CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;21 of 21 results for author: <span class="mathjax">Miller, F</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Miller%2C+F">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Miller, F"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Miller%2C+F&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Miller, F"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.00468">arXiv:2301.00468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.00468">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-39180-3">10.1038/s41467-023-39180-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-volatile electrically programmable integrated photonics with a 5-bit operation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Rui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Z">Zhuoran Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perez%2C+C">Christopher Perez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+F">Forrest Miller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumari%2C+K">Khushboo Kumari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saxena%2C+A">Abhi Saxena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+J">Jiajiu Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geiger%2C+S+J">Sarah J. Geiger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodson%2C+K+E">Kenneth E. Goodson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Majumdar%2C+A">Arka Majumdar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.00468v1-abstract-short" style="display: inline;"> Scalable programmable photonic integrated circuits (PICs) can potentially transform the current state of classical and quantum optical information processing. However, traditional means of programming, including thermo-optic, free carrier dispersion, and Pockels effect result in either large device footprints or high static energy consumptions, significantly limiting their scalability. While chalc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00468v1-abstract-full').style.display = 'inline'; document.getElementById('2301.00468v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.00468v1-abstract-full" style="display: none;"> Scalable programmable photonic integrated circuits (PICs) can potentially transform the current state of classical and quantum optical information processing. However, traditional means of programming, including thermo-optic, free carrier dispersion, and Pockels effect result in either large device footprints or high static energy consumptions, significantly limiting their scalability. While chalcogenide-based non-volatile phase-change materials (PCMs) could mitigate these problems thanks to their strong index modulation and zero static power consumption, they often suffer from large absorptive loss, low cyclability, and lack of multilevel operation. Here, we report a wide-bandgap PCM antimony sulfide (Sb2S3)-clad silicon photonic platform simultaneously achieving low loss, high cyclability, and 5-bit operation. We switch Sb2S3 via an on-chip silicon PIN diode heater and demonstrate components with low insertion loss (&lt;1.0 dB), high extinction ratio (&gt;10 dB), and high endurance (&gt;1,600 switching events). Remarkably, we find that Sb2S3 can be programmed into fine intermediate states by applying identical and thermally isolated pulses, providing a unique approach to controllable multilevel operation. Through dynamic pulse control, we achieve on-demand and accurate 5-bit (32 levels) operations, rendering 0.50 +- 0.16 dB contrast per step. Using this multilevel behavior, we further trim random phase error in a balanced Mach-Zehnder interferometer. Our work opens an attractive pathway toward non-volatile large-scale programmable PICs with low-loss and on-demand multi-bit operations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00468v1-abstract-full').style.display = 'none'; document.getElementById('2301.00468v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figures in main text</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.01173">arXiv:2204.01173</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.01173">pdf</a>, <a href="https://arxiv.org/format/2204.01173">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Continuum Limit of Dendritic Deposition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jacobson%2C+D">Daniel Jacobson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+F">Thomas F. Miller III</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.01173v4-abstract-short" style="display: inline;"> Continuum models are commonly used to study dendritic deposition in fields ranging from nonequilibrium statistical mechanics to battery research. However, the continuum approximation underlying these models is poorly understood, even in the simplified case of Brownian particles depositing onto a small, reactive cluster. Specifically, this system transitions from a compact to a dendritic morphology&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01173v4-abstract-full').style.display = 'inline'; document.getElementById('2204.01173v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.01173v4-abstract-full" style="display: none;"> Continuum models are commonly used to study dendritic deposition in fields ranging from nonequilibrium statistical mechanics to battery research. However, the continuum approximation underlying these models is poorly understood, even in the simplified case of Brownian particles depositing onto a small, reactive cluster. Specifically, this system transitions from a compact to a dendritic morphology at a critical radius that depends on the particle size. But in simulations of the continuum (small-particle) limit, the critical radius does not reproduce the scaling predicted by a purely continuum analysis. This discrepancy suggests that continuum models cannot capture the microscopic physics of dendrite formation, raising doubts about their experimental relevance. To clarify the continuum limit of dendritic deposition, here, we reexamine the critical radius scaling of the Brownian particle system using Brownian dynamics simulations. Compared to past studies, we probe larger system sizes, up to hundreds of millions of particles in some cases, and adopt an improved paradigm for the surface reaction. This paradigm allows us to converge our simulations and to work with well-defined physical parameters. Our results show that the critical radius scaling is, in fact, consistent with the continuum analysis, validating the continuum approach to modeling dendritic deposition. Nonetheless, the Brownian particle system converges to its continuum limit slowly. As a result, when applying continuum models to more complex deposition processes, the continuum approximation itself may be a significant source of error. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01173v4-abstract-full').style.display = 'none'; document.getElementById('2204.01173v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages with 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.00887">arXiv:2202.00887</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.00887">pdf</a>, <a href="https://arxiv.org/format/2202.00887">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0087156">10.1063/5.0087156 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Equilibrium-nonequilibrium ring-polymer molecular dynamics for nonlinear spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Begu%C5%A1i%C4%87%2C+T">Tomislav Begu拧i膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+X">Xuecheng Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blake%2C+G+A">Geoffrey A. Blake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+F">Thomas F. Miller III</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.00887v2-abstract-short" style="display: inline;"> Two-dimensional Raman and hybrid terahertz/Raman spectroscopic techniques provide invaluable insight into molecular structure and dynamics of condensed-phase systems. However, corroborating experimental results with theory is difficult due to the high computational cost of incorporating quantum-mechanical effects in the simulations. Here, we present the equilibrium-nonequilibrium ring-polymer mole&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.00887v2-abstract-full').style.display = 'inline'; document.getElementById('2202.00887v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.00887v2-abstract-full" style="display: none;"> Two-dimensional Raman and hybrid terahertz/Raman spectroscopic techniques provide invaluable insight into molecular structure and dynamics of condensed-phase systems. However, corroborating experimental results with theory is difficult due to the high computational cost of incorporating quantum-mechanical effects in the simulations. Here, we present the equilibrium-nonequilibrium ring-polymer molecular dynamics (RPMD), a practical computational method that can account for nuclear quantum effects on the two-time response function of nonlinear optical spectroscopy. Unlike a recently developed approach based on the double Kubo transformed (DKT) correlation function, our method is exact in the classical limit, where it reduces to the established equilibrium-nonequilibrium classical molecular dynamics method. Using benchmark model calculations, we demonstrate the advantages of the equilibrium-nonequilibrium RPMD over classical and DKT-based approaches. Importantly, its derivation, which is based on the nonequilibrium RPMD, obviates the need for identifying an appropriate Kubo transformed correlation function and paves the way for applying real-time path-integral techniques to multidimensional spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.00887v2-abstract-full').style.display = 'none'; document.getElementById('2202.00887v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: Added a two-dimensional model system (Fig. 4), updated list of authors, other minor improvements; last 10 pages contain the supplementary material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.02893">arXiv:2106.02893</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.02893">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Stern and Diffuse Layer Interactions During Ionic Strength Cycling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+E">Emily Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jeongmin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+H">HanByul Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohno%2C+P+E">Paul E. Ohno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jodts%2C+R+J">Richard J. Jodts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+F">Thomas F. Miller III</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geiger%2C+F+M">Franz M. Geiger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.02893v1-abstract-short" style="display: inline;"> Second harmonic generation amplitude and phase measurements are acquired in real time from fused silica:water interfaces that are subjected to ionic strength transitions conducted at pH 5.8. In conjunction with atomistic modeling, we identify correlations between structure in the Stern layer, encoded in the total second-order nonlinear susceptibility, chi(2)tot, and in the diffuse layer, encoded i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.02893v1-abstract-full').style.display = 'inline'; document.getElementById('2106.02893v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.02893v1-abstract-full" style="display: none;"> Second harmonic generation amplitude and phase measurements are acquired in real time from fused silica:water interfaces that are subjected to ionic strength transitions conducted at pH 5.8. In conjunction with atomistic modeling, we identify correlations between structure in the Stern layer, encoded in the total second-order nonlinear susceptibility, chi(2)tot, and in the diffuse layer, encoded in the product of chi(2)tot and the total interfacial potential, phi(0)tot. chi(2)tot:phi(0)tot correlation plots indicate that the dynamics in the Stern and diffuse layers are decoupled from one another under some conditions (large change in ionic strength), while they change in lockstep under others (smaller change in ionic strength) as the ionic strength in the aqueous bulk solution varies. The quantitative structural and electrostatic information obtained also informs on the molecular origin of hysteresis in ionic strength cycling over fused silica. Atomistic simulations suggest a prominent role of contact ion pairs (as opposed to solvent-separated ion pairs) in the Stern layer. Those simulations also indicate that net water alignment is limited to the first 2 nm from the interface, even at 0 M ionic strength, highlighting water&#39;s polarization as an important contributor to nonlinear optical signal generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.02893v1-abstract-full').style.display = 'none'; document.getElementById('2106.02893v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Pe-edited version, 21 pages main text, 6 Figures, Supporting Information available upon request</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.02802">arXiv:2104.02802</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.02802">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A New Imaginary Term in the 2nd Order Nonlinear Susceptibility from Charged Interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+E">Emily Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohno%2C+P+E">Paul E. Ohno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jeongmin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y+D">Yangdongling Dawning Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lozier%2C+E+H">Emilie H. Lozier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+F">Thomas F. Miller III</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hong-Fei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geiger%2C+F+M">Franz M. Geiger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.02802v1-abstract-short" style="display: inline;"> Non-resonant second harmonic generation phase and amplitude measurements obtained from the silica:water interface at varying pH and 0.5 M ionic strength point to the existence of a nonlinear susceptibility term, which we call chi(3)X, that is associated with a 90 deg phase shift. Including this contribution in a model for the total effective second-order nonlinear susceptibility produces reasonabl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02802v1-abstract-full').style.display = 'inline'; document.getElementById('2104.02802v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.02802v1-abstract-full" style="display: none;"> Non-resonant second harmonic generation phase and amplitude measurements obtained from the silica:water interface at varying pH and 0.5 M ionic strength point to the existence of a nonlinear susceptibility term, which we call chi(3)X, that is associated with a 90 deg phase shift. Including this contribution in a model for the total effective second-order nonlinear susceptibility produces reasonable point estimates for interfacial potentials and second-order nonlinear susceptibilities when chi(3)Xis about 1.5 times chi(3)water. A model without this term and containing only traditional chi(2) and chi(3) terms cannot recapitulate the experimental data. The new model also provides a demonstrated utility for distinguishing apparent differences in the second-order