CINXE.COM
Search results for: wind turbine
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: wind turbine</title> <meta name="description" content="Search results for: wind turbine"> <meta name="keywords" content="wind turbine"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="wind turbine" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="wind turbine"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1489</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: wind turbine</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1489</span> Experimental and CFD of Desgined Small Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20A.%20Mekail">Tarek A. Mekail</a>, <a href="https://publications.waset.org/abstracts/search?q=Walid%20M.%20A.%20Elmagid"> Walid M. A. Elmagid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many researches have concentrated on improving the aerodynamic performance of wind turbine blade through testing and theoretical studies. A small wind turbine blade is designed, fabricated and tested. The power performance of small horizontal axis wind turbines is simulated in details using Computational Fluid Dynamic (CFD). The three-dimensional CFD models are presented using ANSYS-CFX v13 software for predicting the performance of a small horizontal axis wind turbine. The simulation results are compared with the experimental data measured from a small wind turbine model, which designed according to a vehicle-based test system. The analysis of wake effect and aerodynamic of the blade can be carried out when the rotational effect was simulated. Finally, comparison between experimental, numerical and analytical performance has been done. The comparison is fairly good. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20wind%20turbine" title="small wind turbine">small wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20of%20wind%20turbine" title=" CFD of wind turbine"> CFD of wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20of%20wind%20turbine" title=" performance of wind turbine"> performance of wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20of%20small%20wind%20turbine" title=" test of small wind turbine"> test of small wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20aerodynamic" title=" wind turbine aerodynamic"> wind turbine aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20model" title=" 3D model"> 3D model</a> </p> <a href="https://publications.waset.org/abstracts/18446/experimental-and-cfd-of-desgined-small-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1488</span> Starting Torque Study of Darrieus Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Douak">M. Douak</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Aouachria"> Z. Aouachria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of our study is to project an optimized wind turbine of Darrieus type. This type of wind turbine is characterized by a low starting torque in comparison with the Savonius rotor allowing them to operate for a period greater than wind speed. This led us to reconsider the Darrieus rotor to optimize a design which will increase its starting torque. The study of a system of monitoring and control of the angle of attack of blade profile, which allows an auto start to wind speeds as low as possible is presented for the straight blade of Darrieus turbine. The study continues to extend to other configurations namely those of parabolic type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darrieus%20turbine" title="Darrieus turbine">Darrieus turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=pitch%20angle" title=" pitch angle"> pitch angle</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20stating" title=" self stating"> self stating</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy "> wind energy </a> </p> <a href="https://publications.waset.org/abstracts/26727/starting-torque-study-of-darrieus-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1487</span> Design and Development of Wind Turbine Emulator to Operate with 1.5 kW Induction Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Himani%20Ratna%20Dahiya">Himani Ratna Dahiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper contributes to design a Wind Emulator coupled to 1.5 kW Induction generator for Wind Energy Conversion System. A wind turbine emulator (WTE) is important equipment for developing wind energy conversion systems. It offers a controllable test environment that allows the evaluation and improvement of control schemes for electric generators that is hard to achieve with an actual wind turbine since the wind speed varies randomly. In this paper a wind emulator is modeled and simulated using MATLAB. Verification of the simulation results is done by experimental setup using DC motor-Induction generator set, LABVIEW and data acquisition card. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wind%20Turbine%20Emulator" title="Wind Turbine Emulator">Wind Turbine Emulator</a>, <a href="https://publications.waset.org/abstracts/search?q=LABVIEW" title=" LABVIEW"> LABVIEW</a>, <a href="https://publications.waset.org/abstracts/search?q=matlab" title=" matlab"> matlab</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20generator" title=" induction generator"> induction generator</a> </p> <a href="https://publications.waset.org/abstracts/16620/design-and-development-of-wind-turbine-emulator-to-operate-with-15-kw-induction-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1486</span> Design a Small-Scale Irrigation Wind-Powered Water Pump Using a Savonius Type VAWT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getnet%20Ayele%20%20Kebede">Getnet Ayele Kebede</a>, <a href="https://publications.waset.org/abstracts/search?q=Tasew%20Tadiwose%20%20Zewdie"> Tasew Tadiwose Zewdie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a novel design of a wind-powered water pump for small-scale irrigation application by using the Savonius wind turbine of Vertical Axis Wind Turbine(VAWT) with 2 blades has been used. Calculations have been made on the energy available in the wind and an energy analysis was then performed to see what wind speed is required for the system to work. The rotor has a radius of 0.53 m giving a swept area of 1.27 m2 and this gives a solidity of 0.5, which is the minimum theoretical optimum value for wind turbine. The average extracted torque of the wind turbine is 0.922 Nm and Tip speed ratio is one this shows, the tips are moving at equal the speed of the wind and by 2 rotating of blades. This is sufficient to sustain the desired flow rate of (0.3125X 10-3) m3 per second with a maximum head of 10m and the expected working is 4hr/day, and also overcome other barriers to motion such as friction. Based on this novel design, we are able to achieve a cost-effective solution and simultaneously effective in self-starting under low wind speeds and it can catch the wind from all directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Savonius%20wind%20turbine" title="Savonius wind turbine">Savonius wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=Small-scale%20irrigation" title=" Small-scale irrigation"> Small-scale irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=Vertical%20Axis%20Wind%20Turbine" title=" Vertical Axis Wind Turbine"> Vertical Axis Wind Turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=Water%20pump" title=" Water pump"> Water pump</a> </p> <a href="https://publications.waset.org/abstracts/121075/design-a-small-scale-irrigation-wind-powered-water-pump-using-a-savonius-type-vawt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1485</span> Adaptive Envelope Protection Control for the below and above Rated Regions of Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Sahin">Mustafa Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0lkay%20Yavrucuk"> 陌lkay Yavrucuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a wind turbine envelope protection control algorithm that protects Variable Speed Variable Pitch (VSVP) wind turbines from damage during operation throughout their below and above rated regions, i.e. from cut-in to cut-out wind speed. The proposed approach uses a neural network that can adapt to turbines and their operating points. An algorithm monitors instantaneous wind and turbine states, predicts a wind speed that would push the turbine to a pre-defined envelope limit and, when necessary, realizes an avoidance action. Simulations are realized using the MS Bladed Wind Turbine Simulation Model for the NREL 5 MW wind turbine equipped with baseline controllers. In all simulations, through the proposed algorithm, it is observed that the turbine operates safely within the allowable limit throughout the below and above rated regions. Two example cases, adaptations to turbine operating points for the below and above rated regions and protections are investigated in simulations to show the capability of the proposed envelope protection system (EPS) algorithm, which reduces excessive wind turbine loads and expectedly increases the turbine service life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20envelope%20protection%20control" title="adaptive envelope protection control">adaptive envelope protection control</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20detection%20and%20avoidance" title=" limit detection and avoidance"> limit detection and avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20load%20reduction" title=" ultimate load reduction"> ultimate load reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20power%20control" title=" wind turbine power control"> wind turbine power control</a> </p> <a href="https://publications.waset.org/abstracts/121488/adaptive-envelope-protection-control-for-the-below-and-above-rated-regions-of-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1484</span> Emulation of a Wind Turbine Using Induction Motor Driven by Field Oriented Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Benaaouinate">L. Benaaouinate</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khafallah"> M. Khafallah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Martinez"> A. Martinez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mesbahi"> A. Mesbahi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Bouragba"> T. Bouragba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper concerns with the modeling, simulation, and emulation of a wind turbine emulator for standalone wind energy conversion systems. By using emulation system, we aim to reproduce the dynamic behavior of the wind turbine torque on the generator shaft: it provides the testing facilities to optimize generator control strategies in a controlled environment, without reliance on natural resources. The aerodynamic, mechanical, electrical models have been detailed as well as the control of pitch angle using Fuzzy Logic for horizontal axis wind turbines. The wind turbine emulator consists mainly of an induction motor with AC power drive with torque control. The control of the induction motor and the mathematical models of the wind turbine are designed with MATLAB/Simulink environment. The simulation results confirm the effectiveness of the induction motor control system and the functionality of the wind turbine emulator for providing all necessary parameters of the wind turbine system such as wind speed, output torque, power coefficient and tip speed ratio. The findings are of direct practical relevance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20generator" title="electrical generator">electrical generator</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20motor%20drive" title=" induction motor drive"> induction motor drive</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=pitch%20angle%20control" title=" pitch angle control"> pitch angle control</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20control" title=" real time control"> real time control</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20emulator" title=" wind turbine emulator"> wind turbine emulator</a> </p> <a href="https://publications.waset.org/abstracts/80827/emulation-of-a-wind-turbine-using-induction-motor-driven-by-field-oriented-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1483</span> Thermal Assessment of Outer Rotor Direct Drive Gearless Small-Scale Wind Turbines </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Yasa">Yusuf Yasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Erkan%20Mese"> Erkan Mese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the thermal issue of permanent magnet synchronous generator which is frequently used in direct drive gearless small-scale wind turbine applications. Permanent magnet synchronous generator (PMSG) is designed with 2.5 kW continuous and 6 kW peak power. Then considering generator geometry, mechanical design of wind turbine is performed. Thermal analysis and optimization is carried out considering all wind turbine components to reach realistic results. These issue is extremely important in research and development(R&D) process for wind turbine applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20drive" title="direct drive">direct drive</a>, <a href="https://publications.waset.org/abstracts/search?q=gearless%20wind%20turbine" title=" gearless wind turbine"> gearless wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator%20%28PMSG%29" title=" permanent magnet synchronous generator (PMSG)"> permanent magnet synchronous generator (PMSG)</a>, <a href="https://publications.waset.org/abstracts/search?q=small-scale%20wind%20turbine" title=" small-scale wind turbine"> small-scale wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20management" title=" thermal management"> thermal management</a> </p> <a href="https://publications.waset.org/abstracts/29834/thermal-assessment-of-outer-rotor-direct-drive-gearless-small-scale-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">697</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1482</span> Environmental Life Cycle Assessment of Two Technologic Scenario of Wind Turbine Blades Composition for an Optimized Wind Turbine Design Using the Impact 2002+ Method and Using 15 Environmental Impact Indicators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Jarrou">A. Jarrou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Iranzo"> A. Iranzo</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Nana"> C. Nana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid development of the onshore/offshore wind industry and the continuous, strong, and long-term support from governments have made it possible to create factories specializing in the manufacture of the different parts of wind turbines, but in the literature, Life Cycle Assessment (LCA) analyzes consider the wind turbine as a whole and do not allow the allocation of impacts to the different components of the wind turbine. Here we propose to treat each part of the wind turbine as a system in its own right. This is more in line with the current production system. Environmental Life Cycle Assessment of two technological scenarios of wind turbine blades composition for an optimized wind turbine design using the impact 2002+ method and using 15 environmental impact indicators. This article aims to assess the environmental impacts associated with 1 kg of wind turbine blades. In order to carry out a realistic and precise study, the different stages of