CINXE.COM

Search results for: thermal system

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: thermal system</title> <meta name="description" content="Search results for: thermal system"> <meta name="keywords" content="thermal system"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="thermal system" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="thermal system"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 20197</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: thermal system</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20197</span> The Thermal Simulation of Hydraulic Cable Drum Trailers 15-Ton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Abdul-Razzak%20Aboudi%20Al-Issa">Ahmad Abdul-Razzak Aboudi Al-Issa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal is the main important aspect in any hydraulic system since it is affected on the hydraulic system performance. Therefore must be simulated the hydraulic system -that was designed- in this aspect before constructing it. In this study, an existed expert system was using to simulate the thermal aspect of a designed hydraulic system that will be used in an industrial field. The expert system which is used in this study is (Hydraulic System Calculations), and its symbol (HSC). HSC had been designed and coded in an interactive program userfriendly named (Microsoft Visual Basic 2010). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20power" title="fluid power">fluid power</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20system" title=" hydraulic system"> hydraulic system</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20and%20hydrodynamic" title=" thermal and hydrodynamic"> thermal and hydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20system" title=" expert system"> expert system</a> </p> <a href="https://publications.waset.org/abstracts/17006/the-thermal-simulation-of-hydraulic-cable-drum-trailers-15-ton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20196</span> Design an Expert System to Assess the Hydraulic System in Thermal and Hydrodynamic Aspect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Abdul-Razzak%20Aboudi%20Al-Issa">Ahmad Abdul-Razzak Aboudi Al-Issa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal and Hydrodynamic are basic aspects in any hydraulic system and therefore, they must be assessed with regard to this aspect before constructing the system. This assessment needs a good expertise in this aspect to obtain an efficient hydraulic system. Therefore, this study aims to build an expert system called Hydraulic System Calculations (HSC) to ensure a smooth operation for the hydraulic system. The expert system (HSC) had been designed and coded in an user-friendly interactive program called Microsoft Visual Basic 2010. The suggested code provides the designer with a number of choices to resolve the problem of hydraulic oil overheating which may arise during the continuous operation of the hydraulic unit. As a result, the HSC can minimize the human errors, effort, time and cost of hydraulic machine design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20power" title="fluid power">fluid power</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20system" title=" hydraulic system"> hydraulic system</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20and%20hydrodynamic" title=" thermal and hydrodynamic"> thermal and hydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20system" title=" expert system"> expert system</a> </p> <a href="https://publications.waset.org/abstracts/4076/design-an-expert-system-to-assess-the-hydraulic-system-in-thermal-and-hydrodynamic-aspect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20195</span> Enhanced Method of Conceptual Sizing of Aircraft Electro-Thermal De-Icing System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Shinkafi">Ahmed Shinkafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Craig%20Lawson"> Craig Lawson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a great advancement towards the All-Electric Aircraft (AEA) technology. The AEA concept assumes that all aircraft systems will be integrated into one electrical power source in the future. The principle of the electro-thermal system is to transfer the energy required for anti/de-icing to the protected areas in electrical form. However, powering a large aircraft anti-icing system electrically could be quite excessive in cost and system weight. Hence, maximising the anti/de-icing efficiency of the electro-thermal system in order to minimise its power demand has become crucial to electro-thermal de-icing system sizing. In this work, an enhanced methodology has been developed for conceptual sizing of aircraft electro-thermal de-icing System. The work factored those critical terms overlooked in previous studies which were critical to de-icing energy consumption. A case study of a typical large aircraft wing de-icing was used to test and validate the model. The model was used to optimise the system performance by a trade-off between the de-icing peak power and system energy consumption. The optimum melting surface temperatures and energy flux predicted enabled the reduction in the power required for de-icing. The weight penalty associated with electro-thermal anti-icing/de-icing method could be eliminated using this method without under estimating the de-icing power requirement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=de-icing%20system" title=" de-icing system"> de-icing system</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-thermal" title=" electro-thermal"> electro-thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=in-flight%20icing" title=" in-flight icing"> in-flight icing</a> </p> <a href="https://publications.waset.org/abstracts/9616/enhanced-method-of-conceptual-sizing-of-aircraft-electro-thermal-de-icing-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20194</span> Application of Fractional Model Predictive Control to Thermal System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aymen%20Rhouma">Aymen Rhouma</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Hcheichi"> Khaled Hcheichi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sami%20Hafsi"> Sami Hafsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller<em>.</em> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20model%20predictive%20control" title="fractional model predictive control">fractional model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20order%20systems" title=" fractional order systems"> fractional order systems</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20system" title=" thermal system"> thermal system</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20control" title=" predictive control"> predictive control</a> </p> <a href="https://publications.waset.org/abstracts/66187/application-of-fractional-model-predictive-control-to-thermal-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20193</span> Evaluation of Thermal Barrier Coating Applied to the Gas Turbine Blade According to the Thermal Gradient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeong-Min%20Lee">Jeong-Min Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunwoo%20Song"> Hyunwoo Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Yonseok%20Kim"> Yonseok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Junghan%20Yun"> Junghan Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungin%20Byun"> Jungin Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Mean%20Koo"> Jae-Mean Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Sung%20Seok"> Chang-Sung