CINXE.COM
Search results for: blue grass
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: blue grass</title> <meta name="description" content="Search results for: blue grass"> <meta name="keywords" content="blue grass"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="blue grass" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="blue grass"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 845</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: blue grass</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">845</span> Segregation Patterns of Trees and Grass Based on a Modified Age-Structured Continuous-Space Forest Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Yang">Jian Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsushi%20Yagi"> Atsushi Yagi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tree-grass coexistence system is of great importance for forest ecology. Mathematical models are being proposed to study the dynamics of tree-grass coexistence and the stability of the systems. However, few of the models concentrates on spatial dynamics of the tree-grass coexistence. In this study, we modified an age-structured continuous-space population model for forests, obtaining an age-structured continuous-space population model for the tree-grass competition model. In the model, for thermal competitions, adult trees can out-compete grass, and grass can out-compete seedlings. We mathematically studied the model to make sure tree-grass coexistence solutions exist. Numerical experiments demonstrated that a fraction of area that trees or grass occupies can affect whether the coexistence is stable or not. We also tried regulating the mortality of adult trees with other parameters and the fraction of area trees and grass occupies were fixed; results show that the mortality of adult trees is also a factor affecting the stability of the tree-grass coexistence in this model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=population-structured%20models" title="population-structured models">population-structured models</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilities%20of%20ecosystems" title=" stabilities of ecosystems"> stabilities of ecosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20competitions" title=" thermal competitions"> thermal competitions</a>, <a href="https://publications.waset.org/abstracts/search?q=tree-grass%20coexistence%20systems" title=" tree-grass coexistence systems"> tree-grass coexistence systems</a> </p> <a href="https://publications.waset.org/abstracts/102872/segregation-patterns-of-trees-and-grass-based-on-a-modified-age-structured-continuous-space-forest-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">844</span> Phytoremediation of Cr from Tannery Effluent by Vetiver Grass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingizem%20Gashaw%20Seid">Mingizem Gashaw Seid </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytoremediation of chromium metal by vetiver grass was investigated in hydroponic system. The removal efficiency for organic load, nutrient and chromium were evaluated as a function of concentration of waste effluent (40 and 50% dilution with distilled water). Under this conditions 64.49-94.06 % of chromium was removed. This shows vetiver grass has potential for accumulation of chromium metal from tannery waste water stream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium" title="chromium">chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=tannery%20effluent" title=" tannery effluent"> tannery effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=vetiver%20grass" title=" vetiver grass"> vetiver grass</a> </p> <a href="https://publications.waset.org/abstracts/10993/phytoremediation-of-cr-from-tannery-effluent-by-vetiver-grass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">843</span> Assessment of Soil Contamination on the Content of Macro and Microelements and the Quality of Grass Pea Seeds (Lathyrus sativus L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Violina%20R.%20Angelova">Violina R. Angelova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comparative research has been conducted to allow us to determine the content of macro and microelements in the vegetative and reproductive organs of grass pea and the quality of grass pea seeds, as well as to identify the possibility of grass pea growth on soils contaminated by heavy metals. The experiment was conducted on an agricultural field subjected to contamination from the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances of 0.5 km and 8 km, respectively, from the source of pollution. On reaching commercial ripeness the grass pea plants were gathered. The composition of the macro and microelements in plant materials (roots, stems, leaves, seeds), and the dry matter content, sugars, proteins, fats and ash contained in the grass pea seeds were determined. Translocation factors (TF) and bioaccumulation factor (BCF) were also determined. The quantitative measurements were carried out through inductively-coupled plasma (ICP). The grass pea plant can successfully be grown on soils contaminated by heavy metals. Soil pollution with heavy metals does not affect the quality of the grass pea seeds. The seeds of the grass pea contain significant amounts of nutrients (K, P, Cu, Fe Mn, Zn) and protein (23.18-29.54%). The distribution of heavy metals in the organs of the grass pea has a selective character, which reduces in the following order: leaves > roots > stems > seeds. BCF and TF values were greater than one suggesting efficient accumulation in the above ground parts of grass pea plant. Grass pea is a plant that is tolerant to heavy metals and can be referred to the accumulator plants. The results provide valuable information about the chemical and nutritional composition of the seeds of the grass pea grown on contaminated soils in Bulgaria. The high content of macro and microelements and the low concentrations of toxic elements in the grass pea grown in contaminated soil make it possible to use the seeds of the grass pea as animal feed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lathyrus%20sativus%20L" title="Lathyrus sativus L">Lathyrus sativus L</a>, <a href="https://publications.waset.org/abstracts/search?q=macroelements" title=" macroelements"> macroelements</a>, <a href="https://publications.waset.org/abstracts/search?q=microelements" title=" microelements"> microelements</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/107765/assessment-of-soil-contamination-on-the-content-of-macro-and-microelements-and-the-quality-of-grass-pea-seeds-lathyrus-sativus-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">842</span> Evaluation of Sustainable Blue Economy Development Performance: Method and Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingbao%20Chen">Mingbao Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After Rio+20, the blue economy rises all over the world, and it has become the focus field of national development. At present, the blue economy has become a new growth point in the field of global economy and the direction of the development of ‘green’ in the ocean. However, in fact, the key factors affecting the development of the blue economy have not been explored in depth, and the development policies and performance of the blue economy have not been scientifically evaluated. This cannot provide useful guidance for the development of the blue economy. Therefore, it is urgent to establish a quantitative evaluation framework to measure the performance of the blue economic development. Based on the full understanding of the connotation and elements of the blue economy, and studying the literature, this article has built an universality and operability evaluation index system, including ecological environment, social justice, sustainable growth, policy measures, and so on. And this article also established a sound evaluation framework of blue economic development performance. At the same time, this article takes China as a sample to test the framework of the adaptability, and to assess the performance of China's blue economic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blue%20economy" title="Blue economy">Blue economy</a>, <a href="https://publications.waset.org/abstracts/search?q=development%20performance" title=" development performance"> development performance</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation%20framework" title=" evaluation framework"> evaluation framework</a>, <a href="https://publications.waset.org/abstracts/search?q=assess%20method" title=" assess method"> assess method</a> </p> <a href="https://publications.waset.org/abstracts/74612/evaluation-of-sustainable-blue-economy-development-performance-method-and-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">841</span> Evaluation of Arsenic Removal in Synthetic Solutions and Natural Waters by