CINXE.COM

algebraic lattice in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> algebraic lattice in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> algebraic lattice </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussions/?CategoryID=0" title="Discuss this page on the nForum. It does not yet have a dedicated thread; feel free to create one, giving it the same name as the title of this page" style="color:black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="category_theory"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(0,1)</annotation></semantics></math>-Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/%280%2C1%29-category+theory">(0,1)-category theory</a></strong>: <a class="existingWikiWord" href="/nlab/show/logic">logic</a>, <a class="existingWikiWord" href="/nlab/show/order+theory">order theory</a></p> <p><strong><a class="existingWikiWord" href="/nlab/show/%280%2C1%29-category">(0,1)-category</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+preorders+and+%280%2C1%29-categories">relation between preorders and (0,1)-categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/proset">proset</a>, <a class="existingWikiWord" href="/nlab/show/partially+ordered+set">partially ordered set</a> (<a class="existingWikiWord" href="/nlab/show/directed+set">directed set</a>, <a class="existingWikiWord" href="/nlab/show/total+order">total order</a>, <a class="existingWikiWord" href="/nlab/show/linear+order">linear order</a>)</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/top">top</a>, <a class="existingWikiWord" href="/nlab/show/true">true</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bottom">bottom</a>, <a class="existingWikiWord" href="/nlab/show/false">false</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monotone+function">monotone function</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/implication">implication</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/filter">filter</a>, <a class="existingWikiWord" href="/nlab/show/interval">interval</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/lattice">lattice</a>, <a class="existingWikiWord" href="/nlab/show/semilattice">semilattice</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/meet">meet</a>, <a class="existingWikiWord" href="/nlab/show/logical+conjunction">logical conjunction</a>, <a class="existingWikiWord" href="/nlab/show/and">and</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/join">join</a>, <a class="existingWikiWord" href="/nlab/show/logical+disjunction">logical disjunction</a>, <a class="existingWikiWord" href="/nlab/show/or">or</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+element">compact element</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/lattice+of+subobjects">lattice of subobjects</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/complete+lattice">complete lattice</a>, <a class="existingWikiWord" href="/nlab/show/algebraic+lattice">algebraic lattice</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/distributive+lattice">distributive lattice</a>, <a class="existingWikiWord" href="/nlab/show/completely+distributive+lattice">completely distributive lattice</a>, <a class="existingWikiWord" href="/nlab/show/canonical+extension">canonical extension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/hyperdoctrine">hyperdoctrine</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/first-order+hyperdoctrine">first-order</a>, <a class="existingWikiWord" href="/nlab/show/Boolean+hyperdoctrine">Boolean</a>, <a class="existingWikiWord" href="/nlab/show/coherent+hyperdoctrine">coherent</a>, <a class="existingWikiWord" href="/nlab/show/tripos">tripos</a></li> </ul> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/%280%2C1%29-topos">(0,1)-topos</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Heyting+algebra">Heyting algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/regular+element">regular element</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Boolean+algebra">Boolean algebra</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/frame">frame</a>, <a class="existingWikiWord" href="/nlab/show/locale">locale</a></p> </li> </ul> <h2 id="theorems">Theorems</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/Stone+duality">Stone duality</a></li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#Def'>Definition</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#the_category_of_algebraic_lattices'>The category of algebraic lattices</a></li> <li><a href='#RelationToLocallyFinitelyPresentableCategories'>Relation to locally finitely presentable categories</a></li> <li><a href='#congruence_lattices'>Congruence lattices</a></li> <li><a href='#completely_distributive_lattices'>Completely distributive lattices</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="Def">Definition</h2> <div class="num_defn"> <h6 id="definition_2">Definition</h6> <p>An <strong>algebraic lattice</strong> is a <a class="existingWikiWord" href="/nlab/show/lattice">lattice</a> which is</p> <ul> <li> <p>a <a class="existingWikiWord" href="/nlab/show/complete+lattice">complete lattice</a>;</p> </li> <li> <p>such that every element is a <a class="existingWikiWord" href="/nlab/show/join">join</a> of <a class="existingWikiWord" href="/nlab/show/compact+elements">compact elements</a>.