the life cycle of a wind turbine installation are included in the study (manufacture, installation, use, maintenance, dismantling, and waste treatment). The Impact 2002+ method used makes it possible to assess 15 impact indicators (human toxicity, terrestrial and aquatic ecotoxicity, climate change, land use, etc.). Finally, a sensitivity study is carried out to analyze the different types of uncertainties in the data collected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20blade" title=" turbine blade"> turbine blade</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a> </p> <a href="https://publications.waset.org/abstracts/152116/environmental-life-cycle-assessment-of-two-technologic-scenario-of-wind-turbine-blades-composition-for-an-optimized-wind-turbine-design-using-the-impact-2002-method-and-using-15-environmental-impact-indicators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1481</span> A Design Method for Wind Turbine Blade to Have Uniform Strength and Optimum Power Generation Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pengfei%20Liu">Pengfei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiyi%20Xu"> Yiyi Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There have been substantial incidents of wind turbine blade fractures and failures due to the lack of systematic blade strength design method incorporated with the aerodynamic forces and power generation efficiency. This research was to develop a methodology and procedure for the wind turbine rotor blade strength taking into account the strength, integration, and aerodynamic performance in terms of power generation efficiency. The wind turbine blade designed using this method and procedure will have a uniform strength across the span to save unnecessary thickness in many blade radial locations and yet to maintain the optimum power generation performance. A turbine rotor code, taking into account both aerodynamic and structural properties, was developed. An existing wind turbine blade was used as an example. For a condition of extreme wind speed of 100 km per hour, the design reduced about 19% of material usage while maintaining the optimum power regeneration efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20blade%20strength" title=" turbine blade strength"> turbine blade strength</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamics-strength%20coupled%20optimization" title=" aerodynamics-strength coupled optimization"> aerodynamics-strength coupled optimization</a> </p> <a href="https://publications.waset.org/abstracts/120082/a-design-method-for-wind-turbine-blade-to-have-uniform-strength-and-optimum-power-generation-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1480</span> Effect of Thickness and Solidity on the Performance of Straight Type Vertical Axis Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianyang%20Zhu">Jianyang Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Jiang"> Lin Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tixian%20Tian"> Tixian Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspired by the increasing interesting on the wind power associated with production of clear electric power, a numerical experiment is applied to investigate the aerodynamic performance of straight type vertical axis wind turbine with different thickness and solidity, where the incompressible Navier-Stokes (N-S) equations coupled with dynamic mesh technique is solved. By analyzing the flow field, as well as energy coefficient of different thickness and solidity turbine, it is found that the thickness and solidity can significantly influence the performance of vertical axis wind turbine. For the turbine under low tip speed, the mean energy coefficient increase with the increasing of thickness and solidity, which may improve the self starting performance of the turbine. However for the turbine under high tip speed, the appropriate thickness and smaller solidity turbine possesses better performance. In addition, delay stall and no interaction of the blade and previous separated vortex are observed around appropriate thickness and solidity turbine, therefore lead better performance characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20axis%20wind%20turbine" title="vertical axis wind turbine">vertical axis wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=N-S%20equations" title=" N-S equations"> N-S equations</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mesh%20technique" title=" dynamic mesh technique"> dynamic mesh technique</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness" title=" thickness"> thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=solidity" title=" solidity"> solidity</a> </p> <a href="https://publications.waset.org/abstracts/54216/effect-of-thickness-and-solidity-on-the-performance-of-straight-type-vertical-axis-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1479</span> Wind Turbine Control Performance Evaluation Based on Minimum-Variance Principles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zheming%20Cao">Zheming Cao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Control loops are the most important components in the wind turbine system. Product quality, operation safety, and the economic performance are directly or indirectly connected to the performance of control systems. This paper proposed a performance evaluation method based on minimum-variance for wind turbine control system. This method can be applied on PID controller for pitch control system in the wind turbine. The good performance result demonstrated in the paper was achieved by retuning and optimizing the controller settings based on the evaluation result. The concepts presented in this paper are illustrated with the actual data of the industrial wind farm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20performance" title="control performance">control performance</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum-variance" title=" minimum-variance"> minimum-variance</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a> </p> <a href="https://publications.waset.org/abstracts/65020/wind-turbine-control-performance-evaluation-based-on-minimum-variance-principles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1478</span> Expanding the Evaluation Criteria for a Wind Turbine Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Balachin">Ivan Balachin</a>, <a href="https://publications.waset.org/abstracts/search?q=Geanette%20Polanco"> Geanette Polanco</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiang%20%20Xingliang"> Jiang Xingliang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Qin"> Hu Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of global warming raised up interest towards renewable energy sources. To reduce cost of wind energy is a challenge. Before building of wind park conditions such as: average wind speed, direction, time for each wind, probability of icing, must be considered in the design phase. Operation values used on the setting of control systems also will depend on mentioned variables. Here it is proposed a procedure to be include in the evaluation of the performance of a wind turbine, based on the amplitude of wind changes, the number of changes and their duration. A generic study case based on actual data is presented. Data analysing techniques were applied to model the power required for yaw system based on amplitude and data amount of wind changes. A theoretical model between time, amplitude of wind changes and angular speed of nacelle rotation was identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=field%20data%20processing" title="field data processing">field data processing</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20determination" title=" regression determination"> regression determination</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20performance" title=" wind turbine performance"> wind turbine performance</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20placing" title=" wind turbine placing"> wind turbine placing</a>, <a href="https://publications.waset.org/abstracts/search?q=yaw%20system%20losses" title=" yaw system losses"> yaw system losses</a> </p> <a href="https://publications.waset.org/abstracts/81619/expanding-the-evaluation-criteria-for-a-wind-turbine-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1477</span> Wind Turbine Powered Car Uses 3 Single Big C-Section Blades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Youssef">K. Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%87.%20H%C3%BCseyin"> 脟. H眉seyin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The blades of a wind turbine have the most important job of any wind turbine component; they must capture the wind and convert it into usable mechanical energy. The objective of this work is to determine the mechanical power of single big C-section of vertical wind turbine for wind car in a two-dimensional model. The wind car has a vertical axis with 3 single big C-section blades mounted at an angle of 120掳. Moreover, the three single big C-section blades are directly connected to wheels by using various kinds of links. Gears are used to convert the wind energy to mechanical energy to overcome the load exercised on the main shaft under low speed. This work allowed a comparison of drag characteristics and the mechanical power between the single big C-section blades with the previous work on 3 C-section and 3 double C-section blades for wind car. As a result obtained from the flow chart the torque and power curves of each case study are illustrated and compared with each other. In particular, drag force and torque acting on each types of blade was taken at an airflow speed of 4 m/s, and an angular velocity of 13.056 rad/s. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade" title="blade">blade</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20wind%20turbine" title=" vertical wind turbine"> vertical wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20characteristics" title=" drag characteristics"> drag characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20power" title=" mechanical power"> mechanical power</a> </p> <a href="https://publications.waset.org/abstracts/16229/wind-turbine-powered-car-uses-3-single-big-c-section-blades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1476</span> Low Voltage Ride through Capability Techniques for DFIG-Based Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sherif%20O.%20Zain%20Elabideen">Sherif O. Zain Elabideen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Helal"> Ahmed A. Helal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20F.%20El-Arabawy"> Ibrahim F. El-Arabawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the drastic increase of the wind turbines installed capacity; the grid codes are increasing the restrictions aiming to treat the wind turbines like other conventional sources sooner. In this paper, an intensive review has been presented for different techniques used to add low voltage ride through capability to Doubly Fed Induction Generator (DFIG) wind turbine. A system model with 1.5 MW DFIG wind turbine is constructed and simulated using MATLAB/SIMULINK to explore the effectiveness of the reviewed techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFIG" title="DFIG">DFIG</a>, <a href="https://publications.waset.org/abstracts/search?q=grid%20side%20converters" title=" grid side converters"> grid side converters</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20voltage%20ride%20through" title=" low voltage ride through"> low voltage ride through</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a> </p> <a href="https://publications.waset.org/abstracts/49677/low-voltage-ride-through-capability-techniques-for-dfig-based-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1475</span> The Mechanism of Design and Analysis Modeling of Performance of Variable Speed Wind Turbine and Dynamical Control of Wind Turbine Power</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Heydariazad">Mohammadreza Heydariazad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Productivity growth of wind energy as a clean source needed to achieve improved strategy in production and transmission and management of wind resources in order to increase quality of power and reduce costs. New technologies based on power converters that cause changing turbine speed to suit the wind speed blowing turbine improve extraction efficiency power from wind. This article introduces variable speed wind turbines and optimization of power, and presented methods to use superconducting inductor in the composition of power converter and is proposed the dc measurement for the wind farm and especially is considered techniques available to them. In fact, this article reviews mechanisms and function, changes of wind speed turbine according to speed control strategies of various types of wind turbines and examines power possible transmission and ac from producing location to suitable location for a strong connection integrating wind farm generators, without additional cost or equipment. It also covers main objectives of the dynamic control of wind turbines, and the methods of exploitation and the ways of using it that includes the unique process of these components. Effective algorithm is presented for power control in order to extract maximum active power and maintains power factor at the desired value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title="wind energy">wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=generator" title=" generator"> generator</a>, <a href="https://publications.waset.org/abstracts/search?q=superconducting%20inductor" title=" superconducting inductor"> superconducting inductor</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20power" title=" wind turbine power"> wind turbine power</a> </p> <a href="https://publications.waset.org/abstracts/10467/the-mechanism-of-design-and-analysis-modeling-of-performance-of-variable-speed-wind-turbine-and-dynamical-control-of-wind-turbine-power" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1474</span> Exergy Analyses of Wind Turbine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Abid">Muhammad Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilization of renewable energy resources for energy conservation, pollution prevention, resource efficiency and systems integration is very important for sustainable development. In this study, we perform energy and exergy analyses of a wind turbine, located on the roof of Mechanical Engineering Department, King Saud University, and Riyadh, Saudi Arabia. The turbine is part of a hybrid photovoltaic (PV)-wind system with hydrogen storage. The power output from this turbine varies between 1.5 and 5.5 kW with a rated wind speed of 12 m/s and a cut-in wind speed of 2.4 m/s. We utilize a wide range of experimental data in the analysis and assessment. We determine energy and exergy efficiencies. The energy efficiency changes between 0% to 45% while the exergy efficiency varies between 0% and 31.3%. We also determined some of the exergoeconomic parameters that are the ratios of energy and exergy loss rates to the capital cost (R en and R ex), respectively. (R en) changes between 0.96% and 59.03% for different values of velocity while R ex has a maximum value of 53.62% for the highest wind speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exergy" title="exergy">exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy"> wind energy</a> </p> <a href="https://publications.waset.org/abstracts/7227/exergy-analyses-of-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1473</span> Experimental Study of Near Wake of Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Rezaei">Ramin Rezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Terry%20Ng"> Terry Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdollah%20Afjeh"> Abdollah Afjeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Near wake development of a wind turbine affects the aerodynamic loads on the tower and the wind turbine. Design considerations of both isolated wind turbines and wind farms must include unsteady wake flow conditions under which the turbines must operate. The consequent aerodynamic loads could lead to over design of wind turbines and adversely affect the cost of wind turbines and, in turn, the cost of energy produced by wind turbines. Reducing the weight of turbine rotors is particularly desirable since larger wind turbine rotors can be utilized without significantly increasing the cost of the supporting structure. Larger rotor diameters produce larger swept areas and consequently greater energy production from the wind thereby reducing the levelized cost of wind energy. To understand the development and structure of the near tower wake of a wind turbine, an experimental study was conducted to describe the flow field of the near wake for both upwind and downwind turbines. The study was conducted under controlled environment of a wind tunnel using a scaled model of a turbine. The NREL 5 MW reference wind turbine was used as a baseline design and was modified as necessary to design and build upwind and downwind scaled wind turbine models. This paper presents the results of the wind tunnel study using turbine models to quantify the near wake of upwind and downwind wind turbine configurations for various lengths of tower-to-turbine spacing. The variations of mean velocity and turbulence are measured using a computer-controlled, traversing hot wire probe. Additionally, smoke flow visualizations were conducted to qualitatively study the wake. The results show a more rapid dissipation of the near wake for an upwind configuration. The results can readily be incorporated into low fidelity system level turbine simulation tools to more accurately account for the wake on the aerodynamic loads of a upwind and downwind turbines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20wire%20anemometry" title="hot wire anemometry">hot wire anemometry</a>, <a href="https://publications.waset.org/abstracts/search?q=near%20wake" title=" near wake"> near wake</a>, <a href="https://publications.waset.org/abstracts/search?q=upwind%20and%20downwind%20turbine.%20Hot%20wire%20anemometry" title=" upwind and downwind turbine. Hot wire anemometry"> upwind and downwind turbine. Hot wire anemometry</a>, <a href="https://publications.waset.org/abstracts/search?q=near%20wake" title=" near wake"> near wake</a>, <a href="https://publications.waset.org/abstracts/search?q=upwind%20and%20downwind%20turbine" title=" upwind and downwind turbine"> upwind and downwind turbine</a> </p> <a href="https://publications.waset.org/abstracts/26271/experimental-study-of-near-wake-of-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">667</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1472</span> Development of Low Noise Savonius Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanghyeon%20Kim">Sanghyeon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheolung%20Cheong"> Cheolung Cheong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Savonius wind turbines are a drag-type of vertical-axis wind turbine that has been used most commonly as a small-scale wind generator. However, noise is a main hindrance to wide spreading of Savonius wind turbines, just like other wind turbines. Although noise levels radiating from Savonius wind turbines may be relatively low because of their small size, they induce relatively high annoyance due to their prolonged noise exposure to the near community. Therefore, aerodynamic noise of small vertical-axis wind turbines is one of most important design parameters. In this paper, aerodynamic noise characteristics of Savonius wind turbines are investigated using the hybrid CAA techniques, and their low noise designs are proposed based on understanding of noise generation mechanism. First, flow field around the turbine are analyzed by solving 3-D unsteady incompressible RANS equations. Then, noise radiation is predicted using the Ffowcs Williams and Hawkings equation. Two distinct harmonic noise components, the well-know BPF components and the harmonics whose fundamental frequency is much higher than the BPF are identified. On a basis of this finding, S-shaped blades are proposed as low noise designs and it can reduce the noise levels of Savonius wind turbines by up to 2.7 dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20noise" title="aerodynamic noise">aerodynamic noise</a>, <a href="https://publications.waset.org/abstracts/search?q=Savonius%20wind%20turbine" title=" Savonius wind turbine"> Savonius wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical-axis%20wind%20turbine" title=" vertical-axis wind turbine"> vertical-axis wind turbine</a> </p> <a href="https://publications.waset.org/abstracts/2482/development-of-low-noise-savonius-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1471</span> Wind Turbines Optimization: Shield Structure for a High Wind Speed Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniyar%20Seitenov">Daniyar Seitenov</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazim%20Mir-Nasiri"> Nazim Mir-Nasiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimization of horizontal axis semi-exposed wind turbine has been performed using a shield protection that automatically protects the generator shaft at extreme wind speeds from over speeding, mechanical damage and continues generating electricity during the high wind speed conditions. A semi-exposed to wind generator has been designed and its structure has been described in this paper. The simplified point-force dynamic load model on the blades has been derived for normal and extreme wind conditions with and without shield involvement. Numerical simulation has been conducted at different values of wind speed to study the efficiency of shield application. The obtained results show that the maximum power generated by the wind turbine with shield does not exceed approximately the rated value of the generator, where shield serves as an automatic break for extreme wind speed values of 15 m/sec and above. Meantime the wind turbine without shield produced a power that is much larger than the rated value. The optimized horizontal axis semi-exposed wind turbine with shield protection is suitable for low and medium power generation when installed on the roofs of high rise buildings for harvesting wind energy. Wind shield works automatically with no power consumption. The structure of the generator with the protection, math simulation of kinematics and dynamics of power generation has been described in details in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20optimization" title=" wind turbine optimization"> wind turbine optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20wind%20speed" title=" high wind speed"> high wind speed</a> </p> <a href="https://publications.waset.org/abstracts/99809/wind-turbines-optimization-shield-structure-for-a-high-wind-speed-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1470</span> Design of the Fiber Lay-Up for the Composite Wind Turbine