Rhizofiltration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Barreto">P. Barreto</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guevara"> A. Guevara</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Ibujes"> V. Ibujes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the removal of arsenic from synthetic solutions and natural water from Papallacta Lagoon was evaluated, by using the rhizofiltration method with terrestrial and aquatic plant species. Ecuador is a country of high volcanic activity, that is why most of water sources come from volcanic glaciers. Therefore, it is necessary to find new, affordable and effective methods for treating water. The water from Papallacta Lagoon shows levels from 327 µg/L to 803 µg/L of arsenic. The evaluation for the removal of arsenic began with the selection of 16 different species of terrestrial and aquatic plants. These plants were immersed to solutions of 4500 µg/L arsenic concentration, for 48 hours. Subsequently, 3 terrestrial species and 2 aquatic species were selected based on the highest amount of absorbed arsenic they showed, analyzed by plasma optical emission spectrometry (ICP-OES), and their best capacity for adaptation into the arsenic solution. The chosen terrestrial species were cultivated from their seed with hydroponics methods, using coconut fiber and polyurethane foam as substrates. Afterwards, the species that best adapted to hydroponic environment were selected. Additionally, a control of the development for the selected aquatic species was carried out using a basic nutrient solution to provide the nutrients that the plants required. Following this procedure, 30 plants from the 3 types of species selected were exposed to a synthetic solution with levels of arsenic concentration of 154, 375 and 874 µg/L, for 15 days. Finally, the plant that showed the highest level of arsenic absorption was placed in 3 L of natural water, with arsenic levels of 803 µg/L. The plant laid in the water until it reached the desired level of arsenic of 10 µg/L. This experiment was carried out in a total of 30 days, in which the capacity of arsenic absorption of the plant was measured. As a result, the five species initially selected to be used in the last part of the evaluation were: sunflower (Helianthus annuus), clover (Trifolium), blue grass (Poa pratensis), water hyacinth (Eichhornia crassipes) and miniature aquatic fern (Azolla). The best result of arsenic removal was showed by the water hyacinth with a 53,7% of absorption, followed by the blue grass with 31,3% of absorption. On the other hand, the blue grass was the plant that best responded to the hydroponic cultivation, by obtaining a germination percentage of 97% and achieving its full growth in two months. Thus, it was the only terrestrial species selected. In summary, the final selected species were blue grass, water hyacinth and miniature aquatic fern. These three species were evaluated by immersing them in synthetic solutions with three different arsenic concentrations (154, 375 and 874 µg/L). Out of the three plants, the water hyacinth was the one that showed the highest percentages of arsenic removal with 98, 58 and 64%, for each one of the arsenic solutions. Finally, 12 plants of water hyacinth were chosen to reach an arsenic level up to 10 µg/L in natural water. This significant arsenic concentration reduction was obtained in 5 days. In conclusion, it was found that water hyacinth is the best plant to reduce arsenic levels in natural water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20water" title=" natural water"> natural water</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20species" title=" plant species"> plant species</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizofiltration" title=" rhizofiltration"> rhizofiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20solutions" title=" synthetic solutions"> synthetic solutions</a> </p> <a href="https://publications.waset.org/abstracts/101024/evaluation-of-arsenic-removal-in-synthetic-solutions-and-natural-waters-by-rhizofiltration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">840</span> Mesotrione and Tembotrione Applied Alone or in Tank-Mix with Atrazine on Weed Control in Elephant Grass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20M.%20Brighenti">Alexandre M. Brighenti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experiment was carried out in Valença, Rio de Janeiro State, Brazil, to evaluate the selectivity and weed control of carotenoid biosynthesis inhibiting herbicides applied alone or in combination with atrazine in elephant grass crop. The treatments were as follows: mesotrione (0.072 and 0.144 kg ha<sup>-1</sup> + 0.5% v/v mineral oil - Assist®), tembotrione (0.075 and 0.100 kg ha<sup>-1</sup> + 0.5% v/v mineral oil - Aureo®), atrazine + mesotrione (1.25 + 0.072 kg ha<sup>-1</sup> + 0.5% v/v mineral oil - Assist®), atrazine + tembotrione (1.25 + 0.100 kg ha<sup>-1</sup> + 0.5% v/v mineral oil - Aureo®), atrazine + mesotrione (1.25 + 0.072 kg ha<sup>-1</sup>), atrazine + tembotrione (1.25 + 0.100 kg ha<sup>-1</sup>) and two controls (hoed and unhoed check). Two application rates of mesotrione with the addition of mineral oil or the tank mixture of atrazine plus mesotrione, with or without the addition of mineral oil, did not provide injuries capable to reduce elephant grass forage yield. Tembotrione was phytotoxic to elephant grass when applied with mineral oil. Atrazine and tembotrione in a tank-mix, with or without mineral oil, were also phytotoxic to elephant grass. All treatments provided satisfactory weed control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forage" title="forage">forage</a>, <a href="https://publications.waset.org/abstracts/search?q=Napier%20grass" title=" Napier grass"> Napier grass</a>, <a href="https://publications.waset.org/abstracts/search?q=pasture" title=" pasture"> pasture</a>, <a href="https://publications.waset.org/abstracts/search?q=Pennisetum%20purpureum" title=" Pennisetum purpureum"> Pennisetum purpureum</a>, <a href="https://publications.waset.org/abstracts/search?q=weeds" title=" weeds"> weeds</a> </p> <a href="https://publications.waset.org/abstracts/79651/mesotrione-and-tembotrione-applied-alone-or-in-tank-mix-with-atrazine-on-weed-control-in-elephant-grass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">839</span> Analysis of Efficiency Production of Grass Black Jelly (Mesona palustris) in Double Scale</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irvan%20Adhin%20Cholilie">Irvan Adhin Cholilie</a>, <a href="https://publications.waset.org/abstracts/search?q=Susinggih%20Wijana"> Susinggih Wijana</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusron%20Sugiarto"> Yusron Sugiarto </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to compare the results of black grass jelly produced using laboratory scale and double scale. In this research, the production from the laboratory scale is using ingredients of 1 kg black grass jelly added with 5 liters of water, while the double scale is using 5 kg black grass jelly and 75 liters of water. The results of organoleptic tests performed by 30 panelists (general) to the sample gels of grass black powder produced from both of laboratory and double scale are not different significantly in color, odor, flavor, and texture. Proximate test results conducted in both of grass black jelly powder produced in laboratory scale and double scale also have no significant differences in all parameters. Grass black jelly powder from double scale contains water, carbohydrate, crude fiber, and yield in the amount of 12,25 %; 43,7 %; 5,89 %; and 16,28 % respectively. The results of the energy efficiency analysis by boiling, draining, evaporation, drying, and milling processes are 85,11 %; 76,97 %; 99,64 %; 99,99% and 99,39% respectively. The utility needs including water needs for each batch amounted 0.1 m3 and cost Rp 220,5 per batch, the electricity needs for each batch is 20.01 kWh and cost Rp 18569.28 per batch, and LPG needs for each batch is 30 kg costed Rp 234,000.00 so that the total cost spent for the process is Rp 252,789.78 . <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20grass%20jelly" title="black grass jelly">black grass jelly</a>, <a href="https://publications.waset.org/abstracts/search?q=powder" title=" powder"> powder</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20balance" title=" mass balance"> mass balance</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20balance" title=" energy balance"> energy balance</a>, <a href="https://publications.waset.org/abstracts/search?q=cost" title=" cost"> cost</a> </p> <a href="https://publications.waset.org/abstracts/21463/analysis-of-efficiency-production-of-grass-black-jelly-mesona-palustris-in-double-scale" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">838</span> Effect of Amount of Crude Fiber in Grass or Silage to the Digestibility of Organic Matter in Suckler Cow