Seok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Thermal Barrier Coating (TBC) prevents heat directly transferring from the high-temperature flame to the substrate. Top coat and bond coat compose the TBC and top coat consists of a ceramic and bond coat increases adhesion between the top coat and the substrate. The TBC technology drops the substrate surface temperature by about 150~200掳C. In addition, the TBC system has a cooling system to lower the blade temperature by the air flow inside the blade. Then, as a result, the thermal gradient occurs inside the blade by cooling. Also, the internal stress occurs due to the difference in thermal expansion. In this paper, the finite element analyses (FEA) were performed and stress changes were derived according to the thermal gradient of the TBC system. The stress was increased due to the cooling, but difference of the stress between the top coat and bond coat was decreased. So, delamination in the interface between top coat and bond coat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20blade" title="gas turbine blade">gas turbine blade</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermal%20Barrier%20Coating%20%28TBC%29" title=" Thermal Barrier Coating (TBC)"> Thermal Barrier Coating (TBC)</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20gradient" title=" thermal gradient"> thermal gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Analysis%20%28FEA%29" title=" Finite Element Analysis (FEA)"> Finite Element Analysis (FEA)</a> </p> <a href="https://publications.waset.org/abstracts/15385/evaluation-of-thermal-barrier-coating-applied-to-the-gas-turbine-blade-according-to-the-thermal-gradient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">607</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20192</span> Thermal Comfort Characteristics in an Enclosure with a Radiant Ceiling Heating and Floor Air Heating System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seung-Ho%20Yoo">Seung-Ho Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Ryeul%20Sohn"> Jong-Ryeul Sohn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An environmental friendly or efficient heating & cooling systems attract a great attention, due to the energy or environmental problems. Especially the heat balance of human body is about 50% influenced by radiation exchange in built environment. Therefore, a thermal comfort characteristics in a radiant built environment need to be accessed through the development of an efficient evaluation method. Almost of Korean housings use traditionally the radiant floor heating system. A radiant cooling system attracts also many attention nowadays in the viewpoint of energy conservation and comfort. Thermal comfort characteristics in an enclosure with a radiant heating and cooling system are investigated by experiment, thermal sensation vote analysis and mean radiant temperature simulation. Asymmetric radiation between radiant heating ceiling and air heating system in 9 points of room is compared with each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiant%20heating%20and%20cooling%20ceiling" title="radiant heating and cooling ceiling">radiant heating and cooling ceiling</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20radiation" title=" asymmetric radiation"> asymmetric radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20sensation%20vote" title=" thermal sensation vote"> thermal sensation vote</a> </p> <a href="https://publications.waset.org/abstracts/24434/thermal-comfort-characteristics-in-an-enclosure-with-a-radiant-ceiling-heating-and-floor-air-heating-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20191</span> Thermal Analysis of Photovoltaic Integrated Greenhouse Solar Dryer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Tiwari">Sumit Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Tripathi"> Rohit Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Tiwari"> G. N. Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present study focused on the utilization of solar energy by the help of photovoltaic greenhouse solar dryer under forced mode. A single slope photovoltaic greenhouse solar dryer has been proposed and thermal modelling has been developed. Various parameters have been calculated by thermal modelling such as greenhouse room temperature, cell temperature, crop temperature and air temperature at exit of greenhouse. Further cell efficiency, thermal efficiency, and overall thermal efficiency have been calculated for a typical day of May and November. It was found that system can generate equivalent thermal energy up to 7.65 kW and 6.66 kW per day for clear day of May and November respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristics%20curve" title="characteristics curve">characteristics curve</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20modelling" title=" thermal modelling"> thermal modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20efficiency" title=" thermal efficiency"> thermal efficiency</a> </p> <a href="https://publications.waset.org/abstracts/36866/thermal-analysis-of-photovoltaic-integrated-greenhouse-solar-dryer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20190</span> Experimental Observation on Air-Conditioning Using Radiant Chilled Ceiling in Hot Humid Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashmin%20Aryal">Ashmin Aryal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pipat%20Chaiwiwatworakul"> Pipat Chaiwiwatworakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Surapong%20Chirarattananon"> Surapong Chirarattananon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiant chilled ceiling (RCC) has been perceived to save more energy and provide better thermal comfort than the traditional air conditioning system. However, its application has been rather limited by some reasons e.g., the scarce information about the thermal characteristic in the radiant room and the local climate influence on the system performance, etc. To bridge such gap, an office-like experiment room with a RCC was constructed in the hot and humid climate of Thailand. This paper presents exemplarily results from the RCC experiments to give an insight into the thermal environment in a radiant room and the cooling load associated to maintain the room&#39;s comfort condition. It gave a demonstration of the RCC system operation for its application to achieve thermal comfort in offices in a hot humid climate, as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiant%20chilled%20ceiling" title="radiant chilled ceiling">radiant chilled ceiling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20load" title=" cooling load"> cooling load</a>, <a href="https://publications.waset.org/abstracts/search?q=outdoor%20air%20unit" title=" outdoor air unit"> outdoor air unit</a> </p> <a href="https://publications.waset.org/abstracts/134085/experimental-observation-on-air-conditioning-using-radiant-chilled-ceiling-in-hot-humid-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20189</span> Enhancement of Thermal Performance of Latent Heat Solar Storage System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishindra%20M.