10.7-5.2-14.6c-3.5-3.8-7.8-6.2-13.1-7.2c-3.9-0.7-11.7-1.1-23.5-1.1H400.8z"></path><path d="M586.5,195l30.9,5.2c-4,11.3-10.2,19.9-18.8,25.9c-8.6,5.9-19.3,8.9-32.2,8.9c-20.4,0-35.4-6.7-45.2-20c-7.7-10.7-11.6-24.1-11.6-40.4c0-19.4,5.1-34.6,15.2-45.6c10.1-11,23-16.5,38.5-16.5c17.4,0,31.2,5.8,41.3,17.3c10.1,11.5,14.9,29.1,14.5,52.9h-77.7c0.2,9.2,2.7,16.3,7.5,21.5c4.8,5.1,10.7,7.7,17.9,7.7c4.9,0,8.9-1.3,12.2-4S584.8,200.9,586.5,195z M588.3,163.7c-0.2-9-2.5-15.8-6.9-20.5c-4.4-4.7-9.8-7-16.1-7c-6.8,0-12.4,2.5-16.8,7.4c-4.4,4.9-6.6,11.6-6.5,20.1H588.3z"></path><path d="M712.2,195l30.9,5.2c-4,11.3-10.2,19.9-18.8,25.9c-8.6,5.9-19.3,8.9-32.2,8.9c-20.4,0-35.4-6.7-45.2-20c-7.7-10.7-11.6-24.1-11.6-40.4c0-19.4,5.1-34.6,15.2-45.6c10.1-11,23-16.5,38.5-16.5c17.4,0,31.2,5.8,41.3,17.3c10.1,11.5,14.9,29.1,14.5,52.9H667c0.2,9.2,2.7,16.3,7.5,21.5c4.8,5.1,10.7,7.7,17.9,7.7c4.9,0,8.9-1.3,12.2-4S710.5,200.9,712.2,195z M713.9,163.7c-0.2-9-2.5-15.8-6.9-20.5c-4.4-4.7-9.8-7-16.1-7c-6.8,0-12.4,2.5-16.8,7.4c-4.4,4.9-6.6,11.6-6.5,20.1H713.9z"></path><path d="M799.6,232.3h-31V115.2h28.8v16.7c4.9-7.9,9.4-13.1,13.3-15.6c3.9-2.5,8.4-3.8,13.4-3.8c7.1,0,13.9,1.9,20.4,5.8l-9.6,27c-5.2-3.4-10.1-5.1-14.6-5.1c-4.3,0-8,1.2-11,3.6c-3,2.4-5.4,6.7-7.1,13c-1.7,6.3-2.6,19.3-2.6,39.3V232.3z"></path><path d="M925.7,195l30.9,5.2c-4,11.3-10.2,19.9-18.8,25.9c-8.6,5.9-19.3,8.9-32.2,8.9c-20.4,0-35.4-6.7-45.2-20c-7.7-10.7-11.6-24.1-11.6-40.4c0-19.4,5.1-34.6,15.2-45.6c10.1-11,23-16.5,38.5-16.5c17.4,0,31.2,5.8,41.3,17.3c10.1,11.5,14.9,29.1,14.5,52.9h-77.7c0.2,9.2,2.7,16.3,7.5,21.5c4.8,5.1,10.7,7.7,17.9,7.7c4.9,0,8.9-1.3,12.2-4S924,200.9,925.7,195z M927.5,163.7c-0.2-9-2.5-15.8-6.9-20.5c-4.4-4.7-9.8-7-16.1-7c-6.8,0-12.4,2.5-16.8,7.4c-4.4,4.9-6.6,11.6-6.5,20.1H927.5z"></path><path d="M970,115.2h17.2v-8.8c0-9.9,1-17.2,3.1-22.1c2.1-4.9,6-8.8,11.6-11.9c5.6-3.1,12.7-4.6,21.3-4.6c8.8,0,17.5,1.3,25.9,4l-4.2,21.6c-4.9-1.2-9.7-1.8-14.2-1.8c-4.5,0-7.7,1-9.7,3.1c-1.9,2.1-2.9,6.1-2.9,12.1v8.3h23.2v24.4h-23.2v92.8h-31v-92.8H970V115.2z"></path></g></svg> </a> </div> <ul class="collapse navbar-collapse mb-0" id="app-navbar-collapse"> <ul class="nav navbar-nav"> <li class="dropdown dropdown-hover"> <a href="javascript:">Publish <span class="caret"></span></a> <ul class="dropdown-menu dropdown-menu-inverse"> <li><a href="https://www.peeref.com/posters">Posters</a></li> <li><a href="https://www.peeref.com/abstracts">Abstracts</a></li> </ul> </li> <li class="dropdown dropdown-hover"> <a href="javascript:">Discuss <span class="caret"></span></a> <ul class="dropdown-menu dropdown-menu-inverse"> <li><a href="https://www.peeref.com/hubs">Hubs</a></li> <li><a href="https://www.peeref.com/questions">Questions</a></li> </ul> </li> <li><a href="https://www.peeref.com/works">Papers</a></li> <li><a href="https://www.peeref.com/webinars">Webinars</a></li> <li><a href="https://www.peeref.com/funding">Funding</a></li> <li class="dropdown dropdown-hover"> <a href="javascript:">Publishing Tools <span class="caret"></span></a> <ul class="dropdown-menu dropdown-menu-inverse"> <li><a href="https://www.peeref.com/journals">Journals</a></li> <li><a href="https://www.peeref.com/connect">Connect</a></li> <li><a href="https://www.peeref.com/e-collections">Collections</a></li> <li><a href="https://www.peeref.com/reviewer">Reviewers</a></li> </ul> </li> <li class="dropdown dropdown-hover"> <a href="javascript:">Events <span class="caret"></span></a> <ul class="dropdown-menu dropdown-menu-inverse"> <li><a href="https://www.peeref.com/poster-competition">Poster Challenger</a></li> <li><a href="https://www.peeref.com/webinar-competition">Video Presentation</a></li> <li><a href="https://www.peeref.com/artwork-competition">Art of Science</a></li> <li><a href="https://www.peeref.com/events/reviewer-roulette">Reviewer Roulette</a></li> </ul> </li> </ul> <ul id="auth-menu" class="nav navbar-nav navbar-right" style="display: inline-flex; align-items: center;"> <li> <a href="https://www.peeref.com/login"> <strong>My Account</strong> </a> </li> </ul> <ul class="nav navbar-nav navbar-right" style="display: inline-flex; align-items: center; margin-left: 20px;"> <li id="language" class="d-none d-xl-inline-flex"> <a href="javascript:"> <div class="current"> <i class="ivu-icon ivu-icon-md-globe"></i> EN </div> </a> <div class="selection"> <a rel="alternate" hreflang="en" href="https://www.peeref.com/works/85268069" > <span>English</span> </a> <a rel="alternate" hreflang="zh" href="https://www.peeref.com/zh/works/85268069" > <span>中文</span> </a> </div> </li> </ul> </ul> </div> </nav> <main> <div id="top-info-banner" class="container-fluid mb-0"> <div class="container"> <div class="d-flex align-items-center" style="margin-top: 30px;"> <span class="text-white"> <strong class="f18">☆</strong> <span class="f16">4.9</span> </span> <span class="mx-3"></span> <span class="tag">Article</span> </div> <h1 class="title title-for-article"> Insulating electromagnetic-shielding silicone compound enables direct potting electronics </h1> <div class="help-links-left"> <p class="pub-info"> SCIENCE (2024) </p> </div> </div> </div> <div id="article-sticky-navbar"> <div class="container"> <div class="d-flex justify-content-between flex-wrap flex-md-nowrap"> <div class="d-flex align-items-center mb-2"> <ul class="nav nav-underline f16 font-weight-bold"> <li class="active"> <a href="javascript:;"> Overview </a> </li> <li class=""> <a href="https://www.peeref.com/works/85268069/comments"> Write a Review </a> </li> </ul> </div> <div class="d-flex align-items-center justify-content-md-end flex-wrap flex-md-nowrap"> <div class="mr-3 mt-3 mt-md-0 flex-shrink-0"> <a href="https://doi.org/10.1126/science.adp6581" target="_blank" class="btn btn-warning btn-circle"> <i class="ivu-icon ivu-icon-md-copy f16"></i> <strong>Get Full Text</strong> </a> </div> <div class="mr-3 mt-3 mt-md-0 flex-shrink-0"> <a href="https://www.peeref.com/works/85268069/add-to-collection" class="btn btn-success btn-circle"> <strong>Add to Collection</strong> </a> </div> <div class="mr-3 mt-3 mt-md-0 flex-shrink-0"> <button class="btn btn-success btn-circle" id="reading-btn"> <strong>Further Reading</strong> </button> </div> <div class="flex-shrink-0 mt-3 mt-md-0"> <div class="dropdown"> <button class="font-weight-bold f24 ivu-btn ivu-btn-default ivu-btn-circle ivu-btn-large ivu-btn-icon-only dropdown-toggle" data-toggle="dropdown"> <i class="ivu-icon ivu-icon-md-more"></i> </button> <ul class="dropdown-menu dropdown-menu-right"> <li> <a href="#" data-target="#export-citation" data-toggle="modal"> <i class="ivu-icon ivu-icon-md-quote text-muted mr-1"></i> Export Citation </a> </li> <li> <a href="#" data-target="#share-paper" data-toggle="modal"> <i class="ivu-icon ivu-icon-md-share-alt text-muted mr-1"></i> Share Paper </a> </li> <li> <a href="https://www.peeref.com/works/85268069/references"> <i class="ivu-icon ivu-icon-md-list text-muted mr-1"></i> References </a> </li> </ul> </div> </div> </div> </div> </div> </div> <div id="article-details" class="container"> <div class="col-md-4 px-0 pr-md-3"> <div class="f15 panel-box rounded shadow-none border"> <div class="mb-3 pb-3"> <h4 class="mt-0">Journal</h4> <div class="f16"> <h5 class="title f16"> <a href="https://www.peeref.com/journals/7393/science"> SCIENCE </a> </h5> <span> Volume 385, Issue 6714, Pages 1205-1210 </span> </div> </div> <div class="mb-3 pb-3"> <h4 class="mt-0">Publisher</h4> <div class="f16"> <h5 class="title f16 text-primary"> AMER ASSOC ADVANCEMENT SCIENCE </h5> <div class="my-2"> DOI: 10.1126/science.adp6581 </div> </div> </div> <div class="mb-3 pb-3"> <h4 class="mt-0">Keywords</h4> <div class="f16"> - </div> </div> <div class="mb-3 pb-3"> <h4 class="mt-0">Categories</h4> <div class="f16"> <span class="d-block"> <a href="https://www.peeref.com/works/list?category=Multidisciplinary+Sciences" target="_blank" class="text-dark btn btn-link p-0 text-left"> Multidisciplinary Sciences </a> </span> </div> </div> <div class="mb-3 pb-3"> <h4 class="mt-0">Funding</h4> <div class="f16"> <ol class=""> <li>National Natural Science Foundation of China [52273064, 51922020, 52090034, 52203080, 52221006]</li> <li>Open Foundation of State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology [OIC-202201001]</li> </ol> </div> </div> </div> <div class="f15 panel-box rounded shadow-none border"> <h4 class="mt-0 text-center">Ask authors/readers for more resources</h4> <div class="requests"> <div class="requests-item"> <div class="icon"> <img src="https://peeref-open.s3.amazonaws.com/images/file.png" alt=""> </div> <h4>Protocol</h4> <p> <a href="https://www.peeref.com/works/85268069/resource" class="btn btn-outline-primary btn-sm"> Community support </a> </p> </div> <div class="requests-item"> <div class="icon"> <img src="https://peeref-open.s3.amazonaws.com/images/experiment.png" alt=""> </div> <h4>Reagent</h4> <p> <a href="https://www.peeref.com/works/85268069/resource" class="btn btn-outline-primary btn-sm"> Community support </a> </p> </div> </div> </div> </div> <div class="col-md-8 px-0 pl-md-3"> <div id="article-summary-panel" class="mb-4"> <ul class="nav nav-tabs" style="list-style: none; padding-left: 0;"> <li class="active"> <a href="#ai_summary" data-toggle="tab" class="summary-tab mx-0 f16 text-dark"> <strong>Automated Summary</strong> <strong class="text-danger ml-1"><i>New</i></strong> </a> </li> <li class=""> <a href="#raw_abstract" data-toggle="tab" class="abstract-tab mx-0 f16 text-dark"> <strong>Abstract</strong> </a> </li> </ul> <div class="tab-content border border-top-0"> <div id="ai_summary" class="tab-pane active"> <div class="summary-panel panel-box mb-0 rounded shadow-none"> <div class="f16">This text proposes a novel electromagnetic interference shielding material using a microcapacitor structure model composed of conductive fillers and a polymer dielectric layer, which solves the short-circuit risk of traditional materials and has high resistivity, shielding performance, thermal conductivity, and insulating properties, and can be directly used for packaging electronic devices.