CINXE.COM

Search results for: fine motor control

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fine motor control</title> <meta name="description" content="Search results for: fine motor control"> <meta name="keywords" content="fine motor control"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fine motor control" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fine motor control"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12228</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fine motor control</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12228</span> Investigating the Effect of Executive Functions on Young Children’s Drawing of Familiar and Unfamiliar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reshaa%20Alruwaili">Reshaa Alruwaili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was inspired by previous studies with young children that found (a) that they need both inhibitory control and working memory when drawing an unfamiliar subject (e.g., animals) by adapting their schema of the human figure and (b) that when drawing something familiar (e.g., a person) they use inhibitory control mediated through fine motor control to execute their drawing. This study, therefore, systematically investigated whether direct effects for both working memory and inhibitory control and/or effects mediated through fine motor control existed when drawing both familiar and unfamiliar subjects. Participants were 95 children (41-66 months old) required to draw both a man and a dog, scored respectively for how representational they were and for differences from a human figure. Regression and mediation analyses showed that inhibitory control alone predicted drawing a recognizable man while working memory alone predicted drawing a dog that was not human-like when fine motor control, age, and gender were controlled. Contrasting with some previous studies, these results suggest that the roles of working memory and inhibitory control are sensitive to the familiarity of the drawing task and are not necessarily mediated through fine motor control. Implications for research on drawing development are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=child%20drawing" title="child drawing">child drawing</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitory%20control" title=" inhibitory control"> inhibitory control</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory" title=" working memory"> working memory</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20motor%20control" title=" fine motor control"> fine motor control</a>, <a href="https://publications.waset.org/abstracts/search?q=mediation" title=" mediation"> mediation</a>, <a href="https://publications.waset.org/abstracts/search?q=familiar%20and%20unfamiliar%20subjects" title=" familiar and unfamiliar subjects"> familiar and unfamiliar subjects</a> </p> <a href="https://publications.waset.org/abstracts/145793/investigating-the-effect-of-executive-functions-on-young-childrens-drawing-of-familiar-and-unfamiliar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12227</span> Fingers Exergames to Improve Fine Motor Skill in Autistic Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zulhisyam%20Salleh">Zulhisyam Salleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Fizatul%20Aini%20Patakor"> Fizatul Aini Patakor</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosilah%20Wahab"> Rosilah Wahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Awangku%20Khairul%20Ridzwan%20Awangku%20Jaya"> Awangku Khairul Ridzwan Awangku Jaya </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autism is a lifelong developmental disability that affects how people perceive the world and interact with others. Most of these children have difficulty with fine motor skills which typically struggle with handwriting and fine activities in their routine life such as getting dressed and controlled use of the everyday tool. Because fine motor activities encompass so many routine functions, a fine motor delay can have a measurable negative impact on a person&#39;s ability to handle daily practical tasks. This project proposed a simple fine motor exercise aid plus the game (exergame) for autistic children who discover from fine motor difficulties. The proposed exergame will be blinking randomly and user needs to bend their finger accordingly. It will notify the user, whether they bend the right finger or not. The system is realized using Arduino, which is programmed to control all the operated circuit. The feasibility studies with six autistic children were conducted and found the child interested in using exergame and could quickly get used to it. This study provides important guidance for future investigations of the exergame potential for accessing and improving fine motor skill among autistic children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism%20children" title="autism children">autism children</a>, <a href="https://publications.waset.org/abstracts/search?q=Arduino%20project" title=" Arduino project"> Arduino project</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20motor%20skill" title=" fine motor skill"> fine motor skill</a>, <a href="https://publications.waset.org/abstracts/search?q=finger%20exergame" title=" finger exergame"> finger exergame</a> </p> <a href="https://publications.waset.org/abstracts/109405/fingers-exergames-to-improve-fine-motor-skill-in-autistic-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12226</span> Development a Fine Motor and Executive Function Assessment (FiM&amp;EF) for Assessing School Aged Children with Attention Deficit/Hyperactivity Disorder (AD/HD)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Negar%20Miri-Lavasani">Negar Miri-Lavasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Children with Attention-deficit/hyperactivity disorder (ADHD) show fine motor skills difficulties, and it is controversial whether this difficulty is based on problems in their fine motor skills or their executive function impairments. Objectives of Study: The Fine Motor and Executive Function assessment tool (FiM&EF) was developed to answer the question, ‘Do the fine motor skill deficits in children with ADHD come from their fine motor problems or is it caused by their executive function problems?’. This paper describes the development of a new assessment of Fine Motor and Executive Function (FiM &EF) needed by primary school students with ADHD aged 6-12 years with ADHD. Methods: A study on the content validity established through a survey of a panel of nine experts is explained in detail. Findings: Most the experts agreed such an assessment was needed and two items were deleted as a result of experts’ feedback. Relevance to Clinical Practice: Distinguishing the main reason of fine motor problem in these children could help the clinician for their therapy plans. Knowledge on the influence of executive functioning on fine motor ability in selected age children with ADHD would provide a clearer clinical picture of the fine motor capabilities and executive function for these children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=children%20with%20ADHD" title="children with ADHD">children with ADHD</a>, <a href="https://publications.waset.org/abstracts/search?q=executive%20function" title=" executive function"> executive function</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20motor" title=" fine motor"> fine motor</a>, <a href="https://publications.waset.org/abstracts/search?q=test" title=" test"> test</a> </p> <a href="https://publications.waset.org/abstracts/77892/development-a-fine-motor-and-executive-function-assessment-fimef-for-assessing-school-aged-children-with-attention-deficithyperactivity-disorder-adhd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12225</span> The Effect of Hemsball Shooting Techniques on Fine Motor Skill Level of Chidren with Hearing Disabilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meltem%20I%C5%9F%C4%B1k">Meltem Işık</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20G%C3%BCr"> Fatma Gür</a>, <a