%20Sarviya">Rishindra M. Sarviya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Agrawal"> Ashish Agrawal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar energy is available abundantly in the world, but it is not continuous and its intensity also varies with time. Due to above reason the acceptability and reliability of solar based thermal system is lower than conventional systems. A properly designed heat storage system increases the reliability of solar thermal systems by bridging the gap between the energy demand and availability. In the present work, two dimensional numerical simulation of the melting of heat storage material is presented in the horizontal annulus of double pipe latent heat storage system. Longitudinal fins were used as a thermal conductivity enhancement. Paraffin wax was used as a heat-storage or phase change material (PCM). Constant wall temperature is applied to heat transfer tube. Presented two-dimensional numerical analysis shows the movement of melting front in the finned cylindrical annulus for analyzing the thermal behavior of the system during melting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=latent%20heat" title="latent heat">latent heat</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20study" title=" numerical study"> numerical study</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20material" title=" phase change material"> phase change material</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/47333/enhancement-of-thermal-performance-of-latent-heat-solar-storage-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20188</span> An Overview of Thermal Storage Techniques for Solar Thermal Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talha%20Shafiq">Talha Shafiq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The traditional electricity operation in solar thermal plants is designed to operate on a single path initiating at power plant and executes at the consumer. Due to lack of energy storage facilities during this operation, a decrease in the efficiency is often observed with the power plant performance. This paper reviews the significance of energy storage in supply design and elaborates various methods that can be adopted in this regard which are equally cost effective and environmental friendly. Moreover, various parameters in thermal storage technique are also critically analyzed to clarify the pros and cons in this facility. Discussing the different thermal storage system, their technical and economical evaluation has also been reviewed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy%20storage" title="thermal energy storage">thermal energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=sensible%20heat%20storage" title=" sensible heat storage"> sensible heat storage</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20heat%20storage" title=" latent heat storage"> latent heat storage</a>, <a href="https://publications.waset.org/abstracts/search?q=thermochemical%20heat%20storage" title=" thermochemical heat storage"> thermochemical heat storage</a> </p> <a href="https://publications.waset.org/abstracts/21035/an-overview-of-thermal-storage-techniques-for-solar-thermal-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20187</span> Polygeneration Solar Thermal System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Deb">S. K. Deb</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20C.%20Sarma"> B. C. Sarma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concentrating solar thermal devices using low cost thin metallic reflector sheet of moderate reflectance can generate heat both at higher temperature for the receiver at it鈥檚 focus and at moderate temperature through direct solar irradiative heat absorption by the reflector sheet itself. Investigation on well insulated rear surface of the concentrator with glass covers at it鈥檚 aperture plane for waste heat recovery against the conventional radiative, convective & conductive heat losses for a bench model with a thermal analysis is the prime motivation of this study along with an effort to popularize a compact solar thermal polygeneration system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentrator" title="concentrator">concentrator</a>, <a href="https://publications.waset.org/abstracts/search?q=polygeneration" title=" polygeneration"> polygeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=aperture" title=" aperture"> aperture</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy" title=" exergy"> exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/21797/polygeneration-solar-thermal-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20186</span> Simulation Study on Comparison of Thermal Comfort during Heating with All-Air System and Radiant Floor System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiyun%20Liu">Shiyun Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiant heating systems work fundamentally differently from air systems by taking advantage of both radiant and convective heat transfer to remove space heating load. There are rare studies on differences of heating systems between all-air system and radiant floor system. This paper uses the method of simulation based on state-space to calculate the indoor temperature and wall temperature of each system and shows how the dynamic heat transfer in rooms conditioned by a radiant system is different from an air system. Then this paper analyses the changes of indoor temperature of these two systems, finding out the differences between all-air heating system and radiant floor heating system to help the designer choose a more suitable heating system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiant%20floor" title="radiant floor">radiant floor</a>, <a href="https://publications.waset.org/abstracts/search?q=all-air%20system" title=" all-air system"> all-air system</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=heating%20system" title=" heating system"> heating system</a> </p> <a href="https://publications.waset.org/abstracts/109700/simulation-study-on-comparison-of-thermal-comfort-during-heating-with-all-air-system-and-radiant-floor-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20185</span> Application of Genetic Algorithm with Multiobjective Function to Improve the Efficiency of Photovoltaic Thermal System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonveer%20Singh">Sonveer Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Agrawal"> Sanjay Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20V.%20Avasthi"> D. V. Avasthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayant%20Shekhar"> Jayant Shekhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to improve the efficiency of photovoltaic thermal (PVT) system with the help of Genetic Algorithms with multi-objective function. There are some parameters that affect the efficiency of PVT system like depth and length of the channel, velocity of flowing fluid through the channel, thickness of the tedlar and glass, temperature of inlet fluid i.e. all above parameters are considered for optimization. An attempt has been made to the model and optimizes the parameters of glazed hybrid single channel PVT module when two objective functions have been considered separately. The two objective function for optimization of PVT module is overall electrical and thermal efficiency. All equations for PVT module have been derived. Using genetic algorithms (GAs), above two objective functions of the system has been optimized separately and analysis has been carried out for two cases. Two cases are: Case-I; Improvement in electrical and thermal efficiency when overall electrical efficiency is optimized, Case-II; Improvement in electrical and thermal efficiency when overall thermal efficiency is optimized. All the parameters that are used in genetic algorithms are the parameters that could be changed, and the non-changeable parameters, like solar radiation, ambient temperature cannot be used in the algorithm. It has been observed that electrical efficiency (14.08%) and thermal efficiency (19.48%) are obtained when overall thermal efficiency was an objective function for optimization. It is observed that GA is a very efficient technique to estimate the design parameters of hybrid single channel PVT module. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy" title=" exergy"> exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=PVT%20module" title=" PVT module"> PVT module</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/16503/application-of-genetic-algorithm-with-multiobjective-function-to-improve-the-efficiency-of-photovoltaic-thermal-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20184</span> Conventional and Hybrid Network Energy Systems Optimization for Canadian Community</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ghorab">Mohamed Ghorab </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO<sub>2</sub> optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO<sub>2 </sub>emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP &amp; ORC systems) provides 32.5% saving in CO<sub>2</sub> emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.&nbsp;&nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20energy%20resources" title="distributed energy resources">distributed energy resources</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20energy%20system" title=" network energy system"> network energy system</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=microgeneration%20system" title=" microgeneration system"> microgeneration system</a> </p> <a href="https://publications.waset.org/abstracts/95524/conventional-and-hybrid-network-energy-systems-optimization-for-canadian-community" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20183</span> Analysis of Thermal Damping in Si Based Torsional Micromirrors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Resmi">R. Resmi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Baiju"> M. R. Baiju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal damping of a dynamic vibrating micromirror is an important factor affecting the design of MEMS based actuator systems. In the development process of new micromirror systems, assessing the extent of energy loss due to thermal damping accurately and predicting the performance of the system is very essential. In this paper, the depth of the thermal penetration layer at different eigenfrequencies and the temperature variation distributions surrounding a vibrating micromirror is analyzed. The thermal penetration depth corresponds to the thermal boundary layer in which energy is lost which is a measure of the thermal damping is found out. The energy is mainly dissipated in the thermal boundary layer and thickness of the layer is an important parameter. The detailed thermoacoustics is used to model the air domain surrounding the micromirror. The thickness of the boundary layer, temperature variations and thermal power dissipation are analyzed for a Si based torsional mode micromirror. It is found that thermal penetration depth decreases with eigenfrequency and hence operating the micromirror at higher frequencies is essential for reducing thermal damping. The temperature variations and thermal power dissipations at different eigenfrequencies are also analyzed. Both frequency-response and eigenfrequency analyses are done using COMSOL Multiphysics software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eigen%20frequency%20analysis" title="Eigen frequency analysis">Eigen frequency analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=micromirrors" title=" micromirrors"> micromirrors</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20damping" title=" thermal damping"> thermal damping</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoacoustic%20interactions" title=" thermoacoustic interactions"> thermoacoustic interactions</a> </p> <a href="https://publications.waset.org/abstracts/68224/analysis-of-thermal-damping-in-si-based-torsional-micromirrors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20182</span> Sizing and Thermal Analysis of Mechanically Pumped Fluid Loop Thermal Control Technique for Small Satellite Scientific Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shanmugasundaram%20Selvadurai">Shanmugasundaram Selvadurai</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20Chandran"> Amal Chandran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Small satellites have become an alternative low-cost solution for several missions to accomplish specific missions such as Earth imaging, Technology demonstration, Education, and other commercial purposes. Small satellite missions focusing on Infrared imaging applications require lower temperature for scientific instruments and such low temperature can be achieved only using external cryocoolers but the disadvantage is that they generate a large amount of waste heat. Existing passive thermal control techniques are not capable to handle such large thermal loads and hence one of the traditional active Thermal Control System (TCS) is studied for a small satellite configuration. This work aims to downscale the existing Mechanically Pumped Fluid Loop (MPFL) TCS to a 27U CubeSat platform for an imaginary scientific instrument. The temperature-sensitive detector in the instrument considered to be maintained between 130K and 150K to reduce dark current noise and increase the data quality. A Single-Phase fluid based MPFL is chosen for this system-level study and this TCS consists of a microfluid pump, a micro-cryocooler, a fluid accumulator, external heaters, flow regulators, and sensors. This work also explains the thermal control system architecture with a conceptual design, arrangement of all the components, and thermal analysis for different low orbit conditions. Sizing and extensive trade studies for the components are conducted and the results have shown that the Single-phase MPFL system is able to handle the given thermal loads and maintain the satellite鈥檚 interface temperature within the desired limit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20thermal%20control%20system" title="active thermal control system">active thermal control system</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20thermal" title=" satellite thermal"> satellite thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanically%20pumped%20fluid%20loop%20system" title=" mechanically pumped fluid loop system"> mechanically pumped fluid loop system</a>, <a href="https://publications.waset.org/abstracts/search?q=cryogenics" title=" cryogenics"> cryogenics</a>, <a href="https://publications.waset.org/abstracts/search?q=cryocooler" title=" cryocooler"> cryocooler</a> </p> <a href="https://publications.waset.org/abstracts/138359/sizing-and-thermal-analysis-of-mechanically-pumped-fluid-loop-thermal-control-technique-for-small-satellite-scientific-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20181</span> Design of a Solar Water Heating System with Thermal Storage for a Three-Bedroom House in Newfoundland </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Aisa">Ahmed Aisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Iqbal"> Tariq Iqbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This letter talks about the ready-to-use design of a solar water heating system