CINXE.COM

Key Engineering Materials Vol. 977 | Scientific.Net

<!DOCTYPE html> <html lang="iv" dir="ltr"> <head> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="description" content="The presented special edition is dedicated to the latest research results and practical solutions in the area of applied materials and materials processing technologies used in many branches of modern production, biomedicine, etc. This special issue will be helpful to specialists in mechanical engineering, mechatronics, sensors and biomedical engineering." /> <link rel="canonical" href="https://www.scientific.net/KEM.977" /> <meta property="og:title" content="Key Engineering Materials Vol. 977 | Scientific.Net" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.scientific.net/KEM.977" /> <meta property="og:image" content="/Content/app/scinet5/images/metadata_logo.png" /> <meta property="og:image:type" content="image/png" /> <meta property="og:image:width" content="261" /> <meta property="og:image:height" content="260" /> <meta property="og:image:alt" content="Scientific.Net Logo" /> <title>Key Engineering Materials Vol. 977 | Scientific.Net</title> <link href="/Content/app/scinet5/images/favicon.ico" rel="shortcut icon" /> <link href="/Content/public.min.css?v=sTzmHAq2zYw3fxGTHUWq0SNFP1rKhxuSRAanqS9YOY0" rel="stylesheet" /> <link rel="preconnect" href="https://www.google-analytics.com"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="preconnect" href="https://www.googletagmanager.com"> <link rel="icon" href="/Content/app/scinet5/images/favicon.ico"> <link rel="apple-touch-icon" href="/Content/app/scinet5/images/apple-touch-icon.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css?family=Open&#x2B;Sans&#x2B;Condensed:300,700%7COpen&#x2B;Sans:300i,400,400i,600,600i,700&amp;display=swap" rel="stylesheet"> <!-- HTML5 shim support of HTML5 elements and media queries --> <!--[if lte IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <![endif]--> <!-- Google Tag Manager --> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T3VDKWV');</script> <!-- End Google Tag Manager --> </head> <body> <noscript> <!-- Google Tag Manager (noscript) --> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T3VDKWV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <div class="sc-content-container"> <div class="sc-content"> <div class="header-menu-container"> <div class="identity-menu-container header-menu-container-not-logged-in"> <div class="container"> <div class="row"> <ul class="role-menu"> <li class="user-menu between normal-user-menu"> <div class="hdivider-100"></div> <div class="cart-info"> <a href="https://main.scientific.net/Payment/Cart"> <i class="inline-icon cart-icon-white"></i> <span id="cartInfoTotalItemsCount"></span> </a> </div> <div class="user-menu-login-or-register"> <a href="https://main.scientific.net/Account/Registration?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FKEM.977" rel="nofollow"> Registration </a> <a href="https://main.scientific.net/Account/Login?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FKEM.977" rel="nofollow"> Log In </a> </div> </li> </ul> </div> </div> </div> <div class="header-fluid"> <div class="container"> <div class="row"> <div class="block-header"> <div class="logo-block"> <a href="/" class="application-logo inline-icon logo-icon"></a> <div class="burger-menu-button visible-xs"> <div class="hamburger-box"> <div class="hamburger-inner"></div> </div> </div> </div> <div class="menu-and-search-block"> <div class="burger-menu"> <nav class="burger-menu-items"> <div class="public-menu"> <ul> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/open-access-partners">Open Access</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> </ul> </div> </nav> </div> <div class="header-menu-top"> <div class="header-menu-list"> <a href="/ForLibraries">For Libraries</a> <a href="/ForPublication/Paper">For Publication</a> <a href="/open-access-partners">Open Access</a> <a href="/DocuCenter">Downloads</a> <a href="/Home/AboutUs">About Us</a> <a href="/Home/Contacts">Contact Us</a> </div> </div> <div class="search-block"> <input class="search-control" type="search" placeholder="Search" data-url="/Search"> <button class="button button-95 button-grey search-btn button-simple"> <span class="hidden-xs">Search</span> <i class="inline-icon search-icon-grey visible-xs"></i> </button> </div> </div> </div> </div> </div> </div> </div> <div class="container-fluid"> <div class="row"> <div class="banner-new"></div> </div> </div> <div class="content"> <div class="container"> <div class="row content-container"> <div class="left-content col-md-4 col-sm-5"> <div class="left-content-first-line icon-container mobile-collapse-button"> <div class="page-name-block underline-begin sibling-name-block"> <div class="page-name-block-text"> Volumes <a class="left-content-expand-button"><i class="inline-icon arrow-right-black no-hover-icon on-focus-arrow-down-black"></i></a> </div> </div> </div> <div class="row mobile-collapse-content"> <a