Blade in VARTM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tzai-Shiung%20Li">Tzai-Shiung Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Bin%20Young"> Wen-Bin Young</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wind turbine blade sustains various kinds of loadings during the operating and parking state. Due to the increasing size of the wind turbine blade, it is important to arrange the composite materials in a sufficient way to reach the optimal utilization of the material strength. In the fabrication process of the vacuum assisted resin transfer molding, the fiber content of the turbine blade depends on the vacuum pressure. In this study, a design of the fiber layup for the vacuum assisted resin transfer molding is conducted to achieve the efficient utilization the material strength. This design is for the wind turbine blade consisting of shell skins with or without the spar structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resin%20film%20infiltration" title="resin film infiltration">resin film infiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20assisted%20resin%20transfer%20molding%20process" title=" vacuum assisted resin transfer molding process"> vacuum assisted resin transfer molding process</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20blade" title=" wind turbine blade"> wind turbine blade</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title=" composite materials"> composite materials</a> </p> <a href="https://publications.waset.org/abstracts/6109/design-of-the-fiber-lay-up-for-the-composite-wind-turbine-blade-in-vartm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1469</span> Second Order MIMO Sliding Mode Controller for Nonlinear Modeled Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Toloei">Alireza Toloei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20R.%20Saffary"> Ahmad R. Saffary</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ghasemi"> Reza Ghasemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the growing need for energy and limited fossil resources, the use of renewable energy, particularly wind is strongly favored. We all wind energy can鈥檛 be saved. Betz law, 59% of the total kinetic energy of the wind turbine is extracting. Therefore turbine control to achieve maximum performance and maintain stable conditions seem necessary. In this article, we plan for a horizontal axis wind turbine variable-speed variable-pitch nonlinear controller to obtain maximum output power. The model presented in this article, including a wide range of wind turbines are horizontal axis. However, the parameters used in this model is from Vestas V29 225 kW wind turbine. We designed second order sliding mode controller, which was robust in the face of changes in wind speed and it eliminated chattering by using of super twisting algorithm. Finally, using MATLAB software to simulate the results we considered the accuracy of the simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non%20linear%20controller" title="non linear controller">non linear controller</a>, <a href="https://publications.waset.org/abstracts/search?q=robust" title=" robust"> robust</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode" title=" sliding mode"> sliding mode</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20energy" title=" kinetic energy"> kinetic energy</a> </p> <a href="https://publications.waset.org/abstracts/15508/second-order-mimo-sliding-mode-controller-for-nonlinear-modeled-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1468</span> Comparison of Radiated Emissions in Offshore and Onshore Wind Turbine Towers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajeesh%20Sulaiman">Sajeesh Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Gomathisankar%20A."> Gomathisankar A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Aravind%20Devaraj"> Aravind Devaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Aswin%20R."> Aswin R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Kumar%20G."> Vijay Kumar G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachana%20Raj"> Rachana Raj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind turbines are the next big answer to the emerging and ever-growing demand for electricity, and this need is increasing day by day. These high mast structures, whether on land or on the sea, has also become one of the big sources of electromagnetic interferences (EMI) in the not so distant past. With the emergence of the AC-AC converter and drawing of large power cables through the wind turbine towers has made this clean and efficient source of renewable energy to become one of the culprits in creating electromagnetic interference. This paper will present the sources of such EMIs, a comparison of radiated emissions (both electric and magnetic field) patterns in wind turbine towers for both onshore and offshore wind turbines and close look into the IEC 61400-40 (new standard for EMC design on wind turbine). At present, offshore wind turbines are tested in onshore facilities. This paper will present the anomaly in results for offshore wind turbines when tested in onshore, which the existing standards and the upcoming standards have failed to address. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emissions" title="emissions">emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title=" electric field"> electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=tower" title=" tower"> tower</a>, <a href="https://publications.waset.org/abstracts/search?q=standards%20and%20regulations" title=" standards and regulations"> standards and regulations</a> </p> <a href="https://publications.waset.org/abstracts/116093/comparison-of-radiated-emissions-in-offshore-and-onshore-wind-turbine-towers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1467</span> Effect of Geometry on the Aerodynamic Performance of Darrieus H Yype Vertical Axis Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belkheir%20Noura">Belkheir Noura</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Kerfah"> Rabah Kerfah</a>, <a href="https://publications.waset.org/abstracts/search?q=Boumehani%20Abdellah"> Boumehani Abdellah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of solidity variations on the aerodynamic performance of H type vertical axis wind turbine is studied in this paper. The wind turbine model used in this paper is the three-blade wind turbine with the symmetrical airfoil, NACA0021. The length of the chord is 0.265m. Numerical investigations were implemented for the different solidity by changing the radius and blade number. A two-dimensional model of the wind turbine is employed. The approach a Reynolds-Averaged Navier鈥揝tokes equations, completed by the K- 蠋 SST turbulence model, is used. Motion mesh model capability of a computational fluid dynamics (CFD) solver is used. For each value of the solidity, the aerodynamics performances and the characteristics of the flow field are studied at several values of the tip speed ratio, 位 = 0.5 to 位 = 3, with an incoming wind speed of 8 m/s. The results show that increasing the number of blades will reduce the maximum value of the power coefficient of the wind turbine. Also, for the VAWT with a lower solidity can obtain the maximum Cp at a high tip speed ratio. The effects of changing the radius and blade number on aerodynamic performance are almost the same. Finally, for the validation, experimental data from the literature and computational results were compared. In conclusion, to study the influence of the solidity in the performances of the wind turbine is to provide the reference for the design of H type vertical axis wind turbines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title="wind energy">wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=darrieus%20h%20type%20vertical%20axis%20wind%20turbine" title=" darrieus h type vertical axis wind turbine"> darrieus h type vertical axis wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamic" title=" computational fluid dynamic"> computational fluid dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=solidity" title=" solidity"> solidity</a> </p> <a href="https://publications.waset.org/abstracts/164160/effect-of-geometry-on-the-aerodynamic-performance-of-darrieus-h-yype-vertical-axis-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1466</span> Vibration Signals of Small Vertical Axis Wind Turbines </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aqoul%20H.