</p> </li> </ul> </div> <p>An <strong>algebraic lattice</strong> is a <a class="existingWikiWord" href="/nlab/show/complete+lattice">complete lattice</a> (equivalently, a <a class="existingWikiWord" href="/nlab/show/suplattice">suplattice</a>, or in different words a <a class="existingWikiWord" href="/nlab/show/poset">poset</a> with the <a class="existingWikiWord" href="/nlab/show/extra+property">property</a> of having arbitrary <a class="existingWikiWord" href="/nlab/show/colimits">colimits</a> but with the <a class="existingWikiWord" href="/nlab/show/structure">structure</a> of <a class="existingWikiWord" href="/nlab/show/directed+colimits">directed colimits</a>/<a class="existingWikiWord" href="/nlab/show/directed+joins">directed joins</a>) in which every element is the <a class="existingWikiWord" href="/nlab/show/supremum">supremum</a> of the <a class="existingWikiWord" href="/nlab/show/compact+element">compact element</a>s below it (an element <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>e</mi></mrow><annotation encoding="application/x-tex">e</annotation></semantics></math> is compact if, for every subset <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math> of the lattice, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>e</mi></mrow><annotation encoding="application/x-tex">e</annotation></semantics></math> is less than or equal to the supremum of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math> just in case <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>e</mi></mrow><annotation encoding="application/x-tex">e</annotation></semantics></math> is less than or equal to the supremum of some finite subset of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>).</p> <p>Here is an alternative formulation:</p> <div class="num_defn"> <h6 id="definition_3">Definition</h6> <p>An algebraic lattice is a <a class="existingWikiWord" href="/nlab/show/poset">poset</a> which is <a class="existingWikiWord" href="/nlab/show/locally+finitely+presentable+category">locally finitely presentable</a> as a category.</p> </div> <p>This formulation suggests a useful way of viewing algebraic lattices in terms of <a class="existingWikiWord" href="/nlab/show/Gabriel-Ulmer+duality">Gabriel-Ulmer duality</a> (but with regard to enrichment in <a class="existingWikiWord" href="/nlab/show/truth+values">truth values</a>, instead of in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Set</mi></mrow><annotation encoding="application/x-tex">Set</annotation></semantics></math>).</p> <p>As this last formulation suggests, algebraic lattices typically arise as <a class="existingWikiWord" href="/nlab/show/subobject+lattices">subobject lattices</a> for objects in locally finitely presentable categories. As an example, for any (finitary) <a class="existingWikiWord" href="/nlab/show/Lawvere+theory">Lawvere theory</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>, the subobject lattice of an object in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Alg</mi></mrow><annotation encoding="application/x-tex">Alg</annotation></semantics></math> is an algebraic lattice (this class of examples explains the origin of the term “algebraic lattice”, which is due to Garrett Birkhoff). In fact, all algebraic lattices arise this way (see Theorem <a class="maruku-ref" href="#GS"></a> below).</p> <p>It is trivial that every finite lattice is algebraic.</p> <h2 id="properties">Properties</h2> <h3 id="the_category_of_algebraic_lattices">The category of algebraic lattices</h3> <p>The <a class="existingWikiWord" href="/nlab/show/morphisms">morphisms</a> most commonly considered between algebraic lattices are the <span class="newWikiWord">finitary functors<a href="/nlab/new/finitary+functors">?</a></span> between them, which is to say, the <a class="existingWikiWord" href="/nlab/show/Scott+topology">Scott-continuous</a> functions between them; i.e., those functions which preserve directed joins (hence the parenthetical remarks <a href="#Def">above</a>).</p> <p>The resulting category <strong>AlgLat</strong> is <a class="existingWikiWord" href="/nlab/show/cartesian+closed">cartesian closed</a> and is dually equivalent to the category whose objects are <a class="existingWikiWord" href="/nlab/show/meet+semilattices">meet semilattices</a> (construed as categories with <a class="existingWikiWord" href="/nlab/show/finite+limits">finite limits</a> <a class="existingWikiWord" href="/nlab/show/enriched+category">enriched</a> over <a class="existingWikiWord" href="/nlab/show/truth+values">truth values</a>) and whose morphisms are meet-preserving <a class="existingWikiWord" href="/nlab/show/profunctors">profunctors</a> between them (using the convention that a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>-enriched profunctor from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> is a functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>D</mi> <mi>op</mi></msup><mo>×</mo><mi>C</mi><mo>→</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">D^{op} \times C \rightarrow V</annotation></semantics></math>; of course, with an opposite convention, one could similarly state a covariant equivalence).