CINXE.COM
Search results for: seepage field
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: seepage field</title> <meta name="description" content="Search results for: seepage field"> <meta name="keywords" content="seepage field"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="seepage field" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="seepage field"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8343</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: seepage field</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8343</span> Service Life Prediction of Tunnel Structures Subjected to Water Seepage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Baji">Hassan Baji</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Qing%20Li"> Chun-Qing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yang"> Wei Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water seepage is one of the most common causes of damage in tunnel structures, which can cause direct and indirect e.g. reinforcement corrosion and calcium leaching damages. Estimation of water seepage or inflow is one of the main challenges in probabilistic assessment of tunnels. The methodology proposed in this study is an attempt for mathematically modeling the water seepage in tunnel structures and further predicting its service life. Using the time-dependent reliability, water seepage is formulated as a failure mode, which can be used for prediction of service life. Application of the formulated seepage failure mode to a case study tunnel is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20seepage" title="water seepage">water seepage</a>, <a href="https://publications.waset.org/abstracts/search?q=tunnels" title=" tunnels"> tunnels</a>, <a href="https://publications.waset.org/abstracts/search?q=time-dependent%20reliability" title=" time-dependent reliability"> time-dependent reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20life" title=" service life"> service life</a> </p> <a href="https://publications.waset.org/abstracts/79580/service-life-prediction-of-tunnel-structures-subjected-to-water-seepage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8342</span> Research of Seepage Field and Slope Stability Considering Heterogeneous Characteristics of Waste Piles: A Less Costly Way to Reduce High Leachate Levels and Avoid Accidents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serges%20Mendomo%20Meye">Serges Mendomo Meye</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Guowei"> Li Guowei</a>, <a href="https://publications.waset.org/abstracts/search?q=Shen%20Zhenzhong"> Shen Zhenzhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Gan%20Lei"> Gan Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Liqun"> Xu Liqun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the characteristics of high-heap and large-volume, the complex layers of waste and the high-water level of leachate, environmental pollution, and slope instability are easily produced. It is therefore of great significance to research the heterogeneous seepage field and stability of landfills. This paper focuses on the heterogeneous characteristics of the landfill piles and analyzes the seepage field and slope stability of the landfill using statistical and numerical analysis methods. The calculated results are compared with the field measurement and literature research data to verify the reliability of the model, which may provide the basis for the design, safe, and eco-friendly operation of the landfill. The main innovations are as follows: (1) The saturated-unsaturated seepage equation of heterogeneous soil is derived theoretically. The heterogeneous landfill is regarded as composed of infinite layers of homogeneous waste, and a method for establishing the heterogeneous seepage model is proposed. Then the formation law of the stagnant water level of heterogeneous landfills is studied. It is found that the maximum stagnant water level of landfills is higher when considering the heterogeneous seepage characteristics, which harms the stability of landfills. (2) Considering the heterogeneity weight and strength characteristics of waste, a method of establishing a heterogeneous stability model is proposed, and it is extended to the three-dimensional stability study. It is found that the distribution of heterogeneous characteristics has a great influence on the stability of landfill slope. During the operation and management of the landfill, the reservoir bank should also be considered while considering the capacity of the landfill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20characteristics" title="heterogeneous characteristics">heterogeneous characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=leachate%20levels" title=" leachate levels"> leachate levels</a>, <a href="https://publications.waset.org/abstracts/search?q=saturated-unsaturated%20seepage" title=" saturated-unsaturated seepage"> saturated-unsaturated seepage</a>, <a href="https://publications.waset.org/abstracts/search?q=seepage%20field" title=" seepage field"> seepage field</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a> </p> <a href="https://publications.waset.org/abstracts/140053/research-of-seepage-field-and-slope-stability-considering-heterogeneous-characteristics-of-waste-piles-a-less-costly-way-to-reduce-high-leachate-levels-and-avoid-accidents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8341</span> Soil Moisture Regulation in Irrigated Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Kruashvili">I. Kruashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Inashvili"> I. Inashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bziava"> K. Bziava</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lomishvili"> M. Lomishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seepage capillary anomalies in the active layer of soil, related to the soil water movement, often cause variation of soil hydrophysical properties and become one of the main objectives of the hydroecology. It is necessary to mention that all existing equations for computing the seepage flow particularly from soil channels, through dams, bulkheads, and foundations of hydraulic engineering structures are preferable based on the linear seepage law. Regarding the existing beliefs, anomalous seepage is based on postulates according to which the fluid in free volume is characterized by resistance against shear deformation and is presented in the form of initial gradient. According to the above-mentioned information, we have determined: Equation to calculate seepage coefficient when the velocity of transition flow is equal to seepage flow velocity; by means of power function, equations for the calculation of average and maximum velocities of seepage flow have been derived; taking into consideration the fluid continuity condition, average velocity for calculation of average velocity in capillary tube has been received. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seepage" title="seepage">seepage</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity" title=" velocity"> velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a> </p> <a href="https://publications.waset.org/abstracts/53466/soil-moisture-regulation-in-irrigated-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8340</span> Minimization of Seepage in Sandy Soil Using Different Grouting Types</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eng.%20M.%20Ahmed">Eng. M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ibrahim"> A. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ashour"> M. Ashour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the major concerns facing dam is the repair of their structures to prevent the seepage under them. In previous years, many existing dams have been treated by grouting, but with varying degrees of success. One of the major reasons for this erratic performance is the unsuitable selection of the grouting materials to reduce the seepage. Grouting is an effective way to improve the engineering properties of the soil and strengthen of the permeability of the soil to reduce the seepage. The purpose of this paper is to focus on the efficiency of current available grouting materials and techniques from construction, environmental and economical point of view. The seepage reduction usually accomplished by either chemical grouting or cementious grouting using ultrafine cement. In addition, the study shows a comparison between grouting materials according to their degree of permeability reduction and cost. The application of seepage reduction is based on the permeation grouting using grout curtain installation. The computer program (SEEP/W) is employed to model a dam rested on sandy soil, using grout curtain to reduce seepage quantity and hydraulic gradient by different grouting materials. This study presents a relationship that takes into account the permeability of the soil, grout curtain spacing and a new performance parameter that can be