CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 265 results for author: <span class="mathjax">Zhao, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-ph" aria-role="search"> Searching in archive <strong>hep-ph</strong>. <a href="/search/?searchtype=author&amp;query=Zhao%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhao, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhao%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhao, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhao%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+Y&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.00118">arXiv:2503.00118</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.00118">pdf</a>, <a href="https://arxiv.org/format/2503.00118">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Novel $|V_{cb}|$ extraction method via boosted $bc$-tagging with in-situ calibration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yuzhe Zhao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+C">Congqiao Li</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Agapitos%2C+A">Antonios Agapitos</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fu%2C+D">Dawei Fu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gao%2C+L">Leyun Gao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mao%2C+Y">Yajun Mao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+Q">Qiang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.00118v1-abstract-short" style="display: inline;"> We present a novel method for measuring $|V_{cb}|$ at the LHC using an advanced boosted-jet tagger to identify &#34;$bc$ signatures&#34;. By associating boosted $W \rightarrow bc$ signals with $bc$-matched jets from top-quark decays, we enable an in-situ calibration of the tagger. This approach significantly suppressed backgrounds while reducing uncertainties in flavor tagging efficiencies, a key factor i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00118v1-abstract-full').style.display = 'inline'; document.getElementById('2503.00118v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.00118v1-abstract-full" style="display: none;"> We present a novel method for measuring $|V_{cb}|$ at the LHC using an advanced boosted-jet tagger to identify &#34;$bc$ signatures&#34;. By associating boosted $W \rightarrow bc$ signals with $bc$-matched jets from top-quark decays, we enable an in-situ calibration of the tagger. This approach significantly suppressed backgrounds while reducing uncertainties in flavor tagging efficiencies, a key factor in measurement precision. Using simulated datasets equipped with advanced and consistent large and small radius jet tagging models (the so-called Sophon and the newly developed SophonAK4, which are validated to perform comparably to taggers in ATLAS and CMS), we show that the new method complements the conventional small radius jet approach and outperforms it under the HL-LHC projection. Our work offers a new perspective for the precision $|V_{cb}|$ measurement and highlights the potential of using advanced tagging models to probe unexplored boosted regimes at the LHC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00118v1-abstract-full').style.display = 'none'; document.getElementById('2503.00118v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages (main text), 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.18005">arXiv:2502.18005</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.18005">pdf</a>, <a href="https://arxiv.org/format/2502.18005">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> WIMP Dark Matter Search using a 3.1 tonne $\times$ year Exposure of the XENONnT Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Armbruster%2C+S+R">S. R. Armbruster</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boese%2C+K">K. Boese</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a> , et al. (153 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.18005v1-abstract-short" style="display: inline;"> We report on a search for weakly interacting massive particle (WIMP) dark matter (DM) via elastic DM-xenon-nucleus interactions in the XENONnT experiment. We combine datasets from the first and second science campaigns resulting in a total exposure of $3.1\;\text{tonne}\times\text{year}$. In a blind analysis of nuclear recoil events with energies above $3.8\,\mathrm{keV_{NR}}$, we find no signific&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18005v1-abstract-full').style.display = 'inline'; document.getElementById('2502.18005v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.18005v1-abstract-full" style="display: none;"> We report on a search for weakly interacting massive particle (WIMP) dark matter (DM) via elastic DM-xenon-nucleus interactions in the XENONnT experiment. We combine datasets from the first and second science campaigns resulting in a total exposure of $3.1\;\text{tonne}\times\text{year}$. In a blind analysis of nuclear recoil events with energies above $3.8\,\mathrm{keV_{NR}}$, we find no significant excess above background. We set new upper limits on the spin-independent WIMP-nucleon scattering cross-section for WIMP masses above $10\,\mathrm{GeV}/c^2$ with a minimum of $1.7\,\times\,10^{-47}\,\mathrm{cm^2}$ at $90\,\%$ confidence level for a WIMP mass of $30\,\mathrm{GeV}/c^2$. We achieve a best median sensitivity of $1.4\,\times\,10^{-47}\,\mathrm{cm^2}$ for a $41\,\mathrm{GeV}/c^2$ WIMP. Compared to the result from the first XENONnT science dataset, we improve our sensitivity by a factor of up to 1.8. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18005v1-abstract-full').style.display = 'none'; document.getElementById('2502.18005v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Limits are included in the submission file</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.17837">arXiv:2502.17837</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.17837">pdf</a>, <a href="https://arxiv.org/format/2502.17837">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Fragmentation functions of charged hadrons at next-to-next-to-leading order and constraints on proton PDFs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Gao%2C+J">Jun Gao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shen%2C+X">XiaoMin Shen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Xing%2C+H">Hongxi Xing</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yuxiang Zhao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhou%2C+B">Bin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.17837v1-abstract-short" style="display: inline;"> We present the first global analysis of fragmentation functions (FFs) for light charged hadrons ($蟺^{\pm}$, $K^{\pm}$) at full next-to-next-to-leading order in Quantum Chromodynamics (QCD), incorporating world data from both single-inclusive electron-positron annihilation and semi-inclusive deep-inelastic scattering. The collinear factorization has been tested with low-momentum-transfer data and h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17837v1-abstract-full').style.display = 'inline'; document.getElementById('2502.17837v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.17837v1-abstract-full" style="display: none;"> We present the first global analysis of fragmentation functions (FFs) for light charged hadrons ($蟺^{\pm}$, $K^{\pm}$) at full next-to-next-to-leading order in Quantum Chromodynamics (QCD), incorporating world data from both single-inclusive electron-positron annihilation and semi-inclusive deep-inelastic scattering. The collinear factorization has been tested with low-momentum-transfer data and has demonstrated success at high hadron momenta. Additionally, we perform a joint determination of both parton distribution functions (PDFs) and FFs. Our findings indicate that the current global data on hadron production favor a reduced asymmetry in the strange (anti-) quark PDFs, as compared to the asymmetry predicted by state-of-the-art PDFs derived from inclusive data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17837v1-abstract-full').style.display = 'none'; document.getElementById('2502.17837v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.19225">arXiv:2501.19225</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.19225">pdf</a>, <a href="https://arxiv.org/format/2501.19225">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Resummation for Lattice QCD Calculation of Generalized Parton Distributions at Nonzero Skewness </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Holligan%2C+J">Jack Holligan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.19225v1-abstract-short" style="display: inline;"> Large-momentum effective theory (LaMET) provides an approach to directly calculate the $x$-dependence of generalized parton distributions (GPDs) on a Euclidean lattice through power expansion and a perturbative matching. When a parton&#39;s momentum becomes soft, the corresponding logarithms in the matching kernel become non-negligible at higher orders of perturbation theory, which requires a resummat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19225v1-abstract-full').style.display = 'inline'; document.getElementById('2501.19225v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.19225v1-abstract-full" style="display: none;"> Large-momentum effective theory (LaMET) provides an approach to directly calculate the $x$-dependence of generalized parton distributions (GPDs) on a Euclidean lattice through power expansion and a perturbative matching. When a parton&#39;s momentum becomes soft, the corresponding logarithms in the matching kernel become non-negligible at higher orders of perturbation theory, which requires a resummation. But the resummation for the off-forward matrix elements at nonzero skewness $尉$ is difficult due to their multi-scale nature. In this work, we demonstrate that these logarithms are important only in the threshold limit, and derive the threshold factorization formula for the quasi-GPDs in LaMET. We then propose an approach to resum all the large logarithms based on the threshold factorization, which is implemented on a GPD model. We demonstrate that the LaMET prediction is reliable for $[-1+x_0,-尉-x_0]\cup[-尉+x_0,尉-x_0]\cup[尉+x_0,1-x_0]$, where $x_0$ is a cutoff depending on hard parton momenta. Through our numerical tests with the GPD model, we demonstrate that our method is self-consistent and that the inverse matching does not spread the nonperturbative effects or power corrections to the perturbatively calculable regions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19225v1-abstract-full').style.display = 'none'; document.getElementById('2501.19225v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MSUHEP-24-023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14982">arXiv:2501.14982</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.14982">pdf</a>, <a href="https://arxiv.org/format/2501.14982">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Several problems on the measured hyperorder cumulants of net-proton distributions in heavy-ion collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+L">Lizhu Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Ye-Yin Zhao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+Z">Zhiming Li</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wu%2C+Y">Yuanfang Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14982v1-abstract-short" style="display: inline;"> Hyperorder cumulants $C_5/C_1$ and $C_6/C_2$ are recommended as sensitive observables to explore the QCD phase transition in heavy-ion collisions. Precisely measuring their results remains a difficult task in experiments, when employing the Centrality Bin Width Correction (CBWC) to suppress the initial volume fluctuations. Various techniques within the CBWC formula can lead to notable differences&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14982v1-abstract-full').style.display = 'inline'; document.getElementById('2501.14982v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14982v1-abstract-full" style="display: none;"> Hyperorder cumulants $C_5/C_1$ and $C_6/C_2$ are recommended as sensitive observables to explore the QCD phase transition in heavy-ion collisions. Precisely measuring their results remains a difficult task in experiments, when employing the Centrality Bin Width Correction (CBWC) to suppress the initial volume fluctuations. Various techniques within the CBWC formula can lead to notable differences in the results. We will systematically investigate the application of the CBWC method to the measured net-proton $C_5/C_1$ and $C_6/C_2$ using the UrQMD model and Skellam-based simulations at $\sqrt{s_{NN}}$ = 11.5 GeV in Au + Au collisions. A recommended approach is proposed to calculate $C_5/C_1$ and $C_6/C_2$ in 0-40\% centrality. With statistics comparable to the RHIC Beam Energy Scan phase II (BES-II), our studies provide a baseline for analyzing net-proton $C_5/C_1$ and $C_6/C_2$ in relativistic heavy-ion collisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14982v1-abstract-full').style.display = 'none'; document.getElementById('2501.14982v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12099">arXiv:2501.12099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.12099">pdf</a>, <a href="https://arxiv.org/format/2501.12099">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> CGC-induced longitudinal ridge in p-Pb collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+D">Donghai Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yeyin Zhao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Qiu%2C+L">Luhua Qiu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Xu%2C+M">Mingmei Xu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wu%2C+Y">Yuanfang Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12099v1-abstract-short" style="display: inline;"> Within the Color Glass Condensate (CGC) effective field theory, we investigate the long-range rapidity correlations in proton-lead (p-Pb) collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV. As expected, the long-range rapidity correlations rebound after bottoming, which is successfully reproduced by the CGC. It is also found that the correlation rebound appears around the sum of the saturation moment&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12099v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12099v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12099v1-abstract-full" style="display: none;"> Within the Color Glass Condensate (CGC) effective field theory, we investigate the long-range rapidity correlations in proton-lead (p-Pb) collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV. As expected, the long-range rapidity correlations rebound after bottoming, which is successfully reproduced by the CGC. It is also found that the correlation rebound appears around the sum of the saturation momenta of the projectile and target, and moves to larger rapidities at higher collision energies. Beyond that, the longitudinal rapidity correlations are asymmetrically distributed in p-Pb collisions when the transverse momenta of two particles differ, while become symmetric when the transverse momenta of two particles coincide. This feature of rapidity correlations is unique to asymmetric pA collisions, and directly results from the saturation and the quantum evolution of gluons within the framework of the CGC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12099v1-abstract-full').style.display = 'none'; document.getElementById('2501.12099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2209.03772</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.00729">arXiv:2501.00729</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.00729">pdf</a>, <a href="https://arxiv.org/format/2501.00729">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Kinematically-enhanced interpolating operators for boosted hadrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Grebe%2C+A+V">Anthony V. Grebe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.00729v1-abstract-short" style="display: inline;"> We propose to use interpolating operators for lattice quantum chromodyanmics (QCD) calculations of highly-boosted pions and nucleons with kinematically-enhanced ground-state overlap factors at large momentum. Because this kinematic enhancement applies to the signal but not the variance of the correlation function, these interpolating operators can achieve better signal-to-noise ratios at large mom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00729v1-abstract-full').style.display = 'inline'; document.getElementById('2501.00729v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.00729v1-abstract-full" style="display: none;"> We propose to use interpolating operators for lattice quantum chromodyanmics (QCD) calculations of highly-boosted pions and nucleons with kinematically-enhanced ground-state overlap factors at large momentum. Because this kinematic enhancement applies to the signal but not the variance of the correlation function, these interpolating operators can achieve better signal-to-noise ratios at large momentum. We perform proof-of-principle calculations with boosted pions and nucleons using close-to-physical and larger quark masses to explore the utility of our proposal. Results for effective energies and matrix elements, as well as Lanczos ground-state energy estimators, are consistent with theoretical expectations for signal-to-noise improvement at large momenta. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00729v1-abstract-full').style.display = 'none'; document.getElementById('2501.00729v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0968-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.00678">arXiv:2501.00678</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.00678">pdf</a>, <a href="https://arxiv.org/format/2501.00678">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Collins-Soper Kernel in the QCD Instanton Vacuum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+W">Wei-Yang Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zahed%2C+I">Ismail Zahed</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.00678v2-abstract-short" style="display: inline;"> We outline a general framework for evaluating the non-perturbative soft functions in the QCD instanton vacuum. In particular, from the soft function we derive the Collins-Soper (CS) kernel, which drives the rapidity evolution of the transverse-momentum-dependent parton distributions. The resulting CS kernel, when supplemented with the perturbative contribution, agrees well with recent lattice resu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00678v2-abstract-full').style.display = 'inline'; document.getElementById('2501.00678v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.00678v2-abstract-full" style="display: none;"> We outline a general framework for evaluating the non-perturbative soft functions in the QCD instanton vacuum. In particular, from the soft function we derive the Collins-Soper (CS) kernel, which drives the rapidity evolution of the transverse-momentum-dependent parton distributions. The resulting CS kernel, when supplemented with the perturbative contribution, agrees well with recent lattice results and some phenomenological parameterizations. Moreover, our CS kernel depends logarithmically on the large quark transverse separation, providing a key constraint on its phenomenological parametrization. Finally, a lattice calculation can be directly compared to our generic results in Euclidean signature, thus providing a new approach for evaluating the soft function and extracting the CS kernel by analytical continuation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00678v2-abstract-full').style.display = 'none'; document.getElementById('2501.00678v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18324">arXiv:2412.18324</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.18324">pdf</a>, <a href="https://arxiv.org/format/2412.18324">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Global analysis of Sivers and Collins asymmetries within the TMD factorization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Zeng%2C+C">Chunhua Zeng</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dong%2C+H">Hongxin Dong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liue%2C+T">Tianbo Liue</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yuxiang Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18324v1-abstract-short" style="display: inline;"> We present a global analysis of Sivers functions, transversity distribution functions, and Collins fragmentation functions within the transverse momentum dependent factorization. This analysis encompasses the latest data from semi-inclusive deep inelastic scattering, Drell-Yan, and W/Z-boson production processes as recently reported by the COMPASS and STAR Collaborations. Upon integrating the new&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18324v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18324v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18324v1-abstract-full" style="display: none;"> We present a global analysis of Sivers functions, transversity distribution functions, and Collins fragmentation functions within the transverse momentum dependent factorization. This analysis encompasses the latest data from semi-inclusive deep inelastic scattering, Drell-Yan, and W/Z-boson production processes as recently reported by the COMPASS and STAR Collaborations. Upon integrating the new data into our fitting, the precision of the extracted d and dbar quark Sivers and transversity distributions, as well as the tensor charge, is notably improved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18324v1-abstract-full').style.display = 'none'; document.getElementById('2412.18324v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.02229">arXiv:2412.02229</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.02229">pdf</a>, <a href="https://arxiv.org/format/2412.02229">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> First Pulsar Polarization Array Limits on Ultralight Axion-like Dark Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Xue%2C+X">Xiao Xue</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dai%2C+S">Shi Dai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Luu%2C+H+N">Hoang Nhan Luu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+T">Tao Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ren%2C+J">Jing Ren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shu%2C+J">Jing Shu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yue Zhao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zic%2C+A">Andrew Zic</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bhat%2C+N+D+R">N. D. Ramesh Bhat</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+Z">Zu-Cheng Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Feng%2C+Y">Yi Feng</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hobbs%2C+G">George Hobbs</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kapur%2C+A">Agastya Kapur</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Manchester%2C+R+N">Richard N. Manchester</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandow%2C+R">Rami Mandow</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mishra%2C+S">Saurav Mishra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Reardon%2C+D+J">Daniel J. Reardon</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Russell%2C+C+J">Christopher J. Russell</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shannon%2C+R+M">Ryan M. Shannon</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wang%2C+S">Shuangqiang Wang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+S">Songbo Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhu%2C+X">Xingjiang Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.02229v1-abstract-short" style="display: inline;"> We conduct the first-ever Pulsar Polarization Array (PPA) analysis to detect the ultralight Axion-Like Dark Matter (ALDM) using the polarization data of 22 millisecond pulsars from the third data release of Parkes Pulsar Timing Array. As one of the major dark matter candidates, the ultralight ALDM exhibits a pronounced wave nature on astronomical scales and offers a promising solution to small-sca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02229v1-abstract-full').style.display = 'inline'; document.getElementById('2412.02229v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.02229v1-abstract-full" style="display: none;"> We conduct the first-ever Pulsar Polarization Array (PPA) analysis to detect the ultralight Axion-Like Dark Matter (ALDM) using the polarization data of 22 millisecond pulsars from the third data release of Parkes Pulsar Timing Array. As one of the major dark matter candidates, the ultralight ALDM exhibits a pronounced wave nature on astronomical scales and offers a promising solution to small-scale structure issues within local galaxies. While the linearly polarized pulsar light travels through the ALDM galactic halo, its position angle (PA) can be subject to an oscillation induced by the ALDM Chern-Simons coupling with electromagnetic field. The PPA is thus especially suited for detecting the ultralight ALDM by correlating polarization data across the arrayed pulsars. To accomplish this task, we develop an advanced Bayesian analysis framework that allows us to construct pulsar PA residual time series, model noise contributions properly and search for pulsar cross-correlations. We find that for an ALDM density of $蟻_0=0.4\,\textrm{GeV}/\textrm{cm}^3$, the Parkes PPA offers the best global limits on the ALDM Chern-Simons coupling, namely $\lesssim 10^{-13.5}-10^{-12.2}~{\rm GeV}^{-1}$, for the mass range of $10^{-22} - 10^{-21}~{\rm eV}$. The crucial role of pulsar cross-correlation in recognizing the nature of the derived limits is also highlighted. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02229v1-abstract-full').style.display = 'none'; document.getElementById('2412.02229v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+15 pages, 10 figures, 2 tables, submitted to the journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11648">arXiv:2411.11648</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11648">pdf</a>, <a href="https://arxiv.org/ps/2411.11648">ps</a>, <a href="https://arxiv.org/format/2411.11648">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Evidence for Two Excited $惟^{-}$ Hyperons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (650 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11648v2-abstract-short" style="display: inline;"> Using $e^+e^-$ collision data corresponding to an integrated luminosity of 19,fb$^{-1}$ collected by the BESIII detector at center-of-mass energies ranging from 4.13 to 4.70,GeV, we report the first evidence for a new excited $惟^{-}$ hyperon, the $惟(2109)^{-}$, through the process $e^+ e^- \to 惟(2109)^{-} \bar惟^{+} +c.c.$ with a significance of 4.1 $蟽$. The mass and width of $惟(2109)^{-}$ are meas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11648v2-abstract-full').style.display = 'inline'; document.getElementById('2411.11648v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11648v2-abstract-full" style="display: none;"> Using $e^+e^-$ collision data corresponding to an integrated luminosity of 19,fb$^{-1}$ collected by the BESIII detector at center-of-mass energies ranging from 4.13 to 4.70,GeV, we report the first evidence for a new excited $惟^{-}$ hyperon, the $惟(2109)^{-}$, through the process $e^+ e^- \to 惟(2109)^{-} \bar惟^{+} +c.c.$ with a significance of 4.1 $蟽$. The mass and width of $惟(2109)^{-}$ are measured to be $2108.5 \pm 5.2_{\rm stat} \pm 0.9_{\rm syst}\,{\rm MeV}/c^{2}$ and $18.3 \pm 16.4_{\rm stat} \pm 5.7_{\rm syst}\,{\rm MeV}$, respectively. We also present evidence for a new production mechanism for the previously identified $惟(2012)^-$ via the process $e^+ e^- \to 惟(2012)^{-} \bar惟^{+} +c.c.$ with a significance of 3.5 $蟽$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11648v2-abstract-full').style.display = 'none'; document.getElementById('2411.11648v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures. Accepted by Physical Review Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13515">arXiv:2410.13515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13515">pdf</a>, <a href="https://arxiv.org/format/2410.13515">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-55042-y">10.1038/s41467-024-55042-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a rare beta decay of the charmed baryon with a Graph Neural Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (637 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13515v2-abstract-short" style="display: inline;"> The beta decay of the lightest charmed baryon $螞_c^+$ provides unique insights into the fundamental mechanism of strong and electro-weak interactions, serving as a testbed for investigating non-perturbative quantum chromodynamics and constraining the Cabibbo-Kobayashi-Maskawa (CKM) matrix parameters. This article presents the first observation of the Cabibbo-suppressed decay&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v2-abstract-full').style.display = 'inline'; document.getElementById('2410.13515v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13515v2-abstract-full" style="display: none;"> The beta decay of the lightest charmed baryon $螞_c^+$ provides unique insights into the fundamental mechanism of strong and electro-weak interactions, serving as a testbed for investigating non-perturbative quantum chromodynamics and constraining the Cabibbo-Kobayashi-Maskawa (CKM) matrix parameters. This article presents the first observation of the Cabibbo-suppressed decay $螞_c^+ \rightarrow n e^+ 谓_{e}$, utilizing $4.5~\mathrm{fb}^{-1}$ of electron-positron annihilation data collected with the BESIII detector. A novel Graph Neural Network based technique effectively separates signals from dominant backgrounds, notably $螞_c^+ \rightarrow 螞e^+ 谓_{e}$, achieving a statistical significance exceeding $10蟽$. The absolute branching fraction is measured to be $(3.57\pm0.34_{\mathrm{stat.}}\pm0.14_{\mathrm{syst.}})\times 10^{-3}$. For the first time, the CKM matrix element $\left|V_{cd}\right|$ is extracted via a charmed baryon decay as $0.208\pm0.011_{\rm exp.}\pm0.007_{\rm LQCD}\pm0.001_{蟿_{螞_c^+}}$. This work highlights a new approach to further understand fundamental interactions in the charmed baryon sector, and showcases the power of modern machine learning techniques in experimental high-energy physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v2-abstract-full').style.display = 'none'; document.getElementById('2410.13515v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Commun. 