Feeding Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Scholz%20Heiko">Scholz Heiko</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuhne%20Petra"> Kuhne Petra</a>, <a href="https://publications.waset.org/abstracts/search?q=Heckenberger%20Gerd"> Heckenberger Gerd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Problems during the calving period (December to May) often result in a high body condition score (BCS) at this time. At the end of the grazing period (frequently after early weaning), however, an increase of BCS can often be observed under German conditions. In the last eight weeks before calving, the body condition should be reduced or at least not increased. Rations with a higher amount of crude fiber can be used (rations with straw or late mowed grass silage). Fermentative digestion of fiber is slow and incomplete; that’s why the fermentative process in the rumen can be reduced over a long feeding time. Viewed in this context, feed intake of suckler cows (8 weeks before calving) in different rations and fermentation in the rumen should be checked by taking rumen fluid. Eight suckler cows (Charolais) were feeding a Total Mixed Ration (TMR) in the last eight weeks before calving and grass silage after calving. By the addition of straw (30 % [TMR1] vs. 60 % [TMR2] of dry matter) was varied the amount of crude fiber in the TMR (grass silage, straw, mineral) before calving. After calving of the cow's grass, silage [GS] was fed ad libitum, and the last measurement of rumen fluid took place on the pasture [PS]. Rumen fluid, plasma, body weight, and backfat thickness were collected. Rumen fluid pH was assessed using an electronic pH meter. Volatile fatty acids (VFA), sedimentation, methylene-blue and amount of infusorians were measured. From these 4 parameters, an “index of rumen fermentation” [IRF] in the rumen was formed. Fixed effects of treatment (TMR1, TMR2, GS and PS) and a number of lactations (3-7 lactations) were analyzed by ANOVA using SPSS Version 25.0 (significant by p ≤ 5 %). Rumen fluid pH was significant influenced by variants (TMR 1 by 6.6; TMR 2 by 6.9; GS by 6.6 and PS by 6.9) but was not affected by other effects. The IRF showed disturbed fermentation in the rumen by feeding the TMR 1+2 with a high amount of crude fiber (Score: > 10.0 points) and a very good environment for fermentation during grazing the pasture (Score: 6.9 points). Furthermore, significant differences were found for VFA, methylene blue and the number of infusorians. The use of rations with the high amount of crude fiber from weaning to calving may cause deviations from undisturbed fermentation in the rumen and adversely affect the utilization of the feed in the rumen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=suckler%20cow" title="suckler cow">suckler cow</a>, <a href="https://publications.waset.org/abstracts/search?q=feeding%20systems" title=" feeding systems"> feeding systems</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20fiber" title=" crude fiber"> crude fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=digestibilty%20of%20organic%20matter" title=" digestibilty of organic matter"> digestibilty of organic matter</a> </p> <a href="https://publications.waset.org/abstracts/131838/effect-of-amount-of-crude-fiber-in-grass-or-silage-to-the-digestibility-of-organic-matter-in-suckler-cow-feeding-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">837</span> The Effect of Concentrate Containing Probiotics on Fermentation Characteristics and in vitro Nutrient Digestibility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Santoso">B. Santoso</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Tj.%20Hariadi"> B. Tj. Hariadi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Abubakar"> H. Abubakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the experiment was to evaluate the effect of probiotic addition in concentrate on fermentation characteristics and in vitro nutrient digestibility of the grass Pennisetum purpureophoides. Two strains lactic acid bacteria (LAB) i.e Lactobacillus plantarum and Lactobacillus acidhophilus, and one strain yeast of Saccharomyces cerevisiae were used as probiotic. The probiotics was added at 2% and 4% (v/w) in the concentrate. The result showed the concentrate containing between 1.5 × 106 and 3 × 107 CFU/g of lactic acid bacteria and 3 × 103 CFU/g of S. cerevisiae. The DM, OM and NDF digestibility were higher (P<0.01) in grass substrate with concentrate than in grass alone. Addition of probiotic in concentrate increased (P<0.01) DM, OM and NDF compared to concentrate without probiotic. Total VFA and propionic acid concentrations were higher (P<0.01) in grass substrate with concentrate than in grass alone. Concentration of acetic acid decreased (P<0.01) in grass substrate with concentrate than in grass substrate alone. Addition of L. plantarum and L. acidophilus and S. cerevisiae in concentrate increased (P<0.01) propionic acid concentration. It was concluded that addition of probiotic in concentrate increased propionic concentration and in vitro nutrient digestibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=by-products" title="by-products">by-products</a>, <a href="https://publications.waset.org/abstracts/search?q=concentrate" title=" concentrate"> concentrate</a>, <a href="https://publications.waset.org/abstracts/search?q=digestibility" title=" digestibility"> digestibility</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a> </p> <a href="https://publications.waset.org/abstracts/7142/the-effect-of-concentrate-containing-probiotics-on-fermentation-characteristics-and-in-vitro-nutrient-digestibility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">836</span> Optimization of Pretreatment Process of Napier Grass for Improved Sugar Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shashikant%20Kumar">Shashikant Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandraraj%20K."> Chandraraj K.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Perennial grasses have presented interesting choices in the current demand for renewable and sustainable energy sources to alleviate the load of the global energy problem. The perennial grass Napier grass (Pennisetum purpureum Schumach) is a promising feedstock for the production of cellulosic ethanol. The conversion of biomass into glucose and xylose is a crucial stage in the production of bioethanol, and it necessitates optimal pretreatment. Alkali treatment, among the several pretreatments available, effectively reduces lignin concentration and crystallinity of cellulose. Response surface methodology was used to optimize the alkali pretreatment of Napier grass for maximal reducing sugar production. The combined effects of three independent variables, viz. sodium hydroxide concentration, temperature, and reaction time, were studied. A second-order polynomial equation was used to fit the observed data. Maximum reducing sugar (590.54 mg/g) was obtained under the following conditions: 1.6 % sodium hydroxide, a reaction period of 30 min., and 120˚C. The results showed that Napier grass is a desirable feedstock for bioethanol production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Napier%20grass" title="Napier grass">Napier grass</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a> </p> <a href="https://publications.waset.org/abstracts/152783/optimization-of-pretreatment-process-of-napier-grass-for-improved-sugar-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">835</span> Effects of Rations with High Amount of Crude Fiber on Rumen Fermentation in Suckler Cows </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Scholz">H. Scholz</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Kuehne"> P. Kuehne</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Heckenberger"> G. Heckenberger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Problems during the calving period (December until May) often are results in a high body condition score (BCS) at this time. At the end of the grazing period (frequently after early weaning), however, an increase of BCS can often be observed under German conditions. In the last eight weeks before calving, the body condition should be reduced or at least not increased. Rations with a higher amount of crude fiber can be used (rations with straw or late mowed grass silage). Fermentative digestion of fiber is slow and incomplete; that’s why the fermentative process in the rumen can be reduced over a long feeding time. Viewed in this context, feed intake of suckler cows (8 weeks before calving) in different rations and fermentation in the rumen should be checked by taking rumen fluid. Eight suckler cows (Charolais) were feeding a Total Mixed Ration (TMR) in the last eight weeks before calving and grass silage after calving. By the addition of straw (30 % [TMR1] vs. 60 % [TMR2] of dry matter) was varied the amount of crude fiber in the TMR (grass silage, straw, mineral) before