%20H.%20Alanezy">Aqoul H. H. Alanezy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20Abdelsalam"> Ali M. Abdelsalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouby%20M.%20Ghazaly"> Nouby M. Ghazaly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, progress has been made in increasing the renewable energy share in the power sector particularly in the wind. The experimental study conducted in this paper aims to investigate the effects of number of blades and inflow wind speed on vibration signals of a vertical axis Savonius type wind turbine. The operation of the model of Savonius type wind turbine is conducted to compare two, three and four blades wind turbines to show vibration amplitudes related with wind speed. It is found that the increase of the number of blades leads to decrease of the vibration magnitude. Furthermore, inflow wind speed has reduced effect on the vibration level for higher number of blades. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Savonius%20type%20wind%20turbine" title="Savonius type wind turbine">Savonius type wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20of%20blades" title=" number of blades"> number of blades</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20signals" title=" vibration signals "> vibration signals </a> </p> <a href="https://publications.waset.org/abstracts/106098/vibration-signals-of-small-vertical-axis-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1465</span> Review of Vertical Axis Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amare%20Worku">Amare Worku</a>, <a href="https://publications.waset.org/abstracts/search?q=Harikrishnan%20Muralidharan"> Harikrishnan Muralidharan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research for more environmentally friendly sources of energy is a result of growing environmental awareness. In this aspect, wind energy is a very good option and there are two different wind turbines, horizontal axis wind turbine (HAWT) and vertical axis turbine (VAWT). For locations outside of integrated grid networks, vertical axis wind turbines (VAWT) present a feasible solution. However, those turbines have several drawbacks related to various setups, VAWT has a very low efficiency when compared with HAWT, but they work under different conditions and installation areas. This paper reviewed numerous measurements taken to improve the efficiency of VAWT configurations, either directly or indirectly related to the performance efficiency of the turbine. Additionally, the comparison and advantages of HAWT and VAWT turbines and also the findings of the design methodologies used for the VAWT design have been reviewed together with efficiency enhancement revision. Most of the newly modified designs are based on the turbine blade structure modification but need other studies on behalf other than electromechanical modification. Some of the techniques, like continuous variation of pitch angle control and swept area control, are not the most effective since VAWT is Omni-directional, and so wind direction is not a problem like HAWT. Hybrid system technology has become one of the most important and efficient methods to enhance the efficiency of VAWT. Besides hybridization, the contra-rotating method is also good if the installation area is big enough in an urban area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title="wind turbine">wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20axis%20wind%20turbine" title=" horizontal axis wind turbine"> horizontal axis wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20axis%20wind%20turbine" title=" vertical axis wind turbine"> vertical axis wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=hybridization" title=" hybridization"> hybridization</a> </p> <a href="https://publications.waset.org/abstracts/163049/review-of-vertical-axis-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1464</span> An Investigation on Designing and Enhancing the Performance of H-Darrieus Wind Turbine of 10KW at the Medium Range of Wind Speed in Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ich%20Long%20Ngo">Ich Long Ngo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinh%20Tai%20Dang"> Dinh Tai Dang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ngoc%20Tu%20Nguyen"> Ngoc Tu Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Minh%20Duc%20Nguyen"> Minh Duc Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes an investigation on designing and enhancing the performance of H-Darrieus wind turbine (HDWT) of 10kW at the medium wind speed. The aerodynamic characteristics of this turbine were investigated by both theoretical and numerical approaches. The optimal design procedure was first proposed to enhance the power coefficient under various effects, such as airfoil type, number of blades, solidity, aspect ratio, and tip speed ratio. As a result, the overall design of the 10kW HDWT was well achieved, and the power characteristic of this turbine was found by numerical approach. Additionally, the maximum power coefficient predicted is up to 0.41 at the tip speed ratio of 3.7 and wind speed of 8 m/s. Particularly, a generalized correlation of power coefficient with tip speed ratio and wind speed is first proposed. These results obtained are very useful for enhancing the performance of the HDWTs placed in a country with high wind power potential like Vietnam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20multiple%20stream%20tube" title=" double multiple stream tube"> double multiple stream tube</a>, <a href="https://publications.waset.org/abstracts/search?q=h-darrieus%20wind%20turbine" title=" h-darrieus wind turbine"> h-darrieus wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/163982/an-investigation-on-designing-and-enhancing-the-performance-of-h-darrieus-wind-turbine-of-10kw-at-the-medium-range-of-wind-speed-in-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1463</span> Evaluation of an Air Energy Recovery System in Greenhouse Fed by an Axial Air Extractor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eugueni%20Romantchik">Eugueni Romantchik</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilbero%20Lopez"> Gilbero Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20Terrazas"> Diego Terrazas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The residual wind energy recovery from axial air extractors in greenhouses represents a constant source of clean energy production, which reduces production costs by reducing energy consumption costs. The objective of this work is to design, build and evaluate a residual wind energy recovery system. This system consists of a wind turbine placed at an optimal distance, a cone in the air discharge and a mechanism to vary the blades angle of the wind turbine. The system energy balance was analyzed, measuring the main energy parameters such as voltage, amperage, air velocities and angular speeds of the rotors. Tests were carried in a greenhouse