16, 681 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13368">arXiv:2410.13368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13368">pdf</a>, <a href="https://arxiv.org/format/2410.13368">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of the Singly Cabibbo-Suppressed Decay $螞_c^{+}\to p蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (638 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13368v1-abstract-short" style="display: inline;"> Utilizing 4.5${~\rm{fb}}^{-1}$ of $e^+e^-$ annihilation data collected with the BESIII detector at the BEPCII collider at center-of-mass energies between 4.600 and 4.699 GeV, the first observation of the singly Cabibbo-suppressed decay $螞_c^{+}\to p蟺^0$ is presented, with a statistical significance of $5.4蟽$. The ratio of the branching fractions of $螞_c^{+}\to p蟺^0$ and $螞_c^{+}\to p畏$ is measured&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13368v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13368v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13368v1-abstract-full" style="display: none;"> Utilizing 4.5${~\rm{fb}}^{-1}$ of $e^+e^-$ annihilation data collected with the BESIII detector at the BEPCII collider at center-of-mass energies between 4.600 and 4.699 GeV, the first observation of the singly Cabibbo-suppressed decay $螞_c^{+}\to p蟺^0$ is presented, with a statistical significance of $5.4蟽$. The ratio of the branching fractions of $螞_c^{+}\to p蟺^0$ and $螞_c^{+}\to p畏$ is measured as $\mathcal{B}(螞_c^{+}\to p蟺^0)/\mathcal{B}(螞_c^{+}\to p畏)=(0.120\pm0.026_{\rm stat.}\pm0.007_{\rm syst.})$. This result resolves the longstanding discrepancy between earlier experimental searches, providing both a decisive conclusion and valuable input for QCD-inspired theoretical models. A sophisticated deep learning approach using a Transformer-based architecture is employed to distinguish the signal from the prevalent hadronic backgrounds, complemented by thorough validation and systematic uncertainty quantification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13368v1-abstract-full').style.display = 'none'; document.getElementById('2410.13368v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08539">arXiv:2410.08539</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.08539">pdf</a>, <a href="https://arxiv.org/format/2410.08539">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The forward-backward asymmetry induced $CP$ asymmetry in ${\overline{B}}^{0}\rightarrow K^{-}蟺^{+}蟺^{0}$ in phase space around the resonances ${\overline{K}}^{*}(892)^{0}$ and ${\overline{K}}^{*}_{0}(700)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Qi%2C+J">Jing-Juan Qi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yu-Jie Zhao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+Z">Zhen-Hua Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08539v1-abstract-short" style="display: inline;"> The interference between amplitudes corresponding to different intermediate resonances plays an important role in generating large CP asymmetries in phase space in multi-body decays of bottom and charmed mesons. In this paper, we study the CP violation in the decay channel ${\overline{B}}^{0}\rightarrow K^{-}蟺^{+}蟺^{0}$ in phase space region where the intermediate resonances&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08539v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08539v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08539v1-abstract-full" style="display: none;"> The interference between amplitudes corresponding to different intermediate resonances plays an important role in generating large CP asymmetries in phase space in multi-body decays of bottom and charmed mesons. In this paper, we study the CP violation in the decay channel ${\overline{B}}^{0}\rightarrow K^{-}蟺^{+}蟺^{0}$ in phase space region where the intermediate resonances $\overline{K}^{*}(892)^{0}$ and ${\overline{K}^{*}_{0}(700)}$ dominate. The Forward-Backward Asymmetry (FBA) and the CP asymmetry induced by FBA (FB-CPA), which are closely related to the interference effects between the two aforementioned resonances, are especially investigated. The correlation of the behaviour of FBA and FB-CPA with the relative strong phase between the amplitude is analyzed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08539v1-abstract-full').style.display = 'none'; document.getElementById('2410.08539v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03539">arXiv:2410.03539</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.03539">pdf</a>, <a href="https://arxiv.org/format/2410.03539">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP01(2025)146">10.1007/JHEP01(2025)146 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Moments of Axial-Vector GPD from Lattice QCD: Quark Helicity, Orbital Angular Momentum, and Spin-Orbit Correlation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Bhattacharya%2C+S">Shohini Bhattacharya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cichy%2C+K">Krzysztof Cichy</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gao%2C+X">Xiang Gao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Metz%2C+A">Andreas Metz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Miller%2C+J">Joshua Miller</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03539v2-abstract-short" style="display: inline;"> In this work, we present a lattice QCD calculation of the Mellin moments of the twist-2 axial-vector generalized parton distribution (GPD), $\widetilde{H}(x,尉,t)$, at zero skewness, $尉$, with multiple values of the momentum transfer, $t$. Our analysis employs the short-distance factorization framework on ratio-scheme renormalized quasi-GPD matrix elements. The calculations are based on an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03539v2-abstract-full').style.display = 'inline'; document.getElementById('2410.03539v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03539v2-abstract-full" style="display: none;"> In this work, we present a lattice QCD calculation of the Mellin moments of the twist-2 axial-vector generalized parton distribution (GPD), $\widetilde{H}(x,尉,t)$, at zero skewness, $尉$, with multiple values of the momentum transfer, $t$. Our analysis employs the short-distance factorization framework on ratio-scheme renormalized quasi-GPD matrix elements. The calculations are based on an $N_f=2+1+1$ twisted mass fermions ensemble with clover improvement, a lattice spacing of $a = 0.093$ fm, and a pion mass of $m_蟺= 260$ MeV. We consider both the iso-vector and iso-scalar cases, utilizing next-to-leading-order perturbative matching while omitting the disconnected contributions and gluon mixing in the iso-scalar case. For the first time, we determine the Mellin moments of $\widetilde{H}$ up to the fifth order. From these moments, we discuss the quark helicity and orbital angular momentum contributions to the nucleon spin, as well as the spin-orbit correlations of the quarks. Additionally, we perform a Fourier transform over the momentum transfer, which allows us to explore the spin structure in the impact-parameter space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03539v2-abstract-full').style.display = 'none'; document.getElementById('2410.03539v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 13 figures, version appeared in JHEP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-24-29020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12414">arXiv:2409.12414</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.12414">pdf</a>, <a href="https://arxiv.org/format/2409.12414">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> SKA Sensitivity to Potential Radio Emission from Dark Matter Annihilation in Ursa Major III </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+P">Peng-Long Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bi%2C+X">Xiao-Jun Bi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chang%2C+Q">Qin Chang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yin%2C+P">Peng-Fei Yin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yi Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12414v1-abstract-short" style="display: inline;"> The recently discovered stellar system, Ursa Major III/UNIONS 1, may be the faintest and densest dwarf spheroidal satellite galaxy of the Milky Way. Owing to its close proximity and substantial dark matter (DM) component, Ursa Major III emerges as a highly promising target for DM indirect detection. It is known that electrons and positrons originating from DM annihilation can generate a broad radi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12414v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12414v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12414v1-abstract-full" style="display: none;"> The recently discovered stellar system, Ursa Major III/UNIONS 1, may be the faintest and densest dwarf spheroidal satellite galaxy of the Milky Way. Owing to its close proximity and substantial dark matter (DM) component, Ursa Major III emerges as a highly promising target for DM indirect detection. It is known that electrons and positrons originating from DM annihilation can generate a broad radio spectrum through the processes of synchrotron radiation and inverse Compton scattering within galaxies. In this study, we investigate the potential of the Square Kilometre Array (SKA) in detecting radio signatures arising from DM annihilation in Ursa Major III over a 100 hour observation period. Our analysis indicates that the SKA has strong capabilities in detecting these signatures. For instance, the SKA sensitivity to the DM annihilation cross section is estimated to reach $\mathcal{O}(10^{-30})-\mathcal{O}(10^{-28})\; \rm cm^{3} s^{-1}$ in the DM mass range from several GeV to $\sim100$ GeV for the $e^+e^-$ and $渭^+渭^-$ annihilation channels. The precise results are significantly influenced by various astrophysical factors, such as the strength of magnetic field, the diffusion coefficient, and the DM density profile in the dwarf galaxy. We discuss the impact of the uncertainties associated with these factors, and find that the SKA sensitivities have the potential to surpass the current constraints, even when considering these uncertainties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12414v1-abstract-full').style.display = 'none'; document.getElementById('2409.12414v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08110">arXiv:2409.08110</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08110">pdf</a>, <a href="https://arxiv.org/format/2409.08110">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> First Extraction of Transverse Momentum Dependent Helicity Distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+K">Ke Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+T">Tianbo Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yuxiang Zhao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ma%2C+B">Bo-Qiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08110v1-abstract-short" style="display: inline;"> We report on the first global analysis of transverse momentum dependent helicity distributions of the proton. The analysis is performed at next-to-leading order with the evolution factor at next-to-next-to-leading-logarithmic accuracy. Nonzero signals are determined for up and down quarks and their $k_T$-integrated polarization are consistent with analyses in collinear factorization, while the dis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08110v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08110v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08110v1-abstract-full" style="display: none;"> We report on the first global analysis of transverse momentum dependent helicity distributions of the proton. The analysis is performed at next-to-leading order with the evolution factor at next-to-next-to-leading-logarithmic accuracy. Nonzero signals are determined for up and down quarks and their $k_T$-integrated polarization are consistent with analyses in collinear factorization, while the distributions of other flavors are loosely constrained by existing data. With increasing transverse momentum, quarks at large $x$ become less polarized while those at small $x$ become more polarized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08110v1-abstract-full').style.display = 'none'; document.getElementById('2409.08110v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07756">arXiv:2408.07756</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07756">pdf</a>, <a href="https://arxiv.org/format/2408.07756">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Exploring the Hidden Valley at MATHUSLA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Liebersbach%2C+S">Samuel Liebersbach</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sandick%2C+P">Pearl Sandick</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shiferaw%2C+A">Abel Shiferaw</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yue Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07756v1-abstract-short" style="display: inline;"> Hidden valley models naturally predict numerous long-lived particles, the distinctive signatures of which would be compelling evidence for a hidden valley scenario. As these are typically low energy particles, they pose a challenge in terms of passing energy triggers in traditional searches at the Large Hadron Collider. The MATHUSLA experiment is specifically designed for the purpose of detecting&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07756v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07756v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07756v1-abstract-full" style="display: none;"> Hidden valley models naturally predict numerous long-lived particles, the distinctive signatures of which would be compelling evidence for a hidden valley scenario. As these are typically low energy particles, they pose a challenge in terms of passing energy triggers in traditional searches at the Large Hadron Collider. The MATHUSLA experiment is specifically designed for the purpose of detecting long-lived particles. It also has the capability of detecting lower energy particles relative to ATLAS and CMS. In this paper, we assess MATHUSLA&#39;s potential for effectively probing hidden valley models. As a benchmark, we assume the hidden valley sector communicates with Standard Model sectors via a heavy vector propagator that couples to Standard Model quarks as well as hidden valley quarks. We model the showering and hadronization in the hidden valley sector using PYTHIA, and study the detector acceptance as a function of the hidden valley meson&#39;s lifetime. We find that MATHUSLA possesses significant capabilities to explore previously uncharted parameter space within hidden valley models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07756v1-abstract-full').style.display = 'none'; document.getElementById('2408.07756v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06677">arXiv:2408.06677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.06677">pdf</a>, <a href="https://arxiv.org/format/2408.06677">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Search for $畏_c(2S)\to蠅蠅$ and $蠅蠁$ decays and measurements of $蠂_{cJ}\to蠅蠅$ and $蠅蠁$ in $蠄(2S)$ radiative processes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (643 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06677v1-abstract-short" style="display: inline;"> Using $(2712\pm 14)$ $\times$ 10$^{6}$ $蠄(2S)$ events collected with the BESIII detector at the BEPCII collider, we search for the decays $畏_{c}(2S)\to蠅蠅$ and $畏_{c}(2S)\to蠅蠁$ via the process $蠄(2S)\to纬畏_{c}(2S)$. Evidence of $畏_{c}(2S)\to蠅蠅$ is found with a statistical significance of $3.2蟽$. The branching fraction is measured to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06677v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06677v1-abstract-full" style="display: none;"> Using $(2712\pm 14)$ $\times$ 10$^{6}$ $蠄(2S)$ events collected with the BESIII detector at the BEPCII collider, we search for the decays $畏_{c}(2S)\to蠅蠅$ and $畏_{c}(2S)\to蠅蠁$ via the process $蠄(2S)\to纬畏_{c}(2S)$. Evidence of $畏_{c}(2S)\to蠅蠅$ is found with a statistical significance of $3.2蟽$. The branching fraction is measured to be $\mathcal{B}(畏_{c}(2S)\to蠅蠅)=(5.65\pm3.77(\rm stat.)\pm5.32(\rm syst.))