CINXE.COM

Search results for: power transmission line

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: power transmission line</title> <meta name="description" content="Search results for: power transmission line"> <meta name="keywords" content="power transmission line"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="power transmission line" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="power transmission line"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10131</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: power transmission line</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9981</span> Flashover Detection Algorithm Based on Mother Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20A.%20Morales">John A. Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillermo%20Guidi"> Guillermo Guidi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Keune"> B. M. Keune</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric Power supply is a crucial topic for economic and social development. Power outages statistics show that discharges atmospherics are imperative phenomena to produce those outages. In this context, it is necessary to correctly detect when overhead line insulators are faulted. In this paper, an algorithm to detect if a lightning stroke generates or not permanent fault on insulator strings is proposed. On top of that, lightning stroke simulations developed by using the Alternative Transients Program, are used. Based on these insights, a novel approach is designed that depends on mother functions analysis corresponding to the given variance-covariance matrix. Signals registered at the insulator string are projected on corresponding axes by the means of Principal Component Analysis. By exploiting these new axes, it is possible to determine a flashover characteristic zone useful to a good insulation design. The proposed methodology for flashover detection extends the existing approaches for the analysis and study of lightning performance on transmission lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mother%20function" title="mother function">mother function</a>, <a href="https://publications.waset.org/abstracts/search?q=outages" title=" outages"> outages</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning" title=" lightning"> lightning</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/26070/flashover-detection-algorithm-based-on-mother-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9980</span> Power System Modeling for Calculations in Frequency and Steady State Domain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Levacic">G. Levacic</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zupan"> A. Zupan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of new technological solutions and installation of new elements into the network requires special attention when investigating its interaction with the existing power system. Special attention needs to be devoted to the occurrence of harmonic resonance. Sources of increasing harmonic penetration could be wind power plants, Flexible Alternating Current Transmission System (FACTS) devices, underground and submarine cable installations etc. Calculation in frequency domain with various software, for example, the software for power systems transients EMTP-RV presents one of the most common ways to obtain the harmonic impedance of the system. Along calculations in frequency domain, such software allows performing of different type of calculations as well as steady-state domain. This paper describes a power system modeling with software EMTP-RV based on data from SCADA/EMS system. The power flow results on 220 kV and 400 kV voltage levels retrieved from EMTP-RV are verified by comparing with power flow results from power transmissions system planning software PSS/E. The determination of the harmonic impedance for the case of remote power plant connection with cable up to 2500 Hz is presented as an example of calculations in frequency domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20system%20modeling" title="power system modeling">power system modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20domain" title=" frequency domain"> frequency domain</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20state" title=" steady state"> steady state</a>, <a href="https://publications.waset.org/abstracts/search?q=EMTP-RV" title=" EMTP-RV"> EMTP-RV</a>, <a href="https://publications.waset.org/abstracts/search?q=PSS%2FE" title=" PSS/E"> PSS/E</a> </p> <a href="https://publications.waset.org/abstracts/87152/power-system-modeling-for-calculations-in-frequency-and-steady-state-domain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9979</span> Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Han">Ying Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanxiang%20Chen"> Yuanxiang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongtao%20Huang"> Yongtao Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Fu"> Jia Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaile%20Li"> Kaile Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Shangjing%20Lin"> Shangjing Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianguo%20Yu"> Jianguo Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coherent%20optical%20OFDM" title="coherent optical OFDM">coherent optical OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20neural%20network" title=" deep neural network"> deep neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-impairment%20compensation" title=" multi-impairment compensation"> multi-impairment compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20transmission" title=" optical transmission"> optical transmission</a> </p> <a href="https://publications.waset.org/abstracts/134219/multi-impairment-compensation-based-deep-neural-networks-for-16-qam-coherent-optical-orthogonal-frequency-division-multiplexing-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9978</span> Ant Colony Optimization Control for Multilevel STATCOM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20T%C3%A9djini">H. Tédjini</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Meslem"> Y. Meslem</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Guesbaoui"> B. Guesbaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Safa"> A. Safa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flexible AC Transmission Systems (FACTS) are potentially becoming more flexible and more economical local controllers in the power system; and because of the high MVA ratings, it would be expensive to provide independent, equal, regulated DC voltage sources to power the multilevel converters which are presently proposed for STATCOMs. DC voltage sources can be derived from the DC link capacitances which are charged by the rectified ac power. In this paper a new stronger control combined of nonlinear control based Lyapunov’s theorem and Ant Colony Algorithm (ACA) to maintain stability of multilevel STATCOM and the utility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Static%20Compensator%20%28STATCOM%29" title="Static Compensator (STATCOM)">Static Compensator (STATCOM)</a>, <a href="https://publications.waset.org/abstracts/search?q=ant%20colony%20optimization%20%28ACO%29" title=" ant colony optimization (ACO)"> ant colony optimization (ACO)</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20control%20theory" title=" lyapunov control theory"> lyapunov control theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Decoupled%20power%20control" title=" Decoupled power control"> Decoupled power control</a>, <a href="https://publications.waset.org/abstracts/search?q=neutral%20point%20clamped%20%28NPC%29" title=" neutral point clamped (NPC)"> neutral point clamped (NPC)</a> </p> <a href="https://publications.waset.org/abstracts/19254/ant-colony-optimization-control-for-multilevel-statcom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9977</span> Reliability Assessment for Tie Line Capacity Assistance of Power Systems Based on Multi-Agent System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadheer%20A.