calving. After calving of the cow's grass, silage [GS] was fed ad libitum, and the last measurement of rumen fluid took place on the pasture [PS]. Rumen fluid, plasma, body weight, and backfat thickness were collected. Rumen fluid pH was assessed using an electronic pH meter. Volatile fatty acids (VFA), sedimentation, methylene-blue, and amount of infusorians were measured. From these 4 parameters, an “index of rumen fermentation” [IRF] in the rumen was formed. Fixed effects of treatment (TMR1, TMR2, GS, and PS) and a number of lactations (3-7 lactations) were analyzed by ANOVA using SPSS Version 25.0 (significant by p ≤ 5 %). Rumen fluid pH was significantly influenced by variants (TMR 1 by 6.6; TMR 2 by 6.9; GS by 6.6 and PS by 6.9) but was not affected by other effects. The IRF showed disturbed fermentation in the rumen by feeding the TMR 1+2 with a high amount of crude fiber (Score: > 10.0 points) and a very good environment for fermentation during grazing the pasture (Score: 6.9 points). Furthermore, significant differences were found for VFA, methylene blue, and the number of infusorians. The use of rations with a high amount of crude fiber from weaning to calving may cause deviations from undisturbed fermentation in the rumen and adversely affect the utilization of the feed in the rumen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rumen%20fermentation" title="rumen fermentation">rumen fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=suckler%20cow" title=" suckler cow"> suckler cow</a>, <a href="https://publications.waset.org/abstracts/search?q=digestibility%20organic%20matter" title=" digestibility organic matter"> digestibility organic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20fiber" title=" crude fiber "> crude fiber </a> </p> <a href="https://publications.waset.org/abstracts/110412/effects-of-rations-with-high-amount-of-crude-fiber-on-rumen-fermentation-in-suckler-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">834</span> Evaluation of Forage Yield and Competition Indices for Intercropped Barley and Legumes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdollah%20Javanmard">Abdollah Javanmard</a>, <a href="https://publications.waset.org/abstracts/search?q=Fariborz%20Shekari"> Fariborz Shekari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Barley (Hordeum vulgare L.), vetch (Vicia villosa), and grass pea (Lathyrus sativus L.) monocultures as well as mixtures of barley with each of the above legumes, in three seeding ratios (i.e., barley: legume 75:25, 50:50 and 25:75 based on seed numbers) were used to investigate forage yield and competition indices. The results showed that intercropping reduced the dry matter yield of the three component plants, compared with their respective monocrops. The greatest value of total dry matter yield was obtained from barley25-grasspea75 (5.44 t ha-1) mixture, followed by grass pea sole crop (4.99 t ha-1). The total AYL values were positive and greater than 0 in all mixtures, indicating an advantage from intercropping over sole crops. Intercropped barley had a higher relative crowding coefficient (K=1.64) than intercropped legumes (K=1.20), indicating that barley was more competitive than legumes in mixtures. Furthermore, grass pea was more competitive than vetch in mixtures with barley. The highest LER, SPI and MAI were obtained when barley was mixed at a rate of 25% with 75% seed rate of grass pea. It is concluded that intercropping of barley with grass pea has a good potential to improve the performance of forage with high land-use efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forage" title="forage">forage</a>, <a href="https://publications.waset.org/abstracts/search?q=grass%20pea" title=" grass pea"> grass pea</a>, <a href="https://publications.waset.org/abstracts/search?q=intercropping" title=" intercropping"> intercropping</a>, <a href="https://publications.waset.org/abstracts/search?q=LER" title=" LER"> LER</a>, <a href="https://publications.waset.org/abstracts/search?q=monetary%20advantage" title=" monetary advantage"> monetary advantage</a> </p> <a href="https://publications.waset.org/abstracts/3557/evaluation-of-forage-yield-and-competition-indices-for-intercropped-barley-and-legumes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">833</span> Tokenization of Blue Bonds to Scale Blue Carbon Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Buaiz%20Boabaid">Rodrigo Buaiz Boabaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tokenization of Blue Bonds is an emerging Green Finance tool that has the potential to scale Blue Carbon Projects to fight climate change. This innovative solution has a huge potential to democratize the green finance market and catalyze innovations in the climate change finance sector. Switzerland has emerged as a leader in the Green Finance space and is well-positioned to drive the adoption of Tokenization of Blue & Green Bonds. This unique approach has the potential to unlock new sources of capital and enable global investors to participate in the financing of sustainable blue carbon projects. By leveraging the power of blockchain technology, Tokenization of Blue Bonds can provide greater transparency, efficiency, and security in the investment process while also reducing transaction costs. Investments are in line with the highest regulations and designed according to the stringent legal framework and compliance standards set by Switzerland. The potential benefits of Tokenization of Blue Bonds are significant and could transform the way that sustainable projects are financed. By unlocking new sources of capital, this approach has the potential to accelerate the deployment of Blue Carbon projects and create new opportunities for investors to participate in the fight against climate change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blue%20bonds" title="blue bonds">blue bonds</a>, <a href="https://publications.waset.org/abstracts/search?q=blue%20carbon" title=" blue carbon"> blue carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=tokenization" title=" tokenization"> tokenization</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20finance" title=" green finance"> green finance</a> </p> <a href="https://publications.waset.org/abstracts/164721/tokenization-of-blue-bonds-to-scale-blue-carbon-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">832</span> Ethno-Botanical of Seaweeds and Sea Grass in Eastern Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siegfried%20Berhimpon">Siegfried Berhimpon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jein%20Dangeubun"> Jein Dangeubun</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Baulu"> Sandra Baulu</a>, <a href="https://publications.waset.org/abstracts/search?q=Rene%20Ch.%20Kepel"> Rene Ch. Kepel </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Indonesia, macro-alga is known as seaweeds or rumput laut and sea grass or lamun, and have been used as vegetables and medicine since long time ago. This studies have been done, to collect data about utilization of seaweed and sea grass as food or medicine in Eastern Indonesia. Six regencies in two provinces have been chosen as sampling areas i.e. South-East Maluku, West-East Maluku, and Aru in province of Maluku; and Sangihe, Sitaro, and Minahasa in province of North Sulawesi. The results shown that in the pass, seaweeds and sea grass have been widely used as food and medicine, and there are similarity between one area and other areas in species and in the way to prepare or to cook the food. Ten species of alga and 2 species of sea grass were consumed as vegetables and desert, and one species of sea grass was used for traditional medicine. Nowadays, because of easier to get terrestrial vegetables, the people in the coastal area rarely consumed marine vegetables, and if there are no attempt to promote and to socialize the custom, the habits trend to disappear. Environmental degradation was another caused has been identified. Seaweed contained high content of Iodine and dietary fiber, therefore, this food can overcomes the problem of iodine deficiency, and to supply an exotic high-fiber foods. In addition, by consuming seaweeds, marine culture industry will be developed, especially in the number of species seaweeds to be cultivated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethno-botany" title="ethno-botany">ethno-botany</a>, <a href="https://publications.waset.org/abstracts/search?q=seaweed" title=" seaweed"> seaweed</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20grass" title=" sea grass"> sea grass</a>, <a href="https://publications.waset.org/abstracts/search?q=exotic%20food" title=" exotic food"> exotic food</a> </p> <a href="https://publications.waset.org/abstracts/33010/ethno-botanical-of-seaweeds-and-sea-grass-in-eastern-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">831</span> Tokenization of Blue Bonds as an Emerging Green