</div> </div> </div> <div id="raw_abstract" class="tab-pane "> <div class="abstract-panel panel-box mb-0 rounded shadow-none"> <div class="f16">Traditional electromagnetic interference-shielding materials are predominantly electrically conductive, posing short-circuit risks when applied in highly integrated electronics. To overcome this dilemma, we propose a microcapacitor-structure model comprising conductive fillers as polar plates and intermediate polymer as a dielectric layer to develop insulating electromagnetic interference-shielding polymer composites. The electron oscillation in plates and dipole polarization in dielectric layers contribute to the reflection and absorption of electromagnetic waves. Guided by this, the synergistic nonpercolation densification and dielectric enhancement enable our composite to combine high resistivity, shielding performance, and thermal conductivity. Its insulating feature allows for direct potting into the crevices among assembled components to address electromagnetic compatibility and heat-accumulation issues.</div> </div> </div> </div> </div> <div class="f15 panel-box rounded shadow-none border"> <h4 class="mt-0 heading-count">Authors</h4> <div class="mb-3"> <article-authors tid="85268069" list="[{&quot;name&quot;:&quot;Xinfeng Zhou&quot;,&quot;sequence&quot;:1},{&quot;name&quot;:&quot;Peng Min&quot;,&quot;sequence&quot;:2},{&quot;name&quot;:&quot;Yue Liu&quot;,&quot;sequence&quot;:3},{&quot;name&quot;:&quot;Meng Jin&quot;,&quot;sequence&quot;:4},{&quot;name&quot;:&quot;Zhong-Zhen Yu&quot;,&quot;sequence&quot;:5},{&quot;name&quot;:&quot;Hao-Bin Zhang&quot;,&quot;sequence&quot;:6}]" verified="[]" page="work" ></article-authors> </div> <div class="alert alert-warning mb-0"> <h5 class="mt-0 bg-warning text-dark px-3 rounded d-inline-block"> I am an author on this paper </h5> <div class="font-weight-bold f13"> Click your name to claim this paper and add it to your profile. </div> </div> </div> <div class="f15 panel-box rounded shadow-none border"> <h4 class="mt-0 heading-count">Reviews</h4> <div class="d-flex flex-wrap flex-md-nowrap"> <div class="flex-grow-1"> <h4 class="f16"> Primary Rating <a href="javascript:;" data-toggle="tooltip" data-placement="right" title="The primary rating indicates the level of overall quality for the paper."> <i class="ivu-icon ivu-icon-md-help-circle f18 ml-2"></i> </a> </h4> <div class="d-flex flex-wrap flex-md-nowrap align-items-center alert mb-0"> <div class="d-flex align-items-center justify-content-center"> <Rate disabled allow-half value="4.9" style="font-size: 28px;"></Rate> <strong class="f20 m-3" style="color: #f5a623;">4.9</strong> </div> <div class="text-muted mx-4"> Not enough ratings </div> </div> <h4 class="f16"> Secondary Ratings <a href="javascript:;" data-toggle="tooltip" data-placement="right" title="Secondary ratings independently reflect strengths or weaknesses of the paper."> <i class="ivu-icon ivu-icon-md-help-circle f18 ml-2"></i> </a> </h4> <div class="d-flex flex-wrap flex-md-nowrap alert"> <div class="d-flex flex-shrink-0 align-items-center mr-3"> <h5 class="my-0">Novelty</h5> <strong class="mx-4">-</strong> </div> <div class="d-flex flex-shrink-0 align-items-center mr-3"> <h5 class="my-0">Significance</h5> <strong class="mx-4">-</strong> </div> <div class="d-flex flex-shrink-0 align-items-center mr-3"> <h5 class="my-0">Scientific rigor</h5> <strong class="mx-4">-</strong> </div> </div> </div> <div class="flex-shrink-0"> <div class="border bg-light py-2 px-4"> <h5 class="mb-1">Rate this paper</h5> <Rate class="f24" @on-change="function(value){ location.href='https://www.peeref.com/works/85268069/comments?rating='+value }"></Rate> </div> </div> </div> </div> <div id="collection" class="f15 panel-box rounded shadow-none border"> <h4 class="mt-0 heading-count">Recommended</h4> <div class="my-3"> <ul class="nav nav-pills border-bottom pb-3" style="list-style: none; padding-left: 0;"> <li class="active"> <a href="#articles_from_related" data-toggle="tab" class="mx-0 f15"> <strong>Related</strong> </a> </li> <li class=""> <a href="#articles_from_authors" data-toggle="tab" class="mx-0 f15"> <strong>From Same Authors</strong> </a> </li> <li class=""> <a href="#articles_from_journal" data-toggle="tab" class="mx-0 f15"> <strong>From Same Journal</strong> </a> </li> </ul> <div class="tab-content"> <div id="articles_from_related" class="tab-pane active"> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/works/82989246" class="text-dark hover-underline">Electrically Insulating Electromagnetic Interference Shielding Materials: A Perspective</a> </h4> <p class="text-ellipsis-2">Ji Liu, Valeria Nicolosi</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/208.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This article discusses the importance of electromagnetic interference shielding and the need for electrically insulating EMI shielding materials in electronic applications. It summarizes the advancements in the design of innovative EMI shielding materials, including minimizing reliance on conductivity, and provides insights into future developments. The challenges and significance of developing materials with inherent electrical insulation and high EMI shielding effectiveness are emphasized. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ADVANCED FUNCTIONAL MATERIALS</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/82989246/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/works/82621774" class="text-dark hover-underline">Influence of Carbon-Based Fillers on the Electromagnetic Shielding Properties of a Silicone-Potting Compound</a> </h4> <p class="text-ellipsis-2">Rafael Seidel, Konrad Katzer, Jakob Bieck, Maurice Langer, Julian Hesselbach, Michael Heilig</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/8625.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This paper studies the effect of carbon-based additives on the electrical conductivity and electromagnetic interference shielding performance of adhesives and potting compounds. It is found that even with a small amount of filler, the electromagnetic shielding performance is greatly improved. The filler content and dispersion technology have a significant impact on most fillers, and the complex viscosity is strongly influenced by the dispersion technology and the choice and amount of filler. In the experiment, the shielding value of several fillers exceeded 20 dB, and even reached 43 dB with complex, pre-crosslinked fillers. This signal attenuation of up to 99.99% enables almost complete shielding of the related frequency. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">MATERIALS</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/82621774/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Materials Science, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/works/83209976" class="text-dark hover-underline">Enhancing Thermal Insulating and Flame Retardancy of Electromagnetic Shielding Polyester-Based Nonwoven Fabric</a> </h4> <p class="text-ellipsis-2">Peng Zhang, Wenjing Wang, Xiaomin Luo, Xin Meng, Ming Teng, Shuaishuai Han, Chongyuan Ma, Jianyan Feng, Xuechuan Wang</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/11140.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This study focuses on the fabrication of electromagnetic shielding nonwoven fabrics using polyester fibers, through surface modification and impregnation with nanocarbon material slurries, followed by a hot-pressing process. The results show that using a specific mixed solution and hot-pressing conditions can produce nonwoven fabrics with a shielding coefficient of up to 65dB, while also being flame retardant. The study also explores its applications in circuit protection and military equipment, and provides ideas for large-scale production. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ACS APPLIED POLYMER MATERIALS</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/83209976/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Materials Science, Composites </span> </div> <h4> <a href="https://www.peeref.com/works/24142693" class="text-dark hover-underline">Mechanically and environmentally robust composite nanofibers with embedded MXene for wearable shielding of electromagnetic wave</a> </h4> <p class="text-ellipsis-2">Lixia Liu, Rui Guo, Jie Gao, Qi Ding, Yuchi Fan, Jianyong Yu</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/10899.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> The newly designed EMI shielding PVDF-HFP composite fabric with MXene embedded in nanofibers shows excellent specific EMI shielding effectiveness, remains unchanged after exposure to acidic, alkaline, or saline solutions for 10 days, and can greatly enhance the strength and modulus of the fabric. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">COMPOSITES COMMUNICATIONS</span> (2022) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/24142693/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Review </span> <span class="d-inline-block badge badge-cyan"> Nanoscience &amp; Nanotechnology </span> </div> <h4> <a href="https://www.peeref.com/works/28782820" class="text-dark hover-underline">Diverse Structural Design Strategies of MXene-Based Macrostructure for High-Performance Electromagnetic Interference Shielding</a> </h4> <p class="text-ellipsis-2">Yue Liu, Yadi Wang, Na Wu, Mingrui Han, Wei Liu, Jiurong Liu, Zhihui Zeng</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/8933.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This review discusses the development of MXene-based macrostructures and the mechanisms of electromagnetic interference (EMI) shielding. It highlights various structural design strategies for MXene-based EMI shielding materials. The challenges and future directions for MXenes in EMI shielding are also outlined, aiming to drive the growth of high-performance MXene-based EMI shielding macrostructures. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">NANO-MICRO LETTERS</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/28782820/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Engineering, Environmental </span> </div> <h4> <a href="https://www.peeref.com/works/24531043" class="text-dark hover-underline">Electromagnetic shielding of Optically-Transparent and Electrically-Insulating ionic solutions</a> </h4> <p class="text-ellipsis-2">Junpyo Hong, Jisung Kwon, Aamir Iqbal, Daesin Kim, Taehoon Kwon, Pradeep Sambyal, Soon Man Hong, Ho Gyu Yoon, Myung-Ki Kim, Chong Min Koo</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/1639.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> Advanced electronic and communication devices require materials to protect them from electromagnetic interference (EMI). This study investigates the effectiveness of ionic solutions as EMI shielding materials and finds that they provide strong shielding performance while maintaining optical transparency. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">CHEMICAL ENGINEERING JOURNAL</span> (2022) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/24531043/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Engineering, Manufacturing </span> </div> <h4> <a href="https://www.peeref.com/works/83920438" class="text-dark hover-underline">From filler to structure: Designing 3D-printable silicone elastomers with broadband electromagnetic interference shielding</a> </h4> <p class="text-ellipsis-2">Junrui Tan, Guizhi Zhu, Longfei Tan, Qiong Wu, Zhixu Liu, Mingwei Yang, Xianwei Meng</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/10594.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This paper presents a novel approach to fabricating functional silicone elastomers, focusing on the design of fillers, inks and structures. The ink printability was achieved by modified nanosheets, and the broadband EMI shielding silicone elastomers were successfully printed guided by EMI shielding simulations of periodic porous structures. In addition, the versatility and potential applications of this method were demonstrated. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ADDITIVE MANUFACTURING</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/83920438/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Materials Science, Composites </span> </div> <h4> <a href="https://www.peeref.com/works/24549337" class="text-dark hover-underline">Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding</a> </h4> <p class="text-ellipsis-2">Yongqiang Guo, Hua Qiu, Kunpeng Ruan, Shuangshuang Wang, Yali Zhang, Junwei Gu</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/1944.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This work focuses on the development of CF@Fe2O3/(BN/SR) composites with excellent thermal conductivity, electromagnetic interference (EMI) shielding performance, and electrical insulation properties. The sandwich structure of CF@Fe2O3/(BN/SR) composites contributes to effective EMI shielding by absorption-reflection-reabsorption of electromagnetic waves, while BN/SR and CF@Fe2O3 layers enhance thermal conductivity and electrical insulation, respectively. The composites show higher performance in terms of thermal conductivity, EMI shielding effectiveness, volume resistance, and breakdown strength compared to conventional CF/(BN/SR) composites. The CF@Fe2O3/(BN/SR) composites also exhibit better cooling effect than commercial silicon grease in computer testing platforms, indicating promising applications in electronics. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">COMPOSITES SCIENCE AND TECHNOLOGY</span> (2022) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/24549337/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Materials Science, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/works/27513701" class="text-dark hover-underline">Controlling the cell and surface architecture of cellulose nanofiber/PVA/ Ti3C2TX MXene hybrid cryogels for optimized permittivity and EMI shielding performance</a> </h4> <p class="text-ellipsis-2">Riikka Haataja, Sami Myllymaki, Ossi Laitinen, Heli Jantunen, Henrikki Liimatainen</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/5682.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> In this study, the cell and surface architecture of sustainable hybrid cryogels of cellulose nanofibers, polyvinyl alcohol (PVA) and Ti3C2TX MXene were controlled to adjust their dielectric permittivity and electromagnetic interference (EMI) shielding performance at millimeter and sub-THz frequencies. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">MATERIALS &amp; DESIGN</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/27513701/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Review </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/works/25234588" class="text-dark hover-underline">Electrically Conductive 2D Material Coatings for Flexible and Stretchable Electronics: A Comparative Review of Graphenes and MXenes</a> </h4> <p class="text-ellipsis-2">Vicente Orts Mercadillo, Kai Chio Chan, Mario Caironi, Athanassia Athanassiou, Ian A. Kinloch, Mark Bissett, Pietro Cataldi</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/208.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> There is a growing interest in transitioning electronic components and circuitry to more flexible and stretchable platforms. The development of conductive inks with novel nanomaterials, such as graphene and MXenes, has led to the creation of new flexible electronic devices with exciting applications in the wearable, healthcare and Internet of Things sectors. Despite their different chemical origins, graphene and MXenes share similar electrical properties and 2D morphology, guaranteeing intriguing performance in end applications. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ADVANCED FUNCTIONAL MATERIALS</span> (2022) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/25234588/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Review </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/works/85240056" class="text-dark hover-underline">Asymmetric Structural Design for Absorption-Dominated Electromagnetic Interference Shielding Composites</a> </h4> <p class="text-ellipsis-2">Meng Zhou, Zan Yu, Qiming Yan, Xinya Zhang</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/208.