with extractor Multifan 130 (1.2 kW, 550 rpm and 1.3 m of diameter) without cone and with cone, with the wind turbine (3 blades with 1.2 m in diameter). The implementation of the system allowed recovering up to 55% of the motor's energy. With the cone installed, the electric energy recovered was increased by 10%. Experimentally, it was shown that changing in 3 degrees the original angle of the wind turbine blades, the angular velocity increases 17.7%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20energy" title="air energy">air energy</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20fan" title=" exhaust fan"> exhaust fan</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse" title=" greenhouse"> greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a> </p> <a href="https://publications.waset.org/abstracts/105900/evaluation-of-an-air-energy-recovery-system-in-greenhouse-fed-by-an-axial-air-extractor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1462</span> A Stochastic Approach to Extreme Wind Speeds Conditions on a Small Axial Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nkongho%20Ayuketang%20Arreyndip">Nkongho Ayuketang Arreyndip</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebobenow%20Joseph"> Ebobenow Joseph</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, to model a real life wind turbine, a probabilistic approach is proposed to model the dynamics of the blade elements of a small axial wind turbine under extreme stochastic wind speeds conditions. It was found that the power and the torque probability density functions even though decreases at these extreme wind speeds but are not infinite. Moreover, we also found that it is possible to stabilize the power coefficient (stabilizing the output power) above rated wind speeds by turning some control parameters. This method helps to explain the effect of turbulence on the quality and quantity of the harness power and aerodynamic torque. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probability" title="probability">probability</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20density%20function" title=" probability density function"> probability density function</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic" title=" stochastic"> stochastic</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/34813/a-stochastic-approach-to-extreme-wind-speeds-conditions-on-a-small-axial-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1461</span> Experimental and Computational Fluid Dynamics Analysis of Horizontal Axis Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saim%20Iftikhar%20Awan">Saim Iftikhar Awan</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhan%20Ali"> Farhan Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind power has now become one of the most important resources of renewable energy. The machine which extracts kinetic energy from wind is wind turbine. This work is all about the electrical power analysis of horizontal axis wind turbine to check the efficiency of different configurations of wind turbines to get maximum output and comparison of experimental and Computational Fluid Dynamics (CFD) results. Different experiments have been performed to obtain that configuration with the help of which we can get the maximum electrical power output by changing the different parameters like the number of blades, blade shape, wind speed, etc. in first step experimentation is done, and then the similar configuration is designed in 3D CAD software. After a series of experiments, it has been found that the turbine with four blades at an angle of 75掳 gives maximum power output and increase in wind speed increases the power output. The models designed on CAD software are imported on ANSYS-FLUENT to predict mechanical power. This mechanical power is then converted into electrical power, and the results were approximately the same in both cases. In the end, a comparison has been done to compare the results of experiments and ANSYS-FLUENT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20analysis" title="computational analysis">computational analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20efficiency" title=" power efficiency"> power efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy"> wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a> </p> <a href="https://publications.waset.org/abstracts/110867/experimental-and-computational-fluid-dynamics-analysis-of-horizontal-axis-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1460</span> Analyzing the Feasibility of Low-Cost Composite Wind Turbine Blades for Residential Energy Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aravindhan%20Nepolean">Aravindhan Nepolean</a>, <a href="https://publications.waset.org/abstracts/search?q=Chidamabaranathan%20Bibin"> Chidamabaranathan Bibin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20K."> Rajesh K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopinath%20S."> Gopinath S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kumar%20R."> Ashok Kumar R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Kumar%20S."> Arun Kumar S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadasivan%20N."> Sadasivan N.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind turbine blades are an important parameter for surging renewable energy production. Optimizing blade profiles and developing new materials for wind turbine blades take a lot of time and effort. Even though many standards for wind turbine blades have been developed for large-scale applications, they are not more effective in small-scale applications. We used acrylonitrile-butadiene-styrene to make small-scale wind turbine blades in this study (ABS). We chose the material because it is inexpensive and easy to machine into the desired form. They also have outstanding chemical, stress, and creep resistance. The blade measures 332 mm in length and has a 664 mm rotor diameter. A modal study of blades is carried out, as well as a comparison with current e-glass fiber. They were able to balance the output with less vibration, according to the findings. Q blade software is used to simulate rotating output. The modal analysis testing and prototype validation of wind turbine blades were used for experimental validation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylonitrile-butadiene-styrene" title="acrylonitrile-butadiene-styrene">acrylonitrile-butadiene-styrene</a>, <a href="https://publications.waset.org/abstracts/search?q=e-glass%20fiber" title=" e-glass fiber"> e-glass fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=modal" title=" modal"> modal</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=q-blade" title=" q-blade"> q-blade</a> </p> <a href="https://publications.waset.org/abstracts/137455/analyzing-the-feasibility-of-low-cost-composite-wind-turbine-blades-for-residential-energy-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20turbine&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20turbine&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20turbine&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20turbine&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20turbine&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20turbine&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20turbine&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20turbine&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20turbine&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20turbine&page=49">49</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20turbine&page=50">50</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20turbine&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>