\times10^{-4}$. No statistically significant signal is observed for the decay $畏_{c}(2S)\to蠅蠁$. The upper limit of the branching fraction at the 90\% confidence level is determined to be $\mathcal{B}(蠄(2S)\to纬畏_{c}(2S),畏_{c}(2S)\to蠅蠁)&lt;2.24\times 10^{-7}$. We also update the branching fractions of $蠂_{cJ}\to 蠅蠅$ and $蠂_{cJ}\to蠅蠁$ decays via the $蠄(2S)\to纬蠂_{cJ}$ transition. The branching fractions are determined to be $\mathcal{B}(蠂_{c0}\to蠅蠅)=(10.63\pm0.11\pm0.46)\times 10^{-4}$, $\mathcal{B}(蠂_{c1}\to蠅蠅)=(6.39\pm0.07\pm0.29)\times 10^{-4}$, $\mathcal{B}(蠂_{c2}\to蠅蠅)=(8.50\pm0.08\pm0.38)\times 10^{-4}$, $\mathcal{B}(蠂_{c0}\to蠅蠁)=(1.18\pm0.03\pm0.05)\times 10^{-4}$, $\mathcal{B}(蠂_{c1}\to蠅蠁)=(2.03\pm0.15\pm0.12)\times 10^{-5}$, and $\mathcal{B}(蠂_{c2}\to蠅蠁)=(9.37\pm1.07\pm0.59)\times 10^{-6}$, where the first uncertainties are statistical and the second are systematic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06677v1-abstract-full').style.display = 'none'; document.getElementById('2408.06677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05910">arXiv:2408.05910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05910">pdf</a>, <a href="https://arxiv.org/format/2408.05910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Systematic Uncertainties from Gribov Copies in Lattice Calculation of Parton Distributions in the Coulomb gauge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Gao%2C+X">Xiang Gao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=He%2C+J">Jinchen He</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05910v1-abstract-short" style="display: inline;"> Recently, it has been proposed to compute parton distributions from boosted correlators fixed in the Coulomb gauge within the framework of Large-Momentum Effective Theory. This method does not involve Wilson lines and could greatly improve the efficiency and precision of lattice QCD calculations. However, there are concerns about whether the systematic uncertainties from Gribov copies, which corre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05910v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05910v1-abstract-full" style="display: none;"> Recently, it has been proposed to compute parton distributions from boosted correlators fixed in the Coulomb gauge within the framework of Large-Momentum Effective Theory. This method does not involve Wilson lines and could greatly improve the efficiency and precision of lattice QCD calculations. However, there are concerns about whether the systematic uncertainties from Gribov copies, which correspond to the ambiguity in lattice gauge-fixing, are under control. This work gives an assessment of the Gribov copies&#39; effect in the Coulomb-gauge-fixed quark correlators. We utilize different strategies for the Coulomb-gauge fixing, selecting two different groups of Gribov copies based on the lattice gauge configurations. We test the difference in the resulted spatial quark correlators in the vacuum and a pion state. Our findings indicate that the statistical errors of the matrix elements from both Gribov copies, regardless of the correlation range, decrease proportionally to the square root of the number of gauge configurations. The difference between the strategies does not show statistical significance compared to the gauge noise. This demonstrates that the effect of the Gribov copies can be neglected in the practical lattice calculation of the quark parton distributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05910v1-abstract-full').style.display = 'none'; document.getElementById('2408.05910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16488">arXiv:2407.16488</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16488">pdf</a>, <a href="https://arxiv.org/format/2407.16488">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad89b9">10.3847/1538-4357/ad89b9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dark Photon Dark Matter and Low-Frequency Gravitational Wave Detection with Gaia-like Astrometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=An%2C+H">Haipeng An</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+T">Tingyu Li</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shu%2C+J">Jing Shu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wang%2C+X">Xin Wang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Xue%2C+X">Xiao Xue</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yue Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16488v2-abstract-short" style="display: inline;"> Astrometric surveys offer us a method to search for elusive cosmic signatures, such as ultralight dark photon dark matter and gravitational waves, by observing the deflection to the apparent positions of the stars. The detection capabilities of such surveys rapidly decrease at low frequencies, because the signals become hardly distinguishable from the background motion of stars. In this work, we f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16488v2-abstract-full').style.display = 'inline'; document.getElementById('2407.16488v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16488v2-abstract-full" style="display: none;"> Astrometric surveys offer us a method to search for elusive cosmic signatures, such as ultralight dark photon dark matter and gravitational waves, by observing the deflection to the apparent positions of the stars. The detection capabilities of such surveys rapidly decrease at low frequencies, because the signals become hardly distinguishable from the background motion of stars. In this work, we find that the background motion can be well described by a linear model over time, based on which we propose a linear background subtraction scheme. Compared to the conventional quadratic subtraction, the advantage of linear subtraction emerges within the frequency range below $6 \times 10^{-9}~{\rm Hz}$. Taking dark photons with purely gravitational interactions, dark photons with additional $U(1)_{B}$ or $U(1)_{B-L}$ gauge interactions, and low-frequency gravitational waves as examples, we illustrate that the linear subtraction scheme can result in an enhancement of more than one order of magnitude in the exclusion limits of Gaia-like experiments in the low-frequency range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16488v2-abstract-full').style.display = 'none'; document.getElementById('2407.16488v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 2 figures, accepted by APJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-24-106 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophys.J. 976 (2024) 2, 247 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11727">arXiv:2407.11727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11727">pdf</a>, <a href="https://arxiv.org/ps/2407.11727">ps</a>, <a href="https://arxiv.org/format/2407.11727">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.052002">10.1103/PhysRevD.110.052002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the branching fraction of $D^+_s\to \ell^+谓_\ell$ via $e^+e^-\to D^{*+}_{s} D^{*-}_{s}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (634 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11727v3-abstract-short" style="display: inline;"> Based on $10.64~\mathrm{fb}^{-1}$ of $e^+e^-$ collision data taken at center-of-mass energies between 4.237 and 4.699 GeV with the BESIII detector, we study the leptonic $D^+_s$ decays using the $e^+e^-\to D^{*+}_{s} D^{*-}_{s}$ process. The branching fractions of $D_s^+\to\ell^+谓_{\ell}\,(\ell=渭,蟿)$ are measured to be $\mathcal{B}(D_s^+\to渭^+谓_渭)=(0.547\pm0.026_{\rm stat}\pm0.016_{\rm syst})\%$ a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11727v3-abstract-full').style.display = 'inline'; document.getElementById('2407.11727v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11727v3-abstract-full" style="display: none;"> Based on $10.64~\mathrm{fb}^{-1}$ of $e^+e^-$ collision data taken at center-of-mass energies between 4.237 and 4.699 GeV with the BESIII detector, we study the leptonic $D^+_s$ decays using the $e^+e^-\to D^{*+}_{s} D^{*-}_{s}$ process. The branching fractions of $D_s^+\to\ell^+谓_{\ell}\,(\ell=渭,蟿)$ are measured to be $\mathcal{B}(D_s^+\to渭^+谓_渭)=(0.547\pm0.026_{\rm stat}\pm0.016_{\rm syst})\%$ and $\mathcal{B}(D_s^+\to蟿^+谓_蟿)=(5.60\pm0.16_{\rm stat}\pm0.20_{\rm syst})\%$, respectively. The product of the decay constant and Cabibbo-Kobayashi-Maskawa matrix element $|V_{cs}|$ is determined to be $f_{D_s^+}|V_{cs}|=(246.5\pm5.9_{\rm stat}\pm3.6_{\rm syst}\pm0.5_{\rm input})_{渭谓}~\mathrm{MeV}$ and $f_{D_s^+}|V_{cs}|=(252.7\pm3.6_{\rm stat}\pm4.5_{\rm syst}\pm0.6_{\rm input}))_{蟿谓}~\mathrm{MeV}$, respectively. Taking the value of $|V_{cs}|$ from a global fit in the Standard Model, we obtain ${f_{D^+_s}}=(252.8\pm6.0_{\rm stat}\pm3.7_{\rm syst}\pm0.6_{\rm input})_{渭谓}$ MeV and ${f_{D^+_s}}=(259.2\pm3.6_{\rm stat}\pm4.5_{\rm syst}\pm0.6_{\rm input})_{蟿谓}$ MeV, respectively. Conversely, taking the value for $f_{D_s^+}$ from the latest lattice quantum chromodynamics calculation, we obtain $|V_{cs}| =(0.986\pm0.023_{\rm stat}\pm0.014_{\rm syst}\pm0.003_{\rm input})_{渭谓}$ and $|V_{cs}| = (1.011\pm0.014_{\rm stat}\pm0.018_{\rm syst}\pm0.003_{\rm input})_{蟿谓}$, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11727v3-abstract-full').style.display = 'none'; document.getElementById('2407.11727v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, 052002 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11169">arXiv:2407.11169</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11169">pdf</a>, <a href="https://arxiv.org/ps/2407.11169">ps</a>, <a href="https://arxiv.org/format/2407.11169">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Supermassive black hole formation in the initial collapse of axion dark matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Sikivie%2C+P">Pierre Sikivie</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yuxin Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11169v1-abstract-short" style="display: inline;"> Axion dark matter thermalizes by gravitational self-interactions and forms a Bose-Einstein condensate. We show that the rethermalization of the axion fluid during the initial collapse of large scale overdensities near cosmic dawn transports angular momentum outward sufficientlly fast that black holes form with masses ranging from approximately $10^5$ to a few times $10^{10}~M_\odot$. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11169v1-abstract-full" style="display: none;"> Axion dark matter thermalizes by gravitational self-interactions and forms a Bose-Einstein condensate. We show that the rethermalization of the axion fluid during the initial collapse of large scale overdensities near cosmic dawn transports angular momentum outward sufficientlly fast that black holes form with masses ranging from approximately $10^5$ to a few times $10^{10}~M_\odot$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11169v1-abstract-full').style.display = 'none'; document.getElementById('2407.11169v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.04422">arXiv:2407.04422</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.04422">pdf</a>, <a href="https://arxiv.org/format/2407.04422">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.114019">10.1103/PhysRevD.110.114019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Global analysis of fragmentation functions to charged hadrons with high-precision data from the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Gao%2C+J">Jun Gao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+C">ChongYang Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shen%2C+X">XiaoMin Shen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Xing%2C+H">Hongxi Xing</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yuxiang Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.04422v2-abstract-short" style="display: inline;"> Fragmentation functions (FFs) are essential non-perturbative QCD inputs for predicting hadron production cross sections in high energy scatterings. In this study, we present a joint determination of FFs for light charged hadrons through a global analysis at next-to-leading order (NLO) in QCD. Our analysis incorporates a wide range of precision measurements from the LHC, as well as data from electr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04422v2-abstract-full').style.display = 'inline'; document.getElementById('2407.04422v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.04422v2-abstract-full" style="display: none;"> Fragmentation functions (FFs) are essential non-perturbative QCD inputs for predicting hadron production cross sections in high energy scatterings. In this study, we present a joint determination of FFs for light charged hadrons through a global analysis at next-to-leading order (NLO) in QCD. Our analysis incorporates a wide range of precision measurements from the LHC, as well as data from electron-positron collisions and semi-inclusive deep inelastic scatterings. By including measurements of jet fragmentation at the LHC in our global analysis, we are able to impose strong constraints on the gluon FFs. A careful selection of hadron kinematics is applied to ensure the validity of factorization and perturbative calculations of QCD. In addition, we introduce several methodological advances in fitting, resulting in a flexible parametrization form and the inclusion of theoretical uncertainties from perturbative calculations. Our best-fit predictions show very good agreement with the global data, with $蠂^2/N_{pt}\sim 0.90$. We also generate a large number of Hessian error sets to estimate uncertainties and correlations of the extracted FFs. FFs to charged pions (kaons and protons) are well constrained for momentum fractions down to 0.01 (0.1). Total momentum of partons carried by light charged hadrons are determined precisely. Their values for $u$, $d$ quarks and gluon saturate at about 50\% for a lower cut of the momentum fraction of 0.01. Pulls from individual datasets and impact of various choices of the analysis are also studied in details. Additionally, we present an update of the FMNLO program used for calculating hadron production cross sections. Our FFs, including the error sets (denoted as NPC23), are publicly available in the form of LHAPDF6 grids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04422v2-abstract-full').style.display = 'none'; document.getElementById('2407.04422v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03516">arXiv:2407.03516</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03516">pdf</a>, <a href="https://arxiv.org/format/2407.03516">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2025)056">10.1007/JHEP02(2025)056 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-dimensional Imaging of Pion using Lattice QCD: Generalized Parton Distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Ding%2C+H">Heng-Tong Ding</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gao%2C+X">Xiang Gao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shi%2C+Q">Qi Shi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03516v2-abstract-short" style="display: inline;"> In this work, we report a lattice calculation of $x$-dependent valence pion generalized parton distributions (GPDs) at zero skewness with multiple values of the momentum transfer $-t$. The calculations are based on an $N_f=2+1$ gauge ensemble of highly improved staggered quarks with Wilson-Clover valence fermion. The lattice spacing is 0.04 fm, and the pion valence mass is tuned to be 300 MeV. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03516v2-abstract-full').style.display = 'inline'; document.getElementById('2407.03516v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03516v2-abstract-full" style="display: none;"> In this work, we report a lattice calculation of $x$-dependent valence pion generalized parton distributions (GPDs) at zero skewness with multiple values of the momentum transfer $-t$. The calculations are based on an $N_f=2+1$ gauge ensemble of highly improved staggered quarks with Wilson-Clover valence fermion. The lattice spacing is 0.04 fm, and the pion valence mass is tuned to be 300 MeV. We determine the Lorentz-invariant amplitudes of the quasi-GPD matrix elements for both symmetric and asymmetric momenta transfers with similar values and show the equivalence of both frames. Then, focusing on the asymmetric frame, we utilize a hybrid scheme to renormalize the quasi-GPD matrix elements obtained from the lattice calculations. After the Fourier transforms, the quasi-GPDs are then matched to the light-cone GPDs within the framework of large momentum effective theory with improved matching, including the next-to-next-to-leading order perturbative corrections, and leading renormalon and renormalization group resummations. We also present the 3-dimensional image of the pion in impact-parameter space through the Fourier transform of the momentum transfer $-t$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03516v2-abstract-full').style.display = 'none'; document.getElementById('2407.03516v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 22 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. High Energ. Phys. 2025, 56 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00206">arXiv:2407.00206</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00206">pdf</a>, <a href="https://arxiv.org/format/2407.00206">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.114502">10.1103/PhysRevD.110.114502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD Calculation of $x$-dependent Meson Distribution Amplitudes at Physical Pion Mass with Threshold Logarithm Resummation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Cloet%2C+I">Ian Cloet</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gao%2C+X">Xiang Gao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Karthik%2C+N">Nikhil Karthik</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00206v2-abstract-short" style="display: inline;"> We present a lattice quantum chromodynamics (QCD) calculation of the $x$-dependent pion and kaon distribution amplitudes (DA) in the framework of large momentum effective theory. This calculation is performed on a fine lattice of $a=0.076$ fm at physical pion mass, with the pion boosted to $1.8$ GeV and kaon boosted to $2.3$ GeV. We renormalize the matrix elements in the hybrid scheme and match to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00206v2-abstract-full').style.display = 'inline'; document.getElementById('2407.00206v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00206v2-abstract-full" style="display: none;"> We present a lattice quantum chromodynamics (QCD) calculation of the $x$-dependent pion and kaon distribution amplitudes (DA) in the framework of large momentum effective theory. This calculation is performed on a fine lattice of $a=0.076$ fm at physical pion mass, with the pion boosted to $1.8$ GeV and kaon boosted to $2.3$ GeV. We renormalize the matrix elements in the hybrid scheme and match to $\overline{\rm MS }$ with a subtraction of the leading renormalon in the Wilson-line mass. The perturbative matching is improved by resumming the large logarithms related to the small quark and gluon momenta in the soft-gluon limit. After resummation, we demonstrate that we are able to calculate a range of $x\in[x_0,1-x_0]$ with $x_0=0.25$ for pion and $x_0=0.2$ for kaon with theoretical systematic errors under control. The kaon DA is shown to be slighted skewed, and narrower than pion DA. Although the $x$-dependence cannot be direct calculated beyond these ranges, we estimate higher moments of the pion and kaon DAs by complementing our calculation with short-distance factorization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00206v2-abstract-full').style.display = 'none'; document.getElementById('2407.00206v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Update to the published version in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03211">arXiv:2406.03211</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.03211">pdf</a>, <a href="https://arxiv.org/format/2406.03211">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/adaf9a">10.3847/1538-4357/adaf9a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of hybrid stars with nonstrange quark matter cores </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+C">Cheng-Ming Li</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zheng%2C+H">He-Rui Zheng</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zuo%2C+S">Shu-Yu Zuo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Ya-Peng Zhao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wang%2C+F">Fei Wang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Huang%2C+Y">Yong-Feng Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03211v3-abstract-short" style="display: inline;"> In this work, under the hypothesis that quark matter may not be strange (Holdom et al. 2018), we adopt a modification of the coupling constant of the four-quark scalar interaction $G\rightarrow G_1+G_2\langle\bar蠄蠄\rangle$ in the 2-flavor Nambu-Jona-Lasinio (NJL) model to study nonstrange hybrid stars, where $G_1$ and $G_2$ are two parameters constrained by using the lattice QCD simulation results&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03211v3-abstract-full').style.display = 'inline'; document.getElementById('2406.03211v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03211v3-abstract-full" style="display: none;"> In this work, under the hypothesis that quark matter may not be strange (Holdom et al. 2018), we adopt a modification of the coupling constant of the four-quark scalar interaction $G\rightarrow G_1+G_2\langle\bar蠄蠄\rangle$ in the 2-flavor Nambu-Jona-Lasinio (NJL) model to study nonstrange hybrid stars, where $G_1$ and $G_2$ are two parameters constrained by using the lattice QCD simulation results at the critical temperature and zero chemical potential. The Maxwell construction is used to describe the first-order confinement-deconfinement phase transition in hybrid stars. With recent measurements on neutron star mass, radius, and tidal deformability, the hybrid equation of states are constrained. It is found that pure nonstrange quark matter cores can exist in hybrid stars, possessing $0.026-0.04$ solar mass. The maximum hybrid star mass in the framework of the modified NJL model is about 0.1 solar mass lighter than that in the conventional 2-flavor NJL model. It is argued that the binary neutron stars in GW170817 should be hadron stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03211v3-abstract-full').style.display = 'none'; document.getElementById('2406.03211v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ. 980, 231 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11527">arXiv:2404.11527</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.11527">pdf</a>, <a href="https://arxiv.org/format/2404.11527">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> A global analysis of $蟺^0$, $K_S^0$ and $畏$ fragmentation functions with BESIII data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+M">Mengyang Li</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Anderle%2C+D+P">Daniele Paolo Anderle</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Xing%2C+H">Hongxi Xing</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yuxiang Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11527v1-abstract-short" style="display: inline;"> In this research, we conduct a global QCD analysis of fragmentation functions (FFs) for neutral pions ($蟺^0$), neutral kaons ($K_S^0$), and eta mesons ($畏$), utilizing world data of single inclusive hadron production in $e^+e^-$ annihilation involving the most recent BESIII data with low collision energy, to test the operational region of QCD collinear factorization for single inclusive hadron pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11527v1-abstract-full').style.display = 'inline'; document.getElementById('2404.11527v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11527v1-abstract-full" style="display: none;"> In this research, we conduct a global QCD analysis of fragmentation functions (FFs) for neutral pions ($蟺^0$), neutral kaons ($K_S^0$), and eta mesons ($畏$), utilizing world data of single inclusive hadron production in $e^+e^-$ annihilation involving the most recent BESIII data with low collision energy, to test the operational region of QCD collinear factorization for single inclusive hadron production. We found that the QCD-based analysis at next-to-next-to leading order in perturbative QCD with parameterized higher-twist effects can explain both existing high-energy world data and the BESIII new measurements, while the latter cannot be explained with existing FFs extracted with high-energy data. To investigate the higher-twist contributions to this discrepancy, a direct functional approach is employed, providing testing framework for characterizing the experimental results over a wide range of energy scales, from low to high, thus extending the classical theoretical models to the BESIII domain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11527v1-abstract-full').style.display = 'none'; document.getElementById('2404.11527v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04827">arXiv:2404.04827</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.04827">pdf</a>, <a href="https://arxiv.org/format/2404.04827">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Dark Matter-Induced Low-Mass Gap Black Hole Echoing LVK Observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Ge%2C+S">Shuailiang Ge</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+Y">Yuxin Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shu%2C+J">Jing Shu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yue Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04827v2-abstract-short" style="display: inline;"> The recent detection of gravitational waves from a binary merger involving a potential low-mass gap black hole (LMBH) by LIGO-Virgo-KAGRA (LVK) Collaboration motivates investigations into mechanisms beyond conventional stellar evolution theories to account for their existence. We study a mechanism in which dark matter (DM), through its capture and accumulation inside main sequence stars, induces t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04827v2-abstract-full').style.display = 'inline'; document.getElementById('2404.04827v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04827v2-abstract-full" style="display: none;"> The recent detection of gravitational waves from a binary merger involving a potential low-mass gap black hole (LMBH) by LIGO-Virgo-KAGRA (LVK) Collaboration motivates investigations into mechanisms beyond conventional stellar evolution theories to account for their existence. We study a mechanism in which dark matter (DM), through its capture and accumulation inside main sequence stars, induces the formation of black holes within the mass range of $[3, 5]M_\odot$. We examine the distribution of these LMBHs as a function of galaxy halo mass, particularly when paired with neutron stars. This gives a distinct signature that can be tested with future gravitational wave observations. We find that a viable portion of the DM parameter space predicts a merger rate of such binaries consistent with LVK observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04827v2-abstract-full').style.display = 'none'; document.getElementById('2404.04827v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages for main text, 7 pages for method, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04412">arXiv:2404.04412</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.04412">pdf</a>, <a href="https://arxiv.org/format/2404.04412">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.181902">10.1103/PhysRevLett.133.181902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QCD Predictions for Meson Electromagnetic Form Factors at High Momenta: Testing Factorization in Exclusive Processes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Ding%2C+H">Heng-Tong Ding</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gao%2C+X">Xiang Gao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hanlon%2C+A+D">Andrew D. Hanlon</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shi%2C+Q">Qi Shi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04412v2-abstract-short" style="display: inline;"> We report the first lattice QCD computation of pion and kaon electromagnetic form factors, $F_M(Q^2)$, at large momentum transfer up to 10 and 28 $\mathrm{GeV}^2$, respectively. Utilizing physical masses and two fine lattices, we achieve good agreement with JLab experimental results at $Q^2 \lesssim 4~\mathrm{GeV}^2$. For $Q^2 \gtrsim 4~\mathrm{GeV}^2$, our results provide $\textit{ab-initio}$ QCD&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04412v2-abstract-full').style.display = 'inline'; document.getElementById('2404.04412v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04412v2-abstract-full" style="display: none;"> We report the first lattice QCD computation of pion and kaon electromagnetic form factors, $F_M(Q^2)$, at large momentum transfer up to 10 and 28 $\mathrm{GeV}^2$, respectively. Utilizing physical masses and two fine lattices, we achieve good agreement with JLab experimental results at $Q^2 \lesssim 4~\mathrm{GeV}^2$. For $Q^2 \gtrsim 4~\mathrm{GeV}^2$, our results provide $\textit{ab-initio}$ QCD benchmarks for the forthcoming experiments at JLab 12 GeV and future electron-ion colliders. We also test the QCD collinear factorization framework utilizing our high-$Q^2$ form factors at next-to-next-to-leading order in perturbation theory, which relates the form factors to the leading Fock-state meson distribution amplitudes. Comparisons with independent lattice QCD calculations using the same framework demonstrate, within estimated uncertainties, the universality of these nonperturbative quantities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04412v2-abstract-full').style.display = 'none'; document.getElementById('2404.04412v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Phys. Rev. Lett. 133, 181902; 15 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 181902 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02033">arXiv:2404.02033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.02033">pdf</a>, <a href="https://arxiv.org/format/2404.02033">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Search for $C$-even states decaying to $D_{s}^{\pm}D_{s}^{*\mp}$ with masses between $4.08$ and $4.32~\mathrm{GeV}/c^{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (638 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02033v2-abstract-short" style="display: inline;"> Six $C$-even states, denoted as $X$, with quantum numbers $J^{PC}=0^{-+}$, $1^{\pm+}$, or $2^{\pm+}$, are searched for via the $e^+e^-\to纬D_{s}^{\pm}D_{s}^{*\mp}$ process using $(1667.39\pm8.84)~\mathrm{pb}^{-1}$ of $e^+e^-$ collision data collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energy of $\sqrt{s}=(4681.92\pm0.30)~\mathrm{MeV}$. No statistically s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02033v2-abstract-full').style.display = 'inline'; document.getElementById('2404.02033v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02033v2-abstract-full" style="display: none;"> Six $C$-even states, denoted as $X$, with