CINXE.COM
Waineo null test
<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns="http://www.w3.org/TR/REC-html40"> <head><meta name="viewport" content="width=device-width, initial-scale=1"> <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"> <meta http-equiv="Content-Language" content="en-us"> <title>Waineo null test</title> <meta name="keywords" content="waineo null test, optical tests"> <meta name="description" content="Waineo null test basic principles, illustration and application."> <style fprolloverstyle>A:hover {color: #FF8204} </style> </head> <body link="#0000FF" vlink="#993399" alink="#FF0000" style="font-family: Verdana; font-size: 10px" bgcolor="#F4F4DF"> <div align="center"> <table border="0" cellpadding="0" cellspacing="0" width="800" height="770" bgcolor="#FFE066"> <!-- MSTableType="layout" --> <tr> <td valign="top" height="704" style="text-indent: 21; padding-left:21px; padding-right:21px; padding-top:21px; padding-bottom:3px; border-left-style:solid; border-left-width:0px; border-right-style:solid; border-right-width:0px; border-top-style:solid; border-top-width:0px"> <!-- MSCellType="ContentBody" --> <p align="center" style="text-indent: 0"> <b><font size="3" color="#518FBD" face="Verdana">telescope</font></b><font face="Microsoft Sans Serif" size="5" color="#518FBD">Ѳ</font><b><font size="3" face="Verdana" color="#518FBD">ptics.net</font><font face="Verdana" color="#95AAA6" size="3"> </font></b> <font size="1" color="#95AAA6">▪</font><font color="#95AAA6"><b> </b> </font><b><font face="Verdana" color="#95AAA6" size="3"> </font></b> <font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font> <font size="1" color="#95AAA6">▪</font><font face="Verdana" color="#95AAA6"><b><font size="2"> </font></b><font size="1"> </font></font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪▪▪▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font face="Verdana" color="#518FBD"><b><font size="2"> </font></b></font><font face="Verdana"><span style="font-weight: 400"><font size="2"><a href="index.htm#TABLE_OF_CONTENTS">CONTENTS</a></font></span></font><font size="2"><span style="font-weight: 400"><font size="2" face="Arial"><br> </font></span></p> <p align="center" style="text-indent: 0"> <span style="font-weight: 400"> <font size="2" face="Arial" color="#336699">◄</font></span><font size="2" face="Verdana"> <a href="ronchi_test.htm">4.8.3. Ronchi test</a> </font><font size="2" face="Arial"><font color="#C0C0C0"> ▐</font> </font><font size="2" face="Verdana"> <a href="hindle_sphere_test.htm">4.8.5. Hindle sphere test</a> </font> <font face="Arial" size="2" color="#336699">►</font><h1 align="center" style="text-indent: 0"> <font face="Trebuchet MS" color="#336699" size="3"><b> 4.8.4. Waineo null test</b></font> </font></h1> <font size="2"> <p align="justify" style="text-indent: 22px; line-height:150%"> Probably the simplest way to null paraboloid is to use another reflecting surface. By placing point source of light at the infinity focus of a paraboloid, the collimated light output can be reflected back to it, to produce focus that can be nulled. The disadvantage of this setup is that it requires a flat as large as the paraboloid.<p align="justify" style="text-indent: 22px; line-height:150%"> A setup with the flat replaced by a smaller, easy to make reflecting surface, is more practical. And this is what Waineo null test offers: spherical aberration of a concave paraboloid - or a surface with a negative conic in general - is compensated for by a smaller concave sphere (<b>FIG. 55</b>). <div style="background-color: #FFFFFF"> <p align="center" style="text-indent: 0"> <img border="0" src="images/Waineo.PNG" width="734" height="299"> <font face="Tahoma"><b>FIGURE 55</b>: Waineo null test setup: the sphere is facing test surface, both centered around common axis, with the light source placed inside the focus of the sphere. Diverging light reflected from the sphere is focused by the test surface; if the aberration contribution of a sphere is at the level of mirror tested, and of opposite sign, the final focus will be aberration-free, and the surface tested - if sufficiently accurate - will null when the converging light is intercepted at the focus.</font></div> </div> <p align="justify" style="text-indent: 22px; line-height:150%"> While the setup is seemingly simple, it is fairly complex optically, with a number of interrelated factors affecting the aberration level: source to sphere separation is the object distance (<b>L</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>) for the sphere, with the image formed by it being object for the test surface (with its corresponding object distance<b> L</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>=M+I<font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>, <b>I</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font> being the sphere-to-image separation and <b>M</b> the mirror separation), which in turn determines distance from test surface to its focus (<b>I</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>), when the null focus (<b>F</b>) is formed. The two surfaces have to produce the same amount of aberration of the opposite sign and, at the same time, to be properly aligned (centered, and at the proper separation ensuing that the beam width nearly coincides with surface) in order for the diverging cone from the sphere to match nearly exactly the test surface.