</p> <p>There is a <em>full</em> <a class="existingWikiWord" href="/nlab/show/full+embedding">embedding</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>i</mi><mo lspace="verythinmathspace">:</mo><mi>AlgLat</mi><mo>→</mo><msub><mi>Top</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">i \colon AlgLat \to Top_0</annotation></semantics></math></div> <p>to the category of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">T_0</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/separation+axioms">spaces</a>, taking an algebraic lattice <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> to the space whose points are elements of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math>, and whose <a class="existingWikiWord" href="/nlab/show/open+sets">open sets</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math> are defined by the property that their <a class="existingWikiWord" href="/nlab/show/characteristic+maps">characteristic maps</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>χ</mi> <mi>U</mi></msub><mo>:</mo><mi>L</mi><mo>→</mo><mstyle mathvariant="bold"><mn>2</mn></mstyle></mrow><annotation encoding="application/x-tex">\chi_U: L \to \mathbf{2}</annotation></semantics></math></div> <p>(<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>χ</mi> <mi>U</mi></msub><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\chi_U(a) = 1</annotation></semantics></math> if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">a \in U</annotation></semantics></math>, else <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>χ</mi> <mi>U</mi></msub><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\chi_U(a) = 0</annotation></semantics></math>) are poset maps that preserve <a class="existingWikiWord" href="/nlab/show/directed+colimits">directed colimits</a>. The <a class="existingWikiWord" href="/nlab/show/specialization+order">specialization order</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi><mo stretchy="false">(</mo><mi>L</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">i(L)</annotation></semantics></math> is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> again.</p> <p>Every <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">T_0</annotation></semantics></math>-space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> occurs as a <a class="existingWikiWord" href="/nlab/show/subspace">subspace</a> of some space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi><mo stretchy="false">(</mo><mi>L</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">i(L)</annotation></semantics></math> associated with an algebraic lattice. Explicitly, let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">L(X)</annotation></semantics></math> be the <a class="existingWikiWord" href="/nlab/show/power+set">power set</a> of the underlying set of the <a class="existingWikiWord" href="/nlab/show/topology">topology</a>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mrow><mo stretchy="false">|</mo><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">|</mo></mrow></mrow><annotation encoding="application/x-tex">P{|\mathcal{O}(X)|}</annotation></semantics></math>, and define</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><mo stretchy="false">(</mo><mi>i</mi><mo>∘</mo><mi>L</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">X \to (i\circ L)(X)</annotation></semantics></math></div> <p>to take <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>≔</mo><mo stretchy="false">{</mo><mi>U</mi><mo>∈</mo><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>:</mo><mi>x</mi><mo>∈</mo><mi>U</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">N(x) \coloneqq \{U \in \mathcal{O}(X): x \in U\}</annotation></semantics></math>. This gives a topological embedding of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi><mo stretchy="false">(</mo><mi>L</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">i(L(X))</annotation></semantics></math>.</p> <div class="un_remark"> <h6 id="remark">Remark</h6> <p>On similar grounds, if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo lspace="verythinmathspace">:</mo><mi>AlgLat</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">U \colon AlgLat \to Set</annotation></semantics></math> is the forgetful functor, then the <a href="http://ncatlab.org/nlab/show/stuff%2C+structure%2C+property#a_factorisation_system_14">2-image</a> of the projection functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>π</mi><mo lspace="verythinmathspace">:</mo><mi>Set</mi><mo stretchy="false">↓</mo><mi>U</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">\pi \colon Set\downarrow U \to Set</annotation></semantics></math> is the category of topological spaces <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Top</mi></mrow><annotation encoding="application/x-tex">Top</annotation></semantics></math>. In more nuts-and-bolts terms, an object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>S</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>f</mi><mo lspace="verythinmathspace">:</mo><mi>S</mi><mo>→</mo><mi>U</mi><mo stretchy="false">(</mo><mi>L</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(S, L, f \colon S \to U(L))</annotation></semantics></math> gives a space with underlying set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math> and open sets those of the form <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>O</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f^{-1}(O)</annotation></semantics></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>O</mi></mrow><annotation encoding="application/x-tex">O</annotation></semantics></math> ranges over the Scott topology on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math>. Notice that if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>f</mi><mo lspace="verythinmathspace">:</mo><mi>S</mi><mo>→</mo><mi>S</mi><mo>′</mo><mo>,</mo><mi>g</mi><mo lspace="verythinmathspace">:</mo><mi>L</mi><mo>→</mo><mi>L</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(f \colon S \to S', g \colon L \to L')</annotation></semantics></math> is a morphism in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Set</mi><mo stretchy="false">↓</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">Set \downarrow U</annotation></semantics></math>, then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> is continuous with respect to these topologies. Therefore the projection <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>π</mi><mo lspace="verythinmathspace">:</mo><mi>Set</mi><mo stretchy="false">↓</mo><mi>U</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">\pi \colon Set \downarrow U \to Set</annotation></semantics></math> factors through the faithful forgetful functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Top</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">Top \to Set</annotation></semantics></math>. Thus, working in the factorization system (eso+full, faithful) on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Cat</mi></mrow><annotation encoding="application/x-tex">Cat</annotation></semantics></math>, we have a faithful functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn></mrow><annotation encoding="application/x-tex">2</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>im</mi><mo stretchy="false">(</mo><mi>π</mi><mo stretchy="false">)</mo><mo>→</mo><mi>Top</mi></mrow><annotation encoding="application/x-tex">im(\pi) \to Top</annotation></semantics></math> filling in as the diagonal</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>Set</mi><mo stretchy="false">↓</mo><mi>U</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>Top</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><mo>↗</mo></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mn>2</mn><mtext>-</mtext><mi>im</mi><mo stretchy="false">(</mo><mi>π</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>Set</mi><mo>.</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\array{ Set \downarrow U &amp; \to &amp; Top \\ \downarrow &amp; \nearrow &amp; \downarrow \\ 2\text{-}im(\pi) &amp; \to &amp; Set. } </annotation></semantics></math></div> <p>But notice also that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Set</mi><mo stretchy="false">↓</mo><mi>U</mi><mo>→</mo><mi>Top</mi></mrow><annotation encoding="application/x-tex">Set \downarrow U \to Top</annotation></semantics></math> is <a href="http://ncatlab.org/nlab/show/ternary+factorization+system#examples_9">eso and full</a>. It is eso because any topology <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒪</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{O}(S)</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math> can be reconstituted from the triple <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>S</mi><mo>,</mo><mi>P</mi><mrow><mo stretchy="false">|</mo><mi>𝒪</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo stretchy="false">|</mo></mrow><mo>,</mo><mi>x</mi><mo>↦</mo><mi>N</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo lspace="verythinmathspace">:</mo><mi>S</mi><mo>→</mo><mi>P</mi><mrow><mo stretchy="false">|</mo><mi>𝒪</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo stretchy="false">|</mo></mrow><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(S, P{|\mathcal{O}(S)|}, x \mapsto N(x) \colon S \to P{|\mathcal{O}(S)|})</annotation></semantics></math>. We claim it is full as well. For, every continuous map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><mi>X</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">X \to X'</annotation></semantics></math> between topological spaces induces a continuous map between their <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">T_0</annotation></semantics></math> reflections <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mn>0</mn></msub><mo>→</mo><msub><mi>X</mi> <mn>0</mn></msub><mo>′</mo></mrow><annotation encoding="application/x-tex">X_0 \to X_{0}'</annotation></semantics></math>, and since algebraic lattices like <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mrow><mo stretchy="false">|</mo><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">|</mo></mrow></mrow><annotation encoding="application/x-tex">P{|\mathcal{O}(X)|}</annotation></semantics></math> (being continuous lattices) are <a class="existingWikiWord" href="/nlab/show/injective+objects">injective