used to predict the best selection of grouting materials for seepage reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seepage" title="seepage">seepage</a>, <a href="https://publications.waset.org/abstracts/search?q=sandy%20soil" title=" sandy soil"> sandy soil</a>, <a href="https://publications.waset.org/abstracts/search?q=grouting" title=" grouting"> grouting</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a> </p> <a href="https://publications.waset.org/abstracts/41047/minimization-of-seepage-in-sandy-soil-using-different-grouting-types" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8339</span> Seepage Analysis through Earth Dam Embankment: Case Study of Batu Dam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Larifah%20Mohd%20Sidik">Larifah Mohd Sidik</a>, <a href="https://publications.waset.org/abstracts/search?q=Anuar%20Kasa"> Anuar Kasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the demands for raw water are increasing along with the growth of the economy and population. Hence, the need for the construction and operation of dams is one of the solutions for the management of water resources problems. The stability of the embankment should be taken into consideration to evaluate the safety of retaining water. The safety of the dam is mostly based on numerous measurable components, for instance, seepage flowrate, pore water pressure and deformation of the embankment. Seepage and slope stability is the primary and most important reason to ascertain the overall safety behavior of the dams. This research study was conducted to evaluate static condition seepage and slope stability performances of Batu dam which is located in Kuala Lumpur capital city. The numerical solution Geostudio-2012 software was employed to analyse the seepage using finite element method, SEEP/W and slope stability using limit equilibrium method, SLOPE/W for three different cases of reservoir level operations; normal and flooded condition. Results of seepage analysis using SEEP/W were utilized as parental input for the analysis of SLOPE/W. Sensitivity analysis on hydraulic conductivity of material was done and calibrated to minimize the relative error of simulation SEEP/W, where the comparison observed field data and predicted value were also carried out. In seepage analysis, such as leakage flow rate, pore water distribution and location of a phreatic line are determined using the SEEP/W. The result of seepage analysis shows the clay core effectively lowered the phreatic surface and no piping failure is shown in the result. Hence, the total seepage flux was acceptable and within the permissible limit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earth%20dam" title="earth dam">earth dam</a>, <a href="https://publications.waset.org/abstracts/search?q=dam%20safety" title=" dam safety"> dam safety</a>, <a href="https://publications.waset.org/abstracts/search?q=seepage" title=" seepage"> seepage</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a>, <a href="https://publications.waset.org/abstracts/search?q=pore%20water%20pressure" title=" pore water pressure"> pore water pressure</a> </p> <a href="https://publications.waset.org/abstracts/140889/seepage-analysis-through-earth-dam-embankment-case-study-of-batu-dam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8338</span> Groundwater Seepage Estimation into Amirkabir Tunnel Using Analytical Methods and DEM and SGR Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Farhadian">Hadi Farhadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Homayoon%20Katibeh"> Homayoon Katibeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, groundwater seepage into Amirkabir tunnel has been estimated using analytical and numerical methods for 14 different sections of the tunnel. Site Groundwater Rating (SGR) method also has been performed for qualitative and quantitative classification of the tunnel sections. The obtained results of above-mentioned methods were compared together. The study shows reasonable accordance with results of the all methods unless for two sections of tunnel. In these two sections there are some significant discrepancies between numerical and analytical results mainly originated from model geometry and high overburden. SGR and the analytical and numerical calculations, confirm the high concentration of seepage inflow in fault zones. Maximum seepage flow into tunnel has been estimated 0.425 lit/sec/m using analytical method and 0.628 lit/sec/m using numerical method occurred in crashed zone. Based on SGR method, six sections of 14 sections in Amirkabir tunnel axis are found to be in "No Risk" class that is supported by the analytical and numerical seepage value of less than 0.04 lit/sec/m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20Seepage" title="water Seepage">water Seepage</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirkabir%20Tunnel" title=" Amirkabir Tunnel"> Amirkabir Tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20method" title=" analytical method"> analytical method</a>, <a href="https://publications.waset.org/abstracts/search?q=DEM" title=" DEM"> DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=SGR" title=" SGR"> SGR</a> </p> <a href="https://publications.waset.org/abstracts/26677/groundwater-seepage-estimation-into-amirkabir-tunnel-using-analytical-methods-and-dem-and-sgr-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8337</span> Evaluating Evaporation and Seepage Losses in Lakes Using Sentinel Images and the Water Balance Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20Elsehsah">Abdelrahman Elsehsah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study is to assess changes in the water capacity of Aswan High Dam Lake (AHDL) caused by evaporation and seepage losses. To achieve this objective, a comprehensive methodology was employed. The methodology involves acquiring Sentinel-3 imagery and extracting the surface area of the lake using remote sensing techniques. Using water areas calculated from sentinel images, collected field data, and the lake’s water balance equation, monthly evaporation and seepage losses were estimated for the years 2021 and 2022. Based on the water balance method results, the average monthly evaporation losses for the year 2021 were estimated to be around 1.41 billion cubic meters (Bm3), which closely matches the estimates provided by the Ministry of Water Resources and Irrigation (MWRI) annual reports (approximately 1.37 Bm3 in the same year). This means that the water balance method slightly overestimated the monthly evaporation losses by about 2.92%. Similarly, the average monthly seepage losses for the year 2022 were estimated to be around 0.005 Bm3, while the MWRI reports indicated approximately 0.0046 Bm3. By another means, the water balance method overestimated the monthly seepage losses by about 8.70%. Furthermore, the study found that the average monthly evaporation rate within AHDL was 210.88 mm/month, which closely aligns with the computed value of approximately 204.9 mm/month by AHDA. These findings indicated that the applied water balance method, utilizing remote sensing and field data, is a reliable tool for estimating monthly evaporation and seepage losses as well as monthly evaporation rates in AHDL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aswan%20high%20dam%20lake" title="Aswan high dam lake">Aswan high dam lake</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20balance%20equation" title=" water balance equation"> water balance equation</a>, <a href="https://publications.waset.org/abstracts/search?q=seepage%20loss" title=" seepage loss"> seepage loss</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation%20loss" title=" evaporation loss"> evaporation loss</a> </p> <a href="https://publications.waset.org/abstracts/188529/evaluating-evaporation-and-seepage-losses-in-lakes-using-sentinel-images-and-the-water-balance-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8336</span> Quantification of Effect of Linear Anionic Polyacrylamide on Seepage in Irrigation Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamil%20Uribe">Hamil Uribe</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Arancibia"> Cristian Arancibia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Chile, the water for irrigation and hydropower generation is delivery essentially through unlined channels on earth, which have high seepage losses. Traditional seepage-abatement technologies are very expensive. The goals of this work were to quantify water loss in unlined channels and select reaches to evaluate the use of linear anionic polyacrylamide (LA-PAM) to reduce seepage losses. The study was carried out in Maule Region, central area of Chile. Water users indicated reaches with potential seepage losses, 45 km of channels in total, whose flow varied between 1.07 and 23.6 m³ s⁻¹. According to seepage measurements, 4 reaches of channels, 4.5 km in total, were selected for LA-PAM application. One to 4 LA-PAM applications were performed