%20Shalash">Nadheer A. Shalash</a>, <a href="https://publications.waset.org/abstracts/search?q=Abu%20Zaharin%20Bin%20Ahmad"> Abu Zaharin Bin Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technological developments in industrial innovations have currently been related to interconnected system assistance and distribution networks. This important in order to enable an electrical load to continue receive power in the event of disconnection of load from the main power grid. This paper represents a method for reliability assessment of interconnected power systems based. The multi-agent system consists of four agents. The first agent was the generator agent to using as connected the generator to the grid depending on the state of the reserve margin and the load demand. The second was a load agent is that located at the load. Meanwhile, the third is so-called "the reverse margin agent" that to limit the reserve margin between 0-25% depend on the load and the unit size generator. In the end, calculation reliability Agent can be calculate expected energy not supplied (EENS), loss of load expectation (LOLE) and the effecting of tie line capacity to determine the risk levels Roy Billinton Test System (RBTS) can use to evaluated the reliability indices by using the developed JADE package. The results estimated of the reliability interconnection power systems presented in this paper. The overall reliability of power system can be improved. Thus, the market becomes more concentrated against demand increasing and the generation units were operating in relation to reliability indices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability%20indices" title="reliability indices">reliability indices</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20expectation" title=" load expectation"> load expectation</a>, <a href="https://publications.waset.org/abstracts/search?q=reserve%20margin" title=" reserve margin"> reserve margin</a>, <a href="https://publications.waset.org/abstracts/search?q=daily%20load" title=" daily load"> daily load</a>, <a href="https://publications.waset.org/abstracts/search?q=probability" title=" probability"> probability</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a> </p> <a href="https://publications.waset.org/abstracts/4342/reliability-assessment-for-tie-line-capacity-assistance-of-power-systems-based-on-multi-agent-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9976</span> Effects of Aerodynamic on Suspended Cables Using Non-Linear Finite Element Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justin%20Nwabanne">Justin Nwabanne</a>, <a href="https://publications.waset.org/abstracts/search?q=Sam%20Omenyi"> Sam Omenyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeremiah%20Chukwuneke"> Jeremiah Chukwuneke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents structural nonlinear static analysis of a horizontal taut cable using Finite Element Analysis (FEA) method. The FEA was performed analytically to determine the tensions at each nodal point and subsequently, performed based on finite element displacement method computationally using the FEA software, ANSYS 14.0 to determine their behaviour under the influence of aerodynamic forces imposed on the cable. The convergence procedure is adapted into the method to prevent excessive displacements through the computations. The work compared the two FEA cases by examining the effectiveness of the analytical model in describing the response with few degrees of freedom and the ability of the nonlinear finite element procedure adopted to capture the complex features of cable dynamics with reference to the aerodynamic external influence. Results obtained from this work explain that the analytic FEM results without aerodynamic influence show a parabolic response with an optimum deflection at nodal points 12 and 13 with the cable weight at nodes 12 and 13 having the value -1.002936N while for the cable tension shows an optimum deflection value for nodes 12 and 13 at -189396.97kg/km. The maximum displacement for the cable system was obtained from ANSYS 14.0 as 4483.83 mm for X, Y and Z components of displacements at node number 2 while the maximum displacement obtained is 4218.75mm for all the directional components. The dynamic behaviour of a taut cable investigated has application in a typical power transmission line. Aerodynamic influences on the cables were considered using FEA approach by employing ANSYS 14.0 showed a complex modal behaviour as expected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=cable%20tension%20and%20weight" title=" cable tension and weight"> cable tension and weight</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=nodal" title=" nodal"> nodal</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20model" title=" non-linear model"> non-linear model</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20deflection" title=" optimum deflection"> optimum deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=suspended%20cable" title=" suspended cable"> suspended cable</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20line" title=" transmission line"> transmission line</a> </p> <a href="https://publications.waset.org/abstracts/55113/effects-of-aerodynamic-on-suspended-cables-using-non-linear-finite-element-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9975</span> Earthquake Effect in Micro Hydro Sector: Case Study of Dulakha District, Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keshav%20Raj%20Dhakal">Keshav Raj Dhakal</a>, <a href="https://publications.waset.org/abstracts/search?q=Jit%20Bahadur%20Rokaya%20Chhetri"> Jit Bahadur Rokaya Chhetri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Micro Hydro (MH) is one of the successful technology in Rural Nepal. Out of 75 district, 59 districts have installed 1287 MH projects with a total capacity of 24 Mega Watt (MW). Now, the challenge is how to sustain them. Dolakha is a prominent district for sustainable endues of power to sustain the MH projects. A total of 37 MH projects have been constructed with producing 886 Kilo Watt (KW) of energy in the district. This study traces out the impact of earthquake in MH sector in Dolakha district. It shows that 59 % of projects have been affected by devastating earthquake in April and May, 2015 where 29 % are completely damaged. Most of the damages are in civil structures like Penstock, forebay, power house, Canal, Intake. Transmission and distribution line have been partially damaged. This paper analysis failure of the civil structural component of MH projects and its financial consequence to the community. This study recommends that a disaster impact assessment is essential before construction of MH projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20hydro" title="micro hydro">micro hydro</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20failure" title=" structural failure"> structural failure</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20consequence" title=" financial consequence"> financial consequence</a> </p> <a href="https://publications.waset.org/abstracts/48230/earthquake-effect-in-micro-hydro-sector-case-study-of-dulakha-district-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9974</span> Beam Deflection with Unidirectionality Due to Zeroth Order and Evanescent Wave Coupling in a Photonic Crystal with a Defect Layer without Corrugations under Oblique Incidence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evrim%20Colak">Evrim Colak</a>, <a href="https://publications.waset.org/abstracts/search?q=Andriy%20E.%20Serebryannikov"> Andriy E. Serebryannikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Thore%20Magath"> Thore Magath</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekmel%20Ozbay"> Ekmel Ozbay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single beam deflection and unidirectional transmission are examined for oblique incidence in a Photonic Crystal (PC) structure which employs defect layer instead of surface corrugations at the interfaces. In all of the studied cases, the defect layer is placed such that the symmetry is broken. Two types of deflection are observed depending on whether the zeroth order is coupled or not. These two scenarios can be distinguished from each other by considering the simulated field distribution in PC. In the first deflection type, Floquet-Bloch mode enables zeroth order coupling. The energy of the zeroth order is redistributed between the diffraction orders at the defect layer, providing deflection. In the second type, when zeroth order is not coupled, strong diffractions cause blazing and the evanescent waves deliver energy to higher order diffraction modes. Simulated isofrequency contours can be utilized to estimate the coupling behavior. The defect layer is placed at varying rows, preserving the asymmetry of PC while evancescent waves can still couple to higher order modes. Even for deeply buried defect layer, asymmetric transmission and beam deflection are still encountered when the zeroth order is not coupled. We assume ε=11.4 (refractive index close to that of GaAs and Si) for the PC rods. A possible operation wavelength can be within microwave and infrared range. Since the suggested material is low loss, the structure can be scaled down to operate higher frequencies. Thus, a sample operation wavelength is selected as 1.5μm. Although the structure employs no surface corrugations transmission value T≈0.97 can be achieved by means of diffraction order m=-1. Moreover, utilizing an extra line defect, T value can be increased upto 0.99, under oblique incidence even if the line defect layer is deeply embedded in the photonic crystal. The latter configuration can be used to obtain deflection in one frequency range and can also be utilized for the realization of another functionality like defect-mode wave guiding in another frequency range but still using the same structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20transmission" title="asymmetric transmission">asymmetric transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20deflection" title=" beam deflection"> beam deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=blazing" title=" blazing"> blazing</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-directional%20splitting" title=" bi-directional splitting"> bi-directional splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20layer" title=" defect layer"> defect layer</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20beam%20splitting" title=" dual beam splitting"> dual beam splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=Floquet-Bloch%20modes" title=" Floquet-Bloch modes"> Floquet-Bloch modes</a>, <a href="https://publications.waset.org/abstracts/search?q=isofrequency%20contours" title=" isofrequency contours"> isofrequency contours</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20defect" title=" line defect"> line defect</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20incidence" title=" oblique incidence"> oblique incidence</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal" title=" photonic crystal"> photonic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=unidirectionality" title=" unidirectionality"> unidirectionality</a> </p> <a href="https://publications.waset.org/abstracts/94547/beam-deflection-with-unidirectionality-due-to-zeroth-order-and-evanescent-wave-coupling-in-a-photonic-crystal-with-a-defect-layer-without-corrugations-under-oblique-incidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9973</span> Determination of the Optimal DG PV Interconnection Location Using Losses and Voltage Regulation as Assessment Indicators Case Study: ECG 33 kV Sub-Transmission Network </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekow%20A.