objects</a> in the category of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">T_0</annotation></semantics></math> spaces, we are able to complete to a diagram</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>X</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><msub><mi>X</mi> <mn>0</mn></msub></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>P</mi><mrow><mo stretchy="false">|</mo><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">|</mo></mrow></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>X</mi><mo>′</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><msub><mi>X</mi> <mn>0</mn></msub><mo>′</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>P</mi><mrow><mo stretchy="false">|</mo><mi>𝒪</mi><mo stretchy="false">(</mo><mi>X</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">|</mo></mrow></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\array{ X &amp; \to &amp; X_0 &amp; \to &amp; P{|\mathcal{O}(X)|} \\ \downarrow &amp; &amp; \downarrow &amp; &amp; \downarrow \\ X' &amp; \to &amp; X_{0}' &amp; \to &amp; P{|\mathcal{O}(X')|} } </annotation></semantics></math></div> <p>where the rightmost vertical arrow is Scott-continuous (and the horizontal composites are of the form <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>↦</mo><mi>N</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x \mapsto N(x)</annotation></semantics></math>). Finally, since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Set</mi><mo stretchy="false">↓</mo><mi>U</mi><mo>→</mo><mi>Top</mi></mrow><annotation encoding="application/x-tex">Set \downarrow U \to Top</annotation></semantics></math> is eso and full, it follows that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn></mrow><annotation encoding="application/x-tex">2</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>im</mi><mo stretchy="false">(</mo><mi>π</mi><mo stretchy="false">)</mo><mo>→</mo><mi>Top</mi></mrow><annotation encoding="application/x-tex">im(\pi) \to Top</annotation></semantics></math> is eso, full, and faithful, and therefore an equivalence of categories.</p> <p>This connection is explored in more depth with the category of <a class="existingWikiWord" href="/nlab/show/equilogical+spaces">equilogical spaces</a>, which can be seen either as a category of (set-theoretic) <a class="existingWikiWord" href="/nlab/show/equivalence+relation">partial equivalence relations</a> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>AlgLat</mi></mrow><annotation encoding="application/x-tex">AlgLat</annotation></semantics></math>, or equivalently of (set-theoretic) total <a class="existingWikiWord" href="/nlab/show/equivalence+relations">equivalence relations</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">T_0</annotation></semantics></math> topological spaces.</p> </div> <h3 id="RelationToLocallyFinitelyPresentableCategories">Relation to locally finitely presentable categories</h3> <p>One of our definitions of algebraic lattice is: a poset <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> which is locally finitely presentable when viewed as a category. The completeness of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> means that right adjoints <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">L \to Set</annotation></semantics></math> are representable, given by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo lspace="verythinmathspace">:</mo><mi>L</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">L(p, -) \colon L \to Set</annotation></semantics></math>, and we are particularly interested in those representable functors that preserve <a class="existingWikiWord" href="/nlab/show/filtered+colimits">filtered colimits</a>. These correspond precisely to finitely presentable objects <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>, which in lattice theory are usually called compact elements. These compact elements are closed under finite joins.</p> <p>By <a class="existingWikiWord" href="/nlab/show/Gabriel-Ulmer+duality">Gabriel-Ulmer duality</a>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> is determined from the join-semilattice of compact elements <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math> by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi><mo>≅</mo><mi>Lex</mi><mo stretchy="false">(</mo><msup><mi>K</mi> <mi>op</mi></msup><mo>,</mo><mi>Set</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">L \cong Lex(K^{op}, Set)</annotation></semantics></math>. Since the elements of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>K</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">K^{op}</annotation></semantics></math> are subterminal, we can also write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi><mo>≅</mo><mi>Lex</mi><mo stretchy="false">(</mo><msup><mi>K</mi> <mi>op</mi></msup><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">L \cong Lex(K^{op}, 2)</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn><mo>=</mo><mi>Sub</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">2 = Sub(1)</annotation></semantics></math>.