because, in Canada, the average consumption of hot water per person is approximately 50 to 75 L per day and the average Canadian household uses 225 L. Therefore, this paper will demonstrate the method of designing a solar water heating system with thermal storage. It highlights the renewable hybrid power system, allowing you to obtain a reliable, independent system with the optimization of the ingredient size and at an improved capital cost. The system can provide hot water for a big building. The main power for the system comes from solar panels. Solar Advisory Model (SAM) and HOMER are used. HOMER and SAM are design models that calculate the consumption of hot water and cost for a house. Some results, obtained through simulation, were for monthly energy production, annual energy production, after tax cash flow, the lifetime of the system and monthly energy usage represented by three types of energy. These are system energy, electricity load electricity and net metering credit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20heating" title="water heating">water heating</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20storage" title=" thermal storage"> thermal storage</a>, <a href="https://publications.waset.org/abstracts/search?q=capital%20cost%20solar" title=" capital cost solar"> capital cost solar</a>, <a href="https://publications.waset.org/abstracts/search?q=consumption" title=" consumption"> consumption</a> </p> <a href="https://publications.waset.org/abstracts/50580/design-of-a-solar-water-heating-system-with-thermal-storage-for-a-three-bedroom-house-in-newfoundland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20180</span> Light Weight Fly Ash Based Composite Material for Thermal Insulation Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bharath%20Kenchappa">Bharath Kenchappa</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunigal%20Shivakumar"> Kunigal Shivakumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightweight, low thermal conductivity and high temperature resistant materials or the system with moderate mechanical properties and capable of taking high heating rates are needed in both commercial and military applications. A single material with these attributes is very difficult to find and one needs to come with innovative ideas to make such material system using what is available. To bring down the cost of the system, one has to be conscious about the cost of basic materials. Such a material system can be called as the thermal barrier system. This paper focuses on developing, testing and characterization of material system for thermal barrier applications. The material developed is porous, low density, low thermal conductivity of 0.1062 W/m C and glass transition temperature about 310 C. Also, the thermal properties of the developed material was measured in both longitudinal and thickness direction to highlight the fact that the material shows isotropic behavior. The material is called modified Eco-Core which uses only less than 9% weight of high-char resin in the composite. The filler (reinforcing material) is a component of fly ash called Cenosphere, they are hollow micro-bubbles made of ceramic materials. Special mixing-technique is used to surface coat the fillers with a thin layer of resin to develop a point-to-point contact of particles. One could use commercial ceramic micro-bubbles instead of Cenospheres, but it is expensive. The bulk density of Cenospheres is about 0.35 g/cc and we could accomplish the composite density of about 0.4 g/cc. One percent filler weight of 3mm length standard drywall grade fibers was used to bring the added toughness. Both thermal and mechanical characterization was performed and properties are documented. For higher temperature applications (up to 1,000 C), a hybrid system was developed using an aerogel mat. Properties of combined material was characterized and documented. Thermal tests were conducted on both the bare modified Eco-Core and hybrid materials to assess the suitability of the material to a thermal barrier application. The hybrid material system was found to meet the requirement of the application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerogel" title="aerogel">aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20material" title=" porous material"> porous material</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier" title=" thermal barrier"> thermal barrier</a> </p> <a href="https://publications.waset.org/abstracts/129240/light-weight-fly-ash-based-composite-material-for-thermal-insulation-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20179</span> Development and Validation of Thermal Stability in Complex System ABDM has two ASIC by NISA and COMSOL Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Oukaira">A. Oukaira</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Lakhssassi"> A. Lakhssassi</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Ettahri"> O. Ettahri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To make a good thermal management in an ABDM (Adapter Board Detector Module) card, we must first control temperature and its gradient from the first step in the design of integrated circuits ASIC of our complex system. In this paper, our main goal is to develop and validate the thermal stability in order to get an idea of the flow of heat around the ASIC in transient and thus address the thermal issues for integrated circuits at the ABDM card. However, we need heat sources simulations for ABDM card to establish its thermal mapping. This led us to perform simulations at each ASIC that will allow us to understand the thermal ABDM map and find real solutions for each one of our complex system that contains 36 ABDM map, taking into account the different layers around ASIC. To do a transient simulation under NISA, we had to build a function of power modulation in time TIMEAMP. The maximum power generated in the ASIC is 0.6 W. We divided the power uniformly in the volume of the ASIC. This power was applied for 5 seconds to visualize the evolution and distribution of heat around the ASIC. The DBC (Dirichlet Boundary conditions) method was applied around the ABDM at 25掳C and just after these simulations in NISA tool we will validate them by COMSOL tool, wich is a numerical calculation software for a modular finite element for modeling a wide variety of physical phenomena characterizing a real problem. It will also be a design tool with its ability to handle 3D geometries for complex systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABDM" title="ABDM">ABDM</a>, <a href="https://publications.waset.org/abstracts/search?q=APD" title=" APD"> APD</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20mapping" title=" thermal mapping"> thermal mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20system" title=" complex system "> complex system </a> </p> <a href="https://publications.waset.org/abstracts/45823/development-and-validation-of-thermal-stability-in-complex-system-abdm-has-two-asic-by-nisa-and-comsol-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20178</span> Comparison of Finite-Element and IEC Methods for Cable Thermal Analysis under Various Operating Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Baazzim">M. S. Baazzim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Al-Saud"> M. S. Al-Saud</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20El-Kady"> M. A. El-Kady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, steady-state ampacity (current carrying