nonlinear susceptibility when the electrolyte is NaCl vs MgSO4, pointing to the possibility of using HD-SHG to investigate ion-specificity in interfacial processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02802v1-abstract-full').style.display = 'none'; document.getElementById('2104.02802v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Pre-edited version, 16 Pages main text, 4 Figures, Supporting Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Chem. Letters (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.01333">arXiv:2001.01333</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.01333">pdf</a>, <a href="https://arxiv.org/ps/2001.01333">ps</a>, <a href="https://arxiv.org/format/2001.01333">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5144307">10.1063/1.5144307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microcanonical rates from ring-polymer molecular dynamics: Direct-shooting, stationary-phase, and maximum-entropy approaches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+X">Xuecheng Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shushkov%2C+P">Philip Shushkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+F">Thomas F. Miller III</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.01333v1-abstract-short" style="display: inline;"> We address the calculation of microcanonical reaction rates for processes involving significant nuclear quantum effects using ring-polymer molecular dynamics (RPMD), both with and without electronically non-adiabatic transitions. After illustrating the shortcomings of the naive free-particle direct-shooting method, in which the temperature of the internal ring-polymer modes is set to the translati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.01333v1-abstract-full').style.display = 'inline'; document.getElementById('2001.01333v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.01333v1-abstract-full" style="display: none;"> We address the calculation of microcanonical reaction rates for processes involving significant nuclear quantum effects using ring-polymer molecular dynamics (RPMD), both with and without electronically non-adiabatic transitions. After illustrating the shortcomings of the naive free-particle direct-shooting method, in which the temperature of the internal ring-polymer modes is set to the translational energy scale, we investigate alternative strategies based on the expression for the microcanonical rate in terms of the inverse Laplace transform of the thermal reaction rate. It is shown that simple application of the stationary-phase approximation (SPA) dramatically improves the performance of the microcanonical rates using RPMD, particularly in the low-energy region where tunneling dominates. Using the SPA as a Bayesian prior, numerically exact RPMD microcanonical rates are then obtained using maximum entropy inversion of the thermal reaction rates, for both electronically adiabatic and non-adiabatic model systems. Finally, the direct-shooting method is revisited using the SPA-determined temperature for the internal ring-polymer modes, leading to a simple, direct-simulation method with improved accuracy in the tunneling regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.01333v1-abstract-full').style.display = 'none'; document.getElementById('2001.01333v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.00931">arXiv:1911.00931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.00931">pdf</a>, <a href="https://arxiv.org/format/1911.00931">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5134810">10.1063/1.5134810 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dimension-free path-integral molecular dynamics without preconditioning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Korol%2C+R">Roman Korol</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosa-Ra%C3%ADces%2C+J+L">Jorge L. Rosa-Ra铆ces</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bou-Rabee%2C+N">Nawaf Bou-Rabee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+F">Thomas F. Miller III</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.00931v3-abstract-short" style="display: inline;"> Convergence with respect to imaginary-time discretization is an essential part of any path-integral-based calculation. However, an unfortunate property of existing non-preconditioned numerical integration schemes for path-integral molecular dynamics (PIMD) - including ring-polymer molecular dynamics (RPMD) and thermostatted RPMD (T-RPMD) - is that for a given MD timestep, the overlap between the e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.00931v3-abstract-full').style.display = 'inline'; document.getElementById('1911.00931v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.00931v3-abstract-full" style="display: none;"> Convergence with respect to imaginary-time discretization is an essential part of any path-integral-based calculation. However, an unfortunate property of existing non-preconditioned numerical integration schemes for path-integral molecular dynamics (PIMD) - including ring-polymer molecular dynamics (RPMD) and thermostatted RPMD (T-RPMD) - is that for a given MD timestep, the overlap between the exact ring-polymer Boltzmann-Gibbs distribution and that sampled using MD becomes zero in the infinite-bead limit. This has clear implications for hybrid Metropolis Monte-Carlo/MD sampling schemes. We show that these problems can be avoided through the introduction of &#34;dimension-free&#34; numerical integration schemes for which the sampled ring-polymer position distribution has non-zero overlap with the exact distribution in the infinite-bead limit for the case of a harmonic potential. We show that dimension freedom can be achieved via mollification of the forces from the physical potential and with the BCOCB integration scheme. The dimension-free numerical integration schemes yield finite error bounds for a given MD timestep as the number of beads is taken to infinity; these conclusions are proven for harmonic potential and borne out numerically for anharmonic systems, including water. The numerical results for BCOCB are particularly striking, allowing for three-fold increases in the stable timestep for liquid water with respect to the Bussi-Parrinello (OBABO) and Leimkuhler (BAOAB) integrators while introducing negligible errors in the statistical properties and absorption spectrum. Importantly, the dimension-free, non-preconditioned integration schemes introduced here preserve ergodicity and global second-order accuracy, and they remain simple, black-box methods that avoid additional computational costs, tunable parameters, or system-specific implementations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.00931v3-abstract-full').style.display = 'none'; document.getElementById('1911.00931v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures. New results (for the 2 fs time-step) are added in Figure 1(d), y-axes of figure 6 are rescaled and a few typos are corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 152, 104102 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.13170">arXiv:1907.13170</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.13170">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.1906601116">10.1073/pnas.1906601116 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy Conversion via Metal Nanolayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Boamah%2C+M+D">Mavis D. Boamah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lozier%2C+E+H">Emilie H. Lozier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jeongmin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohno%2C+P+E">Paul E. Ohno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+C+E">Catherine E. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+F">Thomas F. Miller III</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geiger%2C+F+M">Franz M. Geiger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.13170v1-abstract-short" style="display: inline;"> Current approaches for electric power generation from nanoscale conducting or semi-conducting layers in contact with moving aqueous droplets are promising as they show efficiencies of around 30 percent, yet, even the most successful ones pose challenges regarding fabrication and scaling. Here, we report stable, all-inorganic single-element structures synthesized in a single step that generate elec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.13170v1-abstract-full').style.display = 'inline'; document.getElementById('1907.13170v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.13170v1-abstract-full" style="display: none;"> Current approaches for electric power generation from nanoscale conducting or semi-conducting layers in contact with moving aqueous droplets are promising as they show efficiencies of around 30 percent, yet, even the most successful ones pose challenges regarding fabrication and scaling. Here, we report stable, all-inorganic single-element structures synthesized in a single step that generate electrical current when alternating salinity gradients flow along its surface in a liquid flow cell. 10 nm to 30 nm thin nanolayers of iron, vanadium, or nickel produce several tens of mV and several microA cm^-2 at aqueous flow velocities of just a few cm s^-1. The principle of operation is strongly sensitive to charge-carrier motion in the thermal oxide nano-overlayer that forms spontaneously in air and then self terminates. Indeed, experiments suggest a role for intra-oxide electron transfer for Fe, V, and Ni nanolayers, as their thermal oxides contain several metal oxidation states, whereas controls using Al or Cr nanolayers, which self-terminate with oxides that are redox inactive under the experimental conditions, exhibit dramatically diminished performance. The nanolayers are shown to generate electrical current in various modes of application with moving liquids, including sliding liquid droplets, salinity gradients in a flowing liquid, and in the oscillatory motion of a liquid without a salinity gradient. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.13170v1-abstract-full').style.display = 'none'; document.getElementById('1907.13170v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Pre-edited final version, 16 pages main text, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.11962">arXiv:1907.11962</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.11962">pdf</a>, <a href="https://arxiv.org/format/1907.11962">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5121749">10.1063/1.5121749 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Real-time density-matrix coupled-cluster approach for closed and open systems at finite temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shushkov%2C+P">Philip Shushkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+F">Thomas F. Miller III</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.11962v1-abstract-short" style="display: inline;"> We extend the coupled-cluster method to correlated quantum dynamics of both closed and open systems at finite temperatures using the thermo-field formalism. The approach expresses the time-dependent density matrix in an exponential ansatz and describes time-evolution along the Keldysh path contour. A distinct advantage of the approach is exact trace-preservation as a function of time, ensuring con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11962v1-abstract-full').style.display = 'inline'; document.getElementById('1907.11962v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.11962v1-abstract-full" style="display: none;"> We extend the coupled-cluster method to correlated quantum dynamics of both closed and open systems at finite temperatures using the thermo-field formalism. The approach expresses the time-dependent density matrix in an exponential ansatz and describes time-evolution along the Keldysh path contour. A distinct advantage of the approach is exact trace-preservation as a function of time, ensuring conservation of probability and particle number. Furthermore, the method avoids the computation of correlated bra-states, simplifying the computational implementation. We develop the method in a thermal quasi-particle representation, which allows seamless connection to the projection method and diagrammatic techniques of the traditional coupled-cluster formalism. For comparison, we also apply the thermo-field framework to renormalization-group methods to obtain reference results for closed and open systems at finite temperatures. We test the singles and doubles approximation to the density-matrix coupled-cluster method on the correlated electronic dynamics of the single-impurity Anderson model, demonstrating that the new method successfully captures the correlated dynamics of both closed systems at finite temperature and driven-dissipative open systems. This encouraging performance motivates future applications to non-equilibrium quantum many-body dynamics in realistic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11962v1-abstract-full').style.display = 'none'; document.getElementById('1907.11962v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.07941">arXiv:1907.07941</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.07941">pdf</a>, <a href="https://arxiv.org/format/1907.07941">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5120282">10.1063/1.5120282 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cayley modification for strongly stable path-integral and ring-polymer molecular dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Korol%2C+R">Roman Korol</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bou-Rabee%2C+N">Nawaf Bou-Rabee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+F">Thomas F. Miller III</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.07941v4-abstract-short" style="display: inline;"> Path-integral-based molecular dynamics (MD) simulations are widely used for the calculation of numerically exact quantum Boltzmann properties and approximate dynamical quantities. A nearly universal feature of MD numerical integration schemes for equations of motion based on imaginary-time path integrals is the use of harmonic normal modes for the exact evolution of the free ring-polymer positions&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07941v4-abstract-full').style.display = 'inline'; document.getElementById('1907.07941v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.07941v4-abstract-full" style="display: none;"> Path-integral-based molecular dynamics (MD) simulations are widely used for the calculation of numerically exact quantum Boltzmann properties and approximate dynamical quantities. A nearly universal feature of MD numerical integration schemes for equations of motion based on imaginary-time path integrals is the use of harmonic normal modes for the exact evolution of the free ring-polymer positions and momenta. In this work, we demonstrate that this standard practice creates numerical artifacts. In the context of conservative (i.e., microcanonical) equations of motion, it leads to numerical instability. In the context of thermostatted (i.e., canonical) equations of motion, it leads to non-ergodicity of the sampling. These pathologies are generally proven to arise at integration timesteps that depend only on the system temperature and the number of ring-polymer beads, and they are numerically demonstrated for the cases of conventional ring-polymer molecular dynamics (RPMD) and