%20Kwofie">Ekow A. Kwofie</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20K.%20Anto"> Emmanuel K. Anto</a>, <a href="https://publications.waset.org/abstracts/search?q=Godfred%20Mensah"> Godfred Mensah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, CYME Distribution software has been used to assess the impacts of solar Photovoltaic (PV) distributed generation (DG) plant on the Electricity Company of Ghana (ECG) 33 kV sub-transmission network at different PV penetration levels. As ECG begins to encourage DG PV interconnections within its network, there has been the need to assess the impacts on the sub-transmission losses and voltage contribution. In Tema, a city in Accra - Ghana, ECG has a 33 kV sub-transmission network made up of 20 No. 33 kV buses that was modeled. Three different locations were chosen: The source bus, a bus along the sub-transmission radial network and a bus at the tail end to determine the optimal location for DG PV interconnection. The optimal location was determined based on sub-transmission technical losses and voltage impact. PV capacities at different penetration levels were modeled at each location and simulations performed to determine the optimal PV penetration level. Interconnection at a bus along (or in the middle of) the sub-transmission network offered the highest benefits at an optimal PV penetration level of 80%. At that location, the maximum voltage improvement of 0.789% on the neighboring 33 kV buses and maximum loss reduction of 6.033% over the base case scenario were recorded. Hence, the optimal location for DG PV integration within the 33 kV sub-transmission utility network is at a bus along the sub-transmission radial network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation%20photovoltaic%20%28DG%20PV%29" title="distributed generation photovoltaic (DG PV)">distributed generation photovoltaic (DG PV)</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20location" title=" optimal location"> optimal location</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration%20level" title=" penetration level"> penetration level</a>, <a href="https://publications.waset.org/abstracts/search?q=sub%E2%80%93transmission%20network" title=" sub–transmission network"> sub–transmission network</a> </p> <a href="https://publications.waset.org/abstracts/57038/determination-of-the-optimal-dg-pv-interconnection-location-using-losses-and-voltage-regulation-as-assessment-indicators-case-study-ecg-33-kv-sub-transmission-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9972</span> The Stability Study of Large-Scale Grid-Tied Photovoltaic System Containing Different Types of Inverter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen%20Zheng">Chen Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Zhou"> Lin Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Bao%20Xie"> Bao Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Du"> Xiao Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Nianbin%20Shao"> Nianbin Shao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power generated by large-scale photovoltaic plants (LSPVPs) is usually transmitted to the grid through several transformers and long distance overhead lines. Impedance of transformers and transmission lines results in complex interactions between the plant and the grid and among different inverters. In accordance with the topological structure of LSPV in reality, an equivalent model containing different inverters was built and then interactions between the plant and the grid and among different inverters were studied. Based on the vector composition principle of voltage at the point of common coupling (PCC), the mathematic function of PCC voltage in regard to the total power and grid impedance was deduced, from which the uttermost total power to guarantee the system stable is obtained. Taking the influence of different inverters numbers and the length of transmission lines to the system stability into account, the stability criterion of LSPV containing different inverters was derived. The result of simulation validated the theory analysis in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LSPVPs" title="LSPVPs">LSPVPs</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20analysis" title=" stability analysis"> stability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=grid%20impedance" title=" grid impedance"> grid impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=different%20types%20of%20inverter" title=" different types of inverter"> different types of inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=PCC%20voltage" title=" PCC voltage"> PCC voltage</a> </p> <a href="https://publications.waset.org/abstracts/42321/the-stability-study-of-large-scale-grid-tied-photovoltaic-system-containing-different-types-of-inverter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9971</span> Performance Comparison of AODV and Soft AODV Routing Protocol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek">Abhishek</a>, <a href="https://publications.waset.org/abstracts/search?q=Seema%20Devi"> Seema Devi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Ohri"> Jyoti Ohri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mobile ad hoc network (MANET) represents a system of wireless mobile nodes that can self-organize freely and dynamically into arbitrary and temporary network topology. Unlike a wired network, wireless network interface has limited transmission range. Routing is the task of forwarding data packets from source to a given destination. Ad-hoc On Demand Distance Vector (AODV) routing protocol creates a path for a destination only when it required. This paper describes the implementation of AODV routing protocol using MATLAB-based Truetime simulator. In MANET&#39;s node movements are not fixed while they are random in nature. Hence intelligent techniques i.e. fuzzy and ANFIS are used to optimize the transmission range. In this paper, we compared the transmission range of AODV, fuzzy AODV and ANFIS AODV. For soft computing AODV, we have taken transmitted power and received threshold as input and transmission range as output. ANFIS gives better results as compared to fuzzy AODV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANFIS" title="ANFIS">ANFIS</a>, <a href="https://publications.waset.org/abstracts/search?q=AODV" title=" AODV"> AODV</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy" title=" fuzzy"> fuzzy</a>, <a href="https://publications.waset.org/abstracts/search?q=MANET" title=" MANET"> MANET</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20routing%20protocol" title=" reactive routing protocol"> reactive routing protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=routing%20protocol" title=" routing protocol"> routing protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=truetime" title=" truetime "> truetime </a> </p> <a href="https://publications.waset.org/abstracts/25434/performance-comparison-of-aodv-and-soft-aodv-routing-protocol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9970</span> The Kinks, the Solitons, and the Shocks in Series Connected Discrete Josephson Transmission Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Kogan">Eugene Kogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We analytically study the localized running waves in the discrete Josephson transmission lines (JTL), constructed from Josephson junctions (JJ) and capacitors. The quasi-continuum approximation reduces the calculation of the running wave properties to the problem of equilibrium of an elastic rod in the potential field. Making additional approximations, we reduce the problem to the motion of the fictitious Newtonian particle in the potential well. We show that there exist running waves in the form of supersonic kinks and solitons and calculate their velocities and profiles. We show that the nonstationary smooth waves, which are small perturbations