</p> <div class="num_theorem"> <h6 id="theorem">Theorem</h6> <p><strong>(Porst)</strong></p> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/locally+finitely+presentable+category">locally finitely presentable category</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is an object of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>, then</p> <ul> <li> <p>The lattice of subobjects <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Sub</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Sub(X)</annotation></semantics></math>,</p> </li> <li> <p>the lattice of quotient objects (equivalence classes of epis sourced at <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Quot</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Quot(X)</annotation></semantics></math>,</p> </li> <li> <p>the lattice of congruences (internal equivalence relations) on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></p> </li> </ul> <p>are all algebraic lattices.</p> </div> <p>This is due to <a href="#Porst">Porst</a>. Of course if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is the category of algebras of an Lawvere theory, then the lattice of quotient objects of an algebra is isomorphic to its congruence lattice, as such <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/exact+category">exact category</a>.</p> <h3 id="congruence_lattices">Congruence lattices</h3> <p>The following result is due to Grätzer and Schmidt:</p> <div class="num_theorem" id="GS"> <h6 id="theorem_2">Theorem</h6> <p>Every algebraic lattice is isomorphic to the congruence lattice of some <a class="existingWikiWord" href="/nlab/show/model">model</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> of some finitary algebraic theory.</p> </div> <p>In particular, since every finite lattice is algebraic, every finite lattice arises this way. Remarkably, it is not known at this time whether every finite lattice arises as the congruence lattice of a <em>finite</em> algebra <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>. It has been conjectured that this is in fact <strong>false</strong>: see this <a href="http://mathoverflow.net/a/196074/2926">MO discussion</a>.</p> <p>Another problem which had long remained open is the congruence lattice problem: is every <em>distributive</em> algebraic lattice the congruence lattice (or lattice of quotient objects) of some lattice <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math>? The answer is negative, as shown by Wehrung in 2007: see this <a href="http://en.m.wikipedia.org/wiki/Congruence_lattice_problem">Wikipedia article</a>.</p> <h3 id="completely_distributive_lattices">Completely distributive lattices</h3> <div class="num_prop"> <h6 id="proposition">Proposition</h6> <p>The category of <a class="existingWikiWord" href="/nlab/show/Alexandroff+locales">Alexandroff locales</a> is equivalent to that of <a class="existingWikiWord" href="/nlab/show/completely+distributive+lattice">completely distributive</a> algebraic lattices.</p> </div> <p>This appears as (<a href="#Caramello">Caramello, remark 4.3</a>).</p> <p>The <a class="existingWikiWord" href="/nlab/show/completely+distributive+lattice">completely distributive</a> algebraic lattices form a <a class="existingWikiWord" href="/nlab/show/reflective+subcategory">reflective subcategory</a> of that of all distributive lattices. The reflector is called <em><a class="existingWikiWord" href="/nlab/show/canonical+extension">canonical extension</a></em>.</p> <h2 id="related_concepts">Related concepts</h2> <p>See also <a class="existingWikiWord" href="/nlab/show/compact+element">compact element</a>, <span class="newWikiWord">compact element in a locale<a href="/nlab/new/compact+element+in+a+locale">?</a></span>.</p> <div> <p><strong>Locally presentable categories:</strong> <a class="existingWikiWord" href="/nlab/show/cocomplete+category">Cocomplete</a> possibly-<a class="existingWikiWord" href="/nlab/show/large+categories">large categories</a> generated under <a class="existingWikiWord" href="/nlab/show/filtered+colimits">filtered colimits</a> by <a class="existingWikiWord" href="/nlab/show/small+object">small</a> <a class="existingWikiWord" href="/nlab/show/generators">generators</a> under <a class="existingWikiWord" href="/nlab/show/small+colimit">small</a> <a class="existingWikiWord" href="/nlab/show/relations">relations</a>. Equivalently, <a class="existingWikiWord" href="/nlab/show/accessible+functor">accessible</a> <a class="existingWikiWord" href="/nlab/show/reflective+localizations">reflective localizations</a> of <a class="existingWikiWord" href="/nlab/show/free+cocompletions">free cocompletions</a>. Accessible categories omit the cocompleteness requirement; toposes add the requirement of a <a class="existingWikiWord" href="/nlab/show/left+exact+functor">left exact</a> localization.