href="https://publications.waset.org/abstracts/search?q=I%CC%87brahim%20K%C4%B1l%C4%B1%C3%A7"> İbrahim Kılıç</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to explore the effects of hemsball shooting techniques on the fine motor skill level of children with hearing disabilities. A total number of 26 children with hearing disabilities, ages ranging between 7 and 11 and which were equally divided into experimental group and control group participated in the study. In this context, an exercise training program dedicated to hemsball shooting techniques was introduced to the experimental group 3 days a week in one hour sessions for a period of 10 weeks. BOT-2 fine motor skills test which includes three dimensions (fine motor accuracy, fine motor task completion, and dexterity) was selected as the data collection method. Descriptive statistics along with two-factor ANOVA which was focused on repetitive measurements of the differences between pretest and posttest scores of both groups were used in the analysis of the data collected. The results of this study showed that hemsball shooting techniques have a statistically significant effect on the fine motor skill level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hemsball%20shooting%20techniques" title="hemsball shooting techniques">hemsball shooting techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=BOT-2%20test" title=" BOT-2 test"> BOT-2 test</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20motor%20skills" title=" fine motor skills"> fine motor skills</a>, <a href="https://publications.waset.org/abstracts/search?q=hearing%20disabilities" title=" hearing disabilities"> hearing disabilities</a> </p> <a href="https://publications.waset.org/abstracts/73981/the-effect-of-hemsball-shooting-techniques-on-fine-motor-skill-level-of-chidren-with-hearing-disabilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12224</span> Transcranial Magnetic Stimulation as a Potentiator in the Rehabilitation of Fine Motor Skills: A Literature Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Lucia%20Molina">Ana Lucia Molina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Fine motor skills refer to the use of the hands and coordination of the small muscles that control the fingers. A deficiency in fine motor skills is as important as a change in global movements, as fine motor skills directly affect activities of daily living. Fine movements are involved in some functions, such as motor control of the extremities, sensitivity, strength and tonus of the hands. A growing interest in the effects of non-invasive neuromodulation, such as transcranial stimulation technologies, through transcranial magnetic stimulation (TMS), has been observed in the scientific literature, with promising results in fine motor rehabilitation, as it provides modulation of the corresponding cortical activity in the area primary motor skills of the hands in both hemispheres (according to the International System 10-20, corresponding to C3 and C4). Objectives: to carry out a literature review about the effects of TMS on the cortical motor area corresponding to hand motricity. Methodology: This is a bibliographic survey carried out between October 2022 and March 2023 at Pubmed, Google Scholar, Lillacs and Virtual Health Library (BVS), with a national and international database. Some books on neuromodulation were included. Results: 28 articles and 5 books were initially found, and after reading the abstracts, only 14 articles and 3 books were selected, with publication dates between 2008 and 2022, to compose the literature review since it suited the purpose of this study. Conclusion: TMS has shown promising results in the treatment of fine motor rehabilitation, such as improving coordination, muscle strength and range of motion of the hands, being a complementary technique to existing treatments and thus providing more potent results for manual skills in activities of daily living. It is important to emphasize the need for more specific studies on the application of TMS for the treatment of manual disorders, which describe the uniqueness of each movement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transcranial%20magnetic%20stimulation" title="transcranial magnetic stimulation">transcranial magnetic stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20motor%20skills" title=" fine motor skills"> fine motor skills</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20rehabilitation" title=" motor rehabilitation"> motor rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-invasive%20neuromodulation" title=" non-invasive neuromodulation"> non-invasive neuromodulation</a> </p> <a href="https://publications.waset.org/abstracts/170643/transcranial-magnetic-stimulation-as-a-potentiator-in-the-rehabilitation-of-fine-motor-skills-a-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12223</span> Static Balance in the Elderly: Comparison Between Elderly Performing Physical Activity and Fine Motor Coordination Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreia%20%20Guimaraes%20Farnese">Andreia Guimaraes Farnese</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateus%20Fernandes%20Reu%20Urban"> Mateus Fernandes Reu Urban</a>, <a href="https://publications.waset.org/abstracts/search?q=Leandro%20Procopio"> Leandro Procopio</a>, <a href="https://publications.waset.org/abstracts/search?q=Renato%20Zangaro"> Renato Zangaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Regiane%20Albertini"> Regiane Albertini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Senescence changes include postural balance, inferring the risk of falls, and can lead to fractures, bedridden, and the risk of death. Physical activity, e.g., cardiovascular exercises, is notable for improving balance due to brain cell stimulations, but fine coordination exercises also elevate cell brain metabolism. This study aimed to verify whether the elderly person who performs fine motor activity has a balance similar to that of those who practice physical activity. The subjects were divided into three groups according to the activity practice: control group (CG) with seven participants for the sedentary individuals, motor coordination group (MCG) with six participants, and activity practitioner group (PAG) with eight participants. Data comparisons were from the Berg balance scale, Time up and Go test, and stabilometric analysis. Descriptive statistical and ANOVA analyses were performed for data analysis. The results reveal that including fine motor activities can improve the balance of the elderly and indirectly decrease the risk of falls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balance" title="balance">balance</a>, <a href="https://publications.waset.org/abstracts/search?q=barapodometer" title=" barapodometer"> barapodometer</a>, <a href="https://publications.waset.org/abstracts/search?q=coordination" title=" coordination"> coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly" title=" elderly"> elderly</a> </p> <a href="https://publications.waset.org/abstracts/134990/static-balance-in-the-elderly-comparison-between-elderly-performing-physical-activity-and-fine-motor-coordination-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12222</span> Optimal Control of DC Motor Using Linear Quadratic Regulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meetty%20Tomy">Meetty Tomy</a>, <a href="https://publications.waset.org/abstracts/search?q=Arxhana%20G%20Thosar"> Arxhana G Thosar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides the implementation of optimal control for an armature-controlled DC motor. The selection of error weighted Matrix and control weighted matrix in order to implement optimal control theory for improving the dynamic behavior of DC motor is presented. The closed loop performance of Armature controlled DC motor with derived linear optimal controller is then evaluated for the transient operating condition (starting). The result obtained from MATLAB is compared with that of PID controller and simple closed loop response of the motor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title="optimal