on the homogeneous non-zero background, are described by Korteweg-de Vries equation, and those on zero background -by the modified Korteweg-de Vries equation. We also study the effect of dissipation on the running waves in JTL and find that in the presence of the resistors, shunting the JJ and/or in series with the ground capacitors, the only possible stationary running waves are the shock waves, whose profiles are also found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josephson%20transmission%20line" title="Josephson transmission line">Josephson transmission line</a>, <a href="https://publications.waset.org/abstracts/search?q=shocks" title=" shocks"> shocks</a>, <a href="https://publications.waset.org/abstracts/search?q=solitary%20waves" title=" solitary waves"> solitary waves</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20waves" title=" nonlinear waves"> nonlinear waves</a> </p> <a href="https://publications.waset.org/abstracts/148051/the-kinks-the-solitons-and-the-shocks-in-series-connected-discrete-josephson-transmission-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9969</span> Effect of Sedimentation on Torque Transmission in the Larger Radius Magnetorheological Clutch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar%20Thakur">Manish Kumar Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiranjit%20Sarkar"> Chiranjit Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sedimentation of magnetorheological (MR) fluid affects its working. MR fluid is a smart fluid that has unique qualities such as quick responsiveness and easy controllability. It is used in the MR damper, MR brake, and MR clutch. In this work effect of sedimentation on torque transmission in the shear mode operated MR clutch is investigated. A test rig is developed to test the impact of sedimentation on torque transmission in the MR clutch. Torque transmission capability of MR clutch has been measured under two conditions to confirm the result of sedimentation. The first experiment is done just after filling and the other after one week. It has been observed that transmission torque is decreased after sedimentation. Hence sedimentation affects the working of the MR clutch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clutch" title="clutch">clutch</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetorheological%20fluid" title=" magnetorheological fluid"> magnetorheological fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title=" sedimentation"> sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=torque" title=" torque"> torque</a> </p> <a href="https://publications.waset.org/abstracts/133283/effect-of-sedimentation-on-torque-transmission-in-the-larger-radius-magnetorheological-clutch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9968</span> Assessment of ATC with Shunt FACTS Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwani%20Kumar">Ashwani Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitender%20Kumar"> Jitender Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an optimal power flow based approach has been applied for multi-transactions deregulated environment for ATC determination with SVC and STATCOM. The main contribution of the paper is (i) OPF based approach for evaluation of ATC with multi-transactions, (ii) ATC enhancement with FACTS devices viz. SVC and STATCOM for intact and line contingency cases, (iii) impact of ZIP load on ATC determination and comparison of ATC obtained with SVC and STATCOM. The results have been determined for intact and line contingency cases taking simultaneous as well as single transaction cases for IEEE 24 bus RTS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=available%20transfer%20capability" title="available transfer capability">available transfer capability</a>, <a href="https://publications.waset.org/abstracts/search?q=FACTS%20devices" title=" FACTS devices"> FACTS devices</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20contingency" title=" line contingency"> line contingency</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-transactions" title=" multi-transactions"> multi-transactions</a>, <a href="https://publications.waset.org/abstracts/search?q=ZIP%20load%20model" title=" ZIP load model"> ZIP load model</a> </p> <a href="https://publications.waset.org/abstracts/1583/assessment-of-atc-with-shunt-facts-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">601</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9967</span> An Assembly Line Designing Study for a Refrigeration Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emin%20Gundogar">Emin Gundogar</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Erkayman"> Burak Erkayman</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysegul%20Yilmaz"> Aysegul Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusret%20Sazak"> Nusret Sazak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When considering current competition conditions on the world, satisfying customer demands on time has become an important factor that enables the firms take a step further. Therefore, production process must be completed faster to take the competitive advantage. A balanced assembly line is the one of most important factors affecting the speed of production lines. The aim of this study is to build an assembly line to balance the assembly line and to simulate it for different scenarios through a refrigerator factory. The times of the operations is analyzed and grouped by the priorities. First, a Kilbridge & Wester heuristics is put to the model then a simulation approach is implemented to the model and the differences are observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20line%20design" title="assembly line design">assembly line design</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly%20line%20balancing" title=" assembly line balancing"> assembly line balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20modelling" title=" simulation modelling"> simulation modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigeration%20industry" title=" refrigeration industry"> refrigeration industry</a> </p> <a href="https://publications.waset.org/abstracts/9798/an-assembly-line-designing-study-for-a-refrigeration-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9966</span> A Comprehensive Approach in Calculating the Impact of the Ground on Radiated Electromagnetic Fields Due to Lightning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lahcene%20Boukelkoul">Lahcene Boukelkoul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of finite ground conductivity is of great importance in calculating the induced voltages from the radiated electromagnetic fields due to lightning. In this paper, we try to give a comprehensive approach to calculate the impact of the ground on the radiated electromagnetic fields to lightning. The vertical component of lightning electric field is calculated with a reasonable approximation assuming a perfectly conducting ground in case the observation point does not exceed a few kilometres from the lightning channel. However, for distant observation points the radiated vertical component of lightning electric field is attenuated due finitely conducting ground. The attenuation is calculated using the expression elaborated for both low and high frequencies. The horizontal component of the electric field, however, is more affected by a finite conductivity of a ground. Besides, the contribution of the horizontal component of the electric field, to induced voltages on an overhead transmission line, is greater than that of the vertical component. Therefore, the calculation of the horizontal electric field is great concern for the simulation of lightning-induced voltages. For field to transmission lines coupling the ground impedance is calculated for early time behaviour and for low frequency range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20engineering" title="power engineering">power engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=radiated%20electromagnetic%20fields" title=" radiated electromagnetic fields"> radiated electromagnetic fields</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning-induced%20voltages" title=" lightning-induced voltages"> lightning-induced voltages</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20electric%20field" title=" lightning electric field"> lightning electric field</a> </p> <a href="https://publications.waset.org/abstracts/7041/a-comprehensive-approach-in-calculating-the-impact-of-the-ground-on-radiated-electromagnetic-fields-due-to-lightning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9965</span> Volatility Transmission between Oil Price and Stock Return of Emerging and Developed Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Algia%20Hammami">Algia Hammami</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelfatteh%20Bouri"> Abdelfatteh Bouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, our objective is to study the transmission of volatility between oil and stock markets in developed (USA, Germany, Italy, France and Japan) and emerging countries (Tunisia, Thailand, Brazil, Argentina, and Jordan) for the period 1998-2015. Our methodology consists of analyzing the monthly data by the GARCH-BEKK