thermostatted RPMD (TRPMD). Furthermore, it is demonstrated that these numerical artifacts are removed via replacement of the exact free ring-polymer evolution with a second-order approximation based on the Cayley transform. The Cayley modification introduced here can immediately be employed with almost every existing integration scheme for path-integral-based molecular dynamics - including path-integral MD (PIMD), RPMD, TRPMD, and centroid MD - providing strong symplectic stability and ergodicity to the numerical integration, at no penalty in terms of computational cost, algorithmic complexity, or accuracy of the overall MD timestep. Furthermore, it is shown that the improved numerical stability of the Cayley modification allows for the use of larger MD timesteps. We suspect that the Cayley modification will therefore find useful application in many future path-integral-based MD simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07941v4-abstract-full').style.display = 'none'; document.getElementById('1907.07941v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures. Condition (37) is tightened (due to a sign error fix)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 151, 124103 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.06838">arXiv:1610.06838</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.06838">pdf</a>, <a href="https://arxiv.org/format/1610.06838">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpclett.6b02662">10.1021/acs.jpclett.6b02662 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhancing Cation Diffusion and Suppressing Anion Diffusion via Lewis-Acidic Polymer Electrolytes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Savoie%2C+B+M">Brett M. Savoie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Webb%2C+M+A">Michael A. Webb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+F">Thomas F. Miller III</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.06838v1-abstract-short" style="display: inline;"> Solid polymer electrolytes (SPE) have the potential to increase both the energy density and stability of lithium-based batteries, but low Li-ion conductivity remains a barrier to technological viability. SPEs are designed to maximize Li-ion diffusivity relative to the anion, while maintaining sufficient salt solubility. It is thus remarkable that polyethylene oxide (PEO), the most widely used SPE,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.06838v1-abstract-full').style.display = 'inline'; document.getElementById('1610.06838v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.06838v1-abstract-full" style="display: none;"> Solid polymer electrolytes (SPE) have the potential to increase both the energy density and stability of lithium-based batteries, but low Li-ion conductivity remains a barrier to technological viability. SPEs are designed to maximize Li-ion diffusivity relative to the anion, while maintaining sufficient salt solubility. It is thus remarkable that polyethylene oxide (PEO), the most widely used SPE, exhibits Li-ion diffusivity that is an order of magnitude smaller than that of typical counter-ions, such as TFSI, at moderate salt concentrations. Here, we show that Lewis-basic polymers like PEO intrinsically favor slow cation and rapid anion diffusion while this relationship can be reversed in Lewis-acidic polymers. Using molecular dynamics (MD) simulations, Lewis-acidic polyboranes are identified that achieve up to a ten-fold increase in Li-ion diffusivity and a significant decrease in anion diffusivity, relative to PEO. The results for this new class of Lewis-acidic SPEs illustrate a general principle for increasing Li-ion diffusivity and transference number with polymer chemistries that exhibit weaker cation and stronger anion coordination. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.06838v1-abstract-full').style.display = 'none'; document.getElementById('1610.06838v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Chem. Lett., 2017, 8, 641-646 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.3033">arXiv:1401.3033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.3033">pdf</a>, <a href="https://arxiv.org/format/1401.3033">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4863919">10.1063/1.4863919 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kinetically Constrained Ring-Polymer Molecular Dynamics for Non-adiabatic Chemical Reactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Menzeleev%2C+A+R">Artur R. Menzeleev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bell%2C+F">Franziska Bell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+F">Thomas F. Miller III</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.3033v1-abstract-short" style="display: inline;"> We extend ring-polymer molecular dynamics (RPMD) to allow for the direct simulation of general, electronically non-adiabatic chemical processes. The kinetically constrained (KC) RPMD method uses the imaginary-time path-integral representation in the set of nuclear coordinates and electronic states to provide continuous equations of motion that describe the quantized, electronically non-adiabatic d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.3033v1-abstract-full').style.display = 'inline'; document.getElementById('1401.3033v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.3033v1-abstract-full" style="display: none;"> We extend ring-polymer molecular dynamics (RPMD) to allow for the direct simulation of general, electronically non-adiabatic chemical processes. The kinetically constrained (KC) RPMD method uses the imaginary-time path-integral representation in the set of nuclear coordinates and electronic states to provide continuous equations of motion that describe the quantized, electronically non-adiabatic dynamics of the system. KC-RPMD preserves the favorable properties of the usual RPMD formulation in the position representation, including rigorous detailed balance, time-reversal symmetry, and invariance of reaction rate calculations to the choice of dividing surface. However, the new method overcomes significant shortcomings of position-representation RPMD by enabling the description of non-adiabatic transitions between states associated with general, many-electron wavefunctions and by accurately describing deep-tunneling processes across asymmetric barriers. We demonstrate that KC-RPMD yields excellent numerical results for a range of model systems, including a simple avoided-crossing reaction and condensed-phase electron-transfer reactions across multiple regimes for the electronic coupling and thermodynamic driving force. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.3033v1-abstract-full').style.display = 'none'; document.getElementById('1401.3033v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.6052">arXiv:1211.6052</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.6052">pdf</a>, <a href="https://arxiv.org/format/1211.6052">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4770226">10.1063/1.4770226 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Density functional theory embedding for correlated wavefunctions: Improved methods for open-shell systems and transition metal complexes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Goodpaster%2C+J+D">Jason D. Goodpaster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barnes%2C+T+A">Taylor A. Barnes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manby%2C+F+R">Frederick R. Manby</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+F">Thomas F. Miller III</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.6052v2-abstract-short" style="display: inline;"> Density functional theory (DFT) embedding provides a formally exact framework for interfacing correlated wave-function theory (WFT) methods with lower-level descriptions of electronic structure. Here, we report techniques to improve the accuracy and stability of WFT-in-DFT embedding calculations. In particular, we develop spin-dependent embedding potentials in both restricted and unrestricted orbi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.6052v2-abstract-full').style.display = 'inline'; document.getElementById('1211.6052v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.6052v2-abstract-full" style="display: none;"> Density functional theory (DFT) embedding provides a formally exact framework for interfacing correlated wave-function theory (WFT) methods with lower-level descriptions of electronic structure. Here, we report techniques to improve the accuracy and stability of WFT-in-DFT embedding calculations. In particular, we develop spin-dependent embedding potentials in both restricted and unrestricted orbital formulations to enable WFT-in-DFT embedding for open-shell systems, and we develop an orbital-occupation-freezing technique to improve the convergence of optimized effective potential (OEP) calculations that arise in the evaluation of the embedding potential. The new techniques are demonstrated in applications to the van-der-Waals-bound ethylene-propylene dimer and to the hexaaquairon(II) transition-metal cation. Calculation of the dissociation curve for the ethylene-propylene dimer reveals that WFT-in-DFT embedding reproduces full CCSD(T) energies to within 0.1 kcal/mol at all distances, eliminating errors in the dispersion interactions due to conventional exchange-correlation (XC) functionals while simultaneously avoiding errors due to subsystem partitioning across covalent bonds. Application of WFT-in-DFT embedding to the calculation of the low-spin/high-spin splitting energy in the hexaaquairon(II) cation reveals that the majority of the dependence on the DFT XC functional can be eliminated by treating only the single transition-metal atom at the WFT level; furthermore, these calculations demonstrate the substantial effects of open-shell contributions to the embedding potential, and they suggest that restricted open-shell WFT-in-DFT embedding provides better accuracy than unrestricted open-shell WFT-in-DFT embedding due to the removal of spin contamination. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.6052v2-abstract-full').style.display = 'none'; document.getElementById('1211.6052v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.3338">arXiv:1204.3338</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1204.3338">pdf</a>, <a href="https://arxiv.org/format/1204.3338">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Flux-correlation approach to characterizing reaction pathways in quantum systems: A study of condensed-phase proton-coupled electron transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ananth%2C+N">Nandini Ananth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+F">Thomas F. Miller III</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.3338v1-abstract-short" style="display: inline;"> We introduce a simple method for characterizing reactive pathways in quantum systems. Flux auto- correlation and cross-correlation functions are employed to develop a quantitative measure of dynamical coupling in quantum transition events, such as reactive tunneling and resonant energy transfer. We utilize the method to study condensed-phase proton-coupled electron transfer (PCET) reactions and to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.3338v1-abstract-full').style.display = 'inline'; document.getElementById('1204.3338v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.3338v1-abstract-full" style="display: none;"> We introduce a simple method for characterizing reactive pathways in quantum systems. Flux auto- correlation and cross-correlation functions are employed to develop a quantitative measure of dynamical coupling in quantum transition events, such as reactive tunneling and resonant energy transfer. We utilize the method to study condensed-phase proton-coupled electron transfer (PCET) reactions and to determine the relative importance of competing concerted and sequential reaction pathways. Results presented here include numerically exact quantum dynamics simulations for model condensed-phase PCET reactions. This work demonstrates the applicability of the new method for the analysis of both approximate and exact quantum dynamics simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.3338v1-abstract-full').style.display = 'none'; document.getElementById('1204.3338v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1107.5361">arXiv:1107.5361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1107.5361">pdf</a>, <a href="https://arxiv.org/format/1107.5361">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3511700">10.1063/1.3511700 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exact quantum statistics for electronically nonadiabatic systems using continuous path variables </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ananth%2C+N">Nandini Ananth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+F">Thomas F. Miller III</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1107.5361v1-abstract-short" style="display: inline;"> We derive an exact, continuous-variable path integral (PI) representation of the canonical partition function for electronically nonadiabatic systems. Utilizing the Stock-Thoss (ST) mapping for an N-level system, matrix elements of the Boltzmann operator are expressed in Cartesian coordinates for both the nuclear and electronic degrees of freedom. The PI discretization presented here properly cons&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.5361v1-abstract-full').style.display = 'inline'; document.getElementById('1107.5361v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1107.5361v1-abstract-full" style="display: none;"> We derive an exact, continuous-variable path integral (PI) representation of the canonical partition function for electronically nonadiabatic systems. Utilizing the Stock-Thoss (ST) mapping for an N-level system, matrix elements of the Boltzmann operator are expressed in Cartesian coordinates for both the nuclear and electronic degrees of freedom. The PI discretization presented here properly constrains the electronic Cartesian coordinates to the physical subspace of the mapping. We numerically demonstrate that the resulting PI-ST representation is exact for the calculation of equilibrium properties of systems with coupled electronic and nuclear degrees of freedom. We further show that the PI-ST formulation provides a natural means to initialize semiclassical trajectories for the calculation of real-time thermal correlation functions, which is numerically demonstrated in applications to a series of nonadiabatic model systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.5361v1-abstract-full').style.display = 'none'; document.getElementById('1107.5361v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys 133, 234103 (2010) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1107.5091">arXiv:1107.5091</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1107.5091">pdf</a>, <a href="https://arxiv.org/format/1107.5091">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3624766">10.1063/1.3624766 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct simulation of electron transfer using ring polymer molecular dynamics: Comparison with semiclassical instanton theory and exact quantum methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Menzeleev%2C+A+R">Artur R. Menzeleev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ananth%2C+N">Nandini