<p align="justify" style="text-indent: 22px; line-height:150%"> According to <a href="lower_order_spherical.htm#Fortunately">Eq. 9</a>, the combined primary spherical aberration contributions of the two surfaces as the P-V error at paraxial focus is given by:</font><p align="center" style="text-indent: 0"> <font face="Comic Sans MS"> <b>W</b></font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">(S+T)</span></font><font face="Comic Sans MS"><b>= </b> [(Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">S</span></font><font face="Comic Sans MS">-1)<span style="vertical-align: super; font-weight:700"><font size="1">2</font></span>(kd)<b><span style="vertical-align: super"><font size="1">4</font></span></b>/4R</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">S</span></font><font face="Comic Sans MS"><b><span style="vertical-align: super"><font size="1">3</font></span></b>] + [K+(Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">T</span></font><font face="Comic Sans MS">-1)<b><span style="vertical-align: super"><font size="1">2</font></span></b>d<b><span style="vertical-align: super"><font size="1">4</font></span></b>/4R</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">T</span></font><b><span style="vertical-align: super"><font size="1" face="Comic Sans MS">3</font></span></b><font face="Comic Sans MS">]</font><p align="center" style="text-indent: 0"> <font face="Comic Sans MS"> <b>= </b>[(Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">S</span></font><font face="Comic Sans MS">-1)<b><span style="vertical-align: super"><font size="1">2</font></span></b>(k<b><span style="vertical-align: super"><font size="1">4</font></span></b>/ρ<b><span style="vertical-align: super"><font size="1">3</font></span></b>)+K+(Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">T</span></font><font face="Comic Sans MS">-1)<b><span style="vertical-align: super"><font size="1">2</font></span></b>](d<b><span style="vertical-align: super"><font size="1">4</font></span></b>/4R</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">T</span></font><font face="Comic Sans MS"><b><span style="vertical-align: super"><font size="1">3</font></span></b>)</font><font size="2"><p align="justify" style="text-indent: 0; line-height:150%"> where <font size="2" face="Verdana"><b>Ω</b></font> is the inverse object (point source for the sphere, and image formed by the sphere for the test surface) distance (<b>L</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S </span></font> and <b>L</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>) in units of the radius of curvature <b>R </b>(subscripts S and T refer to the sphere and test surface, respectively), <b>k</b> is the ratio of sphere vs. test surface effective diameter, <b>d</b> is the effective pupil radius of the test surface, <b>K</b> is the test surface conic and <b>ρ</b> is the ratio of curvature radii <b>R</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>/<b>R</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font> (since the reflective index <b>n</b> and radius <b>R</b> both change sign going from one surface to another, the index from <b>Eq. 9</b> can be omitted and <b>R</b> can be assumed numerically positive for both surfaces). <p align="justify" style="text-indent: 22px; line-height:150%"> The left side of the sum represents the wavefront error of the sphere, and the right side that of the test surface. Since all parameters except the test surface conic <b>K</b> are numerically positive, the condition for zero sum is [K+(<font size="2" face="Verdana">Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>-1)<b><font face="Terminal" size="1"><span style="vertical-align: super">2</span></font></b>]<0, i.e. K<0 and |K|>(<font size="2" face="Verdana">Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>-1)<b><font face="Terminal" size="1"><span style="vertical-align: super">2</span></font></b>. Since the object for the test surface is the imaginary focus of the sphere <b>F</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>, and the requirement for a real final focus means that distance from this imaginary focus to the test surface has to be larger than its focal length, a two alternatives for the sphere's imaginary focus location are either somewhat inside test surface's center of curvature, or somewhat outside of it. Since the latter allows for much smaller mirror separation (in part due to the need to avoid too large obstruction of the converging beam by the sphere when it is inside the beam), it is the more practical one. The final focus forms at relatively short distance behind the sphere, which requires either a central hole on it, or diverging mirror in front of it.<p align="justify" style="text-indent: 22px; line-height:150%"> Consequently, object separation <b>L</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font> for the test surface is larger than its radius of curvature <b>R</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>, and <b> <font size="2" face="Verdana">Ω</font></b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font><1. For paraboloid, <b>L</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font> is closer to 2R<font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>, closer to <b>R</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T </span></font> (larger) for prolate ellipsoids and around 2R<font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font> for mild to moderate hyperboloids for hyperboloids. Toward a mild prolate ellipsoid test surface, sphere's imaginary focus and the final focus are shifting closer to the test surface's center of curvature, as the result of the sphere becoming smaller in order to match lower spherical aberration of such surface (and opposite for more strongly aspherized surfaces). With <b>L</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font> in the 1.1-2<b>R</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font> range from weak ellipsoid to weak hyperboloid test surface, <b> <font size="2" face="Verdana">Ω</font></b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font> ranges from 0.9 to 0.5, gravitating toward 0.7.