model to capture the effect in terms of volatility in the variation of the oil price on the different stock market. The empirical results in the emerging countries indicate that the relationships are unidirectional from the stock market to the oil market. For the developed countries, we find that the transmission of volatility is unidirectional from the oil market to stock market. For the USA and Italy, we find no transmission between the two markets. The transmission is bi-directional only in Thailand. Following our estimates, we also noticed that the emerging countries influence almost the same extent as the developed countries, while at the transmission of volatility there a bid difference. The GARCH-BEKK model is more effective than the others versions to minimize the risk of an oil-stock portfolio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GARCH" title="GARCH">GARCH</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20prices" title=" oil prices"> oil prices</a>, <a href="https://publications.waset.org/abstracts/search?q=stock%20market" title=" stock market"> stock market</a>, <a href="https://publications.waset.org/abstracts/search?q=volatility%20transmission" title=" volatility transmission"> volatility transmission</a> </p> <a href="https://publications.waset.org/abstracts/64379/volatility-transmission-between-oil-price-and-stock-return-of-emerging-and-developed-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9964</span> Design and Tooth Contact Analysis of Face Gear Drive with Modified Tooth Surface in Helicopter Transmission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazumasa%20Kawasaki">Kazumasa Kawasaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Isamu%20Tsuji"> Isamu Tsuji</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Gunbara"> Hiroshi Gunbara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A face gear drive is actually composed of a spur or helical pinion that is in mesh with a face gear and transfers power and motion between intersecting or skew axes. Due to the peculiarity of the face gear drive in shunt and confluence drive, it shows potential advantages in the application in the helicopter transmission. The advantages of such applications are the possibility of the split of the torque that appears to be significant where a pinion drives two face gears to provide an accurate division of power and motion. This mechanism greatly reduces the weight and cost compared to conventional design. Therefore, this has been led to revived interest and the face gear drive has been utilized in substitution for bevel and hypoid gears in limited cases. The face gear drive with a spur or a helical pinion is newly designed in order to determine an effective meshing area under the design parameters and specific design dimensions. The face gear has two unique dimensions which control the face width of the tooth, and the outside and inside diameters of the face gear. On the other hand, it is necessary to modify the tooth surfaces of face gear drive in order to avoid the influences of alignment errors on the tooth contact patterns in practical use. In this case, the pinion tooth surfaces are usually modified in the conventional method. However, it is hard to control the tooth contact pattern intentionally and adjust the position of the pinion axis in meshing of the gear pair. Therefore, a method of the modification of the tooth surfaces of the face gear is proposed. Moreover, based on tooth contact analysis, the tooth contact pattern and transmission errors of the designed face gear drive are analyzed, and the influences of alignment errors on the tooth contact patterns and transmission errors are investigated. These results showed that the tooth contact patterns and transmission errors were controllable and the face gear drive which is insensitive to alignment errors can be obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alignment%20error" title="alignment error">alignment error</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20gear" title=" face gear"> face gear</a>, <a href="https://publications.waset.org/abstracts/search?q=gear%20design" title=" gear design"> gear design</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20transmission" title=" helicopter transmission"> helicopter transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20contact%20analysis" title=" tooth contact analysis"> tooth contact analysis</a> </p> <a href="https://publications.waset.org/abstracts/52629/design-and-tooth-contact-analysis-of-face-gear-drive-with-modified-tooth-surface-in-helicopter-transmission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9963</span> Optimal Placement of the Unified Power Controller to Improve the Power System Restoration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Esmaili">Mohammad Reza Esmaili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important parts of the restoration process of a power network is the synchronizing of its subsystems. In this situation, the biggest concern of the system operators will be the reduction of the standing phase angle (SPA) between the endpoints of the two islands. In this regard, the system operators perform various actions and maneuvers so that the synchronization operation of the subsystems is successfully carried out and the system finally reaches acceptable stability. The most common of these actions include load control, generation control and, in some cases, changing the network topology. Although these maneuvers are simple and common, due to the weak network and extreme load changes, the restoration will be associated with low speed. One of the best ways to control the SPA is to use FACTS devices. By applying a soft control signal, these tools can reduce the SPA between two subsystems with more speed and accuracy, and the synchronization process can be done in less time. Meanwhile, the unified power controller (UPFC), a series-parallel compensator device with the change of transmission line power and proper adjustment of the phase angle, will be the proposed option in order to realize the subject of this research. Therefore, with the optimal placement of UPFC in a power system, in addition to improving the normal conditions of the system, it is expected to be effective in reducing the SPA during power system restoration. Therefore, the presented paper provides an optimal structure to coordinate the three problems of improving the division of subsystems, reducing the SPA and optimal power flow with the aim of determining the optimal location of UPFC and optimal subsystems. The proposed objective functions in this paper include maximizing the quality of the subsystems, reducing the SPA at the endpoints of the subsystems, and reducing the losses of the power system. Since there will be a possibility of creating contradictions in the simultaneous optimization of the proposed objective functions, the structure of the proposed optimization problem is introduced as a non-linear multi-objective problem, and the Pareto optimization method is used to solve it. The innovative technique proposed to implement the optimization process of the mentioned problem is an optimization algorithm called the water cycle (WCA). To evaluate the proposed method, the IEEE 39 bus power system will be used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UPFC" title="UPFC">UPFC</a>, <a href="https://publications.waset.org/abstracts/search?q=SPA" title=" SPA"> SPA</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20cycle%20algorithm" title=" water cycle algorithm"> water cycle algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20problem" title=" multi-objective problem"> multi-objective problem</a>, <a href="https://publications.waset.org/abstracts/search?q=pareto" title=" pareto"> pareto</a> </p> <a href="https://publications.waset.org/abstracts/172408/optimal-placement-of-the-unified-power-controller-to-improve-the-power-system-restoration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9962</span> Design of Control Systems for Grid Interconnection and Power Control of a Grid Tie Inverter for Micro-Grid Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Choudhary">Deepak Choudhary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> COEP-Microgrid, a project by the students of College of Engineering Pune aims at establishing a micro grid in the college campus serving as a living laboratory for research and development of novel grid technologies. Proposed micro grid has an AC-bus and DC-bus, interconnected together with a tie line DC-AC converter. In grid-connected mode AC bus of microgrid is synchronized with utility grid. Synchronization with utility grid requires grid and AC bus to have synchronism in frequency, phase sequence and voltage. Power flow requires phase difference between grid and AC bus. Control System is required to effectively regulate power flow between the grid and AC bus. The grid synchronizing control system is composed of frequency and phase control for regulated power flow and voltage control system for reduction of reactive power flow. The control system involves automatic active power flow control. It takes the feedback of DC link Capacitor and changes the power angle accordingly. Control system incorporating voltage, phase and power control was developed for grid-tie inverter. This paper discusses the design, simulation and practical implementation of control system described in various micro grid scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microgrid" title="microgrid">microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=Grid-tie%20inverter" title=" Grid-tie inverter"> Grid-tie inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20control" title=" voltage control"> voltage control</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20power%20control" title=" automatic power control"> automatic power control</a> </p> <a href="https://publications.waset.org/abstracts/20998/design-of-control-systems-for-grid-interconnection-and-power-control-of-a-grid-tie-inverter-for-micro-grid-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">664</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9961</span> Framework Study on Single Assembly Line to Improve Productivity with Six Sigma and Line Balancing Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inaki%20Maulida%20Hakim">Inaki Maulida Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Yuri%20M.