capacity) evaluation of underground power cable system by using analytical and numerical methods for different conditions (depth of cable, spacing between phases, soil thermal resistivity, ambient temperature, wind speed), for two system voltage level were used 132 and 380 kV. The analytical method or traditional method that was used is based on the thermal analysis method developed by Neher-McGrath and further enhanced by International Electrotechnical Commission (IEC) and published in standard IEC 60287. The numerical method that was used is finite element method and it was recourse commercial software based on finite element method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cable%20ampacity" title="cable ampacity">cable ampacity</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20cable" title=" underground cable"> underground cable</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20rating" title=" thermal rating"> thermal rating</a> </p> <a href="https://publications.waset.org/abstracts/6273/comparison-of-finite-element-and-iec-methods-for-cable-thermal-analysis-under-various-operating-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20177</span> Two Major Methods to Control Thermal Resistance of Focus Ring for Process Uniformity Enhance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin-Uk%20Park">Jin-Uk Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the semiconductor industry is rapidly demanding complicated structures and mass production. From the point of view of mass production, the ETCH industry is concentrating on maintaining the ER (Etch rate) of the wafer edge constant regardless of changes over time. In this study, two major thermal factors affecting process were identified and controlled. First, the filler of the thermal pad was studied. Second, the significant difference of handling the thermal pad during PM was studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=etcher" title="etcher">etcher</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20pad" title=" thermal pad"> thermal pad</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20cleaning" title=" wet cleaning"> wet cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/143443/two-major-methods-to-control-thermal-resistance-of-focus-ring-for-process-uniformity-enhance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20176</span> A Theoretical Analysis of Air Cooling System Using Thermal Ejector under Variable Generator Pressure </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ouzzane">Mohamed Ouzzane</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Bady"> Mahmoud Bady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to energy and environment context, research is looking for the use of clean and energy efficient system in cooling industry. In this regard, the ejector represents one of the promising solutions. The thermal ejector is a passive component used for thermal compression in refrigeration and cooling systems, usually activated by heat either waste or solar. The present study introduces a theoretical analysis of the cooling system which uses a gas ejector thermal compression. A theoretical model is developed and applied for the design and simulation of the ejector, as well as the whole cooling system. Besides the conservation equations of mass, energy and momentum, the gas dynamic equations, state equations, isentropic relations as well as some appropriate assumptions are applied to simulate the flow and mixing in the ejector. This model coupled with the equations of the other components (condenser, evaporator, pump, and generator) is used to analyze profiles of pressure and velocity (Mach number), as well as evaluation of the cycle cooling capacity. A FORTRAN program is developed to carry out the investigation. Properties of refrigerant R134a are calculated using real gas equations. Among many parameters, it is thought that the generator pressure is the cornerstone in the cycle, and hence considered as the key parameter in this investigation. Results show that the generator pressure has a great effect on the ejector and on the whole cooling system. At high generator pressures, strong shock waves inside the ejector are created, which lead to significant condenser pressure at the ejector exit. Additionally, at higher generator pressures, the designed system can deliver cooling capacity for high condensing pressure (hot season). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20cooling%20system" title="air cooling system">air cooling system</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigeration" title=" refrigeration"> refrigeration</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20ejector" title=" thermal ejector"> thermal ejector</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20compression" title=" thermal compression"> thermal compression</a> </p> <a href="https://publications.waset.org/abstracts/104177/a-theoretical-analysis-of-air-cooling-system-using-thermal-ejector-under-variable-generator-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20175</span> Thermal Analysis and Experimental Procedure of Integrated Phase Change Material in a Storage Tank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chargui%20Ridha">Chargui Ridha</a>, <a href="https://publications.waset.org/abstracts/search?q=Agrebi%20Sameh"> Agrebi Sameh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The integration of phase change materials (PCM) for the storage of thermal energy during the period of sunshine before being released during the night is a complement of free energy to improve the system formed by a solar collector, tank storage, and a heat exchanger. This paper is dedicated to the design of a thermal storage tank based on a PCM-based heat exchanger. The work is divided into two parts: an experimental part using paraffin as PCM was carried out within the Laboratory of Thermal Processes of Borj Cedria in order to improve the performance of the system formed by the coupling of a flat solar collector and a thermal storage tank and to subsequently determine the influence of PCM on the whole system. This phase is based on the measurement instrumentation, namely, a differential scanning calorimeter (DSC) and the thermal analyzer (hot disk: HOT DISK) in order to determine the physical properties of the paraffin (PCM), which has been chosen. The second phase involves the detailed design of the PCM heat exchanger, which is incorporated into a thermal storage tank and coupled with a solar air collector installed at the Research and Technology Centre of Energy (CRTEn). A numerical part based on the TRANSYS and Fluent software, as well as the finite volume method, was carried out for the storage reservoir systems in order to determine the temperature distribution in each chosen system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20materials" title="phase change materials">phase change materials</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20tank" title=" storage tank"> storage tank</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20plate%20collector" title=" flat plate collector"> flat plate collector</a> </p> <a href="https://publications.waset.org/abstracts/157898/thermal-analysis-and-experimental-procedure-of-integrated-phase-change-material-in-a-storage-tank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20174</span> Using the Transient Plane Source Method for Measuring Thermal Parameters of Electroceramics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Krupa">Peter