Ananth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+F">Thomas F. Miller III</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1107.5091v1-abstract-short" style="display: inline;"> The use of ring polymer molecular dynamics (RPMD) for the direct simulation of electron transfer (ET) reaction dynamics is analyzed in the context of Marcus theory, semiclassical instanton theory, and exact quantum dynamics approaches. For both fully atomistic and system-bath representations of condensed-phase ET, we demonstrate that RPMD accurately predicts both ET reaction rates and mechanisms t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.5091v1-abstract-full').style.display = 'inline'; document.getElementById('1107.5091v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1107.5091v1-abstract-full" style="display: none;"> The use of ring polymer molecular dynamics (RPMD) for the direct simulation of electron transfer (ET) reaction dynamics is analyzed in the context of Marcus theory, semiclassical instanton theory, and exact quantum dynamics approaches. For both fully atomistic and system-bath representations of condensed-phase ET, we demonstrate that RPMD accurately predicts both ET reaction rates and mechanisms throughout the normal and activationless regimes of the thermodynamic driving force. Analysis of the ensemble of reactive RPMD trajectories reveals the solvent reorganization mechanism for ET that is anticipated in the Marcus rate theory, and the accuracy of the RPMD rate calculation is understood in terms of its exact description of statistical fluctuations and its formal connection to semiclassical instanton theory for deep-tunneling processes. In the inverted regime of the thermodynamic driving force, neither RPMD nor a related formulation of semiclassical instanton theory capture the characteristic turnover in the reaction rate; comparison with exact quantum dynamics simulations reveals that these methods provide inadequate quantization of the real-time electronic-state dynamics in the inverted regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.5091v1-abstract-full').style.display = 'none'; document.getElementById('1107.5091v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> THE JOURNAL OF CHEMICAL PHYSICS 135, 074106 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1102.4028">arXiv:1102.4028</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1102.4028">pdf</a>, <a href="https://arxiv.org/ps/1102.4028">ps</a>, <a href="https://arxiv.org/format/1102.4028">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3582913">10.1063/1.3582913 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Embedded density functional theory for covalently bonded and strongly interacting subsystems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Goodpaster%2C+J+D">Jason D. Goodpaster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barnes%2C+T+A">Taylor A. Barnes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+F">Thomas F. Miller III</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1102.4028v1-abstract-short" style="display: inline;"> Embedded density functional theory (e-DFT) is used to describe the electronic structure of strongly interacting molecular subsystems. We present a general implementation of the Exact Embedding (EE) method [J. Chem. Phys. 133, 084103 (2010)] to calculate the large contributions of the non-additive kinetic potential (NAKP) in such applications. Potential energy curves are computed for the dissociati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.4028v1-abstract-full').style.display = 'inline'; document.getElementById('1102.4028v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1102.4028v1-abstract-full" style="display: none;"> Embedded density functional theory (e-DFT) is used to describe the electronic structure of strongly interacting molecular subsystems. We present a general implementation of the Exact Embedding (EE) method [J. Chem. Phys. 133, 084103 (2010)] to calculate the large contributions of the non-additive kinetic potential (NAKP) in such applications. Potential energy curves are computed for the dissociation of Li+-Be, CH3-CF3, and hydrogen-bonded water clusters, and e-DFT results obtained using the EE method are compared with those obtained using approximate kinetic energy functionals. In all cases, the EE method preserves excellent agreement with reference Kohn-Sham calculations, whereas the approximate functionals lead to qualitative failures in the calculated energies and equilibrium structures. We also demonstrate an accurate pairwise approximation to the NAKP that allows for efficient parallelization of the EE method in large systems; benchmark calculations on molecular crystals reveal ideal, size-independent scaling of wall-clock time with increasing system size. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.4028v1-abstract-full').style.display = 'none'; document.getElementById('1102.4028v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys., 134, 164108 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0809.4522">arXiv:0809.4522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0809.4522">pdf</a>, <a href="https://arxiv.org/ps/0809.4522">ps</a>, <a href="https://arxiv.org/format/0809.4522">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3292576">10.1063/1.3292576 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Isomorphic classical molecular dynamics model for an excess electron in a supercritical fluid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+F">Thomas F. Miller III</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0809.4522v1-abstract-short" style="display: inline;"> Ring polymer molecular dynamics (RPMD) is used to directly simulate the dynamics of an excess electron in a supercritical fluid over a broad range of densities. The accuracy of the RPMD model is tested against numerically exact path integral statistics through the use of analytical continuation techniques. At low fluid densities, the RPMD model substantially underestimates the contribution of de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0809.4522v1-abstract-full').style.display = 'inline'; document.getElementById('0809.4522v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0809.4522v1-abstract-full" style="display: none;"> Ring polymer molecular dynamics (RPMD) is used to directly simulate the dynamics of an excess electron in a supercritical fluid over a broad range of densities. The accuracy of the RPMD model is tested against numerically exact path integral statistics through the use of analytical continuation techniques. At low fluid densities, the RPMD model substantially underestimates the contribution of delocalized states to the dynamics of the excess electron. However, with increasing solvent density, the RPMD model improves, nearly satisfying analytical continuation constraints at densities approaching those of typical liquids. In the high density regime, quantum dispersion substantially decreases the self-diffusion of the solvated electron. In this regime where the dynamics of the electron is strongly coupled to the dynamics of the atoms in the fluid, trajectories that can reveal diffusive motion of the electron are long in comparison to $尾\hbar$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0809.4522v1-abstract-full').style.display = 'none'; document.getElementById('0809.4522v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys., 129, 194502 (2008) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0702407">arXiv:cond-mat/0702407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0702407">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0702407">ps</a>, <a