%20Zagloel"> T. Yuri M. Zagloel</a>, <a href="https://publications.waset.org/abstracts/search?q=Astari%20Wulandari"> Astari Wulandari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Six sigma is a framework that is used to identify inefficiency so that the cause of inefficiency will be known and right improvement to overcome cause of inefficiency can be conducted. This paper presents result of implementing six sigma to improve piston assembly line in Manufacturing Laboratory, Universitas Indonesia. Six sigma framework will be used to analyze the significant factor of inefficiency that needs to be improved which causes bottleneck in assembly line. After analysis based on six sigma framework conducted, line balancing method was chosen for improvement to overcome causative factor of inefficiency which is differences time between workstation that causes bottleneck in assembly line. Then after line balancing conducted in piston assembly line, the result is increase in efficiency. Efficiency is shown in the decreasing of Defects per Million Opportunities (DPMO) from 900,000 to 700,000, the increasing of level of labor productivity from 0.0041 to 0.00742, the decreasing of idle time from 121.3 seconds to 12.1 seconds, and the increasing of output, which is from 1 piston in 5 minutes become 3 pistons in 5 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20line" title="assembly line">assembly line</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20balancing" title=" line balancing"> line balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=six%20sigma" title=" six sigma"> six sigma</a> </p> <a href="https://publications.waset.org/abstracts/53876/framework-study-on-single-assembly-line-to-improve-productivity-with-six-sigma-and-line-balancing-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9960</span> Compact Ultra-Wideband Printed Monopole Antenna with Inverted L-Shaped Slots for Data Communication and RF Energy Harvesting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Adel%20Sennouni">Mohamed Adel Sennouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Zbitou"> Jamal Zbitou</a>, <a href="https://publications.waset.org/abstracts/search?q=Benaissa%20Abboud"> Benaissa Abboud</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelwahed%20Tribak"> Abdelwahed Tribak</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Bennis"> Hamid Bennis</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Latrach"> Mohamed Latrach </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A compact UWB planar antenna fed with a microstrip-line is proposed. The new design is composed of a rectangular patch with symmetric L-shaped slots and fed by 50 &#8486; microstrip transmission line and a reduced ground-plane which have a periodic slots with an overall size of 47 mm x 20 mm. It is intended to be used in wireless applications that cover the ultra-wideband (UWB) frequency band. A wider impedance bandwidth of around 116.5% (1.875 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UWB%20planar%20antenna" title="UWB planar antenna">UWB planar antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=L-shaped%20slots" title=" L-shaped slots"> L-shaped slots</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20applications" title=" wireless applications"> wireless applications</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20band-width" title=" impedance band-width"> impedance band-width</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20pattern" title=" radiation pattern"> radiation pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=CST" title=" CST"> CST</a> </p> <a href="https://publications.waset.org/abstracts/16119/compact-ultra-wideband-printed-monopole-antenna-with-inverted-l-shaped-slots-for-data-communication-and-rf-energy-harvesting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9959</span> Experimental Validation of a Mathematical Model for Sizing End-of-Production-Line Test Benches for Electric Motors of Electric Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emiliano%20Lustrissimi">Emiliano Lustrissimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bonifacio%20Bianco"> Bonifacio Bianco</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastiano%20Caravaggi"> Sebastiano Caravaggi</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Rosato"> Antonio Rosato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical framework has been designed to enhance the configuration of an end-of-production-line (EOL) test bench. This system can be used to assess the performance of electric motors or axles intended for electric vehicles. The model has been developed to predict the behaviour of EOL test benches and electric motors/axles under various boundary conditions, eliminating the need for extensive physical testing and reducing the corresponding power consumption. The suggested model is versatile, capable of being utilized across various types of electric motors or axles, and adaptable to accommodate varying power ratings of electric motors or axles. The maximum performance to be guaranteed by the EMs according to the car maker's specifications are taken as inputs in the model. Then, the required performance of each main EOL test bench component is calculated, and the corresponding systems available on the market are selected based on manufacturers’ catalogues. In this study, an EOL test bench has been designed according to the proposed model outputs for testing a low-power (about 22 kW) electric axle. The performance of the designed EOL test bench has been measured and used to validate the proposed model and assess both the consistency of the constraints as well as the accuracy of predictions in terms of electric demands. The comparison between experimental and predicted data exhibited a reasonable agreement, allowing to demonstrate that, despite some discrepancies, the model gives an accurate representation of the EOL test benches' performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20motors" title="electric motors">electric motors</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title=" electric vehicles"> electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=end-of-production-line%20test%20bench" title=" end-of-production-line test bench"> end-of-production-line test bench</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20tests" title=" field tests"> field tests</a> </p> <a href="https://publications.waset.org/abstracts/185756/experimental-validation-of-a-mathematical-model-for-sizing-end-of-production-line-test-benches-for-electric-motors-of-electric-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9958</span> Wireless Transmission of Big Data Using Novel Secure Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Thiagarajan">K. Thiagarajan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Saranya"> K. Saranya</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Veeraiah"> A. Veeraiah</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Sudha"> B. Sudha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a novel algorithm for secure, reliable and flexible transmission of big data in two hop wireless networks using cooperative jamming scheme. Two hop wireless networks consist of source, relay and destination nodes. Big data has to transmit from source to relay and from relay to destination by deploying security in physical layer. Cooperative jamming scheme determines transmission of big data in more secure manner by protecting it from eavesdroppers and malicious nodes of unknown location. The novel algorithm that ensures secure and energy balance transmission of big data, includes selection of data transmitting region, segmenting the selected region, determining probability ratio for each node (capture node, non-capture and eavesdropper node) in every segment, evaluating the probability using binary based evaluation. If it is secure transmission resume with the two- hop transmission of big data, otherwise prevent the attackers by cooperative jamming scheme and transmit the data in two-hop