control">optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20motor" title=" DC motor"> DC motor</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20index" title=" performance index"> performance index</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a> </p> <a href="https://publications.waset.org/abstracts/45943/optimal-control-of-dc-motor-using-linear-quadratic-regulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12221</span> Relationships between Motor Skills and Self-Perceived Athletic Competence in a Sample of Primary School Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristina-Corina%20Ben%C8%9Bea">Cristina-Corina Bențea</a>, <a href="https://publications.waset.org/abstracts/search?q=Teodora-Mihaela%20Iconomescu"> Teodora-Mihaela Iconomescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lauren%C8%9Biu-Gabriel%20Talaghir"> Laurențiu-Gabriel Talaghir</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudiu%20Mereu%C8%9B%C4%83"> Claudiu Mereuță</a>, <a href="https://publications.waset.org/abstracts/search?q=Anamaria%20Berdil%C4%83"> Anamaria Berdilă</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aims to examine the relationships between motor abilities, self-evaluation of athletic competence, and demographic characteristics in a sample of late-childhood participants. Defined as physical elements that enable the movements, motor skills are classified according to movement precision as gross and fine motor skills. Across their development, children enhance their ability to coordinate the limbs to produce different actions. In educational settings, they perform various instructional activities that involve the improvement of their athletic prowess and are taught how to strengthen their gross and fine motor abilities. Also, in relation to their activities, children tend to evaluate themselves differently across the various domains of their life. Starting from childhood, athletic competence is one of the area-specific evaluations of competence that refers to one’s ability to do well at sports, including outdoor games. Method: The sample consisted of fifty-eight primary school children, thirty girls, and twenty-eight boys, with ages between 8-10 years. The Bruininks-Oseretsky test of motor proficiency was used to assess both gross and fine motor skills in eight specific areas (fine motor precision, fine motor integration, manual dexterity, bilateral coordination, balance, running speed and agility, upper-limb coordination, strength). Athletic competence self-perceived was assessed with one of the six subscales of the Self-Perception Profile for Children. Results: Were examined both the relationships between each motor skills scale and subscales and between motor skills and general self-perceived athletic competence. Results indicated correlations between the athletic competence and four motor skills subscales depending on the gender and age of the children. The findings of the study were discussed related to the possibility to improve children's physical proficiency in educational settings according to the level of self-perceived athletic competence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gross%20motor%20skills" title="gross motor skills">gross motor skills</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20motor%20skills" title=" fine motor skills"> fine motor skills</a>, <a href="https://publications.waset.org/abstracts/search?q=athletic%20competence" title=" athletic competence"> athletic competence</a>, <a href="https://publications.waset.org/abstracts/search?q=self-evaluation" title=" self-evaluation"> self-evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a> </p> <a href="https://publications.waset.org/abstracts/146352/relationships-between-motor-skills-and-self-perceived-athletic-competence-in-a-sample-of-primary-school-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12220</span> Improving Fine Motor Skills in the Hands of Children with ASD with Applying the Fine Motor Activities in Montessori Method of Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yeganeh%20Faraji">Yeganeh Faraji</a>, <a href="https://publications.waset.org/abstracts/search?q=Ned%20Faraji"> Ned Faraji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present study is to search for the effects of training on improving fine hand skills in children with autistic spectrum disorder through the case study statistic method. The sample group was selected by the available sampling method and included four participants. The methodology of this research was a single-subject semi-experimental of AB design. The data were gathered by natural observation. In the next stage, the data were recorded on data record sheets and then presented on diagrams. The sample group was evaluated by an assessment which the researcher created based on Lincoln-Oseretsky’ motor development scale in two pre-test and post-test phases. In order to promote fingers’ fine movement, the Montessori method was applied. Collecting and analyzing data which were shown by the data presentation method and diagrams, proved that it had no significant effect on improving fingers’ fine movement. Therefore, based on the current research findings, it is suggested that future researchers can apply various teaching methods and different tests for improving fine hand skills or increasing the period of training. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism%20spectrum%20disorder" title="autism spectrum disorder">autism spectrum disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=Montessori%20method" title=" Montessori method"> Montessori method</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20motor%20skills" title=" fine motor skills"> fine motor skills</a>, <a href="https://publications.waset.org/abstracts/search?q=Lincoln-Oseretsky%20assessment" title=" Lincoln-Oseretsky assessment"> Lincoln-Oseretsky assessment</a> </p> <a href="https://publications.waset.org/abstracts/156539/improving-fine-motor-skills-in-the-hands-of-children-with-asd-with-applying-the-fine-motor-activities-in-montessori-method-of-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12219</span> Comparative Study Performance of the Induction Motor between SMC and NLC Modes Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Oukaci">A. Oukaci</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Toufouti"> R. Toufouti</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Dib"> D. Dib</a>, <a href="https://publications.waset.org/abstracts/search?q=l.%20Atarsia"> l. Atarsia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a multitude of alternative techniques to control the vector control, namely the nonlinear control and sliding mode control. Moreover, the implementation of their control law applied to the high-performance to the induction motor with the objective to improve the tracking control, ensure stability robustness to parameter variations and disturbance rejection. Tests are performed numerical simulations in the Matlab/Simulink interface, the results demonstrate the efficiency and dynamic performance of the proposed strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Induction%20Motor%20%28IM%29" title="Induction Motor (IM)">Induction Motor (IM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Non-linear%20Control%20%28NLC%29" title=" Non-linear Control (NLC)"> Non-linear Control (NLC)</a>, <a href="https://publications.waset.org/abstracts/search?q=Sliding%20Mode%20Control%20%28SMC%29" title=" Sliding Mode Control (SMC)"> Sliding Mode Control (SMC)</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20sliding%20surface" title=" nonlinear sliding surface "> nonlinear sliding surface </a> </p> <a href="https://publications.waset.org/abstracts/19496/comparative-study-performance-of-the-induction-motor-between-smc-and-nlc-modes-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12218</span> Modern Pedagogy Techniques for DC Motor Speed Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar">Rajesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Roopali%20Dogra"> Roopali Dogra</a>, <a