href="/KEM.983" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 983</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.982" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 982</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.981" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 981</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.980" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 980</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.979" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 979</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.978" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 978</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.977" class="normal-large-text icon-container active-element active"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 977</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.976" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 976</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.975" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 975</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.974" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 974</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.973" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 973</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.972" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 972</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.971" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 971</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> </div> </div> <div class="right-content col-md-8 col-sm-7 col-xs-12"> <div class="bread-crumbs hidden-xs"> <a class="bread-crumbs-first" href="/">Home</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/KEM">Key Engineering Materials</a><i class="inline-icon arrow-breadcrumbs"></i><span class="bread-crumbs-second">Key Engineering Materials Vol. 977</span></div> <div class="page-name-block underline-begin"> <h1 class="page-name-block-text">Key Engineering Materials Vol. 977</h1> </div> <div class="clearfix title-details"> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>DOI:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="https://doi.org/10.4028/v-UU1Liz">https://doi.org/10.4028/v-UU1Liz</a></p> </div> </div> </div> </div> <div id="titleMarcXmlLink" style="display: none" class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Export:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/KEM.977/marc.xml">MARCXML</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>ToC:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/KEM.977_toc.pdf">Table of Contents</a></p> </div> </div> </div> </div> </div> <div class="volume-tabs"> </div> <div class=""> <div class="volume-papers-page"> <div class="block-search-pagination clearfix"> <div class="block-search-volume"> <input id="paper-search" type="search" placeholder="Search" maxlength="65"> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/KEM.977/2">2</a></li><li><a href="/KEM.977/3">3</a></li><li class="PagedList-skipToNext"><a href="/KEM.977/2" rel="next">></a></li></ul></div> </div> <div class="block-volume-title normal-text-gray"> <p> Paper Title <span>Page</span> </p> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.977.-1">Preface</a> </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.977.3">Weft-Knitted Strain Sensors for Motion Capture</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Susanne Fischer, Bahareh Abtahi, Mareen N. Warncke, Andreas Nocke, Eric H&#xE4;ntzsche, Chokri Cherif </div> </div> <div id="abstractTextBlock601698" class="volume-info volume-info-text volume-info-description"> Abstract: Motion capture, especially of the knee angle, is an important component for situational triggering of functional electrical stimulation (FES). One major disadvantage of commercial FES devices is their bulky design that prevents unobtrusive wearing in everyday life and limits the patient’s free choice of appearance. This paper presents an alternative approach of sensors for motion capture in form of textile-based strain sensors. These can be integrated in a FES system in form of functional leggings, which make the FES system suitable for an unobtrusive daily use. Textile sensors, especially knitted sensors have already proven to be very promising to detect tensile strain. In particular, weft-knitted strain sensors, which can be integrated directly into the clothing during the knitting process, have the potential to detect the knee angle and therefore derive the gait phase due to the bending of the limbs without disturbing the wearer unnecessarily. Different designs of the weft-knitted strain sensor and their influence on the measurement behaviour of the sensor have been investigated. The weft-knitted strain sensor can be directly integrated in the knee area of the functional leggings to be used as a soft trigger to initiate electrical impulses for FES. </div> <div> <a data-readmore="{ block: '#abstractTextBlock601698', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 3 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.977.11">Quantifying the Human Perception: Development and Characterization of Textile-Based Capacitive Strain and Pressure Sensors</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Mareen N. Warncke, Carola H. B&#xF6;hmer, Philippa Ruth Christine B&#xF6;hnke, Ann-Malin Schmidt, Andreas Nocke, Johannes Mersch, Chokri Cherif </div> </div> <div id="abstractTextBlock602148" class="volume-info volume-info-text volume-info-description"> Abstract: In the research field of smart textiles, one main goal concerns quantifying environmental forces acting on the wearer's body since textiles, acting as the boundary between the two, are an excellent way of integrating sensors. Integrating strain and pressure sensors into wearables promises a simple way of monitoring a person's posture and forces acting on their body. Sensors relying on a capacitive measuring principle are highly suitable for this, as they are less sensitive to changes in temperature than resistive or inductive types. In this paper, textile-based capacitive sensors are produced by braiding conductive yarns with and without an electrically insulating TPU sheath. The produced sensors are analyzed in cyclic strain and compression tests. Moreover, their behavior under changing temperatures is tested to prove their resilience against environmental changes. To extend their capabilities from an integral measurement to a localized assessment of the strain, time-domain-reflectometry (TDR) is employed. Finally, the sensors are integrated into a flexible actuated bending beam, and their adoption for soft robotics is discussed. Strain is tested cyclically, showing good long-term stability. Pressure sensitivity is measured in a static compression test under increasing force. TDR is used to localize strain in two discreet sections of the sensor. Although strain could not be quantified through TDR, characteristic points in the measured response signal indicating the position of the strain were identified. Textile-based capacitive sensors are suitable for strain up to 10 % and pressure up to 8 N. The determined gauge factors are satisfactory, with strain sensors inherently having a higher gauge factor than pressure sensors. Furthermore, they display good long-term stability and no adverse reaction to changes in temperature. TDR is proven to provide localization of strain in flexible sensors. </div> <div> <a data-readmore="{ block: '#abstractTextBlock602148', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 11 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.977.21">Energy Consumption during the Wearing of Pantyhose</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Sayuki Kondo, Tamaki T. Mitsuno </div> </div> <div id="abstractTextBlock601755" class="volume-info volume-info-text volume-info-description"> Abstract: The goal of the current study was to develop pantyhose that reduce leg muscle fatigue when heeled shoes are worn. To this end, pantyhose that provide a comfortable fitting sensation were developed, and the wear experience of the pantyhose and the effect of the pantyhose on energy consumption under walking muscle activity of the lower limbs were investigated. The study participants were 17 healthy Japanese females in their twenties who did not usually put on support wear. The respiratory metabolism was measured as the participants either walked without pantyhose or wore one of two types of pantyhose and wore three types of shoe, namely running/low-heeled/high-heeled shoes. Participants walked on a treadmill at 3 km/h. Regardless of whether pantyhose were worn, the energy consumption increased significantly with walking relative to standing. During walking, energy consumption increased significantly in the order of not wearing shoes, wearing running shoes, wearing low-heeled shoes, and wearing high-heeled shoes. In other words, a higher heel height corresponded to higher energy consumption, regardless of whether pantyhose were worn. Wearing pantyhose while standing upright increased energy consumption, especially in the case of pantyhose A, for which energy consumption was significantly higher than that when going barefoot. In addition, for walking in running shoes, the energy consumption was significantly higher when pantyhose A were worn than when no pantyhose were worn. The wearing of pantyhose A, but not the wearing of pantyhose B, was thus found to increase energy consumption. </div> <div> <a data-readmore="{ block: '#abstractTextBlock601755', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 21 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.977.27">Enhanced Side-Illumination of Etched Polymer Optical Fiber (POF)-Incorporated Woven Polyester (PET) Fabrics</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Xiuling Zhang, Jan Kallweit, Mark P&#xE4;tzel, Dana Kremenakova, Jakub Wiener, Kai Yang, Jiri Militky </div> </div> <div id="abstractTextBlock601623" class="volume-info volume-info-text volume-info-description"> Abstract: The textile industry has been weaving polymer optical fibers (POFs) into plane fabric for many years for lighting and decoration. To apply POF-incorporated fabrics in a larger field of application, it is necessary to improve the side illumination of POF-incorporated fabrics. It has been reported that the chemical etching method is one method to enhance the illumination of POFs, while there is little research related to the application of chemical etching to enhance the illumination of POF-incorporated fabrics. In this work, the end emitting POFs (EEPOFs) were used as weft yarns, and polyethylene terephthalate (PET) yarns were used as warp yarns. The POF-incorporated woven PET fabrics were successfully fabricated with a 1/3 twill structure and then treated with a mixture of acetone and methanol (volume ratio: 1:1) for 1 min. The morphology and side illumination of etched POF-incorporated PET fabrics were investigated. As a result, the acetone/methanol mixture destroyed the cladding layer of EEPOFs, and the luminance of etched POF-incorporated PET fabrics was increased by more than 50 %. Besides, acetone/methanol etching resulted in a higher side illumination attenuation behavior. </div> <div> <a data-readmore="{ block: '#abstractTextBlock601623', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 27 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.977.35">Environmentally Friendly Protective Coating for Electrically Conductive Yarns Using in Smart Textiles</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Carola H. B&#xF6;hmer, Mareen N. Warncke, Philippa Ruth Christine B&#xF6;hnke, Andreas Nocke, Johannes Mersch, Iris Kruppke, Chokri Cherif </div> </div> <div id="abstractTextBlock602163" class="volume-info volume-info-text volume-info-description"> Abstract: Current research focuses on advancements and breakthroughs in the realm of smart textiles, with applications spanning various industries such as medicine and education. For producing flexible smart textiles, electrically conductive yarns (EC) are needed to transmit signals or as part of sensor systems. Mostly, these EC consist of a polymer core with an outer metallized layer. Using EC in contact with skin requires high reliability and safety, and thus, the EC must maintain their functional properties on a long-term scale under a range of different stresses. The electrical properties of EC deteriorate under mechanical stress applied during production or in-use through damage to the yarn’s surface. At present, there are only partially feasible solutions to protect the metal-layer of the yarn surface. Hence, this paper presents a newly developed non-toxic coating (NTC) to protect the EC surface. The NTC consists of an aqueous emulsion with polypropylene wax and oxidized wax. To determine the long-term stability of the coating, the produced yarns undergo comprehensive evaluation using a range of analytical techniques. The aim is to identify the optimal coating by exploring different equipment and parameters. Additionally, it is various test methods to gauge the durability of the newly developed NTC used and ensure its reliability over time. To characterize the yarn properties before and after the coating, light microscopy (LM), washing processes, mechanical resistance tests and resistivity measurement are conducted. </div> <div> <a data-readmore="{ block: '#abstractTextBlock602163', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 35 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.977.43">Influence of Linear Density of Polyamide Plating Yarn on the Usage and Comfort Properties of Men’s Cotton Socks</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Antoneta Tomljenovi&#x107;, Ilda Kazani, Jonida Haskurti, Juro &#x17D;ivi&#x10D;njak, Ivan Kraljevi&#x107;, Zenun Skenderi </div> </div> <div id="abstractTextBlock602965" class="volume-info volume-info-text volume-info-description"> Abstract: Socks, being a necessary item of clothing, must be comfortable and maintain their quality throughout their life. Therefore, it is very important to select the yarns for their production. Usually, casual socks are made from a high percentage of cotton to ensure softness and comfort, and blended with polyamide to improve fit, durability and shrink resistance. The objective of this study is to compare five groups of black colored cotton calf-length men's socks produced under the same conditions in full plating with different textured polyamide 6.6 multifilament yarns, designated as: 22 dtex f7 × 2, 33 dtex f10 × 2, 44 dtex f13 × 2, 78 dtex f23 × 2, 110 dtex f34 × 2. The influence of the linear density of the polyamide plating yarn on the usage properties of the socks was evaluated by testing abrasion resistance and propensity to surface pilling with the Martindale abrasion and pilling tester, dimensional stability and color fastness to washing, perspiration and