href="https://arxiv.org/format/cond-mat/0702407">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.0705830104">10.1073/pnas.0705830104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solvent coarse-graining and the string method applied to the hydrophobic collapse of a hydrated chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+F">Thomas F. Miller III</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vanden-Eijnden%2C+E">Eric Vanden-Eijnden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chandler%2C+D">David Chandler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0702407v1-abstract-short" style="display: inline;"> Using computer simulations of over 100,000 atoms, the mechanism for the hydrophobic collapse of an idealized hydrated chain is obtained. This is done by coarse-graining the atomistic water molecule positions over 129,000 collective variables that represent the water density field and then using the string method in these variables to compute the minimum free energy pathway (MFEP) for the collaps&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0702407v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0702407v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0702407v1-abstract-full" style="display: none;"> Using computer simulations of over 100,000 atoms, the mechanism for the hydrophobic collapse of an idealized hydrated chain is obtained. This is done by coarse-graining the atomistic water molecule positions over 129,000 collective variables that represent the water density field and then using the string method in these variables to compute the minimum free energy pathway (MFEP) for the collapsing chain. The dynamical relevance of the MFEP (i.e. its coincidence with the mechanism of collapse) is validated a posteriori using conventional molecular dynamics trajectories. Analysis of the MFEP provides atomistic confirmation for the mechanism of hydrophobic collapse proposed by ten Wolde and Chandler. In particular, it is shown that lengthscale-dependent hydrophobic dewetting is the rate-limiting step in the hydrophobic collapse of the considered chain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0702407v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0702407v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures, including supporting information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. Natl. Acad. USA, 104, 14559 (2007) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0611462">arXiv:cond-mat/0611462</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0611462">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0611462">ps</a>, <a href="https://arxiv.org/format/cond-mat/0611462">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Evolution in Materio: Exploiting the Physics of Materials for Computation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Harding%2C+S+L">Simon L. Harding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+J+F">Julian F. Miller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rietman%2C+E+A">Edward A. Rietman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0611462v1-abstract-short" style="display: inline;"> We describe several techniques for using bulk matter for special purpose computation. In each case it is necessary to use an evolutionary algorithm to program the substrate on which the computation is to take place. In addition, the computation comes about as a result of nearest neighbour interactions at the nano- micro- and meso-scale. In our first example we describe evolving a saw-tooth oscil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0611462v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0611462v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0611462v1-abstract-full" style="display: none;"> We describe several techniques for using bulk matter for special purpose computation. In each case it is necessary to use an evolutionary algorithm to program the substrate on which the computation is to take place. In addition, the computation comes about as a result of nearest neighbour interactions at the nano- micro- and meso-scale. In our first example we describe evolving a saw-tooth oscillator in a CMOS substrate. In the second example we demonstrate the evolution of a tone discriminator by exploiting the physics of liquid crystals. In the third example we outline using a simulated magnetic quantum dot array and an evolutionary algorithm to develop a pattern matching circuit. Another example we describe exploits the micro-scale physics of charge density waves in crystal lattices. We show that vastly different resistance values can be achieved and controlled in local regions to essentially construct a programmable array of coupled micro-scale quasiperiodic oscillators. Lastly we show an example where evolutionary algorithms could be used to control density modulations, and therefore refractive index modulations, in a fluid for optical computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0611462v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0611462v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2006. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0610597">arXiv:cond-mat/0610597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0610597">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0610597">ps</a>, <a href="https://arxiv.org/format/cond-mat/0610597">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.2712444">10.1063/1.2712444 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sampling diffusive transition paths </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+F">Thomas F. Miller III</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Predescu%2C+C">Cristian Predescu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0610597v2-abstract-short" style="display: inline;"> We address the problem of sampling double-ended diffusive paths. The ensemble of paths is expressed using a symmetric version of the Onsager-Machlup formula, which only requires evaluation of the force field and which, upon direct time discretization, gives rise to a symmetric integrator that is accurate to second order. Efficiently sampling this ensemble requires avoiding the well-known stiffne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0610597v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0610597v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0610597v2-abstract-full" style="display: none;"> We address the problem of sampling double-ended diffusive paths. The ensemble of paths is expressed using a symmetric version of the Onsager-Machlup formula, which only requires evaluation of the force field and which, upon direct time discretization, gives rise to a symmetric integrator that is accurate to second order. Efficiently sampling this ensemble requires avoiding the well-known stiffness problem associated with sampling infinitesimal Brownian increments of the path, as well as a different type of stiffness associated with sampling the coarse features of long paths. The fine-feature sampling stiffness is eliminated with the use of the fast sampling algorithm (FSA), and the coarse-feature sampling stiffness is avoided by introducing the sliding and sampling (S&amp;S) algorithm. A key feature of the S&amp;S algorithm is that it enables massively parallel computers to sample diffusive trajectories that are long in time. We use the algorithm to sample the transition path ensemble for the structural interconversion of the 38-atom Lennard-Jones cluster at low temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0610597v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0610597v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2007; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys., 126, 144102 (2007) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10