href="https://publications.waset.org/abstracts/search?q=Puneet%20Aggarwal"> Puneet Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on a survey conducted for second and third year students of the electrical engineering department at Maharishi Markandeshwar University, India, it was found that around 92% of students felt that it would be better to introduce a virtual environment for laboratory experiments. Hence, a need was felt to perform modern pedagogy techniques for students which consist of a virtual environment using MATLAB/Simulink. In this paper, a virtual environment for the speed control of a DC motor is performed using MATLAB/Simulink. The various speed control methods for the DC motor include the field resistance control method and armature voltage control method. The performance analysis of the DC motor is hence analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DC%20Motor" title="DC Motor">DC Motor</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20control" title=" field control"> field control</a>, <a href="https://publications.waset.org/abstracts/search?q=pedagogy%20techniques" title=" pedagogy techniques"> pedagogy techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20control" title=" speed control"> speed control</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20environment" title=" virtual environment"> virtual environment</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20control" title=" voltage control"> voltage control</a> </p> <a href="https://publications.waset.org/abstracts/73485/modern-pedagogy-techniques-for-dc-motor-speed-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12217</span> PEA Design of the Direct Control for Training Motor Drives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulatif%20Abdulsalam%20Mohamed%20Shaban">Abdulatif Abdulsalam Mohamed Shaban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper states that the art of Procedure Entry Array (PEA) plan with a focus on control system applications. This paper begins with an impression of PEA technology development, followed by an arrangement of design technologies, and the use of programmable description languages and system-level design tools. They allow a practical approach based on a unique model for complete engineering electronics systems. There are three main design rules are implemented in the system. These are algorithm based fine-tuning, modularity, and the control act and the architectural constraints. An overview of contributions and limits of PEAs is also given, followed by a short survey of PEA-based gifted controllers for recent engineering systems. Finally, two complete and timely case studies are presented to illustrate the benefits of a PEA implementation when using the proposed system modelling and devise attitude. These consist of the direct control for training motor drives and the control of a diesel-driven stand-alone generator with the help of logical design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20%28DC%29" title="control (DC)">control (DC)</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20electronics%20systems" title=" engineering electronics systems"> engineering electronics systems</a>, <a href="https://publications.waset.org/abstracts/search?q=training%20motor%20drives" title=" training motor drives"> training motor drives</a>, <a href="https://publications.waset.org/abstracts/search?q=procedure%20entry%20array" title=" procedure entry array "> procedure entry array </a> </p> <a href="https://publications.waset.org/abstracts/19274/pea-design-of-the-direct-control-for-training-motor-drives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12216</span> DSPIC30F6010A Control for 12/8 Switched Reluctance Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhou">Yang Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Hao"> Chen Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma%20Xiaoping"> Ma Xiaoping</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper briefly mentions the micro controller unit, and then goes into details about the exact regulations for SRM. Firstly, it proposes the main driving state control for motor and the importance of the motor position sensor. For different speed, the controller will choice various styles such as voltage chopper control, angle position control and current chopper control for which owns its advantages and disadvantages. Combining the strengths of the three discrepant methods, the main control chip will intelligently select the best performing control depending on the load and speed demand. Then the exact flow diagram is showed in paper. At last, an experimental platform is established to verify the correctness of the proposed theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=switched%20reluctance%20motor" title="switched reluctance motor">switched reluctance motor</a>, <a href="https://publications.waset.org/abstracts/search?q=dspic%20microcontroller" title=" dspic microcontroller"> dspic microcontroller</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20chopper" title=" current chopper"> current chopper</a> </p> <a href="https://publications.waset.org/abstracts/9179/dspic30f6010a-control-for-128-switched-reluctance-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12215</span> A Proposed Inclusive Motor Skill Intervention Programme for Pre-schoolers in Low Resources Areas in Preparation of School Readiness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Van%20der%20Walt">J. Van der Walt</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Plastow"> N. A. Plastow</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Unger"> M. Unger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gross and fine motor skill difficulties among children affect their ability to learn and progress in school. Research indicates that children in low socio-economic areas are at a higher risk of motor skill difficulties, while therapy resources are limited. The Hopscotch motor skill programme is a well-researched accessible in-school intervention developed by occupational and physiotherapists through complex intervention development. The development stage of the complex intervention development model firstly included a prevalence study in a low-resourced area in the West Coast of South Africa, indicating a high prevalence with significant motor skill difficulties among pre-school children at 14.5% with fine motor skill difficulties at 24.6%. A scoping review identifies motor skill interventions for pre-school children and a proposed a framework of fundamental concepts to consider when developing a motor skill intervention. a Delphi-study considered the framework and encouraged collaboration between therapists and educators to make the programme accessible, resource and cost effective, specifically geared towards a rural, low resourced area. The results from the Delphi study, together with the proposed framework from the scoping review was used to develop the Hopscotch programme, adopting a task-shifting approach. The eight-week small-group programme is facilitated by teachers with the support of therapists. The programme aims to improve the motor skills of pre-school aged children with motor skill difficulties to promote academic readiness through obstacle courses, ball skill games and fine motor games and crafts. A randomised controlled trial is planned as a next stage to determine the preliminary effect of the programme on the motor and early academic skills of pre-school children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accesible%20learning" title="accesible learning">accesible learning</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20skill%20intervention" title=" motor skill intervention"> motor skill intervention</a>, <a href="https://publications.waset.org/abstracts/search?q=school%20readiness" title=" school readiness"> school readiness</a>, <a href="https://publications.waset.org/abstracts/search?q=task%20shifting" title=" task shifting"> task shifting</a> </p> <a href="https://publications.waset.org/abstracts/145235/a-proposed-inclusive-motor-skill-intervention-programme-for-pre-schoolers-in-low-resources-areas-in-preparation-of-school-readiness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12214</span> Implementation