at rates of 11 kg ha⁻¹, considering wet perimeter area as basis of calculation. Large channels were used to allow motorboat moving against the current to carry-out LA-PAM application. For applications, a seeder machine was used to evenly distribute granulated polymer on water surface. Water flow was measured (StreamPro ADCP) upstream and downstream in selected reaches, to estimate seepage losses before and after LA-PAM application. Weekly measurements were made to quantify treatment effect and duration. In each case, water turbidity and temperature were measured. Channels showed variable losses up to 13.5%. Channels showing water gains were not treated with PAM. In all cases, LA-PAM effect was positive, achieving average loss reductions of 8% to 3.1%. Water loss was confirmed and it was possible to reduce seepage through LA-PAM applications provided that losses were known and correctly determined when applying the polymer. This could allow increasing irrigation security in critical periods, especially under drought conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=canal%20seepage" title="canal seepage">canal seepage</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylamide" title=" polyacrylamide"> polyacrylamide</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management" title=" water management"> water management</a> </p> <a href="https://publications.waset.org/abstracts/75098/quantification-of-effect-of-linear-anionic-polyacrylamide-on-seepage-in-irrigation-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8335</span> Estimating Groundwater Seepage Rates: Case Study at Zegveld, Netherlands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wondmyibza%20Tsegaye%20Bayou">Wondmyibza Tsegaye Bayou</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20C.%20Nonner"> Johannes C. Nonner</a>, <a href="https://publications.waset.org/abstracts/search?q=Joost%20Heijkers"> Joost Heijkers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to identify and estimate dynamic groundwater seepage rates using four comparative methods; the Darcian approach, the water balance approach, the tracer method, and modeling. The theoretical background to these methods is put together in this study. The methodology was applied to a case study area at Zegveld following the advice of the Water Board Stichtse Rijnlanden. Data collection has been from various offices and a field campaign in the winter of 2008/09. In this complex confining layer of the study area, the location of the phreatic groundwater table is at a shallow depth compared to the piezometric water level. Data were available for the model years 1989 to 2000 and winter 2008/09. The higher groundwater table shows predominately-downward seepage in the study area. Results of the study indicated that net recharge to the groundwater table (precipitation excess) and the ditch system are the principal sources for seepage across the complex confining layer. Especially in the summer season, the contribution from the ditches is significant. Water is supplied from River Meije through a pumping system to meet the ditches' water demand. The groundwater seepage rate was distributed unevenly throughout the study area at the nature reserve averaging 0.60 mm/day for the model years 1989 to 2000 and 0.70 mm/day for winter 2008/09. Due to data restrictions, the seepage rates were mainly determined based on the Darcian method. Furthermore, the water balance approach and the tracer methods are applied to compute the flow exchange within the ditch system. The site had various validated groundwater levels and vertical flow resistance data sources. The phreatic groundwater level map compared with TNO-DINO groundwater level data values overestimated the groundwater level depth by 28 cm. The hydraulic resistance values obtained based on the 3D geological map compared with the TNO-DINO data agreed with the model values before calibration. On the other hand, the calibrated model significantly underestimated the downward seepage in the area compared with the field-based computations following the Darcian approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20seepage" title="groundwater seepage">groundwater seepage</a>, <a href="https://publications.waset.org/abstracts/search?q=phreatic%20water%20table" title=" phreatic water table"> phreatic water table</a>, <a href="https://publications.waset.org/abstracts/search?q=piezometric%20water%20level" title=" piezometric water level"> piezometric water level</a>, <a href="https://publications.waset.org/abstracts/search?q=nature%20reserve" title=" nature reserve"> nature reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=Zegveld" title=" Zegveld"> Zegveld</a>, <a href="https://publications.waset.org/abstracts/search?q=The%20Netherlands" title=" The Netherlands"> The Netherlands</a> </p> <a href="https://publications.waset.org/abstracts/171496/estimating-groundwater-seepage-rates-case-study-at-zegveld-netherlands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8334</span> Seepage Modelling of Jatigede Dam Towards Cisampih Village Based on Analysis Soil Characteristic Using Method Soil Reaction to Water, West Java Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diemas%20Purnama%20Muhammad%20Firman%20Pratama">Diemas Purnama Muhammad Firman Pratama</a>, <a href="https://publications.waset.org/abstracts/search?q=Denny%20Maulana%20Malik"> Denny Maulana Malik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development of Jatigede Dam that was the mega project in Indonesia, since 1963. Area of around Jatigede Dam is complex, it has structural geology active fault, and as possible can occur landslide. This research focus on soil test. The purpose of this research to know soil quality Jatigede Dam which caused by water seepage of Jatigede Dam, then can be made seepage modelling around Jatigede Dam including Cisampih Village. Method of this research is SRW (Soil Reaction to Water). There are three samples are taken nearby Jatigede Dam. Four paramaters to determine water seepage such as : V ( velocity of soil to release water), Dl (Ability of soil to release water), Ds (Ability of soil to absorb water), Dt (Ability of soil to hold water). meanwhile, another proscess of interaction beetween water and soil are produced angle, which is made of water flow and vertikal line. Called name SIAT. SIAT has two type is na1 and na2. Each samples has a value from the first sample is 280,333(degree), the second 270 (degree) and the third 270 (degree). The difference na1 is, water interaction towards Dt value angle, while na2 is water interaction towards Dl and Ds value angle. Result of calculating SRW method, first till third sample has a value 7, 11,5 and 9. Based on data, interpreted in around teritory of Jatigede Dam, will get easier impact from water seepage because, condition soil reaction too bad so, it can not hold water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatigede%20Dam" title="Jatigede Dam">Jatigede Dam</a>, <a href="https://publications.waset.org/abstracts/search?q=Cisampih%20village" title=" Cisampih village"> Cisampih village</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20seepage" title=" water seepage"> water seepage</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20quality" title=" soil quality"> soil quality</a> </p> <a href="https://publications.waset.org/abstracts/67463/seepage-modelling-of-jatigede-dam-towards-cisampih-village-based-on-analysis-soil-characteristic-using-method-soil-reaction-to-water-west-java-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8333</span> Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muqdad%20Al-Juboori">Muqdad Al-Juboori</a>, <a href="https://publications.waset.org/abstracts/search?q=Bithin%20Datta"> Bithin Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20gravity%20dam" title=" concrete gravity dam"> concrete gravity dam</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=seepage%20analysis" title=" seepage analysis"> seepage analysis</a> </p> <a href="https://publications.waset.org/abstracts/55051/artificial-neural-network-modeling-and-genetic-algorithm-based-optimization-of-hydraulic-design-related-to-seepage-under-concrete-gravity-dams-on-permeable-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8332</span> A Case Study on Re-Assessment Study of an Earthfill Dam at Latamber, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afnan%20Ahmad">Afnan Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahid%20Ali"> Shahid Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mujahid%20Khan"> Mujahid Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents the parametric study of an existing earth fill dam located at Latamber, Karak city, Pakistan. The study consists of carrying out seepage analysis, slope stability analysis, and Earthquake analysis of the dam for the existing dam geometry and do the same for modified geometry. Dams are massive as well as expensive hydraulic structure, therefore it needs proper