<p align="justify" style="text-indent: 22px; line-height:150%"> Consequently, (<font size="2" face="Verdana">Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>-1)<font face="Terminal" size="1"><span style="vertical-align: super">2</span></font> ranges from 1/100 to 1/4 from weak prolate ellipsoid to a mild hyperboloid as the test surface. <p align="justify" style="text-indent: 22px; line-height:150%"> Similarly, since the sphere forms a diverging beam, its object - the point source - is inside its focus, hence <b>L</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font> is more than twice smaller than <b>R</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>, and <font size="2" face="Verdana"><b>Ω</b></font><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>>2. Roughly, <b>L</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font> ranges between R<font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>/5 for weak prolate ellipsoids to R<font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>/3 for paraboloids (and larger for hyperboloids), with <font size="2" face="Verdana"><b>Ω</b></font><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font> in the 5 to 3 range, and, correspondingly, (<font face="Verdana">Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>-1)</font><font size="1"><span style="vertical-align: super">2</span></font><font size="2"> is in the 16 to 4 range, respetively. Since the sum [(</font><font size="2" face="Verdana">Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font><font size="2">-1)</font><font size="1"><span style="vertical-align: super">2</span></font><font size="2">(k</font><font size="1"><span style="vertical-align: super">4</span></font><font size="2">/ρ</font><font size="1"><span style="vertical-align: super">3</span></font><font size="2">)+K+(</font><font size="2" face="Verdana">Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font><font size="2">-1)</font><font size="1"><span style="vertical-align: super">2</span></font><font size="2">] has to be zero for a null, the much larger value of (<font face="Verdana">Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>-1)</font><font size="1"><span style="vertical-align: super">2</span></font><font size="2"> has to be offset by the correspondingly smaller value of <b>k</b></font><font size="1"><span style="vertical-align: super">4</span></font><font size="2"> (for given sphere radius, i.e. radii ratio <b>ρ</b>), in order to match numerically opposite in sign value of the test mirror contribution, proportional to <br> K+(</font><font size="2" face="Verdana">Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font><font size="2">-1)</font><font size="1"><span style="vertical-align: super">2</span></font><font size="2">. In other words, as the test mirror conic increases toward zero, and its aberration contribution diminishes, the effective aperture of the sphere D</font><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font><font size="2">=kD</font><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font><font size="2"> also decreases, theoretically to zero for K=0. <p align="justify" style="text-indent: 22px; line-height:150%"> Calculating needed setup parameters is a pretty involved procedure, since the radii, separations and effective aperture values need to result in near zero spherical aberration sum for the given test surface conic. Fortunately, <a target="_blank" href="http://www.bbastrodesigns.com/waineo.html">Waineo2006</a> freeware program (Richard, UK) makes determining Waineo null test setup parameters a breeze ("knife position" in the input refers to the back focus distance <b>B</b> on the above illustration). The program balances lower- and higher-order aberration components, making the null focus near perfect. Large, fast paraboloid, say, 400mm <font size="2" face="Tahoma">f</font>/4, can be null tested with less than half its diameter high-quality sphere, say <font size="2" face="Tahoma">f</font>/4, to a 1/175 wave RMS setup accuracy; a 500mm <font size="2" face="Tahoma">f</font>/3 paraboloid can be nulled with a 9-inch <font size="2" face="Tahoma">f</font>/3.6 sphere to better than 1/40 wave RMS accuracy, and so on.<p align="justify" style="text-indent: 22px; line-height:150%"> Additional advantage of the test vs. regular tests for paraboloid at the center of curvature is that the length of the setup is smaller than the radius of curvature of test surface, by nearly 1/3 on the average. <p align="justify" style="text-indent: 22px; line-height:150%"> Sensitivity of the test to setup errors is moderately high but, similarly to Hindle sphere test, can be rather easily controlled by keeping the final focus within several mm of its specified distance from the test surface. This is due to magnification of the secondary mirror - i.e. test surface - being very sensitive to the changes in its object distance, which is the image of the light source projected by the sphere (<b>F</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font> on the above illustration). Specific change of the test surface magnification <b>m</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font> is given by: <p align="center" style="text-indent: 0"> <font color="#000080"> <b> </b></font></font><font