Finance Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Buaiz%20Boabaid">Rodrigo Buaiz Boabaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tokenization of Blue Bonds is an emerging Green Finance tool that has the potential to scale Blue Carbon Projects to fight climate change. This innovative solution has a huge potential to democratize the green finance market and catalyze innovations in the climate change finance sector. Switzerland has emerged as a leader in the Green Finance space and is well-positioned to drive the adoption of Tokenization of Blue & Green Bonds. This unique approach has the potential to unlock new sources of capital and enable global investors to participate in the financing of sustainable blue carbon projects. By leveraging the power of blockchain technology, Tokenization of Blue Bonds can provide greater transparency, efficiency, and security in the investment process, while also reducing transaction costs. Investments are in line with the highest regulations and designed according to the stringent legal framework and compliance standards set by Switzerland. The potential benefits of Tokenization of Blue Bonds are significant and could transform the way that sustainable projects are financed. By unlocking new sources of capital, this approach has the potential to accelerate the deployment of Blue Carbon projects and create new opportunities for investors to participate in the fight against climate change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blue%20carbon" title="blue carbon">blue carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=blue%20bonds" title=" blue bonds"> blue bonds</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20finance" title=" green finance"> green finance</a>, <a href="https://publications.waset.org/abstracts/search?q=Tokenization" title=" Tokenization"> Tokenization</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain%20solutions" title=" blockchain solutions"> blockchain solutions</a> </p> <a href="https://publications.waset.org/abstracts/164724/tokenization-of-blue-bonds-as-an-emerging-green-finance-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">830</span> The Development, Validation, and Evaluation of the Code Blue Simulation Module in Improving the Code Blue Response Time among Nurses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Rajaah%20Binti%20Sayed%20Sultan">Siti Rajaah Binti Sayed Sultan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Managing the code blue event is stressful for nurses, the patient, and the patient's families. The rapid response from the first and second responders in the code blue event will improve patient outcomes and prevent tissue hypoxia that leads to brain injury and other organ failures. Providing 1 minute for the cardiac massage and 2 minutes for defibrillation will significantly improve patient outcomes. As we know, the American Heart Association came out with guidelines for managing cardiac arrest patients. The hospital must provide competent staff to manage this situation. It can be achieved when the staff is well equipped with the skill, attitude, and knowledge to manage this situation with well-planned strategies, i.e., clear guidelines for managing the code blue event, competent staff, and functional equipment. The code blue simulation (CBS) was chosen in the training program for code blue management because it can mimic real scenarios. Having the code blue simulation module will allow the staff to appreciate what they will face during the code blue event, especially since it rarely happens in that area. This CBS module training will help the staff familiarize themselves with the activities that happened during actual events and be able to operate the equipment accordingly. Being challenged and independent in managing the code blue in the early phase gives the patient a better outcome. The CBS module will help the assessor and the hospital management team with the proper tools and guidelines for managing the code blue drill accordingly. As we know, prompt action will benefit the patient and their family. It also indirectly increases the confidence and job satisfaction among the nurses, increasing the standard of care, reducing the complication and hospital burden, and enhancing cost-effective care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=code%20blue%20simulation%20module" title="code blue simulation module">code blue simulation module</a>, <a href="https://publications.waset.org/abstracts/search?q=development%20of%20code%20blue%20simulation%20module" title=" development of code blue simulation module"> development of code blue simulation module</a>, <a href="https://publications.waset.org/abstracts/search?q=code%20blue%20response%20time" title=" code blue response time"> code blue response time</a>, <a href="https://publications.waset.org/abstracts/search?q=code%20blue%20drill" title=" code blue drill"> code blue drill</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiorespiratory%20arrest" title=" cardiorespiratory arrest"> cardiorespiratory arrest</a>, <a href="https://publications.waset.org/abstracts/search?q=managing%20code%20blue" title=" managing code blue"> managing code blue</a> </p> <a href="https://publications.waset.org/abstracts/183021/the-development-validation-and-evaluation-of-the-code-blue-simulation-module-in-improving-the-code-blue-response-time-among-nurses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">829</span> The Sustainable Blue Economy Innovation and Growth: Data Based on China for 2006-2015 Years</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingbao%20Chen">Mingbao Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The blue economy is a new comprehensive marine economy integrated with resources, industries, and regions, and is an upgraded version of the marine economy. The blue economy attaches great importance to the coordinated development of the ecological environment and the economy, which is an emerging economic form advocated by all countries in the world. This paper constructs the model including four variables:natural capital, economic capital, intellectual capital, cultural capital. Theoretically, this paper deduces the function mechanism of variables on economic growth, and empirically calculates the driving force and influence of the blue economy on the national economy by using data of China's 2006-2015 year. The results show that natural capital and economic capital remain the main factors of blue growth in the blue economy. And with the development of economic society and technological progress, the role of intellectual capital and cultural capital is bigger and bigger. Therefore, promoting the development of marine science and technology and culture is the focus of the future blue economic development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blue%20growth" title="blue growth">blue growth</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20capital" title=" natural capital"> natural capital</a>, <a href="https://publications.waset.org/abstracts/search?q=intellectual%20capital" title=" intellectual capital"> intellectual capital</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20capital" title=" cultural capital"> cultural capital</a> </p> <a href="https://publications.waset.org/abstracts/89328/the-sustainable-blue-economy-innovation-and-growth-data-based-on-china-for-2006-2015-years" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">828</span> Building a Stochastic Simulation Model for Blue Crab Population Evolution in Antinioti Lagoon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Simantiris">Nikolaos Simantiris</a>, <a href="https://publications.waset.org/abstracts/search?q=Markos%20Avlonitis"> Markos Avlonitis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work builds a simulation platform, modeling the spatial diffusion of the invasive species Callinectes sapidus (blue crab) as a random walk, incorporating also generation, fatality, and fishing rates modeling the time evolution of its population. Antinioti lagoon in West Greece was used as a testbed for applying the simulation model. Field measurements from June 2020 to June 2021 on the lagoon’s setting, bathymetry, and blue crab juveniles provided the initial population simulation of blue crabs, as well as biological parameters from the current literature were used to calibrate simulation parameters. The scope of this study is to render the authors able to predict the evolution of the blue crab population in confined environments of the Ionian Islands region in West Greece. The first result of the simulation experiments shows the possibility for a robust prediction for blue crab population evolution in the Antinioti lagoon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antinioti%20lagoon" title="antinioti lagoon">antinioti lagoon</a>, <a href="https://publications.waset.org/abstracts/search?q=blue%20crab" title=" blue crab"> blue crab</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20simulation" title=" stochastic simulation"> stochastic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20walk" title=" random walk"> random walk</a> </p> <a href="https://publications.waset.org/abstracts/140487/building-a-stochastic-simulation-model-for-blue-crab-population-evolution-in-antinioti-lagoon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">827</span> Optimization of Black Grass Jelly Formulation to Reduce Leaching and Increase Floating Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Nor">M. M. Nor</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20I.