</p> <table><thead><tr><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/%28n%2Cr%29-categories">(n,r)-categories</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></th><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/toposes">toposes</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></th><th>locally presentable</th><th>loc finitely pres</th><th>localization theorem</th><th><a class="existingWikiWord" href="/nlab/show/free+cocompletion">free cocompletion</a></th><th>accessible</th></tr></thead><tbody><tr><td style="text-align: left;"><strong><a class="existingWikiWord" href="/nlab/show/%280%2C1%29-category+theory">(0,1)-category theory</a></strong></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/locales">locales</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/suplattice">suplattice</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/algebraic+lattices">algebraic lattices</a></td><td style="text-align: left;"><a href="algebraic+lattice#RelationToLocallyFinitelyPresentableCategories">Porst’s theorem</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/powerset">powerset</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/poset">poset</a></td></tr> <tr><td style="text-align: left;"><strong><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></strong></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Grothendieck+topos">toposes</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/locally+presentable+categories">locally presentable categories</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/locally+finitely+presentable+categories">locally finitely presentable categories</a></td><td style="text-align: left;"><a href="locally+presentable+category#AsLocalizationsOfPresheafCategories">Gabriel–Ulmer’s theorem</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/presheaf+category">presheaf category</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/accessible+categories">accessible categories</a></td></tr> <tr><td style="text-align: left;"><strong><a class="existingWikiWord" href="/nlab/show/model+category">model category theory</a></strong></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/model+toposes">model toposes</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/combinatorial+model+categories">combinatorial model categories</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Dugger%27s+theorem">Dugger's theorem</a></td><td style="text-align: left;">global <a class="existingWikiWord" href="/nlab/show/model+structures+on+simplicial+presheaves">model structures on simplicial presheaves</a></td><td style="text-align: left;">n/a</td></tr> <tr><td style="text-align: left;"><strong><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+theory">(∞,1)-category theory</a></strong></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-toposes">(∞,1)-toposes</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/locally+presentable+%28%E2%88%9E%2C1%29-categories">locally presentable (∞,1)-categories</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a href="locally+presentable+infinity-category#Definition">Simpson’s theorem</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-presheaf+%28%E2%88%9E%2C1%29-categories">(∞,1)-presheaf (∞,1)-categories</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/accessible+%28%E2%88%9E%2C1%29-categories">accessible (∞,1)-categories</a></td></tr> </tbody></table> </div> <h2 id="references">References</h2> <ul id="Caramello"> <li> <p><a class="existingWikiWord" href="/nlab/show/Andrej+Bauer">Andrej Bauer</a>, <a class="existingWikiWord" href="/nlab/show/Lars+Birkedal">Lars Birkedal</a>, <a class="existingWikiWord" href="/nlab/show/Dana+Scott">Dana Scott</a>, <em>Equilogical Spaces</em>, Theoretical Computer Science, 315(1):35-59, 2004. (<a href="http://math.andrej.com/2002/07/05/equilogical-spaces/">web</a>)</p> </li> <li> <p>Olivia Caramello, <em>A topos-theoretic approach to Stone-type dualities</em> (<a href="http://arxiv.org/abs/1103.3493">arXiv:1103.3493</a>)</p> </li> </ul> <p>The relation to <a class="existingWikiWord" href="/nlab/show/locally+finitely+presentable+categories">locally finitely presentable categories</a> is discussed in</p> <ul id="Porst"> <li><a class="existingWikiWord" href="/nlab/show/Hans+Porst">Hans Porst</a>, <em>Algebraic lattices and locally finitely presentable categories</em>, Algebra Univers. <strong>65</strong>, 285–298 (2011). <a href="https://doi.org/10.1007/s00012-011-0129-0">https://doi.org/10.1007/s00012-011-0129-0</a> (<a href="http://www.math.uni-bremen.de/~porst/dvis/PORST_AlgebraicLattices_revfinAU.pdf">pdf</a>)</li> </ul> <p>That every algebraic lattice is a congruence lattice is proved in</p> <ul> <li>G. Grätzer and E. T. Schmidt, <em>Characterizations of congruence lattices of abstract algebras</em>, Acta Sci. Math. (Szeged) 24 (1963), 34–59.</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on December 16, 2020 at 06:50:54. See the <a href="/nlab/history/algebraic+lattice" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/algebraic+lattice" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussions/?CategoryID=0">Discuss</a><span class="backintime"><a href="/nlab/revision/algebraic+lattice/20" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/algebraic+lattice" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/algebraic+lattice" accesskey="S" class="navlink" id="history" rel="nofollow">History (20 revisions)</a> <a href="/nlab/show/algebraic+lattice/cite" style="color: black">Cite</a> <a href="/nlab/print/algebraic+lattice" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/algebraic+lattice" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10