face="Comic Sans MS">m</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">T</span></font><span style="vertical-align: sub; font-weight:700"><font face="Comic Sans MS" size="1"> </font> </span> <font face="Comic Sans MS"><b>= </b>-f</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">T</span></font><font face="Comic Sans MS">/(L</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">T</span></font><font face="Comic Sans MS">-f</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">T</span></font><font face="Comic Sans MS">)</font><font size="2"><p align="justify" style="text-indent: 0; line-height:150%"> <b><font size="2" face="Tahoma">f</font></b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font> being the test surface focal length. Change in the magnification is caused by the change in test surface object distance <b>L</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>=I<font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>+M, due to the change in separation of the image formed by the sphere, I<font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>=R<font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>/[2-(R<font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>/L<font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>)]=R<font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>/(<font size="2" face="Verdana">Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>-2), with <b>L</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font> and <b>R</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font> being object separation (i.e. source-to-sphere separation) and curvature radius for the sphere, respectively. The effect of change in separation between the two mirrors is comparatively negligible. <p align="justify" style="text-indent: 0; line-height:150%"> Note that mirror-to-image separation <b>I</b> in terms of mirror radius of curvature <b>R</b> and object distance <b>o</b> is given by I=R/[2-(R/o)] - or by I=<font size="2" face="Tahoma">f</font>/[1-(<font size="2" face="Tahoma">f</font>/o)] in terms of the focal length <b><font size="2" face="Tahoma">f</font></b> - where a negative <b>I</b> value for <b>R</b> and <b>o</b> of the same sign indicates object location inside the focal point and diverging rays (i.e. forming virtual image). As the setup illustration indicates, this is the manner in which the Waineo sphere forms its image of the source. In this configuration, according to the sign convention, mirror-to-image separation is numerically positive. Since n/R is positive for the sphere, making <b>R</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font> effectively positive, <b>I</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font> is also made positive by expressing it as I=R<font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>/(<font size="2" face="Verdana">Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>-2).<p align="justify" style="text-indent: 22px; line-height:150%"> For illustration, in the above Waineo setup for 400mm <font face="Tahoma" size="2">f</font>/4 paraboloid, 1mm spacing error between the sphere and the source induces ~1/125 wave RMS error, and nearly 3.5mm shift in the location of final focus. For the 500mm <font size="2" face="Georgia">f</font>/3 mirror, the setup is, as expected, more sensitive: 1mm spacing error between the source and sphere induces about ~1/80 wave RMS error, with the final focus shift of nearly 4mm. <p align="justify" style="text-indent: 22px; line-height:150%"> According to the wavefront error equation above, for given curvature radii and test surface conic, the only spacing-related variables are the effective mirror apertures and the relative inverse object distance <b> <font size="2" face="Verdana">Ω</font></b>. Changes in the effective aperture at the two surfaces are in the same direction, thus relatively insignificant. Changes in the <b> <font size="2" face="Verdana">Ω</font></b> factor, with <font size="2" face="Verdana">Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>=R<font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>/L<font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font> and <font size="2" face="Verdana">Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>=R<font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>/L<font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>=R<font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>/(M+I<font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>)=R<font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>/{M+[R<font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>/(<font size="2" face="Verdana">Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>-2)]}, are directly dependant on the source-to-sphere separation <b>L</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font> in the case of <b><font size="2" face="Verdana">Ω</font></b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>, and less directly but significantly in the case of <b> <font size="2" face="Verdana">Ω</font></b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>. <p align="justify" style="text-indent: 22px; line-height:150%"> Denoting the change in (<font face="Verdana">Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>-1)<font size="1"><span style="vertical-align: super">2</span></font> due to the change in the source-to-sphere separation <b>L</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font> by <b><font face="Arial">Δ</font></b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>, and the corresponding change in K+(<font