Krupa</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetoz%C3%A1r%20Malinari%C4%8D"> Svetoz谩r Malinari膷</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transient plane source method has been used to measure the thermal diffusivity and thermal conductivity of a compact isostatic electro-ceramics at room temperature. The samples were fired at temperatures from 100 up to 1320 degrees Celsius in steps of 50. Bulk density and specific heat capacity were also measured with their corresponding standard uncertainties. The results were compared with further thermal analysis (dilatometry and thermogravimetry). Structural processes during firing were discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TPS%20method" title="TPS method">TPS method</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20diffusivity" title=" thermal diffusivity"> thermal diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-ceramics" title=" electro-ceramics"> electro-ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=firing" title=" firing"> firing</a> </p> <a href="https://publications.waset.org/abstracts/8438/using-the-transient-plane-source-method-for-measuring-thermal-parameters-of-electroceramics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20173</span> Two-Channels Thermal Energy Storage Tank: Experiments and Short-Cut Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Capocelli">M. Capocelli</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Caputo"> A. Caputo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20De%20Falco"> M. De Falco</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Mazzei"> D. Mazzei</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Piemonte"> V. Piemonte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the experimental results and the related modeling of a thermal energy storage (TES) facility, ideated and realized by ENEA and realizing the thermocline with an innovative geometry. Firstly, the thermal energy exchange model of an equivalent shell &amp; tube heat exchanger is described and tested to reproduce the performance of the spiral exchanger installed in the TES. Through the regression of the experimental data, a first-order thermocline model was also validated to provide an analytical function of the thermocline, useful for the performance evaluation and the comparison with other systems and implementation in simulations of integrated systems (e.g. power plants). The experimental data obtained from the plant start-up and the short-cut modeling of the system can be useful for the process analysis, for the scale-up of the thermal storage system and to investigate the feasibility of its implementation in actual case-studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CSP%20plants" title="CSP plants">CSP plants</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy%20storage" title=" thermal energy storage"> thermal energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=thermocline" title=" thermocline"> thermocline</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title=" mathematical modelling"> mathematical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20data" title=" experimental data"> experimental data</a> </p> <a href="https://publications.waset.org/abstracts/65882/two-channels-thermal-energy-storage-tank-experiments-and-short-cut-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20172</span> Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Tripathi">Rohit Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Tiwari"> Sumit Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Tiwari"> G. N. Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, India. Energy and exergy performance of N - partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Water collector system has been compared for two cases: (i) 25% area of water collector covered by PV module, (ii) 75% area of water collector covered by PV module. It is observed that case (i) has been best suited for thermal performance and case (ii) for electrical energy as well as overall exergy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compound%20parabolic%20concentrator" title="compound parabolic concentrator">compound parabolic concentrator</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20thermal" title=" photovoltaic thermal"> photovoltaic thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20dependent%20electrical%20efficiency" title=" temperature dependent electrical efficiency"> temperature dependent electrical efficiency</a> </p> <a href="https://publications.waset.org/abstracts/36867/performance-of-partially-covered-n-number-of-photovoltaic-thermal-pvt-compound-parabolic-concentrator-cpc-series-connected-water-heating-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20171</span> Thermal Performance of an Air-Water Heat Exchanger (AWHE) Operating in Groundwater and Hot-Humid Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C%C3%A9sar%20Ram%C3%ADrez-Dolores">C茅sar Ram铆rez-Dolores</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Wong-Loya"> Jorge Wong-Loya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Andaverde"> Jorge Andaverde</a>, <a href="https://publications.waset.org/abstracts/search?q=Caleb%20Becerra"> Caleb Becerra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low-depth geothermal energy can take advantage of the use of the subsoil as an air conditioning technique, being used as a passive system or coupled to an active cooling and/or heating system. This source of air conditioning is possible because at a depth less than 10 meters, the subsoil temperature is practically homogeneous and tends to be constant regardless of the climatic conditions on the surface. The effect of temperature fluctuations on the soil surface decreases as depth increases due to the thermal inertia of the soil, causing temperature stability; this effect presents several advantages in the context of sustainable energy use. In the present work, the thermal behavior of a horizontal Air-Water Heat Exchanger (AWHE) is evaluated, and the thermal effectiveness and temperature of the air at the outlet of the prototype immersed in groundwater is experimentally determined. The thermohydraulic aspects of the heat exchanger were evaluated using the Number of Transfer Units-Efficiency (NTU-蔚) method under conditions of groundwater flow in a coastal region of sandy soil (southeastern Mexico) and air flow induced by a blower, the system was constructed of polyvinyl chloride (PVC) and sensors were placed in both the exchanger and the water to record temperature changes. The results of this study indicate that when the exchanger operates in groundwater, it shows high thermal gains allowing better heat transfer, therefore, it significantly reduces the air temperature at the outlet of the system, which increases the thermal effectiveness of the system in values > 80%, this passive technique is relevant for building cooling applications and could represent a significant development in terms of thermal comfort for hot locations in emerging economy countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convection" title="convection">convection</a>, <a href="https://publications.waset.org/abstracts/search?q=earth" title=" earth"> earth</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20energy" title=" geothermal energy"> geothermal energy</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/177739/thermal-performance-of-an-air-water-heat-exchanger-awhe-operating-in-groundwater-and-hot-humid-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20170</span> Parametric