quantum numbers $J^{PC}=0^{-+}$, $1^{\pm+}$, or $2^{\pm+}$, are searched for via the $e^+e^-\to纬D_{s}^{\pm}D_{s}^{*\mp}$ process using $(1667.39\pm8.84)~\mathrm{pb}^{-1}$ of $e^+e^-$ collision data collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energy of $\sqrt{s}=(4681.92\pm0.30)~\mathrm{MeV}$. No statistically significant signal is observed in the mass range from $4.08$ to $4.32~\mathrm{GeV}/c^{2}$. The upper limits of $蟽[e^+e^- \to 纬X] \cdot \mathcal{B}[X \to D_{s}^{\pm} D_{s}^{*\mp}]$ at a $90\%$ confidence level are determined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02033v2-abstract-full').style.display = 'none'; document.getElementById('2404.02033v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, 032017 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12795">arXiv:2403.12795</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.12795">pdf</a>, <a href="https://arxiv.org/format/2403.12795">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Extraction of trans-helicity worm-gear distributions and opportunities at the Electron-Ion Collider in China </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+K">Ke Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+T">Tianbo Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yuxiang Zhao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ma%2C+B">Bo-Qiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12795v1-abstract-short" style="display: inline;"> We present a global analysis of the trans-helicity worm-gear distribution function, $g_{1T}^\perp$, by fitting the longitudinal-transverse double spin asymmetry data of the semi-inclusive deep inelastic scattering. The analysis is performed within the framework of transverse momentum dependent factorization and evolution. It is found that the $u$-quark favors a positive distribution and the $d$-qu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12795v1-abstract-full').style.display = 'inline'; document.getElementById('2403.12795v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12795v1-abstract-full" style="display: none;"> We present a global analysis of the trans-helicity worm-gear distribution function, $g_{1T}^\perp$, by fitting the longitudinal-transverse double spin asymmetry data of the semi-inclusive deep inelastic scattering. The analysis is performed within the framework of transverse momentum dependent factorization and evolution. It is found that the $u$-quark favors a positive distribution and the $d$-quark favors a negative distribution, which is consistent with previous model calculations and phenomenological extractions. Based on the fit to existing world data, we also study the impact of the proposed electron-ion collider in China and conclude that it can significantly improve the precision of the worm-gear distribution function and hence enhance our understanding of nucleon spin structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12795v1-abstract-full').style.display = 'none'; document.getElementById('2403.12795v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.10877">arXiv:2403.10877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.10877">pdf</a>, <a href="https://arxiv.org/ps/2403.10877">ps</a>, <a href="https://arxiv.org/format/2403.10877">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.134.011803">10.1103/PhysRevLett.134.011803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Test of lepton universality and measurement of the form factors of $D^0\to K^{*}(892)^-渭^+谓_渭$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (637 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.10877v3-abstract-short" style="display: inline;"> We report a first study of the semileptonic decay $D^0\rightarrow K^-蟺^0渭^{+}谓_渭$ by analyzing an $e^+e^-$ annihilation data sample of $7.9~\mathrm{fb}^{-1}$ collected at the center-of-mass energy of 3.773 GeV with the BESIII detector. The absolute branching fraction of $D^0\to K^-蟺^0渭^{+}谓_渭$ is measured for the first time to be $(0.729 \pm 0.014_{\rm stat} \pm 0.011_{\rm syst})\%$. Based on an a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10877v3-abstract-full').style.display = 'inline'; document.getElementById('2403.10877v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.10877v3-abstract-full" style="display: none;"> We report a first study of the semileptonic decay $D^0\rightarrow K^-蟺^0渭^{+}谓_渭$ by analyzing an $e^+e^-$ annihilation data sample of $7.9~\mathrm{fb}^{-1}$ collected at the center-of-mass energy of 3.773 GeV with the BESIII detector. The absolute branching fraction of $D^0\to K^-蟺^0渭^{+}谓_渭$ is measured for the first time to be $(0.729 \pm 0.014_{\rm stat} \pm 0.011_{\rm syst})\%$. Based on an amplitude analysis, the $S\text{-}{\rm wave}$ contribution is determined to be $(5.76 \pm 0.35_{\rm stat} \pm 0.29_{\rm syst})\%$ of the total decay rate in addition to the dominated $K^{*}(892)^-$ component. The branching fraction of $D^0\to K^{*}(892)^-渭^+谓_渭$ is given to be $(2.062 \pm 0.039_{\rm stat} \pm 0.032_{\rm syst})\%$, which improves the precision of the world average by a factor of 5. Combining with the world average of ${\mathcal B}(D^0\to K^{*}(892)^-e^+谓_e)$, the ratio of the branching fractions obtained is $\frac{{\mathcal B}(D^0\to K^{*}(892)^-渭^+谓_渭)}{{\mathcal B}(D^0\to K^{*}(892)^-e^+谓_e)} = 0.96\pm0.08$, in agreement with lepton flavor universality. Furthermore, assuming single-pole dominance parameterization, the most precise hadronic form factor ratios for $D^0\to K^{*}(892)^{-} 渭^+谓_渭$ are extracted to be $r_{V}=V(0)/A_1(0)=1.37 \pm 0.09_{\rm stat} \pm 0.03_{\rm syst}$ and $r_{2}=A_2(0)/A_1(0)=0.76 \pm 0.06_{\rm stat} \pm 0.02_{\rm syst}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10877v3-abstract-full').style.display = 'none'; document.getElementById('2403.10877v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 134, 011803 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07522">arXiv:2403.07522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.07522">pdf</a>, <a href="https://arxiv.org/format/2403.07522">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Holographic spin alignment for vector mesons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Sheng%2C+X">Xin-Li Sheng</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yan-Qing Zhao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+S">Si-Wen Li</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Becattini%2C+F">Francesco Becattini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hou%2C+D">Defu Hou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07522v1-abstract-short" style="display: inline;"> We develop a general framework for studying the spin alignment $蟻_{00}$ for flavorless vector mesons by using the gauge/gravity duality. Focusing on the dilepton production through vector meson decay, we derive the relation between production rates at each spin channel and meson&#39;s spectral function, which can be evaluated by holographic models for a strongly coupled system. As examples, we study&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07522v1-abstract-full').style.display = 'inline'; document.getElementById('2403.07522v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07522v1-abstract-full" style="display: none;"> We develop a general framework for studying the spin alignment $蟻_{00}$ for flavorless vector mesons by using the gauge/gravity duality. Focusing on the dilepton production through vector meson decay, we derive the relation between production rates at each spin channel and meson&#39;s spectral function, which can be evaluated by holographic models for a strongly coupled system. As examples, we study $蟻_{00}$ for $J/蠄$ and $蠁$ mesons, induced by the relative motion to a thermal background, within the soft-wall model. We show that $蟻_{00}$ in the helicity frame for $J/蠄$ and $蠁$ mesons have positive and negative deviations from 1/3 at $T=150$ MeV, respectively, which consequently leads to different properties for their global spin alignments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07522v1-abstract-full').style.display = 'none'; document.getElementById('2403.07522v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07468">arXiv:2403.07468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.07468">pdf</a>, <a href="https://arxiv.org/format/2403.07468">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Holographic spin alignment of $J/蠄$ meson in magnetized plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yan-Qing Zhao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sheng%2C+X">Xin-Li Sheng</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+S">Si-Wen Li</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hou%2C+D">Defu Hou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07468v2-abstract-short" style="display: inline;"> We study the mass spectra and spin alignment of vector meson $J/蠄$ in a thermal magnetized background using a generalized theoretical framework based on gauge/gravity duality. Utilizing a soft wall model for the QGP background and a massive vector field for the $J/蠄$ meson, we delve into the meson&#39;s spectral function and spin parameters $(位_胃,\, 位_\varphi,\,位_{胃\varphi})$ for different cases, asse&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07468v2-abstract-full').style.display = 'inline'; document.getElementById('2403.07468v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07468v2-abstract-full" style="display: none;"> We study the mass spectra and spin alignment of vector meson $J/蠄$ in a thermal magnetized background using a generalized theoretical framework based on gauge/gravity duality. Utilizing a soft wall model for the QGP background and a massive vector field for the $J/蠄$ meson, we delve into the meson&#39;s spectral function and spin parameters $(位_胃,\, 位_\varphi,\,位_{胃\varphi})$ for different cases, assessing their response to variations in magnetic field strength, momentum, and temperature. We initially examine scenarios where a meson&#39;s momentum aligns parallel to the magnetic field in helicity frame. Our results reveal a magnetic field-induced positive $位_胃^\text{H}$ for low meson momentum, transitioning to negative with increased momentum. As a comparison, we also study the case of momentum perpendicular to the magnetic field and find the direction of magnetic field does not affect the qualitative behavior for the $eB$-dependence of $位_胃^\text{H}$. Moreover, we apply our model to real heavy-ion collisions for three different spin quantization directions. Further comparisons with experimental data show qualitative agreement for spin parameters $位_胃$ and $位_\varphi$ in the helicity and Collins-Soper frames. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07468v2-abstract-full').style.display = 'none'; document.getElementById('2403.07468v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05282">arXiv:2403.05282</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.05282">pdf</a>, <a href="https://arxiv.org/format/2403.05282">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Proton Helicity GPDs from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Miller%2C+J">Joshua Miller</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bhattacharya%2C+S">Shohini Bhattacharya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cichy%2C+K">Krzysztof Cichy</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gao%2C+X">Xiang Gao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Metz%2C+A">Andreas Metz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05282v1-abstract-short" style="display: inline;"> First lattice QCD calculations of $x$-dependent GPD have been performed in the (symmetric) Breit frame, where the momentum transfer is evenly divided between the initial and final hadron states. However, employing the asymmetric frame, we are able to obtain proton GPDs for multiple momentum transfers in a computationally efficient setup. In these proceedings, we focus on the helicity twist-2 GPD a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05282v1-abstract-full').style.display = 'inline'; document.getElementById('2403.05282v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05282v1-abstract-full" style="display: none;"> First lattice QCD calculations of $x$-dependent GPD have been performed in the (symmetric) Breit frame, where the momentum transfer is evenly divided between the initial and final hadron states. However, employing the asymmetric frame, we are able to obtain proton GPDs for multiple momentum transfers in a computationally efficient setup. In these proceedings, we focus on the helicity twist-2 GPD at zero skewness that gives access to the $\widetilde{H}$ GPD. We will cover the implementation of the asymmetric frame, its comparison to the Breit frame, and the dependence of the GPD on the squared four-momentum transfer, $-t$. The calculation is performed on an $N_f = 2+1+1$ ensemble of twisted mass fermions with a clover improvement. The mass of the pion for this ensemble is roughly 260 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05282v1-abstract-full').style.display = 'none'; document.getElementById('2403.05282v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, Contribution to The 40th International Symposium on Lattice Field Theory (Lattice 2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05011">arXiv:2403.05011</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.05011">pdf</a>, <a href="https://arxiv.org/ps/2403.05011">ps</a>, <a href="https://arxiv.org/format/2403.05011">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Decay-angular-distribution correlated $CP$ violation in heavy hadron cascade decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yu-Jie Zhao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+Z">Zhen-Hua Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Guo%2C+X">Xin-Heng Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05011v1-abstract-short" style="display: inline;"> $C\!P$ violation in baryon decay processes is still undiscovered to date. We present a general analysis of the decay-angular-distributions and the corresponding $C\!P$ asymmetries in cascade decays of the type $\mathbb{H}\to R(\to ab) c$, where $\mathbb{H}$ is a heavy hadron that decays through weak interactions $\mathbb{H}\to R c$, and the resonance $R$ decays strongly via $R\to ab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05011v1-abstract-full').style.display = 'inline'; document.getElementById('2403.05011v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05011v1-abstract-full" style="display: none;"> $C\!P$ violation in baryon decay processes is still undiscovered to date. We present a general analysis of the decay-angular-distributions and the corresponding $C\!P$ asymmetries in cascade decays of the type $\mathbb{H}\to R(\to ab) c$, where $\mathbb{H}$ is a heavy hadron that decays through weak interactions $\mathbb{H}\to R c$, and the resonance $R$ decays strongly via $R\to ab$. Based on the analysis, we propose to search for $C\!P$ violation in the decay-angular-distributions in the cascade decay processes ${\mathbb{B}}\to \mathcal{B} M$, with $\mathcal{B}$ or $M$ subsequently decaying through strong interactions, where ${\mathbb{B}}$ is the mother baryon, $\mathcal{B}$ or $M$ are the daughter baryon and meson, respectively, and $M$ has to be spin-nonzero. We also present some typical decay channels in which the search for such kinds of $C\!P$ asymmetries can be performed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05011v1-abstract-full').style.display = 'none'; document.getElementById('2403.05011v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03004">arXiv:2403.03004</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03004">pdf</a>, <a