attention. Additionally, this dam falls under zone 2B region of Pakistan, which is an earthquake-prone area and where ground accelerations range from 0.16g to 0.24g peak. So it should be deal with great care, as the failure of any dam can cause irreparable losses. Similarly, seepage as well as slope failure can also cause damages which can lead to failure of the dam. Therefore, keeping in view of the importance of dam construction and associated costs, our main focus is to carry out parametric study of newly constructed dam. GeoStudio software is used for this analysis in the study in which Seep/W is used for seepage analysis, Slope/w is used for Slope stability analysis and Quake/w is used for earthquake analysis. Based on the geometrical, hydrological and geotechnical data, Seepage and slope stability analysis of different proposed geometries of the dam are carried out along with the Seismic analysis. A rigorous analysis was carried out in 2-D limit equilibrium using finite element analysis. The seismic study began with the static analysis, continuing by the dynamic response analysis. The seismic analyses permitted evaluation of the overall patterns of the Latamber dam behavior in terms of displacements, stress, strain, and acceleration fields. Similarly, the seepage analysis allows evaluation of seepage through the foundation and embankment of the dam, while slope stability analysis estimates the factor of safety of the upstream and downstream of the dam. The results of the analysis demonstrate that among multiple geometries, Latamber dam is secure against seepage piping failure and slope stability (upstream and downstream) failure. Moreover, the dam is safe against any dynamic loading and no liquefaction has been observed while changing its geometry in permissible limits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earth-fill%20dam" title="earth-fill dam">earth-fill dam</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=seepage%20analysis" title=" seepage analysis"> seepage analysis</a> </p> <a href="https://publications.waset.org/abstracts/99898/a-case-study-on-re-assessment-study-of-an-earthfill-dam-at-latamber-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8331</span> Ground Water Monitoring Using High-Resolution Fiber Optics Cable Sensors (FOCS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Isahaq%20Hossain">Sayed Isahaq Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20T.%20Chang"> K. T. Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Moustapha%20Ndour"> Moustapha Ndour </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inference of the phreatic line through earth dams is of paramount importance because it could be directly associated with piping phenomena which may lead to the dam failure. Normally in the field, the instrumentations such as ‘diver’ and ‘standpipe’ are to be used to identify the seepage conditions which only provide point data with a fair amount of interpolation or assumption. Here in this paper, we employed high-resolution fiber optic cable sensors (FOCS) based on Raman Scattering in order to obtain a very accurate phreatic line and seepage profile. Unlike the above-mention devices which pinpoint the water level location, this kind of Distributed Fiber Optics Sensing gives us more reliable information due to its inherent characteristics of continuous measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=standpipe" title="standpipe">standpipe</a>, <a href="https://publications.waset.org/abstracts/search?q=diver" title=" diver"> diver</a>, <a href="https://publications.waset.org/abstracts/search?q=FOCS" title=" FOCS"> FOCS</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20scattering" title=" Raman scattering"> Raman scattering</a> </p> <a href="https://publications.waset.org/abstracts/61124/ground-water-monitoring-using-high-resolution-fiber-optics-cable-sensors-focs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8330</span> Multiscale Simulation of Ink Seepage into Fibrous Structures through a Mesoscopic Variational Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athmane%20Bakhta">Athmane Bakhta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastien%20Leclaire"> Sebastien Leclaire</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Vidal"> David Vidal</a>, <a href="https://publications.waset.org/abstracts/search?q=Francois%20Bertrand"> Francois Bertrand</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Cheriet"> Mohamed Cheriet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a new three-dimensional variational model proposed for the simulation of ink seepage into paper sheets at the fiber level. The model, inspired by the Hising model, takes into account a finite volume of ink and describes the system state through gravity, cohesion, and adhesion force interactions. At the mesoscopic scale, the paper substrate is modeled using a discretized fiber structure generated using a numerical deposition procedure. A modified Monte Carlo method is introduced for the simulation of the ink dynamics. Besides, a multiphase lattice Boltzmann method is suggested to fine-tune the mesoscopic variational model parameters, and it is shown that the ink seepage behaviors predicted by the proposed model can resemble those predicted by a method relying on first principles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fibrous%20media" title="fibrous media">fibrous media</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20Boltzmann" title=" lattice Boltzmann"> lattice Boltzmann</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling%20and%20simulation" title=" modelling and simulation"> modelling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo" title=" Monte Carlo"> Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20model" title=" variational model"> variational model</a> </p> <a href="https://publications.waset.org/abstracts/129077/multiscale-simulation-of-ink-seepage-into-fibrous-structures-through-a-mesoscopic-variational-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8329</span> Fragility Analysis of Weir Structure Subjected to Flooding Water Damage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oh%20Hyeon%20Jeon">Oh Hyeon Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=WooYoung%20Jung"> WooYoung Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, seepage analysis was performed by the level difference between upstream and downstream of weir structure for safety evaluation of weir structure against flooding. Monte Carlo Simulation method was employed by considering the probability distribution of the adjacent ground parameter, i.e., permeability coefficient of weir structure. Moreover, by using a commercially available finite element program (ABAQUS), modeling of the weir structure is carried out. Based on this model, the characteristic of water seepage during flooding was determined at each water level with consideration of the uncertainty of their corresponding permeability coefficient. Subsequently, fragility function could be constructed based on this response from numerical analysis; this fragility function results could be used to determine the weakness of weir structure subjected to flooding disaster. They can also be used as a reference data that can comprehensively predict the probability of failur,e and the degree of damage of a weir structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weir%20structure" title="weir structure">weir structure</a>, <a href="https://publications.waset.org/abstracts/search?q=seepage" title=" seepage"> seepage</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20disaster%20fragility" title=" flood disaster fragility"> flood disaster fragility</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20risk%20assessment" title=" probabilistic risk assessment"> probabilistic risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte-Carlo%20simulation" title=" Monte-Carlo simulation"> Monte-Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability%20coefficient" title=" permeability coefficient"> permeability coefficient</a> </p> <a href="https://publications.waset.org/abstracts/88549/fragility-analysis-of-weir-structure-subjected-to-flooding-water-damage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8328</span> Impact of Lined/Unlined Canal on Groundwater Recharge in the Lower Bhavani Basin, Tamilnadu, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Mirudhula">K. Mirudhula</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Saravanan"> R. Saravanan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bhavani basin is the fourth largest Sub Basin in the Cauvery basin. The entire command area of all three major canals that takes off from the Bhavani river falls within the Erode District i.e. Lower Bhavani Project (LBP), Kodiveri and Kalingarayan canals. The LBP canal is a major source of irrigation in Erode District. Many of these canals are unlined and leakage takes place from them. Thus the seepage from the canal helps in recharging the