transmission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=two-hop%20transmission" title=" two-hop transmission"> two-hop transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20layer%20wireless%20security" title=" physical layer wireless security"> physical layer wireless security</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperative%20jamming" title=" cooperative jamming"> cooperative jamming</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20balance" title=" energy balance"> energy balance</a> </p> <a href="https://publications.waset.org/abstracts/30860/wireless-transmission-of-big-data-using-novel-secure-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9957</span> A Double Ended AC Series Arc Fault Location Algorithm Based on Currents Estimation and a Fault Map Trace Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Calderon-Mendoza">Edwin Calderon-Mendoza</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Schweitzer"> Patrick Schweitzer</a>, <a href="https://publications.waset.org/abstracts/search?q=Serge%20Weber"> Serge Weber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Series arc faults appear frequently and unpredictably in low voltage distribution systems. Many methods have been developed to detect this type of faults and commercial protection systems such AFCI (arc fault circuit interrupter) have been used successfully in electrical networks to prevent damage and catastrophic incidents like fires. However, these devices do not allow series arc faults to be located on the line in operating mode. This paper presents a location algorithm for series arc fault in a low-voltage indoor power line in an AC 230 V-50Hz home network. The method is validated through simulations using the MATLAB software. The fault location method uses electrical parameters (resistance, inductance, capacitance, and conductance) of a 49 m indoor power line. The mathematical model of a series arc fault is based on the analysis of the V-I characteristics of the arc and consists basically of two antiparallel diodes and DC voltage sources. In a first step, the arc fault model is inserted at some different positions across the line which is modeled using lumped parameters. At both ends of the line, currents and voltages are recorded for each arc fault generation at different distances. In the second step, a fault map trace is created by using signature coefficients obtained from Kirchhoff equations which allow a virtual decoupling of the line’s mutual capacitance. Each signature coefficient obtained from the subtraction of estimated currents is calculated taking into account the Discrete Fast Fourier Transform of currents and voltages and also the fault distance value. These parameters are then substituted into Kirchhoff equations. In a third step, the same procedure described previously to calculate signature coefficients is employed but this time by considering hypothetical fault distances where the fault can appear. In this step the fault distance is unknown. The iterative calculus from Kirchhoff equations considering stepped variations of the fault distance entails the obtaining of a curve with a linear trend. Finally, the fault distance location is estimated at the intersection of two curves obtained in steps 2 and 3. The series arc fault model is validated by comparing current registered from simulation with real recorded currents. The model of the complete circuit is obtained for a 49m line with a resistive load. Also, 11 different arc fault positions are considered for the map trace generation. By carrying out the complete simulation, the performance of the method and the perspectives of the work will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20power%20line" title="indoor power line">indoor power line</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20location" title=" fault location"> fault location</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20map%20trace" title=" fault map trace"> fault map trace</a>, <a href="https://publications.waset.org/abstracts/search?q=series%20arc%20fault" title=" series arc fault"> series arc fault</a> </p> <a href="https://publications.waset.org/abstracts/96300/a-double-ended-ac-series-arc-fault-location-algorithm-based-on-currents-estimation-and-a-fault-map-trace-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9956</span> Transmit Power Optimization for Cooperative Beamforming in Reverse-Link MIMO Ad-Hoc Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Younghyun%20Jeon">Younghyun Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungjoo%20Maeng"> Seungjoo Maeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the Ad-hoc network, the great interests regarding MIMO scheme leads to their combination, which is also utilized into its applicable network. We manage the field of the problem into Reverse-link MIMO Ad-hoc Network (RMAN) and propose the methodology to maximize the data rate with its power consumption using Node-Cooperative beamforming technique. Based on the result of mathematical optimization formulation, we design the algorithm to construct optimal orthogonal weight vector according to channel feedback and control its transmission power according to QoS-pricing value level. In simulation results, we show the validity of the proposed mathematical optimization result and algorithm which mean that the sum-rate of each link is converged into some point. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ad-hoc%20network" title="ad-hoc network">ad-hoc network</a>, <a href="https://publications.waset.org/abstracts/search?q=MIMO" title=" MIMO"> MIMO</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperative%20beamforming" title=" cooperative beamforming"> cooperative beamforming</a>, <a href="https://publications.waset.org/abstracts/search?q=transmit%20power" title=" transmit power "> transmit power </a> </p> <a href="https://publications.waset.org/abstracts/57761/transmit-power-optimization-for-cooperative-beamforming-in-reverse-link-mimo-ad-hoc-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9955</span> A Feasibility and Implementation Model of Small-Scale Hydropower Development for Rural Electrification in South Africa: Design Chart Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gideon%20J.%20Bonthuys">Gideon J. Bonthuys</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20van%20Dijk"> Marco van Dijk</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay%20N.%20Bhagwan"> Jay N. Bhagwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Small scale hydropower used to play a very important role in the provision of energy to urban and rural areas of South Africa. The national electricity grid, however, expanded and offered cheap, coal generated electricity and a large number of hydropower systems were decommissioned. Unfortunately, large numbers of households and communities will not be connected to the national electricity grid for the foreseeable future due to high cost of transmission and distribution systems to remote communities due to the relatively low electricity demand within rural communities and the allocation of current expenditure on upgrading and constructing of new coal fired power stations. This necessitates the development of feasible alternative power generation technologies. A feasibility and implementation model was developed to assist in designing and financially evaluating small-scale hydropower (SSHP) plants. Several sites were identified using the model. The SSHP plants were designed for the selected sites and the designs for the different selected sites were priced using pricing models (civil, mechanical and electrical aspects). Following feasibility studies done on the designed and priced SSHP plants, a feasibility analysis was done and a design chart developed for future similar potential SSHP plant projects. The methodology followed in conducting the feasibility analysis for other potential sites consisted of developing cost and income/saving formulae, developing net present value (NPV) formulae, Capital Cost Comparison Ratio (CCCR) and levelised cost formulae for SSHP projects for the different types of plant installations. It included setting up a model for the development of a design chart for a SSHP, calculating the NPV, CCCR and levelised cost for the different scenarios within the model by varying different parameters within the developed formulae, setting up the design chart for the different scenarios within the model and analyzing and interpreting results. From the interpretation of the develop design charts for feasible SSHP in can be seen that turbine and distribution line cost are the major influences on the cost and feasibility of SSHP. High head, short transmission line and islanded mini-grid SSHP installations are the most feasible and that the levelised cost of SSHP is high for low power generation sites. The main conclusion from the study is that the levelised cost of SSHP projects indicate that the cost of SSHP for low energy generation is high compared to the levelised cost of grid connected electricity supply; however, the remoteness of SSHP for rural electrification and the cost of infrastructure to connect remote rural communities to the local or national electricity grid provides a low CCCR and renders SSHP for rural electrification