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> Electromagnetic waves can cause excessive electromagnetic pollution, interfering with electronic devices or harming human health. Conductive polymer composites can be used to manage electromagnetic waves, but they have a problem of reflection-dominated EMI shielding mechanism. To solve this problem, absorption-dominated EMI shielding composites with asymmetric structures are needed. This article reviews the current progress of these materials, including asymmetric fiber, layered, porous, and composite structures, and introduces their versatility. Finally, the challenges and prospects are proposed. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ADVANCED FUNCTIONAL MATERIALS</span> (2025) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/85240056/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Engineering, Environmental </span> </div> <h4> <a href="https://www.peeref.com/works/24531610" class="text-dark hover-underline">Thermal insulating rubber foams embedded with segregated carbon nanotube networks for electromagnetic shielding applications</a> </h4> <p class="text-ellipsis-2">Zhaoxin Xie, Yifan Cai, Yanhu Zhan, Yanyan Meng, Yuchao Li, Qian Xie, Hesheng Xia</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/1639.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> In this study, a rubber foam with high electrical conductivity and low thermal conductivity was successfully prepared by constructing a segregated network and using ultrathin-shell expanded polymer microspheres. The rubber foam demonstrated lower thermal conductivity than air and other porous materials, and its shielding effectiveness exceeded other materials with thermal insulating properties. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">CHEMICAL ENGINEERING JOURNAL</span> (2022) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/24531610/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/works/85109889" class="text-dark hover-underline">ELF/VLF Electromagnetic Interference Shielding by Low-Dimensional Conductors Embedded in Insulating Polymer Matrices</a> </h4> <p class="text-ellipsis-2">Prithwish Biswas, Liam Alexis, Jaejun Lee, Gustavo A. Alvarez, August Brueggemann, Diana Santiago, Maricela Lizcano, Zhiting Tian</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/208.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This study explores the interaction of VLF and ELF electromagnetic waves with nanocomposites, and finds that low-dimensional conductive fillers can shield extremely long wavelengths by forming conduction paths through percolation. One-dimensional conductors with high aspect ratios have the best shielding performance, which is mainly achieved through reflection. The study also proposes a correlation based on conductivity and frequency to estimate the shielding effectiveness, which can be used for material design for low-frequency modulation. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ADVANCED FUNCTIONAL MATERIALS</span> (2025) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/85109889/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Materials Science, Composites </span> </div> <h4> <a href="https://www.peeref.com/works/82521825" class="text-dark hover-underline">Fabrication and investigation of graphene-loaded triiron tetraoxide/silicone-rubber electromagnetic shielding composites based on static magnetic-field-induced orientation</a> </h4> <p class="text-ellipsis-2">Jiaxing Guo, Qin Zhou, Jikai Xie, Hong Yin, Zhi Hao, Zhu Luo, Le Yang, Cheng Zhang</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/6797.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This study fabricated graphene-loaded Fe3O4/silicone-rubber composites by static magnetic field-induced alignment and characterized and evaluated their properties. The results showed that the conductivity of the composites increased with the increase of filler addition, but excessive filler led to the occurrence of many defects. At the same time, the increase of magnetic field strength can improve the orientation distribution of fillers, thereby enhancing the electromagnetic shielding effectiveness of composites. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">POLYMER COMPOSITES</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/82521825/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 "> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Engineering, Environmental </span> </div> <h4> <a href="https://www.peeref.com/works/28273726" class="text-dark hover-underline">Modulus matching strategy of ultra-soft electrically conductive silicone composites for high performance electromagnetic interference shielding</a> </h4> <p class="text-ellipsis-2">Yingjie Duan, Luhui Zhang, Dingkun Tian, Siyuan Liao, Yong Wang, Yadong Xu, Rong Sun, Yougen Hu</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/1639.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> Electrically conductive silicone composites with adjustable elastic modulus of Ag@PDMS conductive filler were developed, showing remarkable compressibility, EMI shielding and sealing capabilities. The APS composites exhibited low compressive stress and high EMI shielding effectiveness, making them suitable for precision electronic components packaging. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">CHEMICAL ENGINEERING JOURNAL</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/28273726/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> </div> <div id="articles_from_authors" class="tab-pane "> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Nanoscience &amp; Nanotechnology </span> </div> <h4> <a href="https://www.peeref.com/works/85067413" class="text-dark hover-underline">Dual-Network MXene/Polyurethane Composite Foams for Both Stretchable and Compressible Electromagnetic Interference Shielding and Strain Sensors</a> </h4> <p class="text-ellipsis-2">Chengjie Bai, Siran Jia, Wei Chen, Lulu Li, Yu Zhang, Peng Min, Zhong-Zhen Yu, Hao-Bin Zhang</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> A dual-network structured two-dimensional transition metal carbides and nitrides/bacterial cellulose-thermoplastic polyurethane (MXene/BC-TPU) foam with excellent EMI shielding performance and piezoelectric sensing ability is designed. The foam shows good elasticity and fatigue resistance in a wide strain range, making it suitable for wearable electronics. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ACS APPLIED MATERIALS &amp; INTERFACES</span> (2025) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/85067413/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Nanoscience &amp; Nanotechnology </span> </div> <h4> <a href="https://www.peeref.com/works/85169776" class="text-dark hover-underline">Dual-Network MXene/Polyurethane Composite Foams for Both Stretchable and Compressible Electromagnetic Interference Shielding and Strain Sensors</a> </h4> <p class="text-ellipsis-2">Chengjie Bai, Siran Jia, Wei Chen, Lulu Li, Yu Zhang, Peng Min, Zhong-Zhen Yu, Hao-Bin Zhang</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This paper presents an effective dual-network structure for fabricating two-dimensional transition metal carbides and nitrides/bacterial cellulose-thermoplastic polyurethane (MXene/BC-TPU) foams with excellent EMI shielding performance and piezoresistive sensing ability. The foams are highly conductive, stretchable, and compressible, and show stable resistance signal output in a wide strain range, making them suitable for EMI shielding and motion monitoring in wearable electronics. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ACS APPLIED MATERIALS &amp; INTERFACES</span> (2025) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/85169776/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Nanoscience &amp; Nanotechnology </span> </div> <h4> <a href="https://www.peeref.com/works/84845493" class="text-dark hover-underline">Preparation of Calcium Alginate-Based Hydrogels with Precisely Designed Centrosymmetric Geometries for Efficient Water Evaporation in Response to Different Solar Incidence Angles</a> </h4> <p class="text-ellipsis-2">Xiaoyang Fang, Wei Li, Changjun Li, Fan-Zhen Jiao, Zhi-Hao Wang, Shumiao Li, Fu-Lin Gao, Zhong-Zhen Yu, Xiaofeng Li</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> In this paper, an evaporator (CIE) based on calcium alginate and traditional Chinese ink is proposed, which uses directional freezing technology to construct radial channels, followed by freeze-drying and physical cross-linking. The prepared evaporator exhibits a sea-urchin-shaped highly geometrical centrosymmetric structure with numerous multilevel pore channels, which promotes the rapid transport of water under different solar incidence angles as the sun rotates and overcomes the structural shrinkage of the hydrogel caused by insufficient water supply. The urchin-structured CIE has a water evaporation rate of 3.52 kg m-2 h-1 at 1 sun irradiation, which is 45.5% higher than that of the unpatterned CIE. This multilevel structural design provides a strategy for the fabrication of an all-day water hydrogel-based evaporator without structural shrinkage under solar irradiation. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ACS APPLIED MATERIALS &amp; INTERFACES</span> (2025) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/84845493/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Nanoscience &amp; Nanotechnology </span> </div> <h4> <a href="https://www.peeref.com/works/85129695" class="text-dark hover-underline">Morning Glory-Inspired Biomimetic Water Purification Device with a Dry Chimney for Efficient Solar-Thermal Desalination and Simultaneous Catalytic Degradation of Organic Pollutants</a> </h4> <p class="text-ellipsis-2">Qiu-Han Fan, Rui-Jie Pan, Jin Qu, Jing Wu, Fan-Zhen Jiao, Zhi-Hao Wang, Sheng-Xing Hou, Jinglei Yang, Zhong-Zhen Yu</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> A morning glory-shaped water purification device with a dry chimney is designed for simultaneous solar-thermal evaporation of water and catalytic degradation of organic pollutants. The device is fabricated by decorating Au/CoFe2O4/carbon nanotube functional components on a hydrophilic and porous bamboo fabric substrate. The Au and CoFe2O4 can form Mott-Schottky heterostructures to generate a stable built-in electric field and promote the separation of electron-hole pairs, thereby facilitating the activation of potassium peroxymonosulfate to generate reactive oxygen species and achieving a high catalytic degradation rate constant. The chimney of the device benefits the continuous supply of dry air and creates airflow circulation, thereby reducing the humidity and increasing the evaporation rate. By simultaneously performing solar-thermal evaporation of wastewater and catalytic degradation of organic pollutants, a total water purification rate as high as 28.21 kg m(-2) h(-1) is achieved. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ACS APPLIED MATERIALS &amp; INTERFACES</span> (2025) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/85129695/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Engineering, Chemical </span> </div> <h4> <a href="https://www.peeref.com/works/85196115" class="text-dark hover-underline">Deformation-resistant sponge-like hydrogel evaporators for efficient solar steam generation and high salinity desalination</a> </h4> <p class="text-ellipsis-2">Tingting Zhang, Jing Yang, Yifan Yang, Changjun Li, Xinghe Xu, Zhong-Zhen Yu, Xiaofeng Li</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This study presents a freeze-casting assisted alkali infiltration strategy for fabricating hierarchical porous chitosan/carbon black spongy hydrogel (CCH) evaporators with excellent performance. The CCH evaporator demonstrates outstanding evaporation rates, stability, and salt resistance in solar steam generation and high salinity desalination. Additionally, it exhibits excellent compression-recovery properties, facilitating handling and transportation. This research provides new ideas and methods for the practical application of hydrogel evaporators in solar water purification technologies. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">DESALINATION</span> (2025) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/85196115/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/works/83967105" class="text-dark hover-underline">Interfacial enhancement enables highly conductive reduced graphene oxide-based yarns for efficient electromagnetic interference shielding and thermal regulation</a> </h4> <p class="text-ellipsis-2">Lujie Xie, Peng Min, Lvxuan Ye, Ping He, Guang Yin, Meng Jin, Hao-Bin Zhang, Zhong-Zhen Yu</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This study presents an interfacial enhancement strategy for the fabrication of highly conductive yarns, which is scalable and cost-effective. By modifying polyamide yarns with polyethyleneimine to enhance their interaction with graphene oxide sheets and subsequent reduction of the GO component, the resulting yarns maintain high conductivity after 10,000 bending cycles and exhibit excellent electromagnetic interference shielding effectiveness, hydrophobicity, air permeability, electrothermal, and solar-thermal energy conversion performances. This work provides a new strategy for the large-scale production of multifunctional yarns with broad application prospects. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">CARBON</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/83967105/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/works/82503101" class="text-dark hover-underline">Solar-thermal anisotropic zeolitic imidazolate framework/reduced graphene oxide hybrid aerogels for efficient clean-up of heavy crude oil</a> </h4> <p class="text-ellipsis-2">Wei-Guang Yang, Zhuo Luo, Sai Zhao, Bai-Xue Li, Hao Sun, Dongzhi Yang, Zhong-Zhen Yu</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> A novel material, ZIF-8/RGO hybrid aerogel, is introduced in this paper for the clean-up of heavy crude oil spills. The aerogel has efficient solar-thermal energy conversion performance and high adsorption capacity, which can reduce the viscosity and improve the fluidity of crude oil, thereby achieving rapid clean-up. In addition, the aerogel also has good adsorption and recycling ability for various organic solvents and oily media. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">CARBON</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/82503101/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Review </span> <span class="d-inline-block badge badge-cyan"> Nanoscience &amp; Nanotechnology </span> </div> <h4> <a href="https://www.peeref.com/works/82524921" class="text-dark hover-underline">Highly Aligned Graphene Aerogels for Multifunctional Composites</a> </h4> <p class="text-ellipsis-2">Ying Wu, Chao An, Yaru Guo, Yangyang Zong, Naisheng Jiang, Qingbin Zheng, Zhong-Zhen Yu</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This article reviews the recent progress of highly aligned graphene aerogels in multifunctional applications, including their controlled assembly, structural characteristics, quantitative characterization methods, anisotropic properties, and applications. The aligned graphene aerogels have unique properties such as high conductivity, mechanical stability, and thermal conductivity, and have broad application prospects in electronics, environment, and energy. However, there are still some challenges, such as high preparation cost and difficult control of alignment degree. Future research should focus on solving these problems and promoting the practical application of graphene aerogels. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">NANO-MICRO LETTERS</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/82524921/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/works/81818793" class="text-dark hover-underline">All-In-One Self-Floating Wood-Based Solar-Thermal Evaporators for Simultaneous Solar Steam Generation and Catalytic Degradation</a> </h4> <p class="text-ellipsis-2">Tingting Zhang, Jin Qu, Jing Wu, Fan-Zhen Jiao, Changjun Li, Fu-Lin Gao, Ji Liu, Zhong-Zhen Yu, Xiaofeng Li</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> A self-floating solar evaporator is reported by functionalizing balsa wood, which can achieve solar evaporation and pollutant degradation simultaneously. The oxygen vacancies in MnO2 nanoflowers can activate peroxymonosulfate to generate reactive oxygen species for efficient organic pollutant degradation. The evaporator has fast water supply, heat insulation, efficient mass transfer, and high buoyancy, and can operate stably in complex environments. This work provides a method for designing multifunctional solar evaporators and expands their application scenarios. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ADVANCED FUNCTIONAL MATERIALS</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/81818793/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Nanoscience &amp; Nanotechnology </span> </div> <h4> <a href="https://www.peeref.com/works/82043529" class="text-dark hover-underline">Antifreezing, Antidrying, and Conductive Hydrogels for Electronic Skin Applications at Ultralow Temperatures</a> </h4> <p class="text-ellipsis-2">Qiuyan Quan, Tianyu Zhao, Zhuo Luo, Bai-Xue Li, Hao Sun, Hao-Yu Zhao, Zhong-Zhen Yu, Dongzhi Yang</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> A conductive composite hydrogel with ultralow-temperature tolerance, antidrying, and self-regeneration ability is fabricated for electronic skin applications. The hydrogel is designed based on the synergy of double-cross-linked polymer networks, Hofmeister effect, and electrostatic interaction, and fabricated by in situ free radical polymerization and impregnation with LiCl. The LiCl and charged polar terminal groups of the polymers endow the hydrogel with antifreezing and antidrying properties, as well as self-regeneration ability. The MXene sheets in the hydrogel improve the ionic conductivity at low temperatures. The electronic skin assembled by the hydrogel is efficient in monitoring human motions at -80°C. The hydrogel shows great potential for applications in cold and dry regions due to its excellent properties. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ACS APPLIED MATERIALS &amp; INTERFACES</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/82043529/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 "> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Nanoscience &amp; Nanotechnology </span> </div> <h4> <a href="https://www.peeref.com/works/82231216" class="text-dark hover-underline">Multistimuli-Responsive Shape-Memory Composites with a Water-Assisted Self-Healing Function Based on Sodium Carboxymethyl Cellulose/Poly(vinyl alcohol)/MXene</a> </h4> <p class="text-ellipsis-2">Xiang-Rui Guo, Ping-Hou Sheng, Jing-Wan Hu, Ji Liu, Shi-Long Wang, Qian Ma, Zhong-Zhen Yu, Yun Ding</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This study reports a high-performance multistimuli-responsive shape-memory and self-healing composite film fabricated by embedding MXene nanosheets into a conventional shape-memory CMC and PVA matrix. The composite film shows excellent shape-memory response and self-healing ability, opening up new possibilities for future applications in smart technologies. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ACS APPLIED MATERIALS &amp; INTERFACES</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/82231216/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> </div> <div id="articles_from_journal" class="tab-pane "> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Review </span> <span class="d-inline-block badge badge-cyan"> Multidisciplinary Sciences </span> </div> <h4> <a href="https://www.peeref.com/works/84311622" class="text-dark hover-underline">Climate change exacerbates the environmental impacts of agriculture</a> </h4> <p class="text-ellipsis-2">Yi Yang, David Tilman, Zhenong Jin, Pete Smith, Christopher B. Barrett, Yong-Guan Zhu, Jennifer Burney, Paolo D&#039;Odorico, Peter Fantke, Joe Fargione, Jacques C. Finlay, Maria Cristina Rulli, Lindsey Sloat, Kees Jan van Groenigen, Paul C. West, Lewis Ziska, Anna M. Michalak, David B. Lobell, Michael Clark, Jed Colquhoun, Teevrat Garg, Karen A. Garrett, Camilla Geels, Rebecca R. Hernandez, Mario Herrero, William D. Hutchison, Meha Jain, Jacob M. Jungers, Beibei Liu, Nathaniel D. Mueller, Ariel Ortiz-Bobea, Jacob Schewe, Jie Song, Julie Verheyen, Peter Vitousek, Yoshihide Wada, Longlong Xia, Xin Zhang, Minghao Zhuang</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> Agriculture&#039;s environmental impacts are expanding due to population, economic growth, and dietary changes. Climate change further amplifies these impacts, causing problems such as decreased agricultural productivity and increased soil erosion. Therefore, a transition to sustainable, climate-resilient agricultural systems is needed, which requires investment and innovation. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SCIENCE</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/84311622/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Multidisciplinary Sciences </span> </div> <h4> <a href="https://www.peeref.com/works/83166782" class="text-dark hover-underline">Strong-bonding hole-transport layers reduce ultraviolet degradation of perovskite solar cells</a> </h4> <p class="text-ellipsis-2">Chengbin Fei, Anastasia Kuvayskaya, Xiaoqiang Shi, Mengru Wang, Zhifang Shi, Haoyang Jiao, Timothy J. Silverman, Michael Owen-Bellini, Yifan Dong, Yeming Xian, Rebecca Scheidt, Xiaoming Wang, Guang Yang, Hangyu Gu, Nengxu Li, Connor J. Dolan, Zhewen J. D. Deng, Deniz N. Cakan, David P. Fenning, Yanfa Yan, Matthew C. Beard, Laura T. Schelhas, Alan Sellinger, Jinsong Huang</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> The LEDs used in indoor testing of perovskite solar cells do not expose them to sufficient UV radiation. This study reports the degradation mechanisms of these cells under unfiltered sunlight and LEDs, finding that weak chemical bonding causes accelerated A-site cation migration rather than direct HTM degradation. EtCz3EPA enhances the bonding in the perovskite/HTM/TCO region, and the hybrid HTM improves the UV stability and efficiency of perovskite devices. The perovskite minimodule maintains a high operational efficiency after outdoor testing. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SCIENCE</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/83166782/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Multidisciplinary Sciences </span> </div> <h4> <a href="https://www.peeref.com/works/83126540" class="text-dark hover-underline">Fast growth of single-crystal covalent organic frameworks for laboratory x-ray diffraction</a> </h4> <p class="text-ellipsis-2">Jing Han, Jie Feng, Jia Kang, Jie-Min Chen, Xin-Yu Du, San-Yuan Ding, Lin Liang, Wei Wang</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This study developed a method for the rapid growth of high-quality single-crystalline COFs. By using the CF3COOH/CF3CH2NH2 protocol, single-crystalline COFs with a size of up to 150 microns can be harvested within 1-2 days, and the structures of 16 high-quality single-crystalline COFs were determined by laboratory single-crystalline X-ray diffraction, including uncommon network interpenetration. The structural evolution details of conformational isomers and host-guest interactions can be determined at the atomic level. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SCIENCE</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/83126540/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Multidisciplinary Sciences </span> </div> <h4> <a href="https://www.peeref.com/works/83126618" class="text-dark hover-underline">Anthropogenic climate change has influenced global river flow seasonality</a> </h4> <p class="text-ellipsis-2">Hong Wang, Junguo Liu, Megan Klaar, Aifang Chen, Lukas Gudmundsson, Joseph Holden</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This study uses apportionment entropy to assess the nonuniformity of river flow across seasons and finds that about 21% of long-term river gauging stations worldwide have experienced significant changes in the distribution of seasonal river flow, two-thirds of which are unrelated to trends in annual mean discharge. In the northern high latitudes, the river flow seasonality has weakened significantly, which is directly related to anthropogenic climate forcing. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SCIENCE</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/83126618/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Multidisciplinary Sciences </span> </div> <h4> <a href="https://www.peeref.com/works/83128951" class="text-dark hover-underline">Shearing brittle intermetallics enhances cryogenic strength and ductility of steels</a> </h4> <p class="text-ellipsis-2">Feng Wang, Miao Song, Mohamed N. Elkot, Ning Yao, Binhan Sun, Min Song, Zhangwei Wang, Dierk Raabe</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This study reports the dislocation cutting of B2 nanoprecipitates in a lightweight compositionally complex steel during cryogenic tensile loading. Shearing is enabled by the high strength level for dislocation glide within the austenitic matrix. This mechanism harnesses the strengthening of nanoprecipitates and introduces ductility. The steel shows ultrahigh cryogenic tensile strength and remarkable tensile elongation, providing a new strategy for designing high-performance structural materials. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SCIENCE</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/83128951/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Multidisciplinary Sciences </span> </div> <h4> <a href="https://www.peeref.com/works/83138060" class="text-dark hover-underline">N-type semiconducting hydrogel</a> </h4> <p class="text-ellipsis-2">Peiyun Li, Wenxi Sun, Jiulong Li, Ju-Peng Chen, Xinyue Wang, Zi Mei, Guanyu Jin, Yuqiu Lei, Ruiyun Xin, Mo Yang, Jingcao Xu, Xiran Pan, Cheng Song, Xin-Yu Deng, Xun Lei, Kai Liu, Xiu Wang, Yuting Zheng, Jia Zhu, Shixian Lv, Zhi Zhang, Xiaochuan Dai, Ting Lei</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This text mainly introduces a kind of hydrogel based on water-soluble n-type semiconducting polymer, which has semiconductor capabilities and can be used to manufacture electronic devices, such as complementary logic circuits and signal amplifiers, and has good bioadhesion and biocompatibility, and can sense and amplify small signals. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SCIENCE</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/83138060/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Multidisciplinary Sciences </span> </div> <h4> <a href="https://www.peeref.com/works/83105294" class="text-dark hover-underline">A national-scale assessment of land subsidence in China&#039;s major cities</a> </h4> <p class="text-ellipsis-2">Zurui Ao, Xiaomei Hu, Shengli Tao, Xie Hu, Guoquan Wang, Mingjia Li, Fang Wang, Litang Hu, Xiuyu Liang, Jingfeng Xiao, Asadilla Yusup, Wenhua Qi, Qinwei Ran, Jiayi Fang, Jinfeng Chang, Zhenzhong Zeng, Yongshuo Fu, Baolin Xue, Ping Wang, Kefei Zhao, Le Li, Wenkai Li, Yumei Li, Mi Jiang, Yuanhe Yang, Haihua Shen, Xia Zhao, Yue Shi, Bo Wu, Zhengbing Yan, Mengjia Wang, Yanjun Su, Tianyu Hu, Qin Ma, Hao Bai, Lijun Wang, Ziyan Yang, Yuhao Feng, Danhua Zhang, Erhan Huang, Jiamin Pan, Huiying Ye, Chen Yang, Yanwei Qin, Chenqi He, Yanpei Guo, Kai Cheng, Yu Ren, Haitao Yang, Chengyang Zheng, Jiangling Zhu, Shaopeng Wang, Chengjun Ji, Biao Zhu, Hongyan Liu, Zhiyao Tang, Zhiheng Wang, Shuqing Zhao, Yanhong Tang, Hanfa Xing, Qinghua Guo, Yu Liu, Jingyun Fang</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This study indicates that China&#039;s urbanization may be threatened by land subsidence. 45% of urban lands are subsiding faster than 3mm/year, and 16% are subsiding faster than 10mm/year, affecting 29% and 7% of the urban population respectively. The subsidence is related to factors such as groundwater withdrawal and the weight of buildings. By 2120, 22% to 26% of the coastal lands will have a relative elevation lower than sea level, hosting 9% to 11% of the coastal population. The study emphasizes the need to strengthen protective measures to mitigate potential damages. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SCIENCE</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/83105294/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Multidisciplinary Sciences </span> </div> <h4> <a href="https://www.peeref.com/works/83279233" class="text-dark hover-underline">Additive manufacturing of highly entangled polymer networks</a> </h4> <p class="text-ellipsis-2">Abhishek P. Dhand, Matthew D. Davidson, Hannah M. Zlotnick, Thomas J. Kolibaba, Jason P. Killgore, Jason A. Burdick</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> A facile strategy is proposed to achieve high monomer conversion and additive manufacturing of highly entangled hydrogels and elastomers by combining light and dark polymerization. This method enables the printing of high-resolution and multimaterial structures with features such as spatially programmed adhesion to wet tissues, without the need for additional stimuli. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SCIENCE</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/83279233/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Multidisciplinary Sciences </span> </div> <h4> <a href="https://www.peeref.com/works/84318920" class="text-dark hover-underline">Soft hydrogel semiconductors with augmented biointeractive functions</a> </h4> <p class="text-ellipsis-2">Yahao Dai, Shinya Wai, Pengju Li, Naisong Shan, Zhiqiang Cao, Yang Li, Yunfei Wang, Youdi Liu, Wei Liu, Kan Tang, Yuzi Liu, Muchuan Hua, Songsong Li, Nan Li, Shivani Chatterji, H. Christopher Fry, Sean Lee, Cheng Zhang, Max Weires, Sean Sutyak, Jiuyun Shi, Chenhui Zhu, Jie Xu, Xiaodan Gu, Bozhi Tian, Sihong Wang</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> We incorporated water-insoluble polymer semiconductors into double-network hydrogels, which possess tissue-level moduli, stretchability, and high charge carrier mobility. When interfaced with biological tissues, these hydrogels can alleviate immune reactions. The high porosity of the hydrogels enhances molecular interactions, enabling photomodulation and volumetric biosensing. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SCIENCE</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/84318920/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Multidisciplinary Sciences </span> </div> <h4> <a href="https://www.peeref.com/works/84334839" class="text-dark hover-underline">Developing fatigue-resistant ferroelectrics using interlayer sliding switching</a> </h4> <p class="text-ellipsis-2">Renji Bian, Ri He, Er Pan, Zefen Li, Guiming Cao, Peng Meng, Jiangang Chen, Qing Liu, Zhicheng Zhong, Wenwu Li, Fucai Liu</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> We report a fatigue-free ferroelectric system based on the sliding ferroelectricity of bilayer 3R-MoS2. This system shows no wake-up effect at low cycles and no significant fatigue effect after 106 switching cycles, and the total stress time under an electric field is up to 105 s. Theoretical calculations reveal that the fatigue-free feature is due to the immobile charge defects in sliding ferroelectricity. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SCIENCE</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/84334839/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Multidisciplinary Sciences </span> </div> <h4> <a href="https://www.peeref.com/works/83127490" class="text-dark hover-underline">Kink bands promote exceptional fracture resistance in a NbTaTiHf refractory medium-entropy alloy</a> </h4> <p class="text-ellipsis-2">David H. Cook, Punit Kumar, Madelyn I. Payne, Calvin H. Belcher, Pedro Borges, Wenqing Wang, Flynn Walsh, Zehao Li, Arun Devaraj, Mingwei Zhang, Mark Asta, Andrew M. Minor, Enrique J. Lavernia, Diran Apelian, Robert O. Ritchie</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This study investigated the strength and fracture toughness of single-phase body-centered cubic refractory medium- or high-entropy alloys, finding that the NbTaTiHf alloy has a high fracture toughness due to the dynamic competition of dislocations and the formation of kink bands, which helps suppress strain hardening and distribute damage. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SCIENCE</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/83127490/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Multidisciplinary Sciences </span> </div> <h4> <a href="https://www.peeref.com/works/83127492" class="text-dark hover-underline">Size, distribution, and vulnerability of the global soil inorganic carbon</a> </h4> <p class="text-ellipsis-2">Yuanyuan Huang, Xiaodong Song, Ying-Ping Wang, Josep G. Canadell, Yiqi Luo, Philippe Ciais, Anping Chen, Songbai Hong, Yugang Wang, Feng Tao, Wei Li, Yiming Xu, Reza Mirzaeitalarposhti, Heba Elbasiouny, Igor Savin, Dmitry Shchepashchenko, Raphael A. Viscarra Rossel, Daniel S. Goll, Jinfeng Chang, Benjamin Z. Houlton, Huayong Wu, Fei Yang, Xiaoming Feng, Yongzhe Chen, Yu Liu, Shuli Niu, Gan-Lin Zhang</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> This study quantified the global soil inorganic carbon (SIC) stocks and distributions through field measurements and model analyses, and predicted the impacts of soil acidification on SIC under future scenarios. In addition, the study found that a large amount of inorganic carbon is lost to inland waters through soils annually, which has important implications for the carbon dynamics in the atmosphere and hydrosphere. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SCIENCE</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/83127492/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Multidisciplinary Sciences </span> </div> <h4> <a href="https://www.peeref.com/works/83148106" class="text-dark hover-underline">Aqueous synthesis of perovskite precursors for highly efficient perovskite solar cells</a> </h4> <p class="text-ellipsis-2">Peide Zhu, Deng Wang, Yong Zhang, Zheng Liang, Jingbai Li, Jie Zeng, Jiyao Zhang, Yintai Xu, Siying Wu, Zhixin Liu, Xianyong Zhou, Bihua Hu, Feng He, Lin Zhang, Xu Pan, Xingzhu Wang, Nam-Gyu Park, Baomin Xu</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> Aqueous-synthesized perovskite microcrystals were proposed as precursor materials for PSCs, enabling large-scale production of high-purity formamidinium lead iodide microcrystals. Using these purified precursors, a PCE of 25.6% was achieved in inverted PSCs, with high stability after 1000 hours of continuous simulated solar illumination. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SCIENCE</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/83148106/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Multidisciplinary Sciences </span> </div> <h4> <a href="https://www.peeref.com/works/83162132" class="text-dark hover-underline">Ultrahigh energy storage in high-entropy ceramic capacitors with polymorphic relaxor phase</a> </h4> <p class="text-ellipsis-2">Min Zhang, Shun Lan, Bing B. Yang, Hao Pan, Yi Q. Liu, Qing H. Zhang, Jun L. Qi, Di Chen, Hang Su, Di Yi, Yue Y. Yang, Rui Wei, Hong D. Cai, Hao J. Han, Lin Gu, Ce-Wen Nan, Yuan-Hua Lin</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> A high-entropy design strategy is proposed to fabricate multilayer ceramic capacitors with high energy density and high efficiency. By reducing the domain-switching barriers and enhancing the breakdown strength, this strategy achieves a synergistic effect, resulting in high energy density and ultrahigh efficiency in MLCCs. This approach may be applicable to the design of high-performance dielectrics. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SCIENCE</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/83162132/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> <div class="my-4 "> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Multidisciplinary Sciences </span> </div> <h4> <a href="https://www.peeref.com/works/83280481" class="text-dark hover-underline">Giant polyketide synthase enzymes in the biosynthesis of giant marine polyether toxins</a> </h4> <p class="text-ellipsis-2">Timothy R. Fallon, Vikram V. Shende, Igor H. Wierzbicki, Amanda L. Pendleton, Nathan F. Watervoot, Robert P. Auber, David J. Gonzalez, Jennifer H. Wisecaver, Bradley S. Moore</p> <div class="d-flex mb-3"> <div class="p-3 rounded bg-light-blue"> <strong>Summary:</strong> The biosynthetic origin of prymnesin, the polyketide polyether toxin of Prymnesium parvum, has remained a mystery for more than 40 years. This work discovers the previously undetected large-scale Prymnesium parvum polyketide synthase genes PKZILLAs, whose encoded protein products have multiple enzyme domains, and the predicted polyene product matches the precursor of prymnesin. Further studies show that the variant PKZILLA-B1 is responsible for the biosynthesis of the shorter B-type analog prymnesin-B1. This work expands the expectations of genetic and enzymatic size limitations in biology. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SCIENCE</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/works/83280481/add-to-collection" target="_blank"> <strong>Add to Collection</strong> </a> </div> </div> </div> </div> </div> </div> </div> </div> </div> <div class="modal fade" id="export-citation" tabindex="-1"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal"><span>&times;</span></button> <h4 class="modal-title">Export Citation <b class="text-primary"></b></h4> </div> <div class="modal-body"> <div class="my-3 px-4 f16"> <form action="https://www.peeref.com/works/citation/download" method="GET" target="_blank"> <div class="radio"> <label> <input type="radio" name="fileType" value="PlainText" checked> <strong>Plain Text</strong> </label> </div> <div class="radio"> <label> <input type="radio" name="fileType" value="RIS"> <strong>RIS</strong> <span>- Export format compatible with most major reference management software such as Endnote and Zotero</span> </label> </div> <div class="radio"> <label> <input type="radio" name="fileType" value="BibTeX"> <strong>BibTeX</strong> <span>- Export format compatible with LaTeX</span> </label> </div> <input type="hidden" name="articleId" value="85268069"> <div class="mt-lg-4 text-center"> <button class="citation-download-btn btn btn-primary"> Export </button> </div> </form> </div> </div> </div> </div> </div> <div class="modal fade" id="share-paper" tabindex="-1"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal"><span>&times;</span></button> <h4 class="modal-title">Share Paper <b class="text-primary"></b></h4> </div> <div class="modal-body"> <div class="my-4"> <div class="social-share"> <a class="social-share-item email" href="mailto:?subject=Insulating electromagnetic-shielding silicone compound enables direct potting electronics&amp;body=https://www.peeref.com/works/85268069" target="_blank"> <img src="https://peeref-open.s3.amazonaws.com/images/social-share-email.svg" height="16"> </a> <a class="social-share-item linkedin" href="https://www.linkedin.com/shareArticle/?url=https://www.peeref.com/works/85268069" target="_blank"> <img src="https://peeref-open.s3.amazonaws.com/images/social-share-linkedin.svg" height="16"> </a> <a class="social-share-item twitter" href="https://twitter.com/share?url=https://www.peeref.com/works/85268069" target="_blank"> <img src="https://peeref-open.s3.amazonaws.com/images/social-share-twitter.svg" height="16"> </a> <a class="social-share-item wechat" href="javascipt:;" onclick="window.open('https://api.qrserver.com/v1/create-qr-code/?size=154x154&data=https://www.peeref.com/works/85268069', 'newwindow', 'height=300, width=300')"> <img src="https://peeref-open.s3.amazonaws.com/images/social-share-wechat.svg" height="16"> </a> <a class="social-share-item facebook" href="https://www.facebook.com/sharer/sharer.php?u=https://www.peeref.com/works/85268069" target="_blank"> <img src="https://peeref-open.s3.amazonaws.com/images/social-share-facebook.svg" height="16"> </a> </div> </div> </div> </div> </div> </div> <back-top-button></back-top-button> </main> <div class="container"> <div class="footer"> <div class="col-md-10"> <div class="d-flex flex-wrap" style="font-size: 15px;"> <a href="https://www.peeref.com/works" class="mx-3 px-2"> Papers </a> <a href="https://www.peeref.com/posters" class="mx-3 px-2"> Posters </a> <a href="https://www.peeref.com/abstracts" class="mx-3 px-2"> Abstracts </a> <a href="https://www.peeref.com/webinars" class="mx-3 px-2"> Webinars </a> <a href="https://www.peeref.com/questions" class="mx-3 px-2"> Questions </a> <a href="https://www.peeref.com/hubs" class="mx-3 px-2"> Hubs </a> <a href="https://www.peeref.com/funding" class="mx-3 px-2"> Funding </a> <a href="https://www.peeref.com/journals" class="mx-3 px-2"> Journals </a> <a href="https://www.peeref.com/connect" class="mx-3 px-2"> Connect </a> <a href="https://www.peeref.com/e-collections" class="mx-3 px-2"> Collections </a> <a href="https://www.peeref.com/reviewer" class="mx-3 px-2"> Reviewers </a> <a href="https://www.peeref.com/about" class="mx-3 px-2"> About Us </a> <a href="https://www.peeref.com/about/faq" class="mx-3 px-2"> FAQs </a> <a href="https://www.peeref.com/mobile-app" class="mx-3 px-2"> Mobile App </a> <a href="https://www.peeref.com/about/privacy" class="mx-3 px-2"> Privacy Policy </a> <a href="https://www.peeref.com/about/terms-of-use" class="mx-3 px-2"> Terms of Use </a> </div> </div> <div class="col-md-2"> <div class="d-flex justify-content-end"> <div class="sns"> <a href="https://www.facebook.com/Peeref-113216326987528" target="_blank"> <i class="ivu-icon ivu-icon-logo-facebook"></i> </a> <a href="https://twitter.com/Peeref1" target="_blank"> <i class="ivu-icon ivu-icon-logo-twitter"></i> </a> </div> </div> </div> </div> <div class="copyright"> © Peeref 2019-2025. All rights reserved. </div> </div> </div> <script src="https://peeref-open.s3.amazonaws.com/js/manifest.42bb1b6291289ba30c76.js"></script> <script src="https://peeref-open.s3.amazonaws.com/js/vendor.362294362b899c82d030.js"></script> <script src="https://peeref-open.s3.amazonaws.com/js/app.ee6e6ad3c472f6e3f93d.js"></script> <script> $(function() { $('#reading-btn').click(function() { const navHeight = $("#article-sticky-navbar").height(); const readingAreaTop = $("#collection").offset().top; const readingAreaHeight = readingAreaTop - navHeight - 30; $("html, body").animate( { scrollTop: readingAreaHeight }, 400 ); return false; }) }); </script> <script src="https://peeref-open.s3.amazonaws.com/vendor/MathJax-274/MathJax.js?config=default" async></script> <script async src="https://www.googletagmanager.com/gtag/js?id=UA-152048790-1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-152048790-1'); </script> <script type="text/javascript" id="cookiebanner" src="https://peeref-open.s3.amazonaws.com/js/cookiebanner.min.js" data-position="bottom" data-cookie="_uc_" data-expires="Wed, 31 Dec 2025 00:00:00 GMT" data-font-size="15px" data-close-text="Accept" data-close-precedes="false" data-close-style="border-radius: 5px; margin: 3px 15px; padding: 3px 10px; display: inline-block; font-weight: bold; background: rgb(245, 207, 71); color: rgb(16, 75, 125);" data-linkmsg="" data-moreinfo-decoration="underline" data-moreinfo="https://www.peeref.com/about/privacy" data-bg="rgb(16, 75, 125)" data-link="rgb(255, 255, 255)" data-message="Peeref uses cookies to improve your experience. Please read our &lt;a&gt;Privacy Policy&lt;/a&gt; for more details."> </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10