href="https://arxiv.org/format/2403.03004">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultralight vector dark matter search using data from the KAGRA O3GK run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adamcewicz%2C+C">C. Adamcewicz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a> , et al. (1778 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03004v1-abstract-short" style="display: inline;"> Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we prese&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03004v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03004v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03004v1-abstract-full" style="display: none;"> Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for $U(1)_{B-L}$ gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the $U(1)_{B-L}$ gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03004v1-abstract-full').style.display = 'none'; document.getElementById('2403.03004v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2300250 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00664">arXiv:2403.00664</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00664">pdf</a>, <a href="https://arxiv.org/format/2403.00664">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2024.138617">10.1016/j.physletb.2024.138617 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonperturbative Collins-Soper Kernel from Chiral Quarks with Physical Masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Bollweg%2C+D">Dennis Bollweg</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gao%2C+X">Xiang Gao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00664v2-abstract-short" style="display: inline;"> We present a lattice QCD calculation of the rapidity anomalous dimension of quark transverse-momentum-dependent distributions, i.e., the Collins-Soper (CS) kernel, up to transverse separations of about 1 fm. This unitary lattice calculation is conducted, for the first time, employing the chiral-symmetry-preserving domain wall fermion discretization and physical values of light and strange quark ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00664v2-abstract-full').style.display = 'inline'; document.getElementById('2403.00664v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00664v2-abstract-full" style="display: none;"> We present a lattice QCD calculation of the rapidity anomalous dimension of quark transverse-momentum-dependent distributions, i.e., the Collins-Soper (CS) kernel, up to transverse separations of about 1 fm. This unitary lattice calculation is conducted, for the first time, employing the chiral-symmetry-preserving domain wall fermion discretization and physical values of light and strange quark masses. The CS kernel is extracted from the ratios of pion quasi-transverse-momentum-dependent wave functions (quasi-TMDWFs) at next-to-leading logarithmic perturbative accuracy. Also for the first time, we utilize the recently proposed Coulomb-gauge-fixed quasi-TMDWF correlator without a Wilson line. We observe significantly slower signal decay with increasing quark separations compared to the established gauge-invariant method with a staple-shaped Wilson line. This enables us to determine the CS kernel at large nonperturbative transverse separations and find its near-linear dependence on the latter. Our result is consistent with the recent lattice calculation using gauge-invariant quasi-TMDWFs, and agrees with various recent phenomenological parametrizations of experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00664v2-abstract-full').style.display = 'none'; document.getElementById('2403.00664v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures; published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Lett.B 852 (2024) 138617 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.06725">arXiv:2402.06725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.06725">pdf</a>, <a href="https://arxiv.org/format/2402.06725">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Determination of the Collins-Soper kernel from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Avkhadiev%2C+A">Artur Avkhadiev</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.06725v1-abstract-short" style="display: inline;"> This work presents a determination of the quark Collins-Soper kernel, which relates transverse-momentum-dependent parton distributions (TMDs) at different rapidity scales, using lattice quantum chromodynamics (QCD). This is the first such determination with systematic control of quark mass, operator mixing, and discretization effects. Next-to-next-to-leading logarithmic matching is used to match l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06725v1-abstract-full').style.display = 'inline'; document.getElementById('2402.06725v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.06725v1-abstract-full" style="display: none;"> This work presents a determination of the quark Collins-Soper kernel, which relates transverse-momentum-dependent parton distributions (TMDs) at different rapidity scales, using lattice quantum chromodynamics (QCD). This is the first such determination with systematic control of quark mass, operator mixing, and discretization effects. Next-to-next-to-leading logarithmic matching is used to match lattice-calculable distributions to the corresponding TMDs. The continuum-extrapolated lattice QCD results are consistent with several recent phenomenological parameterizations of the Collins-Soper kernel and are precise enough to disfavor other parameterizations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06725v1-abstract-full').style.display = 'none'; document.getElementById('2402.06725v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0037-T, MIT-CTP/5677 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02781">arXiv:2401.02781</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.02781">pdf</a>, <a href="https://arxiv.org/format/2401.02781">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.261903">10.1103/PhysRevLett.132.261903 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simultaneous Determination of Fragmentation Functions and Test on Momentum Sum Rule </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Gao%2C+J">Jun Gao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+C">ChongYang Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shen%2C+X">XiaoMin Shen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Xing%2C+H">Hongxi Xing</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yuxiang Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02781v2-abstract-short" style="display: inline;"> We perform a simultaneous global analysis of hadron fragmentation functions (FFs) to various charged hadrons at next-to-leading order in QCD. The world data set includes results from electron-positron single-inclusive annihilation, semi-inclusive deep inelastic scattering, as well as proton-proton collisions including jet fragmentation measurements which lead to strong constraints on the gluon fra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02781v2-abstract-full').style.display = 'inline'; document.getElementById('2401.02781v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02781v2-abstract-full" style="display: none;"> We perform a simultaneous global analysis of hadron fragmentation functions (FFs) to various charged hadrons at next-to-leading order in QCD. The world data set includes results from electron-positron single-inclusive annihilation, semi-inclusive deep inelastic scattering, as well as proton-proton collisions including jet fragmentation measurements which lead to strong constraints on the gluon fragmentations. By carefully selecting hadron kinematics to ensure the validity of QCD factorization and the convergence of perturbative calculations, we achieve a satisfying best fit with $蠂^2/$d.o.f.$=0.90$, in the simultaneous extraction of FFs for light charged hadrons ($蟺^{\pm}$, $K^{\pm}$ and $p/\bar{p}$). The total momentum of $u$, $d$ quarks and gluon carried by light charged hadrons have been determined precisely. That urges future precision measurements on fragmentation to neutral hadrons, which are crucial for the test of fundamental sum rules in QCD fragmentation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02781v2-abstract-full').style.display = 'none'; document.getElementById('2401.02781v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published version; link to FF grids provided</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett. 132 (2024) 26, 261903 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.13345">arXiv:2312.13345</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.13345">pdf</a>, <a href="https://arxiv.org/format/2312.13345">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP07(2024)136">10.1007/JHEP07(2024)136 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Blowing in the Dark Matter Wind </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Day%2C+H">Hannah Day</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+D">Da Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Luty%2C+M+A">Markus A. Luty</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yue Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.13345v2-abstract-short" style="display: inline;"> Interactions between dark matter and ordinary matter will transfer momentum, and therefore give rise to a force on ordinary matter due to the dark matter `wind.&#39; We show that this force can be maximal in a realistic model of dark matter, meaning that an order-1 fraction of the dark matter momentum incident on a target of ordinary matter is reflected. The model consists of light (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13345v2-abstract-full').style.display = 'inline'; document.getElementById('2312.13345v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.13345v2-abstract-full" style="display: none;"> Interactions between dark matter and ordinary matter will transfer momentum, and therefore give rise to a force on ordinary matter due to the dark matter `wind.&#39; We show that this force can be maximal in a realistic model of dark matter, meaning that an order-1 fraction of the dark matter momentum incident on a target of ordinary matter is reflected. The model consists of light ($m_蠁\lsim \text{eV}$) scalar dark matter with an effective interaction $蠁^2 \bar蠄蠄$, where $蠄$ is an electron or nucleon field. If the coupling is repulsive and sufficiently strong, the field $蠁$ is excluded from ordinary matter, analogous to the Meissner effect for photons in a superconductor. We show that there is a large region of parameter space that is compatible with existing constraints, where the force is large enough to be detected by existing force probes, such as satellite tests of the equivalence principle and torsion balance experiments. However, shielding of the dark matter by ordinary matter prevents existing experiments from being sensitive to the dark matter force. We show that precise measurements of spacecraft trajectories proposed to test long distance modifications of gravity are sensitive to this force for a wide range of parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13345v2-abstract-full').style.display = 'none'; document.getElementById('2312.13345v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 5 figures, JHEP publication version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 07 (2024) 136 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04315">arXiv:2312.04315</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.04315">pdf</a>, <a href="https://arxiv.org/format/2312.04315">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The lattice extraction of the TMD soft function using the auxiliary field representation of the Wilson line </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Morris%2C+W">Wayne Morris</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04315v3-abstract-short" style="display: inline;"> The TMD soft function can be obtained by formulating the Wilson line in terms of auxiliary 1-dimensional fermion fields on the lattice. In this formulation, the directional vector of the auxiliary field in Euclidean space has the form $\tilde n = (in^0, \vec 0_\perp, n^3)$, where the time component is purely imaginary. The components of these complex directional vectors in the Euclidean space can&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04315v3-abstract-full').style.display = 'inline'; document.getElementById('2312.04315v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04315v3-abstract-full" style="display: none;"> The TMD soft function can be obtained by formulating the Wilson line in terms of auxiliary 1-dimensional fermion fields on the lattice. In this formulation, the directional vector of the auxiliary field in Euclidean space has the form $\tilde n = (in^0, \vec 0_\perp, n^3)$, where the time component is purely imaginary. The components of these complex directional vectors in the Euclidean space can be mapped directly to the rapidities of the Minkowski space soft function. We present the results of the one-loop calculation of the Euclidean space analog to the soft function using these complex directional vectors. As a result, we show that the calculation is valid only when the directional vectors obey the relation: $|r| = |n^3/n^0| &gt; 1$, and that this result corresponds to a computation in Minkowski space with space-like directed Wilson lines. Finally, we show that a lattice calculable object can be constructed that has the desired properties of the soft function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04315v3-abstract-full').style.display = 'none'; document.getElementById('2312.04315v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The 40th International Symposium on Lattice Field Theory (Lattice 2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01391">arXiv:2311.01391</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.01391">pdf</a>, <a href="https://arxiv.org/ps/2311.01391">ps</a>, <a href="https://arxiv.org/format/2311.01391">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Transverse Momentum Distributions from Lattice QCD without Wilson Lines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01391v3-abstract-short" style="display: inline;"> The transverse-momentum-dependent distributions (TMDs), which are defined by gauge-invariant 3D parton correlators with staple-shaped lightlike Wilson lines, can be calculated from quark and gluon correlators fixed in the Coulomb gauge on a Euclidean lattice. These quantities can be expressed gauge-invariantly as the correlators of Coulomb-gauge-dressed fields, which reduce to the standard TMD cor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01391v3-abstract-full').style.display = 'inline'; document.getElementById('2311.01391v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01391v3-abstract-full" style="display: none;"> The transverse-momentum-dependent distributions (TMDs), which are defined by gauge-invariant 3D parton correlators with staple-shaped lightlike Wilson lines, can be calculated from quark and gluon correlators fixed in the Coulomb gauge on a Euclidean lattice. These quantities can be expressed gauge-invariantly as the correlators of Coulomb-gauge-dressed fields, which reduce to the standard TMD correlators under principal-value prescription in the infinite boost limit. In the framework of Large-Momentum Effective Theory, a quasi-TMD defined from such correlators in a large-momentum hadron state can be matched to the TMD via a factorization formula, whose exact form is derived using Soft Collinear Effective Theory