of a Predictive DTC-SVM of an Induction Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chebaani%20Mohamed">Chebaani Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Gplea%20Amar"> Gplea Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Benchouia%20Mohamed%20Toufik"> Benchouia Mohamed Toufik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Direct torque control is characterized by the merits of fast response, simple structure and strong robustness to the motor parameters variations. This paper proposes the implementation of DTC-SVM of an induction motor drive using Predictive controller. The principle of the method is explained and the system mathematical description is provided. The derived control algorithm is implemented both in the simulation software MatLab/Simulink and on the real induction motor drive with dSPACE control system. Simulated and measured results in steady states and transients are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20motor" title="induction motor">induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=DTC-SVM" title=" DTC-SVM"> DTC-SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20controller" title=" predictive controller"> predictive controller</a>, <a href="https://publications.waset.org/abstracts/search?q=implementation" title=" implementation"> implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=dSPACE" title=" dSPACE"> dSPACE</a>, <a href="https://publications.waset.org/abstracts/search?q=Matlab" title=" Matlab"> Matlab</a>, <a href="https://publications.waset.org/abstracts/search?q=Simulink" title=" Simulink"> Simulink</a> </p> <a href="https://publications.waset.org/abstracts/40332/implementation-of-a-predictive-dtc-svm-of-an-induction-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12213</span> A Smart Electric Power Wheelchair Controlled by Head Motion </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dechrit%20Maneetham">Dechrit Maneetham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper was to design a smart electric power wheelchair (SEPW) with a novel control system for quadriplegics with head and neck mobility. Head movement has been used as a control interface for people with motor impairments in a range of applications. Acquiring measurements from the module is simplified through a synchronous a motor. Axis measures the two directions namely X ,Y and Z. The model of a DC motor is considered as a speed control by selection of a PID parameters using genetic algorithm. An experimental set-up constructed, which consists of micro controller Arduino ATmega32u4 as controllers, a DC motor driven SEPW and feedback elements. And this paper is tuning methods of parameter for a pulse width modulation (PWM) control system. A speed controller has been designed successfully for closed loop of the DC motor so that the motor runs very closed to the reference speed and angle. SEPW controller can be used to ensure the person’s head is attending the direction of travel asserted by a conventional, direction and speed control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheelchair" title="wheelchair">wheelchair</a>, <a href="https://publications.waset.org/abstracts/search?q=quadriplegia" title=" quadriplegia"> quadriplegia</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20devices" title=" medical devices"> medical devices</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20control" title=" speed control"> speed control</a> </p> <a href="https://publications.waset.org/abstracts/2267/a-smart-electric-power-wheelchair-controlled-by-head-motion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12212</span> Control of Doubly Star Induction Motor Using Direct Torque DTC Based To on RST Regulator </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Akkari">Nadia Akkari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the analysis and simulation of the control of double star induction motor, using direct torque control (DTC) based on RST regulator. The DTC is an excellent solution for general- purpose induction drives in very wide range the short sampling time required by the TC schemes makes them suited to a very fast torque and flux controlled drives as well the simplicity of the control algorithm. DTC is inherently a motion sensorless control method. The RST regulator can improve the double star induction motor performance in terms of overshoot, rapidity, cancellation of disturbance, and capacity to maintain a high level of performance. Simulation results indicate that the proposed regulator has better performance responses. The implementation of the DTC applied to a double star induction motor based on RST regulator is validated with simulated results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Direct%20Torque%20Control%20%28DTC%29" title="Direct Torque Control (DTC)">Direct Torque Control (DTC)</a>, <a href="https://publications.waset.org/abstracts/search?q=Double%20Star%20Induction%20Motor%20%28DSIM%29" title=" Double Star Induction Motor (DSIM)"> Double Star Induction Motor (DSIM)</a>, <a href="https://publications.waset.org/abstracts/search?q=RST%20Regulator" title=" RST Regulator "> RST Regulator </a> </p> <a href="https://publications.waset.org/abstracts/23578/control-of-doubly-star-induction-motor-using-direct-torque-dtc-based-to-on-rst-regulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12211</span> Backstepping Sliding Mode Control </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othmane%20Boughazi">Othmane Boughazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmadjid%20Boumedienne"> Abdelmadjid Boumedienne</a>, <a href="https://publications.waset.org/abstracts/search?q=Hachemi%20Glaoui"> Hachemi Glaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work treats the modeling and simulation of non-linear system behavior of an induction motor using backstepping sliding mode control. First, the direct field oriented control IM is derived. Then, a sliding for direct field oriented control is proposed to compensate the uncertainties, which occur in the control.Finally, the study of Backstepping sliding controls strategy of the induction motor drive. Our non linear system is simulated in MATLAB SIMULINK environment, the results obtained illustrate the efficiency of the proposed control with no overshoot, and the rising time is improved with good disturbances rejections comparing with the classical control law. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20motor" title="induction motor">induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=proportional-integral" title=" proportional-integral"> proportional-integral</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=backstepping%20sliding%20mode%20control" title=" backstepping sliding mode control"> backstepping sliding mode control</a> </p> <a href="https://publications.waset.org/abstracts/15027/backstepping-sliding-mode-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12210</span> Voice and Head Controlled Intelligent Wheelchair</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dechrit%20Maneetham">Dechrit Maneetham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper was to design a void and head controlled electric power wheelchair (EPW). A novel activate the control system for quadriplegics with voice, head and neck mobility. Head movement has been used as a control interface for people with motor impairments in a range of applications. Acquiring measurements from the module is simplified through a synchronous a motor. Axis measures the two directions namely x and y. At the same time, patients can control the motorized wheelchair using voice signals (forward, backward, turn left, turn right, and stop) given by it self. The model of a dc motor is considered as a speed control by selection of a PID parameters using genetic algorithm. An experimental set-up constructed, which consists of micro controller as controller, a DC motor driven EPW and feedback elements. This paper is tuning methods of parameter for a pulse