rubbing, as well as on comfort-related properties by testing moisture absorption, air permeability and thermal resistance with the Thermal foot manikin system. In addition, the basic physical properties of the socks, consisting of density parameters, mass and thickness were measured, all according to the standardized test methods. The results show that increasing the linear density of polyamide 6.6 yarns (i.e., increasing the amount of polyamide in the socks) has the following effects: increase in mass, thickness and structural change of sock plain knits, increase in abrasion resistance and change in dimensional stability of socks, decrease in moisture absorption, air permeability and thermal comfort of socks. From the obtained results, it can be concluded that when selecting the plating yarn for the production of cotton socks, it is necessary to take into account their linear density and structure, as well as the intended purpose of the socks, their specified comfort and the expected usage quality. </div> <div> <a data-readmore="{ block: '#abstractTextBlock602965', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 43 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.977.55">Performance Properties of Swimwear Fabrics Produced from Polyester and Recycled Polyester Fiber</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Emine Dilara Kocak, Pelin Altay, Melisa Suha Aksaman, Melike Ate&#x15F;, Zeynep &#xDC;nver </div> </div> <div id="abstractTextBlock602831" class="volume-info volume-info-text volume-info-description"> Abstract: The textile industry is responsible for producing a significant amount of global CO<sub>2</sub> emission, which is the biggest contributor to global warming and climate change. Researchers have focused on reducing greenhouse gas emission by recycling textile materials rather than producing new fibers through circular economy approaches. Using recycled fibers or blending new fibers with recycled fibers is becoming an essential approach to strike a balance between textile quality and sustainability. In this study, swimwear fabrics made of 100% polyester, and 50% polyester-50% recycled polyester fiber were investigated in terms of their performance properties including color fastness, abrasion resistance, and seam strength. This study will provide a better understanding of the effect of the polyester fiber and recycled polyester fiber combination on the performance/quality properties of swimwear fabrics. </div> <div> <a data-readmore="{ block: '#abstractTextBlock602831', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 55 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.977.63">Design of Electrical Sheet Resistance of Thin Film Measurement System Based on GM Cryocooler in Cryogenic Temperature</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Zhen Geng, Ye Mao Han, Zheng Rong Zhou, Hao Ying Qi, Yu Chen Zhao, Hao Jian Su, Rong Jin Huang, Lai Feng Li </div> </div> <div id="abstractTextBlock606421" class="volume-info volume-info-text volume-info-description"> Abstract: The determination of the dependencies of the electrical resistivity of the thin film to temperature is of great importance both for understanding the conduction mechanism and for numerous technical applications of these films. In this work, to characterize, the electrical properties of thin films, a GM cryocooler-based automatic board temperature range electrical properties measurement system has been constructed. The system can measure multiple samples simultaneously. The cooling process was simulated using the time-discrete differencing to validate the optimized device design parameters and minimize heat losses. Furthermore, the temperature-dependent sheet resistance results were compared with the results from the physical property measurement system. </div> <div> <a data-readmore="{ block: '#abstractTextBlock606421', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 63 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.977.69">Experimental Characterisation of BGBC OTFT for Indoor CO<sub>2</sub> Gas Sensing</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Mohamad Nasyran Zailan, Khadijah Ismail, Murniati Syaripuddin, Mohd Salman Mohd Sabri </div> </div> <div id="abstractTextBlock606492" class="volume-info volume-info-text volume-info-description"> Abstract: Global warming is a concern nowadays due to excessive release of harmful gasses to the environment, leading to greenhouse effect phenomena worldwide. Based on the data provided by global pollution agencies, the release of greenhouse gasses to the atmosphere is the main cause of pollution and the increase in atmospheric temperature due to warming. Greenhouse gasses (GHGs) contents released to the environment is worrying, with carbon dioxide (CO<sub>2</sub>) is reported at the highest concentration compared to other gasses. There are many studies conducted to develop and evaluate the performance of harmful gas sensors incorporating inorganic and organic