Study of a Solar-Heating-And-Cooling System with Hybrid Photovoltaic/Thermal Collectors in North China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruobing%20Liang">Ruobing Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jili%20Zhang"> Jili Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Zhou"> Chao Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A solar-heating-and-cooling (SHC) system, consisting of a hybrid photovoltaic/ thermal collector array, a hot water storage tank, and an absorption chiller unit is designed and modeled to satisfy thermal loads (space heating, domestic hot water, and space cooling). The system is applied for Dalian, China, a location with cold climate conditions, where cooling demand is moderate, while space heating demand is slightly high. The study investigates the potential of a solar system installed and operated onsite in a detached single-family household to satisfy all necessary thermal loads. The hot water storage tank is also connected to an auxiliary heater (electric boiler) to supplement solar heating, when needed. The main purpose of the study is to model the overall system and contact a parametric study that will determine the optimum economic system performance in terms of design parameters. The system is compared, through a cost analysis, to an electric heat pump (EHP) system. This paper will give the optimum system combination of solar collector area and volumetric capacity of the hot water storage tank, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption%20chiller" title="absorption chiller">absorption chiller</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20PVT%20collector" title=" solar PVT collector"> solar PVT collector</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20heating%20and%20cooling" title=" solar heating and cooling"> solar heating and cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20air-conditioning" title=" solar air-conditioning"> solar air-conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20study" title=" parametric study"> parametric study</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20analysis" title=" cost analysis"> cost analysis</a> </p> <a href="https://publications.waset.org/abstracts/36328/parametric-study-of-a-solar-heating-and-cooling-system-with-hybrid-photovoltaicthermal-collectors-in-north-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20169</span> Response of Pavement under Temperature and Vehicle Coupled Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhong">Yang Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Jie%20Xu"> Mei-Jie Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study the dynamic mechanics response of asphalt pavement under the temperature load and vehicle loading, asphalt pavement was regarded as multilayered elastic half-space system, and theory analysis was conducted by regarding dynamic modulus of asphalt mixture as the parameter. Firstly, based on the dynamic modulus test of asphalt mixture, function relationship between the dynamic modulus of representative asphalt mixture and temperature was obtained. In addition, the analytical solution for thermal stress in the single layer was derived by using Laplace integral transformation and Hankel integral transformation respectively by using thermal equations of equilibrium. The analytical solution of calculation model of thermal stress in asphalt pavement was derived by transfer matrix of thermal stress in multilayer elastic system. Finally, the variation of thermal stress in pavement structure was analyzed. The result shows that there is an obvious difference between the thermal stress based on dynamic modulus and the solution based on static modulus. Therefore, the dynamic change of parameter in asphalt mixture should be taken into consideration when the theoretical analysis is taken out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20pavement" title="asphalt pavement">asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modulus" title=" dynamic modulus"> dynamic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20transformation" title=" integral transformation"> integral transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20matrix" title=" transfer matrix"> transfer matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stress" title=" thermal stress"> thermal stress</a> </p> <a href="https://publications.waset.org/abstracts/31808/response-of-pavement-under-temperature-and-vehicle-coupled-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20168</span> Operating System Support for Mobile Device Thermal Management and Performance Optimization in Augmented Reality Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasith%20Mindula%20Saipath%20Wickramasinghe">Yasith Mindula Saipath Wickramasinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Augmented reality applications require a high processing power to load, render and live stream high-definition AR models and virtual scenes; it also requires device sensors to work excessively to coordinate with internal hardware, OS and give the expected outcome in advance features like object detection, real time tracking, as well as voice and text recognition. Excessive thermal generation due to these advanced functionalities has become a major research problem as it is unbearable for smaller mobile devices to manage such heat increment and battery drainage as it causes physical harm to the devices in the long term. Therefore, effective thermal management is one of the major requirements in Augmented Reality application development. As this paper discusses major causes for this issue, it also provides possible solutions in the means of operating system adaptations as well as further research on best coding practises to optimize the application performance that reduces thermal excessive thermal generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title="augmented reality">augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20thermal%20management" title=" device thermal management"> device thermal management</a>, <a href="https://publications.waset.org/abstracts/search?q=GPU" title=" GPU"> GPU</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20systems" title=" operating systems"> operating systems</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20I%2FO" title=" device I/O"> device I/O</a>, <a href="https://publications.waset.org/abstracts/search?q=overheating" title=" overheating"> overheating</a> </p> <a href="https://publications.waset.org/abstracts/151018/operating-system-support-for-mobile-device-thermal-management-and-performance-optimization-in-augmented-reality-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20system&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20system&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20system&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20system&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20system&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20system&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20system&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20system&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20system&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20system&amp;page=673">673</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20system&amp;page=674">674</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20system&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10