width modulation (PWM) control system. A speed controller has been designed successfully for closed loop of the dc motor so that the motor runs very closed to the reference speed and angle. Intelligent wheelchair can be used to ensure the person’s voice and head are attending the direction of travel asserted by a conventional, direction and speed control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheelchair" title="wheelchair">wheelchair</a>, <a href="https://publications.waset.org/abstracts/search?q=quadriplegia" title=" quadriplegia"> quadriplegia</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation "> rehabilitation </a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20devices" title=" medical devices"> medical devices</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20control" title=" speed control"> speed control</a> </p> <a href="https://publications.waset.org/abstracts/13715/voice-and-head-controlled-intelligent-wheelchair" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">540</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12209</span> Design of Functional Safe Motor Control Systems in Automotive Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Woo%20Kim">Jae-Woo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung-Jung%20Lee"> Kyung-Jung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Sik%20Ahn"> Hyun-Sik Ahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a design methodology for the motor driven automotive subsystems with the consideration of the functional safety. There are many such modules in vehicles which use DC/AC motors for an electronic throttle control system, a motor driven power steering, a motor driven seat belt systems and for HVAC systems. The functional safety for the automotive electrical and electronic parts are standardized as ISO 26262, but the development procedure is very complex to be followed. We focus on the functional safe motor controller design process and show the designed motor controller hardware satisfies the required safety integrity level by using metric calculations with the safety mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AUTOSAR" title="AUTOSAR">AUTOSAR</a>, <a href="https://publications.waset.org/abstracts/search?q=MDPS" title=" MDPS"> MDPS</a>, <a href="https://publications.waset.org/abstracts/search?q=Simulink" title=" Simulink"> Simulink</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20component" title=" software component"> software component</a> </p> <a href="https://publications.waset.org/abstracts/57252/design-of-functional-safe-motor-control-systems-in-automotive-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12208</span> Position and Speed Tracking of DC Motor Based on Experimental Analysis in LabVIEW</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ilyas">Muhammad Ilyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Awais%20Khan"> Awais Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Ali%20Raza%20Shah"> Syed Ali Raza Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> DC motors are widely used in industries to provide mechanical power in speed and torque. The position and speed control of DC motors is getting the interest of the scientific community in robotics, especially in the robotic arm, a flexible joint manipulator. The current research work is based on position control of DC motors using experimental investigations in LabVIEW. The linear control strategy is applied to track the position and speed of the DC motor with comparative analysis in the LabVIEW platform and simulation analysis in MATLAB. The tracking error in hardware setup based on LabVIEW programming is slightly greater than simulation analysis in MATLAB due to the inertial load of the motor during steady-state conditions. The controller output shows the input voltage applied to the dc motor varies between 0-8V to ensure minimal steady error while tracking the position and speed of the DC motor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DC%20motor" title="DC motor">DC motor</a>, <a href="https://publications.waset.org/abstracts/search?q=labview" title=" labview"> labview</a>, <a href="https://publications.waset.org/abstracts/search?q=proportional%20integral%20derivative%20control" title=" proportional integral derivative control"> proportional integral derivative control</a>, <a href="https://publications.waset.org/abstracts/search?q=position%20tracking" title=" position tracking"> position tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20tracking" title=" speed tracking"> speed tracking</a> </p> <a href="https://publications.waset.org/abstracts/164256/position-and-speed-tracking-of-dc-motor-based-on-experimental-analysis-in-labview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12207</span> Artificial Neural Network Speed Controller for Excited DC Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elabed%20Saud">Elabed Saud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artificial%20Neural%20Network%20%28ANNs%29" title="Artificial Neural Network (ANNs)">Artificial Neural Network (ANNs)</a>, <a href="https://publications.waset.org/abstracts/search?q=excited%20DC%20motor" title=" excited DC motor"> excited DC motor</a>, <a href="https://publications.waset.org/abstracts/search?q=convenional%20controller" title=" convenional controller"> convenional controller</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20Controller" title=" speed Controller"> speed Controller</a> </p> <a href="https://publications.waset.org/abstracts/21941/artificial-neural-network-speed-controller-for-excited-dc-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">726</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12206</span> Rotor Side Speed Control Methods Using MATLAB/Simulink for Wound Induction Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar">Rajesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Roopali%20Dogra"> Roopali Dogra</a>, <a href="https://publications.waset.org/abstracts/search?q=Puneet%20Aggarwal"> Puneet Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent advancements in electric machine and drives, wound rotor motor is extensively used. The merit of using wound rotor induction motor is to control speed/torque characteristics by inserting external resistance. Wound rotor induction motor can be used in the cases such as (a) low inrush current, (b) load requiring high starting torque, (c) lower starting current is required, (d) loads having high inertia, and (e) gradual built up of torque. Examples include conveyers, cranes, pumps, elevators, and compressors. This paper includes speed control of wound induction motor using MATLAB/Simulink for rotor resistance and slip power recovery method. The characteristics of these speed control methods are hence analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MATLAB%2FSimulink" title="MATLAB/Simulink">MATLAB/Simulink</a>, <a href="https://publications.waset.org/abstracts/search?q=rotor%20resistance%20method" title=" rotor resistance method"> rotor resistance method</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20power%20recovery%20method" title=" slip power recovery method"> slip power recovery method</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20rotor%20induction%20motor" title=" wound rotor induction motor"> wound rotor induction motor</a> </p> <a href="https://publications.waset.org/abstracts/73488/rotor-side-speed-control-methods-using-matlabsimulink-for-wound-induction-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12205</span> Fuzzy-Sliding Controller Design for Induction Motor Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouferhane">M. Bouferhane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Boukhebza"> A. Boukhebza</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Hatab"> L. Hatab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the position control of linear induction motor using fuzzy sliding mode controller design is proposed. First, the indirect field oriented control LIM is derived. Then, a designed sliding mode control system with an integral-operation switching