feasible on this basis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost" title="cost">cost</a>, <a href="https://publications.waset.org/abstracts/search?q=feasibility" title=" feasibility"> feasibility</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20electrification" title=" rural electrification"> rural electrification</a>, <a href="https://publications.waset.org/abstracts/search?q=small-scale%20hydropower" title=" small-scale hydropower"> small-scale hydropower</a> </p> <a href="https://publications.waset.org/abstracts/46084/a-feasibility-and-implementation-model-of-small-scale-hydropower-development-for-rural-electrification-in-south-africa-design-chart-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9954</span> Evaluation of Progressive Collapse of Transmission Tower</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeong-Hwan%20Choi">Jeong-Hwan Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo-Sang%20Park"> Hyo-Sang Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Hyung%20Lee"> Tae-Hyung Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transmission tower is one of the crucial lifeline structures in a modern society, and it needs to be protected against extreme loading conditions. However, the transmission tower is a very complex structure and, therefore, it is very difficult to simulate the actual damage and the collapse behavior of the tower structure. In this study, the actual collapse behavior of the transmission tower due to lateral loading conditions such as wind load is evaluated through the computational simulation. For that, a progressive collapse procedure is applied to the simulation. In this procedure, after running the simulation, if a member of the tower structure fails, the failed member is removed and the simulation run again. The 154kV transmission tower is selected for this study. The simulation is performed by nonlinear static analysis procedure, namely pushover analysis, using OpenSEES, an earthquake simulation platform. Three-dimensional finite element models of those towers are developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transmission%20tower" title="transmission tower">transmission tower</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenSEES" title=" OpenSEES"> OpenSEES</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover" title=" pushover"> pushover</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20collapse" title=" progressive collapse"> progressive collapse</a> </p> <a href="https://publications.waset.org/abstracts/56404/evaluation-of-progressive-collapse-of-transmission-tower" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9953</span> Evaluating Reliability Indices in 3 Critical Feeders at Lorestan Electric Power Distribution Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atefeh%20Pourshafie">Atefeh Pourshafie</a>, <a href="https://publications.waset.org/abstracts/search?q=Homayoun%20Bakhtiari"> Homayoun Bakhtiari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main task of power distribution companies is to supply the power required by customers in an acceptable level of quality and reliability. Some key performance indicators for electric power distribution companies are those evaluating the continuity of supply within the network. More than other problems, power outages (due to lightning, flood, fire, earthquake, etc.) challenge economy and business. In addition, end users expect a reliable power supply. Reliability indices are evaluated on an annual basis by the specialized holding company of Tavanir (Power Produce, Transmission& distribution company of Iran) . Evaluation of reliability indices is essential for distribution companies, and with regard to the privatization of distribution companies, it will be of particular importance to evaluate these indices and to plan for their improvement in a not too distant future. According to IEEE-1366 standard, there are too many indices; however, the most common reliability indices include SAIFI, SAIDI and CAIDI. These indices describe the period and frequency of blackouts in the reporting period (annual or any desired timeframe). This paper calculates reliability indices for three sample feeders in Lorestan Electric Power Distribution Company and defines the threshold values in a ten-month period. At the end, strategies are introduced to reach the threshold values in order to increase customers' satisfaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power" title="power">power</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20network" title=" distribution network"> distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=outage" title=" outage"> outage</a> </p> <a href="https://publications.waset.org/abstracts/50893/evaluating-reliability-indices-in-3-critical-feeders-at-lorestan-electric-power-distribution-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9952</span> Analysis of Co2 Emission from Thailand&#039;s Thermal Power Sector by Divisia Decomposition Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isara%20Muangthai">Isara Muangthai</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Sue%20Jane"> Lin Sue Jane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electricity is vital to every country’s economy in the world. For Thailand, the electricity generation sector plays an important role in the economic system, and it is the largest source of CO2 emissions. The aim of this paper is to use the decomposition analysis to investigate the key factors contributing to the changes of CO2 emissions from the electricity sector. The decomposition analysis has been widely used to identify and assess the contributors to the changes in emission trends. Our study adopted the Divisia index decomposition to identify the key factors affecting the evolution of CO2 emissions from Thailand’s thermal power sector during 2000-2011. The change of CO2 emissions were decomposed into five factors, including: Emission coefficient, heat rate, fuel intensity, electricity intensity, and economic growth. Results have shown that CO2 emission in Thailand’s thermal power sector increased 29,173 thousand tons during 2000-2011. Economic growth was found to be the primary factor for increasing CO2 emissions, while the electricity intensity played a dominant role in decreasing CO2 emissions. The increasing effect of economic growth was up to 55,924 million tons of CO2 emissions because the growth and development of the economy relied on a large electricity supply. On the other hand, the shifting of fuel structure towards a lower-carbon content resulted in CO2 emission decline. Since the CO2 emissions released from Thailand’s electricity generation are rapidly increasing, the Thailand government will be required to implement a CO2 reduction plan in the future. In order to cope with the impact of CO2 emissions related to the power sector and to achieve sustainable development, this study suggests that Thailand’s government should focus on restructuring the fuel supply in power generation towards low carbon fuels by promoting the use of renewable energy for electricity, improving the efficiency of electricity use by reducing electricity transmission and the distribution of line losses, implementing energy conservation strategies by enhancing the purchase of energy-saving products, substituting the new power plant technology in the old power plants, promoting a shift of economic structure towards less energy-intensive services and orienting Thailand’s power industry towards low carbon electricity generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co2%20emission" title="co2 emission">co2 emission</a>, <a href="https://publications.waset.org/abstracts/search?q=decomposition%20analysis" title=" decomposition analysis"> decomposition analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20generation" title=" electricity generation"> electricity generation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a> </p> <a href="https://publications.waset.org/abstracts/30469/analysis-of-co2-emission-from-thailands-thermal-power-sector-by-divisia-decomposition-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20transmission%20line&amp;page=5" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20transmission%20line&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20transmission%20line&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20transmission%20line&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20transmission%20line&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20transmission%20line&amp;page=5">5</a></li> <li class="page-item active"><span class="page-link">6</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20transmission%20line&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20transmission%20line&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20transmission%20line&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20transmission%20line&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20transmission%20line&amp;page=337">337</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20transmission%20line&amp;page=338">338</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20transmission%20line&amp;page=7" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10