wells in the area, enabling to get adequate water supply for the crops when water was not released from Bhavanisagar Dam. In this study, the groundwater recharge is determined by groundwater flow modeling using Visual MODFLOW model. For this purpose, three major natural sources of groundwater recharge are taken into consideration such as rainfall infiltration, canal seepage and return flow of irrigation. The model was run and ZONEBUDGET gives an idea about the amount of recharge from lined/unlined canal to the field. Unlined canal helps to recharge the groundwater about 20% more than the lined canal. The analysis reveals that the annual rainfall also has rapidly changed in this region. In the LBP canal Head reach meets their requirement with available quantity of water from the canal system. Tail end reach does not receive the required quantity of water because of seepage loss and conveyance loss. Hence the lined canal can be provided for full length of the main canal. Branch canals and minor distributaries are suggested to maintain the canals with unlined canal system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lower%20Bhavani%20basin" title="lower Bhavani basin">lower Bhavani basin</a>, <a href="https://publications.waset.org/abstracts/search?q=erode" title=" erode"> erode</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20flow%20modeling" title=" groundwater flow modeling"> groundwater flow modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20practice" title=" irrigation practice"> irrigation practice</a>, <a href="https://publications.waset.org/abstracts/search?q=lined%20canal%20system" title=" lined canal system"> lined canal system</a> </p> <a href="https://publications.waset.org/abstracts/23156/impact-of-linedunlined-canal-on-groundwater-recharge-in-the-lower-bhavani-basin-tamilnadu-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8327</span> Soil Sensibility Characterization of Granular Soils Due to Suffusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rochim">Abdul Rochim</a>, <a href="https://publications.waset.org/abstracts/search?q=Didier%20Marot"> Didier Marot</a>, <a href="https://publications.waset.org/abstracts/search?q=Luc%20Sibille"> Luc Sibille</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the characterization of soil sensibility due to suffusion process by carrying out a series of one-dimensional downward seepage flow tests realized with an erodimeter. Tests were performed under controlled hydraulic gradient in sandy gravel soils. We propose the analysis based on energy induced by the seepage flow to characterize the hydraulic loading and the cumulative eroded dry mass to characterize the soil response. With this approach, the effect of hydraulic loading histories and initial fines contents to soil sensibility are presented. It is found that for given soils, erosion coefficients are different if tests are performed under different hydraulic loading histories. For given initial fines fraction contents, the sensibility may be grouped in the same classification. The lower fines content soils tend to require larger flow energy to the onset of erosion. These results demonstrate that this approach is effective to characterize suffusion sensibility for granular soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erodimeter" title="erodimeter">erodimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=sandy%20gravel" title=" sandy gravel"> sandy gravel</a>, <a href="https://publications.waset.org/abstracts/search?q=suffusion" title=" suffusion"> suffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20seepage%20energy" title=" water seepage energy"> water seepage energy</a> </p> <a href="https://publications.waset.org/abstracts/24885/soil-sensibility-characterization-of-granular-soils-due-to-suffusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8326</span> Introduction to Two Artificial Boundary Conditions for Transient Seepage Problems and Their Application in Geotechnical Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuang%20Luo">Shuang Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Er-Xiang%20Song"> Er-Xiang Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many problems in geotechnical engineering, such as foundation deformation, groundwater seepage, seismic wave propagation and geothermal transfer problems, may involve analysis in the ground which can be seen as extending to infinity. To that end, consideration has to be given regarding how to deal with the unbounded domain to be analyzed by using numerical methods, such as finite element method (FEM), finite difference method (FDM) or finite volume method (FVM). A simple artificial boundary approach derived from the analytical solutions for transient radial seepage problems, is introduced. It should be noted, however, that the analytical solutions used to derive the artificial boundary are particular solutions under certain boundary conditions, such as constant hydraulic head at the origin or constant pumping rate of the well. When dealing with unbounded domains with unsteady boundary conditions, a more sophisticated artificial boundary approach to deal with the infinity of the domain is presented. By applying Laplace transforms and introducing some specially defined auxiliary variables, the global artificial boundary conditions (ABCs) are simplified to local ones so that the computational efficiency is enhanced significantly. The introduced two local ABCs are implemented in a finite element computer program so that various seepage problems can be calculated. The two approaches are first verified by the computation of a one-dimensional radial flow problem, and then tentatively applied to more general two-dimensional cylindrical problems and plane problems. Numerical calculations show that the local ABCs can not only give good results for one-dimensional axisymmetric transient flow, but also applicable for more general problems, such as axisymmetric two-dimensional cylindrical problems, and even more general planar two-dimensional flow problems for well doublet and well groups. An important advantage of the latter local boundary is its applicability for seepage under rapidly changing unsteady boundary conditions, and even the computational results on the truncated boundary are usually quite satisfactory. In this aspect, it is superior over the former local boundary. Simulation of relatively long operational time demonstrates to certain extents the numerical stability of the local boundary. The solutions of the two local ABCs are compared with each other and with those obtained by using large element mesh, which proves the satisfactory performance and obvious superiority over the large mesh model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transient%20seepage" title="transient seepage">transient seepage</a>, <a href="https://publications.waset.org/abstracts/search?q=unbounded%20domain" title=" unbounded domain"> unbounded domain</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20boundary%20condition" title=" artificial boundary condition"> artificial boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/66266/introduction-to-two-artificial-boundary-conditions-for-transient-seepage-problems-and-their-application-in-geotechnical-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8325</span> Effect of Change in Angle of Slope and Height of an Embankment on Safety Factor during Rapid Drawdown</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhassan%20Naeini">Seyed Abolhassan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Azam%20Kouhpeyma"> Azam Kouhpeyma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reduction of water level at which a slope is submerged with it is called drawdown. Draw down can took place rapidly or slowly and in both situations, it can affect slope stability. Using coupled analysis (seepage and stability analysis) causes more accurate results. In this study, the stability of homogeneous embankment is investigated numerically. Slope safety factor changes due to changes in three factors of height, slope and drawdown rate have been investigated and compared. It was found that with increasing height and slope, the safety factor decreases, and with increasing the discharge rate, the safety factor increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drawdown" title="drawdown">drawdown</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20seepage%20and%20stability%20analysis" title=" coupled seepage and stability analysis"> coupled seepage and stability analysis</a> </p> <a href="https://publications.waset.org/abstracts/145809/effect-of-change-in-angle-of-slope-and-height-of-an-embankment-on-safety-factor-during-rapid-drawdown" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8324</span> Design of Raw Water Reservoir on Sandy Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Venkata%20Ramana%20Pamu">Venkata Ramana Pamu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is a case study of a 5310 ML capacity Raw Water