surface is investigated, in which a simple adaptive algorithm is utilized for generalised soft-switching parameter. Finally, a fuzzy sliding mode controller is derived to compensate the uncertainties which occur in the control, in which the fuzzy logic system is used to dynamically control parameter settings of the SMC control law. The effectiveness of the proposed control scheme is verified by numerical simulation. The experimental results of the proposed scheme have presented good performances compared to the conventional sliding mode controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20induction%20motor" title="linear induction motor">linear induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20control" title=" vector control"> vector control</a>, <a href="https://publications.waset.org/abstracts/search?q=backstepping" title=" backstepping"> backstepping</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy-sliding%20mode%20control" title=" fuzzy-sliding mode control"> fuzzy-sliding mode control</a> </p> <a href="https://publications.waset.org/abstracts/44272/fuzzy-sliding-controller-design-for-induction-motor-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12204</span> Variable Frequency Converter Fed Induction Motors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulatif%20Abdulsalam%20Mohamed%20Shaban">Abdulatif Abdulsalam Mohamed Shaban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A.C motors, in general, have superior performance characteristics to their d.c. counterparts. However, despite these advantage a.c. motors lack the controllability and simplicity and so d.c. motors retain a competitive edge where precise control is required. As part of an overall project to develop an improved cycloconverter control strategy for induction motors. Simulation and modelling techniques have been developed. This contribution describes a method used to simulate an induction motor drive using the SIMULINK toolbox within MATLAB software. The cycloconverter fed induction motor is principally modelled using the d-q axis equations. Results of the simulation for a given set of induction motor parameters are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=converter" title=" converter"> converter</a>, <a href="https://publications.waset.org/abstracts/search?q=motor" title=" motor"> motor</a>, <a href="https://publications.waset.org/abstracts/search?q=cycloconverter" title=" cycloconverter"> cycloconverter</a> </p> <a href="https://publications.waset.org/abstracts/21497/variable-frequency-converter-fed-induction-motors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">610</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12203</span> The Uniting Control Lyapunov Functions in Permanent Magnet Synchronous Linear Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Fei%20Yang">Yi-Fei Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Nai-Bao%20He"> Nai-Bao He</a>, <a href="https://publications.waset.org/abstracts/search?q=Shao-Bang%20Xing"> Shao-Bang Xing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the permanent magnet synchronous linear motor (PMSLM) chaotic motion under the specific physical parameters, the stability and the security of motor-driven system will be unavoidably influenced. Therefore, it is really necessary to investigate the methods of controlling or suppressing chaos in PMSLM. Firstly, we derive a chaotic model of PMSLM in the closed-loop system. Secondly, in order to realize the local asymptotic stabilization of the mechanical subsystem and the global stabilization of the motor-driven system including electrical subsystem, we propose an improved uniting control lyapunov functions by introducing backstepping approach. Finally, an illustrated example is also given to show the electiveness of the obtained results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20motor" title="linear motor">linear motor</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20functions" title=" lyapunov functions"> lyapunov functions</a>, <a href="https://publications.waset.org/abstracts/search?q=chao%20control" title=" chao control"> chao control</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20controller" title=" hybrid controller"> hybrid controller</a> </p> <a href="https://publications.waset.org/abstracts/46677/the-uniting-control-lyapunov-functions-in-permanent-magnet-synchronous-linear-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12202</span> Speed Control of DC Motor Using Optimization Techniques Based PID Controller </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Kumar%20Suman">Santosh Kumar Suman</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar%20Giri"> Vinod Kumar Giri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this paper is to outline a speed controller of a DC motor by choice of a PID parameters utilizing genetic algorithms (GAs), the DC motor is extensively utilized as a part of numerous applications such as steel plants, electric trains, cranes and a great deal more. DC motor could be represented by a nonlinear model when nonlinearities such as attractive dissemination are considered. To provide effective control, nonlinearities and uncertainties in the model must be taken into account in the control design. The DC motor is considered as third order system. Objective of this paper three type of tuning techniques for PID parameter. In this paper, an independently energized DC motor utilizing MATLAB displaying, has been outlined whose velocity might be examined utilizing the Proportional, Integral, Derivative (KP, KI , KD) addition of the PID controller. Since, established controllers PID are neglecting to control the drive when weight parameters be likewise changed. The principle point of this paper is to dissect the execution of optimization techniques viz. The Genetic Algorithm (GA) for improve PID controllers parameters for velocity control of DC motor and list their points of interest over the traditional tuning strategies. The outcomes got from GA calculations were contrasted and that got from traditional technique. It was found that the optimization techniques beat customary tuning practices of ordinary PID controllers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DC%20motor" title="DC motor">DC motor</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%20controller" title=" PID controller"> PID controller</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20techniques" title=" optimization techniques"> optimization techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20%28GA%29" title=" genetic algorithm (GA)"> genetic algorithm (GA)</a>, <a href="https://publications.waset.org/abstracts/search?q=objective%20function" title=" objective function"> objective function</a>, <a href="https://publications.waset.org/abstracts/search?q=IAE" title=" IAE"> IAE</a> </p> <a href="https://publications.waset.org/abstracts/48103/speed-control-of-dc-motor-using-optimization-techniques-based-pid-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12201</span> Analysis Of Fine Motor Skills in Chronic Neurodegenerative Models of Huntington’s Disease and Amyotrophic Lateral Sclerosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Heikkinen">T. Heikkinen</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Oksman"> J. Oksman</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Bragge"> T. Bragge</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nurmi"> A. Nurmi</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Kontkanen"> O. Kontkanen</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ahtoniemi"> T. Ahtoniemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motor impairment is an inherent phenotypic feature of several chronic neurodegenerative diseases, and pharmacological therapies aimed to counterbalance the motor disability have a great market potential. Animal models of chronic neurodegenerative diseases display a number deteriorating motor phenotype during the disease progression. There is a wide array of behavioral tools to evaluate motor functions in rodents. However, currently existing methods to study