%20Sheikh"> H. I. Sheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20H.%20Hassan"> M. F. H. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mokhtar"> S. Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Suganthi"> A. Suganthi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Fadhlina"> A. Fadhlina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Black grass jelly (BGJ) is a popular black jelly used in preparing various drinks and desserts. Food industries often use preservatives to maintain the physicochemical properties of foods, such as color and texture. These preservatives (e.g., phosphoric acid) are linked with deleterious health effects such as kidney disease. Using gelling agents, carrageenan, and gelatin to make BGJ could improve its physiochemical and textural properties. This study was designed to optimize BGJ-selected physicochemical and textural properties using carrageenan and gelatin. Various black grass jelly formulations (BGJF) were designed using an I-optimal mixture design in Design Expert® software. Data from commercial BGJ were used as a reference during the optimization process. The combination of carrageenan and gelatin added to the formulations was up to 14.38g (~5%), respectively. The results showed that adding 2.5g carrageenan and 2.5g gelatin at approximately 5g (~5%) effectively maintained most of the physiochemical properties with an overall desirability function of 0.81. This formulation was selected as the optimum black grass jelly formulation (OBGJF). The leaching properties and floating duration were measured on the OBGJF and commercial grass jelly for 20 min and 40 min, respectively. The results indicated that OBGJF showed significantly (p<0.0001) lower leaching rate and floating time (p<0.05). Hence, further optimization is needed to increase the floating duration of carrageenan and gelatin-based BGJ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cincau" title="cincau">cincau</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesona%20chinensis" title=" Mesona chinensis"> Mesona chinensis</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20grass%20jelly" title=" black grass jelly"> black grass jelly</a>, <a href="https://publications.waset.org/abstracts/search?q=carrageenan" title=" carrageenan"> carrageenan</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatin" title=" gelatin"> gelatin</a> </p> <a href="https://publications.waset.org/abstracts/164171/optimization-of-black-grass-jelly-formulation-to-reduce-leaching-and-increase-floating-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">826</span> Prototype for Measuring Blue Light Protection in Sunglasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Loureiro">A. D. Loureiro</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Ventura"> L. Ventura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exposure to high-energy blue light has been strongly linked to the development of some eye diseases, such as age-related macular degeneration. Over the past few years, people have become more and more concerned about eye damage from blue light and how it can be prevented. We developed a prototype that allows users to self-check the blue light protection of their sunglasses and determines if the protection is adequate. Weighting functions approximating those defined in ISO 12312-1 were used to measure the luminous transmittance and blue light transmittance of sunglasses. The blue light transmittance value must be less than 1.2 times the luminous transmittance to be considered adequate. The prototype consists of a Golden Dragon Ultra White LED from OSRAM and a TCS3472 photodetector from AMS TAOS. Together, they provide four transmittance values weighted with different functions. These four transmittance values were then linearly combined to produce transmittance values with weighting functions close to those defined in ISO 12312-1 for luminous transmittance and for blue light transmittance. To evaluate our prototype, we used a VARIAN Cary 5000 spectrophotometer, a gold standard in the field, to measure the luminous transmittance and the blue light transmittance of 60 sunglasses lenses. (and Bland-Altman analysis was performed) Bland-Altman analysis was performed and showed non-significant bias and narrow 95% limits of agreement within predefined tolerances for both luminous transmittance and blue light transmittance. The results show that the prototype is a viable means of providing blue light protection information to the general public and a quick and easy way for industry and retailers to test their products. In addition, our prototype plays an important role in educating the public about a feature to look for in sunglasses before purchasing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blue%20light" title="blue light">blue light</a>, <a href="https://publications.waset.org/abstracts/search?q=sunglasses" title=" sunglasses"> sunglasses</a>, <a href="https://publications.waset.org/abstracts/search?q=eye%20protective%20devices" title=" eye protective devices"> eye protective devices</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance%20measurement" title=" transmittance measurement"> transmittance measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=standards" title=" standards"> standards</a>, <a href="https://publications.waset.org/abstracts/search?q=ISO%2012312-1" title=" ISO 12312-1"> ISO 12312-1</a> </p> <a href="https://publications.waset.org/abstracts/163500/prototype-for-measuring-blue-light-protection-in-sunglasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">825</span> Photocatalytic Degradation of Methylene Blue Dye Using Pure and Ag-Doped SnO₂ Nanoparticles as Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Abd%20El-Sadek">M. S. Abd El-Sadek</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20A.%20Omar"> Mahmoud A. Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gharib%20M.%20Taha"> Gharib M. Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photodegradation of methylene blue in the presence of tin dioxide (SnO₂) nanoparticles under solar light irradiation are known to be an effective photocatalytic process. In this study, pure and silver (Ag) doped tin dioxide (SnO₂) nanoparticles were prepared at calcination temperature (800ºC) by a modified sol-gel method and studied for their photocatalytic activity with methylene blue as a test contaminant. The characterization of undoped and doped SnO₂ photocatalyst was studied by X-rays diffraction patterns (XRD), transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Energy Dispersive X-ray Microanalysis (EDX). The catalytic degradation of methylene blue in aqueous media was studied using UV-Vis spectrophotometer to monitor the degradation process by measuring its absorption spectra. The main absorption peak of methylene blue is observed at λ= 664 nm. The change in the percent of silver in the catalyst affects the photoactivity of SnO₂ on the degradation of methylene blue. The photoactivity of pure SnO₂ was found to be a maximum at dose 0.2 gm of the catalyst with 100 ml of 5 ppm methylene blue in the water. Within 210 min of photodegradation (under sunlight) after leaving the reaction for 90 minutes in the dark to avoid the effect of adsorption, the pure SnO₂ at calcination temperature 800ºC exhibited the best photocatalytic degradation with removal percentage of 93.66% on methylene blue degradation under solar light. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SnO%E2%82%82%20nanoparticles" title="SnO₂ nanoparticles">SnO₂ nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue%20degradation" title=" methylene blue degradation"> methylene blue degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20doped-SnO%E2%82%82" title=" silver doped-SnO₂"> silver doped-SnO₂</a> </p> <a href="https://publications.waset.org/abstracts/108988/photocatalytic-degradation-of-methylene-blue-dye-using-pure-and-ag-doped-sno2-nanoparticles-as-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">824</span> Adsorption of Methylene Blue by Pectin from Durian (Durio zibethinus) Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nurkhalimah">Siti Nurkhalimah</a>, <a href="https://publications.waset.org/abstracts/search?q=Devita%20Wijiyanti"> Devita Wijiyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuntari"> Kuntari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methylene blue is a popular water-soluble dye that is used for dyeing a variety of substrates such as bacteria, wool, and silk. Methylene blue discharged into the aquatic environment will cause health problems for living things. Treatment method for industrial wastewater may be divided into three main categories: physical, chemical, and biological. Among them, adsorption technology is generally considered to be an effective method for quickly lowering the concentration of dissolved dyes in a wastewater. This has attracted considerable research into low-cost alternative adsorbents for adsorbing or removing coloring matter. In this research, pectin from durian seeds was utilized here to assess their ability for the removal of methylene blue. Adsorption parameters are contact time and dye concentration were examined in the batch adsorption processes. Pectin characterization was performed by FTIR spectrometry. Methylene blue concentration was determined by using UV-Vis spectrophotometer. FTIR results show that the samples showed the typical fingerprint in IR spectrogram. The adsorption result on 10 mL of 5 mg/L methylene blue solution achieved 95.12% when contact time 10 minutes and pectin 0.2 g. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pectin" title="pectin">pectin</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=durian%20seed" title=" durian seed"> durian seed</a> </p> <a href="https://publications.waset.org/abstracts/83104/adsorption-of-methylene-blue-by-pectin-from-durian-durio-zibethinus-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">823</span> Evaluating the Process of Biofuel Generation from Grass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karan%20Bhandari">Karan Bhandari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Almost quarter region of Indian terrain is covered by grasslands. Grass being a low maintenance perennial crop is in abundance. Farmers are well acquainted with its nature, yield and storage. The aim of this paper is to study and identify the applicability of grass as a source of bio fuel. Anaerobic break down is a well-recognized technology. This process is vital for harnessing bio fuel from grass. Grass is a lignocellulosic material which is fibrous and can readily cause problems with parts in motion. Further, it also has a tendency to float. This paper also deals with the ideal digester configuration for biogas generation from grass. Intensive analysis of the literature is studied on the optimum production of grass storage in accordance with bio digester specifications. Subsequent to this two different digester systems were designed, fabricated, analyzed. The first setup was a double stage wet continuous arrangement usually known as a Continuously Stirred Tank Reactor (CSTR). The next was a double stage, double phase system implementing Sequentially Fed Leach Beds using an Upflow Anaerobic Sludge Blanket (SLBR-UASB). The above methodologies were carried for the same feedstock acquired from the same field. Examination of grass silage was undertaken using Biomethane Potential values. The outcomes portrayed that the Continuously Stirred Tank Reactor system produced about 450 liters of methane per Kg of volatile solids, at a detention period of 48 days. The second method involving Leach Beds produced about 340 liters of methane per Kg of volatile solids with a detention period of 28 days. The results showcased that CSTR when designed exclusively for grass proved to be extremely efficient in methane production. The SLBR-UASB has significant potential to allow for lower detention times with significant levels of methane production. This technology has immense future for research and development in India in terms utilizing of grass crop as a non-conventional source of fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomethane%20potential%20values" title="biomethane potential values">biomethane potential values</a>, <a href="https://publications.waset.org/abstracts/search?q=bio%20digester%20specifications" title=" bio digester specifications"> bio digester specifications</a>, <a href="https://publications.waset.org/abstracts/search?q=continuously%20stirred%20tank%20reactor" title=" continuously stirred tank reactor"> continuously stirred tank reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=upflow%20anaerobic%20sludge%20blanket" title=" upflow anaerobic sludge blanket"> upflow anaerobic sludge blanket</a> </p> <a href="https://publications.waset.org/abstracts/60567/evaluating-the-process-of-biofuel-generation-from-grass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">822</span> Utilization of Complete Feed Based on Ammoniated Corn Waste on Bali Cattle Peformance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elihasridas">Elihasridas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rusmana%20Wijaya%20Setia%20Ninggrat"> Rusmana Wijaya Setia Ninggrat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to study the utilization of ammoniated corn waste complete ration for substitution basal ration of natural grass in Bali cattle. Four treatments (complete feed ration consisted of: R1=40% natural grass + 60% concentrate (control), R2= 50% natural grass+50% concentrate, R3=60% natural grass+40% concentrate and R4=40% ammoniated corn waste+60% concentrate) were employed in this experiment. This experiment was arranged in a latin square design. Observed variables included dry matter intake (DMI), average daily gain and feed conversion. Data were analyzed by using the Analysis of Variance following a 4 x 4 Latin Square Design. The DMI for R1was 7,15kg/day which was significantly (P < 0,05) higher than R2 (6,32 kg/day) and R3(6,07 kg/day), but was not significantly different (P < 0,05) from R4 (7,01 kg/day). Average daily gain for R1(0,75 kg/day) which was significantly (P < 0,05) higher than R2(0,66 kg/day) and R3 (0,61 kg/day),but was not significantly different (P > 0,05) from R4(0,74 kg/day). Feed conversion was not significantly affected (P > 0,05) by ration. It was concluded that ammoniated corn waste complete ration (40% ammoniated corn waste + 60% concentrate) could be utilized for substitution natural grass basal ration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammoniated%20corn%20waste" title="ammoniated corn waste">ammoniated corn waste</a>, <a href="https://publications.waset.org/abstracts/search?q=bali%20cattle" title=" bali cattle"> bali cattle</a>, <a href="https://publications.waset.org/abstracts/search?q=complete%20feed" title=" complete feed"> complete feed</a>, <a href="https://publications.waset.org/abstracts/search?q=daily%20gain" title=" daily gain"> daily gain</a> </p> <a href="https://publications.waset.org/abstracts/69849/utilization-of-complete-feed-based-on-ammoniated-corn-waste-on-bali-cattle-peformance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">821</span> Effect of Gamma Radiation on Bromophenol Blue Dyed Films as Dosimeter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20R.%20Oberoi">Priyanka R. Oberoi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20B.%20Maurya"> Chandra B. Maurya</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakash%20A.%20Mahanwar"> Prakash A. Mahanwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ionizing radiation can cause a drastic change in the physical and chemical properties of the material exposed. Numerous medical devices are sterilized by ionizing radiation. In the current research paper, an attempt was made to develop precise and inexpensive polymeric film dosimeter which can be used for controlling radiation dosage. Polymeric film containing (pH sensitive dye) indicator dye Bromophenol blue (BPB) was casted to check the effect of Gamma radiation on its optical and physical properties. The film was exposed to gamma radiation at 4 kGy/hr in the range of 0 to 300 kGy at an interval of 50 kGy. Release of vinyl acetate from an emulsion on high radiation reacts with the BPB fading the color of the film from blue to light blue and then finally colorless, indicating a change in pH from basic to acidic form. The change was characterized by using CIE l*a*b*, ultra-violet spectroscopy and FT-IR respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bromophenol%20blue" title="bromophenol blue">bromophenol blue</a>, <a href="https://publications.waset.org/abstracts/search?q=dosimeter" title=" dosimeter"> dosimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a> </p> <a href="https://publications.waset.org/abstracts/55840/effect-of-gamma-radiation-on-bromophenol-blue-dyed-films-as-dosimeter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">820</span> Variability of Hydrological Modeling of the Blue Nile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abeer%20Samy">Abeer Samy</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20C.