Reservoir (RWR), situated in Indian state Rajasthan, which is a part of Rajasthan Rural Water Supply & Fluorosis Mitigation Project. This RWR embankment was constructed by locally available material on natural ground profile. Height of the embankment was varying from 2m to 10m.This is due to existing ground level was varying. Reservoir depth 9m including 1.5m free board and 1V:3H slopes were provided both upstream and downstream side. Proper soil investigation, tests were done and it was confirmed that the existing soil is sandy silt. The existing excavated earth was used as filling material for embankment construction, due to this controlling seepage from upstream to downstream be a challenging task. Slope stability and Seismic analysis of the embankment done by Conventional method for both full reservoir condition and rapid drawdown. Horizontal filter at toe level was provided along with upstream side PCC (Plain Cement Concrete) block and HDPE (High Density poly ethylene) lining as a remedy to control seepage. HDPE lining was also provided at storage area of the reservoir bed level. Mulching was done for downstream side slope protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raw%20water%20reservoir" title="raw water reservoir">raw water reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=seepage" title=" seepage"> seepage</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20analysis" title=" seismic analysis"> seismic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a> </p> <a href="https://publications.waset.org/abstracts/51993/design-of-raw-water-reservoir-on-sandy-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8323</span> Water Management of Erdenet Mining Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20H.%20Oyuntungalag">K. H. Oyuntungalag</a>, <a href="https://publications.waset.org/abstracts/search?q=Scott%20Kenner"> Scott Kenner</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Erdenetuya"> O. Erdenetuya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The life cycle phases of mining projects are described in this guidance document, and includes initial phases (exploration, feasibility and planning), mine development (construction and operations), closure and reclamation. Initial phases relate to field programs and desktop studies intended to build the data and knowledge base, including the design of water management infrastructure and development during these initial phases. Such a model is essential to demonstrate that the water management plan (WMP) will provide adequate water for the mine operations and sufficient capacity for anticipated flows and volumes, and minimize environmental impacts on the receiving environment. The water and mass balance model must cover the whole mine life cycle, from the start of mine development to a date sufficiently far in the future where the reclaimed landscape is considered self- sustaining following complete closure of the mine (i.e., post- closure). The model simulates the movement of water within the components of the water management infrastructure and project operating areas, and calculates chemical loadings to each mine component. At Erdenet Mining company an initial water balance model reflecting the tailings dam, groundwater seepage and mine process water was developed in collaboration with Dr. Scott Kenner (visiting Fulbright scholar). From this preliminary study the following recommendations were made: 1. Develop a detailed groundwater model to simulate seepage from the tailings dam, 2. Establish an evaporation pan for improving evapotranspiration estimates, and 3. Measure changes in storage of water within the tailings dam and other water storage components within the mine processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration" title="evapotranspiration ">evapotranspiration </a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring%20program" title=" monitoring program"> monitoring program</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdenet%20mining" title=" Erdenet mining"> Erdenet mining</a>, <a href="https://publications.waset.org/abstracts/search?q=tailings%20dam" title=" tailings dam"> tailings dam</a> </p> <a href="https://publications.waset.org/abstracts/20522/water-management-of-erdenet-mining-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8322</span> The Behavior of Dam Foundation Reinforced by Stone Columns: Case Study of Kissir Dam-Jijel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toufik%20Karech">Toufik Karech</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderahmen%20Benseghir"> Abderahmen Benseghir</a>, <a href="https://publications.waset.org/abstracts/search?q=Tayeb%20Bouzid"> Tayeb Bouzid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a 2D numerical simulation of an earth dam to assess the behavior of its foundation after a treatment by stone columns. This treatment aims to improve the bearing capacity, to increase the mechanical properties of the soil, to accelerate the consolidation, to reduce the settlements and to eliminate the liquefaction phenomenon in case of seismic excitation. For the evaluation of the pore pressures, the position of the phreatic line and the flow network was defined, and a seepage analysis was performed with the software MIDAS Soil Works. The consolidation calculation is performed through a simulation of the actual construction stages of the dam. These analyzes were performed using the Mohr-Coulomb soil model and the results are compared with the actual measurements of settlement gauges implanted in the dam. An analysis of the bearing capacity was conducted to show the role of stone columns in improving the bearing capacity of the foundation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earth%20dam" title="earth dam">earth dam</a>, <a href="https://publications.waset.org/abstracts/search?q=dam%20foundation" title=" dam foundation"> dam foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20columns" title=" stone columns"> stone columns</a>, <a href="https://publications.waset.org/abstracts/search?q=seepage%20analysis" title=" seepage analysis"> seepage analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a> </p> <a href="https://publications.waset.org/abstracts/84081/the-behavior-of-dam-foundation-reinforced-by-stone-columns-case-study-of-kissir-dam-jijel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8321</span> Managing Shallow Gas for Offshore Platforms via Fit-For-Purpose Solutions: Case Study for Offshore Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noorizal%20Huang">Noorizal Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Girsang"> Christian Girsang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Razi%20Mansoor"> Mohamad Razi Mansoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shallow gas seepage was first spotted at a central processing platform offshore Malaysia in 2010, acknowledged as Platform T in this paper. Frequent monitoring of the gas seepage was performed through remotely operated vehicle (ROV) baseline survey and a comprehensive geophysical survey was conducted to understand the characteristics of the gas seepage and to ensure that the integrity of the foundation at Platform T was not compromised. The origin of the gas back then was unknown. A soil investigation campaign was performed in 2016 to study the origin of the gas seepage. Two boreholes were drilled; a composite borehole to 150m below seabed for the purpose of soil sampling and in-situ testing and a pilot hole to 155m below the seabed, which was later converted to a fit-for-purpose relief well as an alternate migration path for the gas. During the soil investigation campaign, dissipation tests were performed at several layers which were potentially the source or migration path for the gas. Five (5) soil samples were segregated for headspace test, to identify the gas type which subsequently can be used to identify the origin of the gas. Dissipation tests performed at four depth intervals indicates pore water pressure less than 20 % of the effective vertical stress and appear to continue decreasing if the test had not been stopped. It was concluded that a low to a negligible amount of excess pore pressure exist in clayey silt layers. Results from headspace test show presence of methane corresponding to the clayey silt layers as reported in the boring logs. The gas most likely comes from biogenic sources, feeding on organic matter in situ over a large depth range. It is unlikely that there are large pockets of gas in the soil due to its homogeneous clayey nature and the lack of excess pore pressure in other permeable clayey silt layers encountered. Instead, it is more likely that when pore water at certain depth encounters a more permeable path, such as a borehole, it rises up through this path due to the temperature gradient in the soil. As the water rises the pressure decreases, which could cause gases dissolved in the water to come out of solution and form bubbles. As a result, the gas will have