and verified at one-loop order. Compared to the currently used gauge-invariant correlators, this new method can substantially improve statistical precision and simplify renormalization for the time-reversal-even TMDs, which will greatly enhance the predicative power of lattice QCD in the non-perturbative region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01391v3-abstract-full').style.display = 'none'; document.getElementById('2311.01391v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages and the appendix. Accepted by Physical Review Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01322">arXiv:2311.01322</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.01322">pdf</a>, <a href="https://arxiv.org/format/2311.01322">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD Constraints on the Fourth Mellin Moment of the Pion Light Cone Distribution Amplitude using the HOPE method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Grebe%2C+A+V">Anthony V. Grebe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01322v1-abstract-short" style="display: inline;"> The light-cone distribution amplitude (LCDA) of the pion contains information about the parton momentum carried by the quarks and is an important theoretical input for various predictions of exclusive processes at high energy, including the pion electromagnetic form factor. Progress towards constraining the fourth Mellin moment of the LCDA using the heavy-quark operator product expansion (HOPE) me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01322v1-abstract-full').style.display = 'inline'; document.getElementById('2311.01322v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01322v1-abstract-full" style="display: none;"> The light-cone distribution amplitude (LCDA) of the pion contains information about the parton momentum carried by the quarks and is an important theoretical input for various predictions of exclusive processes at high energy, including the pion electromagnetic form factor. Progress towards constraining the fourth Mellin moment of the LCDA using the heavy-quark operator product expansion (HOPE) method is presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01322v1-abstract-full').style.display = 'none'; document.getElementById('2311.01322v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, proceedings to talk presented at the 40th International Symposium on Lattice Field Theory, July 31st - August 4th 2023, Fermi National Accelerator Laboratory, Batavia, Illinois, USA. arXiv admin note: text overlap with arXiv:2211.17009</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5645, FERMILAB-CONF-23-659-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.19047">arXiv:2310.19047</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.19047">pdf</a>, <a href="https://arxiv.org/format/2310.19047">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Transversity PDFs of the proton from lattice QCD with physical quark masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Gao%2C+X">Xiang Gao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hanlon%2C+A+D">Andrew D. Hanlon</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shi%2C+Q">Qi Shi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.19047v2-abstract-short" style="display: inline;"> We present a lattice QCD calculation of the transversity isovector- and isoscalar-quark parton distribution functions (PDFs) of the proton utilizing a perturbative matching at next-to-leading-order (NLO) accuracy. Additionally, we determine the isovector and isoscalar tensor charges for the proton. In both calculations, the disconnected contributions to the isoscalar matrix elements have been igno&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19047v2-abstract-full').style.display = 'inline'; document.getElementById('2310.19047v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.19047v2-abstract-full" style="display: none;"> We present a lattice QCD calculation of the transversity isovector- and isoscalar-quark parton distribution functions (PDFs) of the proton utilizing a perturbative matching at next-to-leading-order (NLO) accuracy. Additionally, we determine the isovector and isoscalar tensor charges for the proton. In both calculations, the disconnected contributions to the isoscalar matrix elements have been ignored. The calculations are performed using a single ensemble of $N_f = 2 +1$ highly-improved staggered quarks simulated with physical-mass quarks and a lattice spacing of $a = 0.076$ fm. The Wilson-clover action, with physical quark masses and smeared gauge links obtained from one iteration of hypercubic smearing, is used in the valence sector. Using the NLO operator product expansion, we extract the lowest four to six Mellin moments and the PDFs via a neural network from the matrix elements in the pseudo-PDF approach. In addition, we calculate the PDFs in the quasi-PDF approach with hybrid-scheme renormalization and the recently developed leading-renormalon resummation technique, at NLO with the resummation of leading small-$x$ logarithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19047v2-abstract-full').style.display = 'none'; document.getElementById('2310.19047v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 22 figures, and 2 tables; version accepted for publication in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15532">arXiv:2310.15532</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.15532">pdf</a>, <a href="https://arxiv.org/format/2310.15532">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Role of sea quarks in the nucleon transverse spin </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Zeng%2C+C">Chunhua Zeng</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dong%2C+H">Hongxin Dong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+T">Tianbo Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yuxiang Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15532v1-abstract-short" style="display: inline;"> We present a phenomenological extraction of transversity distribution functions and Collins fragmentation functions by simultaneously fitting to semi-inclusive deep inelastic scattering and electron-positron annihilation data. The analysis is performed within the transverse momentum dependent factorization formalism, and sea quark transversity distributions are taken into account for the first tim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15532v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15532v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15532v1-abstract-full" style="display: none;"> We present a phenomenological extraction of transversity distribution functions and Collins fragmentation functions by simultaneously fitting to semi-inclusive deep inelastic scattering and electron-positron annihilation data. The analysis is performed within the transverse momentum dependent factorization formalism, and sea quark transversity distributions are taken into account for the first time. We find the $\bar u$ quark favors a negative transversity distribution while that of the $\bar d$ quark is consistent with zero according to the current accuracy. In addition, based on a combined analysis of world data and simulated data, we quantitatively demonstrate the impact of the proposed Electron-ion Collider in China on precise determinations of the transversity distributions, especially for sea quarks, and the Collins fragmentation functions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15532v1-abstract-full').style.display = 'none'; document.getElementById('2310.15532v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13432">arXiv:2310.13432</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.13432">pdf</a>, <a href="https://arxiv.org/format/2310.13432">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.086015">10.1103/PhysRevD.109.086015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase structure and critical phenomena in 2-flavor QCD by holography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yan-Qing Zhao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=He%2C+S">Song He</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hou%2C+D">Defu Hou</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+L">Li Li</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+Z">Zhibin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13432v3-abstract-short" style="display: inline;"> We explore the phase structure of Quantum Chromodynamics (QCD) with two dynamical quark flavors at finite temperature and baryon chemical potential, employing the non-perturbative gauge/gravity duality approach. Our gravitational model is tailored to align with state-of-the-art lattice data regarding the thermal properties of multi-flavor QCD. Following a rigorous parameter calibration to match eq&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13432v3-abstract-full').style.display = 'inline'; document.getElementById('2310.13432v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13432v3-abstract-full" style="display: none;"> We explore the phase structure of Quantum Chromodynamics (QCD) with two dynamical quark flavors at finite temperature and baryon chemical potential, employing the non-perturbative gauge/gravity duality approach. Our gravitational model is tailored to align with state-of-the-art lattice data regarding the thermal properties of multi-flavor QCD. Following a rigorous parameter calibration to match equations of state and the QCD trace anomaly at zero chemical potential derived from cutting-edge lattice QCD simulations, we investigate thermodynamic quantities and order parameters. We predict the location of the critical endpoint (CEP) at $(渭_{\text{CEP}}, T_{\text{CEP}})=(219,182)$ MeV at which a line of first-order phase transitions terminate. We compute critical exponents associated with the CEP and find that they almost coincide with the critical exponents of the quantum 3D Ising model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13432v3-abstract-full').style.display = 'none'; document.getElementById('2310.13432v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13114">arXiv:2310.13114</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.13114">pdf</a>, <a href="https://arxiv.org/format/2310.13114">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Generalized Parton Distributions from Lattice QCD with Asymmetric Momentum Transfer: Axial-vector case </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Bhattacharya%2C+S">Shohini Bhattacharya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cichy%2C+K">Krzysztof Cichy</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dodson%2C+J">Jack Dodson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gao%2C+X">Xiang Gao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Metz%2C+A">Andreas Metz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Miller%2C+J">Joshua Miller</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13114v2-abstract-short" style="display: inline;"> Recently, we made significant advancements in improving the computational efficiency of lattice QCD calculations for Generalized Parton Distributions (GPDs). This progress was achieved by adopting calculations of matrix elements in asymmetric frames, deviating from the computationally-expensive symmetric frame typically used, and allowing freedom in the choice for the distribution of the momentum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13114v2-abstract-full').style.display = 'inline'; document.getElementById('2310.13114v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13114v2-abstract-full" style="display: none;"> Recently, we made significant advancements in improving the computational efficiency of lattice QCD calculations for Generalized Parton Distributions (GPDs). This progress was achieved by adopting calculations of matrix elements in asymmetric frames, deviating from the computationally-expensive symmetric frame typically used, and allowing freedom in the choice for the distribution of the momentum transfer between the initial and final states. A crucial aspect of this approach involves the adoption of a Lorentz covariant parameterization for the matrix elements, introducing Lorentz-invariant amplitudes. This approach also allows us to propose an alternative definition of quasi-GPDs, ensuring frame independence and potentially reduce power corrections in matching to light-cone GPDs. In our previous work, we presented lattice QCD results for twist-2 unpolarized GPDs ($H$ and $E$) of quarks obtained from calculations performed in asymmetric frames at zero skewness. Building upon this work, we now introduce a novel Lorentz covariant parameterization for the axial-vector matrix elements. We employ this parameterization to compute the axial-vector GPD $\widetilde{H}$ at zero skewness, using an $N_f=2+1+1$ ensemble of twisted mass fermions with clover improvement. The light-quark masses employed in our calculations correspond to a pion mass of approximately 260 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13114v2-abstract-full').style.display = 'none'; document.getElementById('2310.13114v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 20 figures. Version accepted for publication in Physical Review D</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.15351">arXiv:2309.15351</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.15351">pdf</a>, <a href="https://arxiv.org/format/2309.15351">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Resonant contribution of the three-body decay process $\bar B_{s}\rightarrow K^{+}K^{-} P$ in perturbation QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=L%C3%BC%2C+G">Gang L眉</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+C+C">Chang Chang Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+Y">Yan-Lin Zhao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+L">Li-Ying Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.15351v1-abstract-short" style="display: inline;"> We investigate the CP violation in the decay process $\bar B_{s} \rightarrow 蠁(蟻,蠅) P \rightarrow K^{+}K^{-}P$ by considering the interference effects of $蠁\rightarrow K^{+}K^{-}$, $蟻\rightarrow K^{+}K^{-}$ and $蠅\rightarrow K^{+}K^{-}$ within the framework of perturbative QCD method (P refers to $蟺$, K, $畏$ and $畏&#39;$ pseudoscalar mesons, respectively). We analyse the mixings of $蠁-蟻^{0}$, $蠁-蠅$ an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15351v1-abstract-full').style.display = 'inline'; document.getElementById('2309.15351v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.15351v1-abstract-full" style="display: none;"> We investigate the CP violation in the decay process $\bar B_{s} \rightarrow 蠁(蟻,蠅) P \rightarrow K^{+}K^{-}P$ by considering the interference effects of $蠁\rightarrow K^{+}K^{-}$, $蟻\rightarrow K^{+}K^{-}$ and $蠅\rightarrow K^{+}K^{-}$ within the framework of perturbative QCD method (P refers to $蟺$, K, $畏$ and $畏&#39;$ pseudoscalar mesons, respectively). We analyse the mixings of $蠁-蟻^{0}$, $蠁-蠅$ and $蠅-蟻^{0}$ and provide the amplitudes of the quasi-two-body decay processes. The CP violation for $\bar B_{s} \rightarrow K^{+}K^{-} P$ decay process is obvious at the ranges of the three vector mesons interferences. Meanwhile, the localised CP violation can be found for comparing with the experiment results from three-body decay process at the LHC in the near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15351v1-abstract-full').style.display = 'none'; document.getElementById('2309.15351v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhao%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+Y&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10