%20Saavedra%20Valeriano"> Oliver C. Saavedra Valeriano</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20Negm"> Abdelazim Negm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blue%20Nile%20Basin" title="Blue Nile Basin">Blue Nile Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20modeling" title=" hydrological modeling"> hydrological modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a> </p> <a href="https://publications.waset.org/abstracts/25736/variability-of-hydrological-modeling-of-the-blue-nile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">819</span> Production of Ethanol from Mission Grass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darin%20Khumsupan">Darin Khumsupan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tidarat%20Komolwanich"> Tidarat Komolwanich</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirirat%20Prasertwasu"> Sirirat Prasertwasu</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanyalak%20Chaisuwan"> Thanyalak Chaisuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Apanee%20Luengnaruemitchai"> Apanee Luengnaruemitchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujitra%20Wongkasemjit"> Sujitra Wongkasemjit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioethanol production has become a subject of interest for many researchers due to its potential to replace fossil fuels. Since the most popular sources of bioethanol originate from food crops including corn and sugarcane, many people become more concerned with increasing demand for food supply. Lignocellulosic biomass, such as grass, could be a practical alternative to replace the conventional fossil fuels due to its low cost, renewability, and abundance in nature. Mission grass (Pennisetum polystachion) is one of the candidates for bioethanol production. This research is focused on the detoxification and fermentation of hydrolysate from mission grass. Glucose in the hydrolysate was detoxified by overliming process at various pH. Although overliming at pH 12 gave the highest yeast population, the ethanol yield was low due to glucose degradation. Overliming at pH 10 showed the highest yield of ethanol production. Various strains of Baker’s yeast (Saccharomyces cerevisiae) will be utilized to produce ethanol at the optimal overliming pH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pennisetum%20polystachion" title="Pennisetum polystachion">Pennisetum polystachion</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biomass" title=" lignocellulosic biomass"> lignocellulosic biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol%20production" title=" bioethanol production"> bioethanol production</a>, <a href="https://publications.waset.org/abstracts/search?q=detoxification" title=" detoxification"> detoxification</a>, <a href="https://publications.waset.org/abstracts/search?q=overliming" title=" overliming"> overliming</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title=" Saccharomyces cerevisiae"> Saccharomyces cerevisiae</a> </p> <a href="https://publications.waset.org/abstracts/2722/production-of-ethanol-from-mission-grass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">818</span> Achievement of Livable and Healthy City through the Design of Green and Blue Infrastructure: A Case Study on City of Isfahan, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reihaneh%20Rafiemanzelat">Reihaneh Rafiemanzelat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> due to towards the rapid urbanization, cities throughout the world faced to rapid growth through gray infrastructure. Therefore designing cities based on green and blue infrastructure can offer the best solution to support healthy urban environment. This conformation with a wide range of ecosystem service has a positive impact on the regulation of air temperature, noise reduction, air quality, and also create a pleasant environment for humans activities. Research mainly focuses on the concept and principles of green and blue infrastructure in the city of Esfahan at the center of Iran in order to create a livable and healthy environment. Design principles for green and blue infrastructure are classified into two different but interconnect evaluations. Healthy green infrastructure assessing based on; volume, shape, location, dispersion, and maintenance. For blue infrastructure there are three aspects of water and ecosystem which are; the contribution of water on medical health, the contribution of water on mental health, and creating possibilities to exercise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=healthy%20cities" title="healthy cities">healthy cities</a>, <a href="https://publications.waset.org/abstracts/search?q=livability" title=" livability"> livability</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20landscape" title=" urban landscape"> urban landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20and%20blue%20infrastructure" title=" green and blue infrastructure"> green and blue infrastructure</a> </p> <a href="https://publications.waset.org/abstracts/51413/achievement-of-livable-and-healthy-city-through-the-design-of-green-and-blue-infrastructure-a-case-study-on-city-of-isfahan-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">817</span> Efficiency Enhancement of Blue OLED by Incorporating Ag Nanoplate Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=So-Jeong%20Kim">So-Jeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nak-Kwan%20Chung"> Nak-Kwan Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jintae%20Kim"> Jintae Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Juyoung%20Yun"> Juyoung Yun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The metal nanoplates are potentially used for electroluminescence enhancement of OLEDs owing to the localized surface plasmon resonance. In our study, enhanced electroluminescence in blue organic light-emitting diodes is demonstrated by incorporating silver nanoplates into poly(3,4-ethylene dioxythiophene):polystyrene sulfonic acid. To have surface plasmon resonance absorption peak matching with photoluminescent (PL) peak of blue, Ag nanoplates with triangular shape are used in this study. Finally, about 30 % enhancement in electroluminescence intensity and current efficiency for blue emission devices is obtained via Ag nanoplates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency%20enhancement" title="efficiency enhancement">efficiency enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoplate" title=" nanoplate"> nanoplate</a>, <a href="https://publications.waset.org/abstracts/search?q=OLED" title=" OLED"> OLED</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance" title=" surface plasmon resonance"> surface plasmon resonance</a> </p> <a href="https://publications.waset.org/abstracts/64669/efficiency-enhancement-of-blue-oled-by-incorporating-ag-nanoplate-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">816</span> Powdered Beet Red Roots Using as Adsorbent to Removal of Methylene Blue Dye from Aqueous Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulali%20Bashir%20Ben%20Saleh">Abdulali Bashir Ben Saleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The powdered beet red roots (PBRR) were used as an adsorbent to remove dyes namely methylene blue dye (as a typical cationic or basic dye) from aqueous solutions. The present study shows that used beet red roots powder exhibit adsorption trend for the dye. The adsorption processes were carried out at various conditions of concentrations, processing time and a wide range of pH between 2.5-11. Adsorption isotherm equations such as Freundlich, and Langmuir were applied to calculate the values of respective constants. Adsorption study was found that the currently introduced adsorbent can be used to remove cationic dyes such as methylene blue from aqueous solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beet%20red%20root" title="beet red root">beet red root</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20of%20deys" title=" removal of deys"> removal of deys</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/22809/powdered-beet-red-roots-using-as-adsorbent-to-removal-of-methylene-blue-dye-from-aqueous-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blue%20grass&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blue%20grass&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blue%20grass&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blue%20grass&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blue%20grass&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blue%20grass&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blue%20grass&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blue%20grass&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blue%20grass&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blue%20grass&page=28">28</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blue%20grass&page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blue%20grass&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>