no impact on the integrity of the foundation at Platform T. The fit-for-purpose relief well design as well as adopting headspace testing can be used to address the shallow gas issue at Platform T in a cost effective and efficient manners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissipation%20test" title="dissipation test">dissipation test</a>, <a href="https://publications.waset.org/abstracts/search?q=headspace%20test" title=" headspace test"> headspace test</a>, <a href="https://publications.waset.org/abstracts/search?q=excess%20pore%20pressure" title=" excess pore pressure"> excess pore pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=relief%20well" title=" relief well"> relief well</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20gas" title=" shallow gas"> shallow gas</a> </p> <a href="https://publications.waset.org/abstracts/76798/managing-shallow-gas-for-offshore-platforms-via-fit-for-purpose-solutions-case-study-for-offshore-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8320</span> Geospatial Techniques for Impact Assessment of Canal Rehabilitation Program in Sindh, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumaira%20Zafar">Sumaira Zafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arjumand%20Zaidi"> Arjumand Zaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arslan%20Hafeez"> Muhammad Arslan Hafeez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indus Basin Irrigation System (IBIS) is the largest contiguous irrigation system of the world comprising Indus River and its tributaries, canals, distributaries, and watercourses. A big challenge faced by IBIS is transmission losses through seepage and leaks that account to 41 percent of the total water derived from the river and about 40 percent of that is through watercourses. Irrigation system rehabilitation programs in Pakistan are focused on improvement of canal system at the watercourse level (tertiary channels). Under these irrigation system management programs more than 22,800 watercourses have been improved or lined out of 43,000 (12,900 Kilometers) watercourses. The evaluation of the improvement work is required at this stage to testify the success of the programs. In this paper, emerging technologies of GIS and satellite remote sensing are used for impact assessment of watercourse rehabilitation work in Sindh. To evaluate the efficiency of the improved watercourses, few parameters are selected like soil moisture along watercourses, availability of water at tail end and changes in cultivable command areas. Improved watercourses details and maps are acquired from National Program for Improvement of Watercourses (NPIW) and Space and Upper Atmospheric Research Commission (SUPARCO). High resolution satellite images of Google Earth for the year of 2004 to 2013 are used for digitizing command areas. Temporal maps of cultivable command areas show a noticeable increase in the cultivable land served by improved watercourses. Field visits are conducted to validate the results. Interviews with farmers and landowners also reveal their overall satisfaction in terms of availability of water at the tail end and increased crop production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geospatial" title="geospatial">geospatial</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20assessment" title=" impact assessment"> impact assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=watercourses" title=" watercourses"> watercourses</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=seepage" title=" seepage"> seepage</a>, <a href="https://publications.waset.org/abstracts/search?q=canal%20lining" title=" canal lining"> canal lining</a> </p> <a href="https://publications.waset.org/abstracts/17985/geospatial-techniques-for-impact-assessment-of-canal-rehabilitation-program-in-sindh-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8319</span> Recommended Practice for Experimental Evaluation of the Seepage Sensitivity Damage of Coalbed Methane Reservoirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hao%20Liu">Hao Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lihui%20Zheng"> Lihui Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinedu%20J.%20Okere"> Chinedu J. Okere</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Wang"> Chao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangchun%20Wang"> Xiangchun Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Zhang"> Peng Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coalbed methane (CBM) extraction industry (an unconventional energy source) is yet to promulgated an established standard code of practice for the experimental evaluation of sensitivity damage of coal samples. The existing experimental process of previous researches mainly followed the industry standard for conventional oil and gas reservoirs (CIS). However, the existing evaluation method ignores certain critical differences between CBM reservoirs and conventional reservoirs, which could inevitably result in an inaccurate evaluation of sensitivity damage and, eventually, poor decisions regarding the formulation of formation damage prevention measures. In this study, we propose improved experimental guidelines for evaluating seepage sensitivity damage of CBM reservoirs by leveraging on the shortcomings of the existing methods. The proposed method was established via a theoretical analysis of the main drawbacks of the existing methods and validated through comparative experiments. The results show that the proposed evaluation technique provided reliable experimental results that can better reflect actual reservoir conditions and correctly guide future development of CBM reservoirs. This study is pioneering the research on the optimization of experimental parameters for efficient exploration and development of CBM reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coalbed%20methane" title="coalbed methane">coalbed methane</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20damage" title=" formation damage"> formation damage</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=unconventional%20energy%20source" title=" unconventional energy source"> unconventional energy source</a> </p> <a href="https://publications.waset.org/abstracts/137912/recommended-practice-for-experimental-evaluation-of-the-seepage-sensitivity-damage-of-coalbed-methane-reservoirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8318</span> Geochemical Study of Natural Bitumen, Condensate and Gas Seeps from Sousse Area, Central Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belhaj%20Mohamed">Belhaj Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saidi"> M. Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Boucherab"> N. Boucherab</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ouertani"> N. Ouertani</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Bouazizi"> I. Bouazizi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ben%20Jrad"> M. Ben Jrad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural hydrocarbon seepage has helped petroleum exploration as a direct indicator of gas and/or oil subsurface accumulations. Surface macro-seeps are generally an indication of a fault in an active Petroleum Seepage System belonging to a Total Petroleum System. This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected from Sousse aquifer (Central Tunisia). The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GC-MS), capillary GC with flame-ionization detection, Compund Specific Isotope Analysis, Rock Eval Pyrolysis. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The oil and gas seeps have been investigated using biomarker and stable carbon isotope analyses to perform oil-oil and oil-source rock correlations. The seepage gases are characterized by high CH4 content, very low δ13CCH4 values (-71,9 ‰) and high C1/C1–5 ratios (0.95–1.0), light deuterium–hydrogen isotope ratios (-198 ‰) and light δ13CC2 and δ13CCO2 values (-23,8‰ and-23,8‰ respectively) indicating a thermogenic origin with the contribution of the biogenic gas. An organic geochemistry study was carried out on the more ten oil seep samples. This study includes light hydrocarbon and biomarkers analyses (hopanes, steranes, n-alkanes, acyclic isoprenoids, and aromatic steroids) using GC and GC-MS. The studied samples show at least two distinct families, suggesting two different types of crude oil origins: the first oil seeps appears to be highly mature, showing evidence of chemical and/or biological degradation and was derived from a clay-rich source rock deposited in suboxic conditions. It has been sourced mainly by the lower Fahdene (Albian) source rocks. The second oil seeps was derived from a carbonate-rich source rock deposited in anoxic conditions, well correlated with the Bahloul (Cenomanian-Turonian) source rock. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title="biomarkers">biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20and%20gas%20seeps" title=" oil and gas seeps"> oil and gas seeps</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20geochemistry" title=" organic geochemistry"> organic geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20rock" title=" source rock"> source rock</a> </p> <a href="https://publications.waset.org/abstracts/23626/geochemical-study-of-natural-bitumen-condensate-and-gas-seeps-from-sousse-area-central-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8317</span> Physical Tests on Localized Fluidization in Offshore Suction Bucket Foundations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li-Hua%20Luu">Li-Hua Luu</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexis%20Doghmane"> Alexis Doghmane</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Farhat"> Abbas Farhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Sanayei"> Mohammad Sanayei</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Philippe"> Pierre Philippe</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Cuellar"> Pablo Cuellar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Suction buckets are promising innovative foundations for offshore wind turbines. They generally feature the shape of an inverted bucket and rely on a suction system as a driving agent for their installation into the seabed. Water is pumped out of the buckets that are initially placed to rest on the seabed, creating a net pressure difference across the lid that generates a seepage flow, lowers the soil resistance below the foundation skirt, and drives them effectively into the seabed. The stability of the suction mechanism as well as the possibility of a piping failure (i.e., localized fluidization within the internal soil plug) during their installation are some of the key questions that remain open. The present work deals with an experimental study of localized fluidization by suction within a fixed bucket partially embedded into a submerged artificial soil made of spherical beads. The transient process, from the onset of granular motion until reaching a stationary regime for the fluidization at the embedded bucket wall, is recorded using the combined optical techniques of planar laser-induced fluorescence and refractive index matching. To conduct a systematic study of the piping threshold for the seepage flow, we vary the beads size, the suction pressure, and the initial depth for the bucket. This experimental modelling, by dealing with erosion-related phenomena from a micromechanical perspective, shall provide qualitative scenarios for the local processes at work which are missing in the offshore practice so far. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluidization" title="fluidization">fluidization</a>, <a href="https://publications.waset.org/abstracts/search?q=micromechanical%20approach" title=" micromechanical approach"> micromechanical approach</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20foundations" title=" offshore foundations"> offshore foundations</a>, <a href="https://publications.waset.org/abstracts/search?q=suction%20bucket" title=" suction bucket"> suction bucket</a> </p> <a href="https://publications.waset.org/abstracts/135044/physical-tests-on-localized-fluidization-in-offshore-suction-bucket-foundations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8316</span> Investigation of Failures in Wadi-Crossing Pipe Culverts, Sennar State, Sudan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdi%20M.%20E.%20Zumrawi">Magdi M. E. Zumrawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crossing culverts are essential element of rural roads. The paper aims to investigate failures of recently constructed wadi-crossing pipe culverts in Sennar state and provide necessary remedial measures. The investigation is conducted to provide an extensive diagnosis study in order to find out the main structural and hydrological weaknesses of the culverts. Literature of steel pipe culverts related to construction practices and common types of culvert failures and their appropriate mitigation measures were reviewed. A detailed field survey was conducted to detect failures and defects appeared on the existing culverts. The results revealed that seepage of water through the embankment and foundation of the culverts leads to excessive erosion and scouring causing sever failures and damages. The design mistakes and poor construction were detected as the main causes of culverts failures. For sustainability of the culverts, various remedial measures are recommended to be considered in urgent rehabilitation of the existing crossings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=culvert" title="culvert">culvert</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/56720/investigation-of-failures-in-wadi-crossing-pipe-culverts-sennar-state-sudan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8315</span> Video Processing of a Football Game: Detecting Features of a Football Match for Automated Calculation of Statistics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishabh%20Beri">Rishabh Beri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahil%20Shah"> Sahil Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have applied a range of filters and processing in order to extract out the various features of the football game, like the field lines of a football field. Another important aspect was the detection of the players in the field and tagging them according to their teams distinguished by their jersey colours. This extracted information combined about the players and field helped us to create a virtual field that consists of the playing field and the players mapped to their locations in it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Detect" title="Detect">Detect</a>, <a href="https://publications.waset.org/abstracts/search?q=Football" title=" Football"> Football</a>, <a href="https://publications.waset.org/abstracts/search?q=Players" title=" Players"> Players</a>, <a href="https://publications.waset.org/abstracts/search?q=Virtual" title=" Virtual"> Virtual</a> </p> <a href="https://publications.waset.org/abstracts/73570/video-processing-of-a-football-game-detecting-features-of-a-football-match-for-automated-calculation-of-statistics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8314</span> Issues and Challenges in Social Work Field Education: The Field Coordinator's Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tracy%20B.E.%20Omorogiuwa">Tracy B.E. Omorogiuwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the role of social work in improving societal well-being cannot be separated from the place of field education, which is an integral aspect of social work education. Field learning provides students with knowledge and opportunities to experience solving issues in the field and giving them a clue of the practice situation. Despite being a crucial component in social work curriculum, field education occupies a large space in learning outcome, given the issues and challenges pertaining to its purpose and significance in the society. The drive of this paper is to provide insight on the specific ways in which field education has been conceived, realized and valued in the society. Emphasis is on the significance of field instruction; the link with classroom learning; and the structure of field experience in social work education. Given documented analysis and experience, this study intends to contribute to the development of social work curriculum, by analyzing the pattern, issues and challenges fronting the social work field education in the University of Benin, Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=challenges" title="challenges">challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=curriculum" title=" curriculum"> curriculum</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20education" title=" field education"> field education</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20work%20education" title=" social work education"> social work education</a> </p> <a href="https://publications.waset.org/abstracts/76258/issues-and-challenges-in-social-work-field-education-the-field-coordinators-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seepage%20field&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seepage%20field&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seepage%20field&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seepage%20field&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seepage%20field&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seepage%20field&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seepage%20field&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seepage%20field&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seepage%20field&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seepage%20field&page=278">278</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seepage%20field&page=279">279</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seepage%20field&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>