size="2" face="Verdana">Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>-1)<b><font size="1"><span style="vertical-align: super">2</span></font></b> as <b><font face="Arial">Δ</font></b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>, the resulting P-V wavefront error of primary spherical aberration at the best focus is:</font><p align="center" style="text-indent: 0"> <b><font face="Comic Sans MS">W</font><sub><font face="Comic Sans MS" size="1">Δ</font></sub><font face="Comic Sans MS">= </font></b><font face="Comic Sans MS"> (Δ</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">S</span></font><font face="Comic Sans MS">D</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">S</span></font><font face="Comic Sans MS"><b><font size="1"><span style="vertical-align: super">4</span></font></b>/256R</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">S</span></font><font face="Comic Sans MS"><b><span style="vertical-align: super"><font size="1">3</font></span></b>)+(Δ</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">T</span></font><font face="Comic Sans MS">D</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">T</span></font><font face="Comic Sans MS"><b><span style="vertical-align: super"><font size="1">4</font></span></b>/256R</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">T</span></font><font face="Comic Sans MS"><b><span style="vertical-align: super"><font size="1">3</font></span></b>)</font><p align="center" style="text-indent: 0"> <font face="Comic Sans MS"> <b>= </b>[(Δ</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">S</span></font><font face="Comic Sans MS">k<b><span style="vertical-align: super"><font size="1">4</font></span></b>/ρ<b><span style="vertical-align: super"><font size="1">3</font></span></b>)+Δ</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">T</span></font><font face="Comic Sans MS">]D</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">T</span></font><font face="Comic Sans MS"><b><span style="vertical-align: super"><font size="1">4</font></span></b>/256R</font><font face="Terminal" size="1"><span style="vertical-align: sub; font-weight:700">T</span></font><b><span style="vertical-align: super"><font size="1" face="Comic Sans MS">3</font></span></b><font size="2"><p align="justify" style="text-indent: 0; line-height:150%"> with the parameters needed for calculation given by the specifics of the particular setup. In the above setup for a 400mm <font size="2" face="Tahoma">f</font>/4 paraboloid (D<font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>=400, R<font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>=3200, K=-1), with the test sphere parameters D<font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>=85mm (k=0.425), Rs=1600mm (ρ=0.5), L<font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>=552mm, M=2431mm, and <font size="2" face="Verdana">Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>=R<font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>/L<font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>=2.89855, -1mm change in <b>L</b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font> results in <b> <font size="2" face="Verdana">Ω</font></b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font> change of +0.0053 and (Q<font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>-1)<font size="1"><span style="vertical-align: super">2</span></font> change of +0.02, which is the value of <b><font face="Arial">Δ</font></b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>. At the test surface, the +0.0053 change in <b> <font size="2" face="Verdana">Ω</font></b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font> and -1mm change in mirror separation <b>M</b> result in <b> <font size="2" face="Verdana">Ω</font></b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font> change from 0.7598 to 0.7254, i.e. by -0.034. It causes (<font size="2" face="Verdana">Ω</font><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>-1)<font size="1"><span style="vertical-align: super">2</span></font> change by -0.0177, which is the value of change at the test surface, <b> <font face="Arial">Δ</font></b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>. The corresponding P-V wavefront error of primary spherical aberration (best focus) induced is W=(0.26<b><font face="Arial">Δ</font></b><font face="Terminal" size="1"><span style="vertical-align: sub; ">S</span></font>+<b><font face="Arial">Δ</font></b><font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font>)D<font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span><span style="vertical-align: super">4</span></font>/256R<font face="Terminal" size="1"><span style="vertical-align: sub; ">T</span></font><font size="1"><span style="vertical-align: super">3</span></font>=-0.000038mm, or 1/14.4 wave in units of 550nm wavelength. Raytrace gives about twice smaller error, the difference probably coming mainly from the best focus being optimally balanced with the higher-order spherical aberration.<br> <p align="center" style="text-indent: 0"> <span style="font-weight: 400"> <font size="2" face="Arial" color="#336699">◄</font></span><font size="2" face="Verdana"> <a href="ronchi_test.htm">4.8.3. Ronchi test</a> </font><font size="2" face="Arial"><font color="#C0C0C0"> ▐</font> </font><font size="2" face="Verdana"> <a href="hindle_sphere_test.htm">4.8.5. Hindle sphere test</a> </font> <font face="Arial" size="2" color="#336699">►</font><p align="center" style="text-indent: 0"> <a href="index.htm">Home</a> | <a href="mailto:webpub@fastmail.com">Comments</a><p> </font></td> </tr> </table> </div> </body> </html>