motor functions in rodents are often limited to evaluate gross motor functions only at advanced stages of the disease phenotype. The most commonly applied traditional motor assays used in CNS rodent models, lack the sensitivity to capture fine motor impairments or improvements. Fine motor skill characterization in rodents provides a more sensitive tool to capture more subtle motor dysfunctions and therapeutic effects. Importantly, similar approach, kinematic movement analysis, is also used in clinic, and applied both in diagnosis and determination of therapeutic response to pharmacological interventions. The aim of this study was to apply kinematic gait analysis, a novel and automated high precision movement analysis system, to characterize phenotypic deficits in three different chronic neurodegenerative animal models, a transgenic mouse model (SOD1 G93A) for amyotrophic lateral sclerosis (ALS), and R6/2 and Q175KI mouse models for Huntington’s disease (HD). The readouts from walking behavior included gait properties with kinematic data, and body movement trajectories including analysis of various points of interest such as movement and position of landmarks in the torso, tail and joints. Mice (transgenic and wild-type) from each model were analyzed for the fine motor kinematic properties at young ages, prior to the age when gross motor deficits are clearly pronounced. Fine motor kinematic Evaluation was continued in the same animals until clear motor dysfunction with conventional motor assays was evident. Time course analysis revealed clear fine motor skill impairments in each transgenic model earlier than what is seen with conventional gross motor tests. Motor changes were quantitatively analyzed for up to ~80 parameters, and the largest data sets of HD models were further processed with principal component analysis (PCA) to transform the pool of individual parameters into a smaller and focused set of mutually uncorrelated gait parameters showing strong genotype difference. Kinematic fine motor analysis of transgenic animal models described in this presentation show that this method isa sensitive, objective and fully automated tool that allows earlier and more sensitive detection of progressive neuromuscular and CNS disease phenotypes. As a result of the analysis a comprehensive set of fine motor parameters for each model is created, and these parameters provide better understanding of the disease progression and enhanced sensitivity of this assay for therapeutic testing compared to classical motor behavior tests. In SOD1 G93A, R6/2, and Q175KI mice, the alterations in gait were evident already several weeks earlier than with traditional gross motor assays. Kinematic testing can be applied to a wider set of motor readouts beyond gait in order to study whole body movement patterns such as with relation to joints and various body parts longitudinally, providing a sophisticated and translatable method for disseminating motor components in rodent disease models and evaluating therapeutic interventions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gait%20analysis" title="Gait analysis">Gait analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic" title=" kinematic"> kinematic</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20impairment" title=" motor impairment"> motor impairment</a>, <a href="https://publications.waset.org/abstracts/search?q=inherent%20feature" title=" inherent feature"> inherent feature</a> </p> <a href="https://publications.waset.org/abstracts/23467/analysis-of-fine-motor-skills-in-chronic-neurodegenerative-models-of-huntingtons-disease-and-amyotrophic-lateral-sclerosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12200</span> Application of the DTC Control in the Photovoltaic Pumping System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Amrani">M. N. Amrani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Abanou"> H. Abanou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dib"> A. Dib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we proposed a strategy for optimizing the performance for a pumping structure constituted by an induction motor coupled to a centrifugal pump and improving existing results in this context. The considered system is supplied by a photovoltaic generator (GPV) through two static converters piloted in an independent manner. We opted for a maximum power point tracking (MPPT) control method based on the Neuro - Fuzzy, which is well known for its stability and robustness. To improve the induction motor performance, we use the concept of Direct Torque Control (DTC) and PID controller for motor speed to pilot the working of the induction motor. Simulations of the proposed approach give interesting results compared to the existing control strategies in this field. The model of the proposed system is simulated by MATLAB/Simulink. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=pumping%20photovoltaic%20system" title=" pumping photovoltaic system"> pumping photovoltaic system</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20power%20point%20tracking" title=" maximum power point tracking"> maximum power point tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20torque%20Control%20%28DTC%29" title=" direct torque Control (DTC)"> direct torque Control (DTC)</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%20regulator" title=" PID regulator"> PID regulator</a> </p> <a href="https://publications.waset.org/abstracts/19070/application-of-the-dtc-control-in-the-photovoltaic-pumping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12199</span> Comparative Study between Direct Torque Control and Sliding Mode Control of Sensorless Induction Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fouad%20Berrabah">Fouad Berrabah</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20Salah"> Saad Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaamouche%20Fares"> Zaamouche Fares </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the Direct Torque Control (DTC) Control and the Sliding Mode Control for induction motor are presented and compared. The performance of the two control schemes is evaluated in terms of torque and current ripple, and transient response to variations of the torque , speed and robustness, trajectory tracking. In order to identify the more suitable solution for any application, both techniques are analyzed mathematically and simulation results are compared which advantages and drawbacks are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20motor" title="induction motor">induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=DTC-%20MRAS%20control" title=" DTC- MRAS control"> DTC- MRAS control</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=robustness" title=" robustness"> robustness</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20tracking" title=" trajectory tracking"> trajectory tracking</a> </p> <a href="https://publications.waset.org/abstracts/24357/comparative-study-between-direct-torque-control-and-sliding-mode-control-of-sensorless-induction-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">597</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fine%20motor%20control&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fine%20motor%20control&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fine%20motor%20control&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fine%20motor%20control&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fine%20motor%20control&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fine%20motor%20control&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fine%20motor%20control&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fine%20motor%20control&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fine%20motor%20control&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fine%20motor%20control&amp;page=407">407</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fine%20motor%20control&amp;page=408">408</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fine%20motor%20control&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10