semiconductive materials. Organic semiconductors (OSCs) are environmentally friendly materials, relatively cheaper technology, and comprised of a wide range of materials with good carrier mobility. Therefore, in this work, Organic Thin Film Transistor (OTFT) is developed for gas sensor application. As global warming is becoming more serious, this solution is instead a sustainable solution to the environment, as organic molecules which are held together via Van der Waals bond are easily processed via low-temperature deposition and solution processing as compared to more complicated processes involved in conventional inorganic counterpart. In addition, the developed sensor is generally robust due to the ability to withstand high humidity conditions and can be fabricated on flexible substrates. In this work, suitable materials are identified in basic OTFT construction, which are the electrodes, dielectric and substrate. The scope is mainly focusing on the development of bottom gate OTFT construction, incorporating p-type active material which are Trisisopropylsilylethynyl Pentacene (TIPS Pentacene), Aluminium (Al) as drain and source electrodes, PEDOT: PSS as gate electrode and Polyvinyl alcohol (PVA) as gate dielectric. The materials in bottom gate bottom contact (BGBC) configuration, fabricated via screen printing technique is experimentally tested towards CO<sub>2</sub> detection. CO<sub>2</sub> is initially detected at 1618 ppm with contact resistance of 15 kΩ, and at 10 ml/minute flow rate, the developed configuration is demonstrated able to achieve sensitivity of 2.069 Ω/ppm. In conclusion, the studied BGBC OTFT has demonstrated suitability and applicability in CO<sub>2</sub> gas sensing for sustainable environmental condition monitoring, that could lead to safer environment for the living things on earth. With the proposed dimensions, in the future it is possible to proceed with this work to be fabricated by using more advanced techniques such as photolithography and many others. </div> <div> <a data-readmore="{ block: '#abstractTextBlock606492', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 69 </div> </div> <div class="block-bottom-pagination"> <div class="pager-info"> <p>Showing 1 to 10 of 24 Paper Titles</p> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/KEM.977/2">2</a></li><li><a href="/KEM.977/3">3</a></li><li class="PagedList-skipToNext"><a href="/KEM.977/2" rel="next">></a></li></ul></div> </div> </div> </div> </div> </div> </div> </div> <div class="social-icon-popup"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-popup-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-popup-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-popup-icon social-icon"></i></a> </div> </div> <div class="sc-footer"> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="footer-menu col-md-12 col-sm-12 col-xs-12"> <ul class="list-inline menu-font"> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/insights" target="_blank">Insights</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/PolicyAndEthics/PublishingPolicies">Policy &amp; Ethics</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> <li><a href="/Home/Imprint">Imprint</a></li> <li><a href="/Home/PrivacyPolicy">Privacy Policy</a></li> <li><a href="/Home/Sitemap">Sitemap</a></li> <li><a href="/Conferences">All Conferences</a></li> <li><a href="/special-issues">All Special Issues</a></li> <li><a href="/news/all">All News</a></li> <li><a href="/open-access-partners">Open Access Partners</a></li> </ul> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-footer-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-footer-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-footer-icon social-icon"></i></a> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12 footer-copyright"> <p> &#169; 2025 Trans Tech Publications Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For open access content, terms of the Creative Commons licensing CC-BY are applied. <br />Scientific.Net is a registered trademark of Trans Tech Publications Ltd. </p> </div> </div> </div> </div> </div> <a class="scrollTop inline-icon scroll-top-icon" href="#" style="display: none"></a> </div> <script src="/Scripts/public.min.js?v=RxM_FbfHCcsoT4U-BoPCKYjCQ67x2cooj7su0mYkWQ4"></script> <script> $(function () { $("#paper-search").autocomplete({ minLength: 1, source: '/Title/Search?kurzel=KEM&volumeBegin=977&volumeEnd=977', delay: 200, select: function (event, ui) { window.location.href = ui.item.url; } }); }); </script> <script asp-render-component-scripts> $(function () { $.get("/Title/ShowMarcXmlLink") .done(function (showMarcXmlLink) { if (showMarcXmlLink) { $("#titleMarcXmlLink").show(); } }); }); Scinet.public = (function () { function loadCartInfo(onLoad) { var formatCartItemCount = function (count) { var format = (count > 1 || count === 0) ? "{0} items" : "{0} item"; $("#cartInfoTotalItemsCount").html(Scinet.stringFormat(format, count)); }, cookieCartItemCount = Cookies.get("Scinet5.CartItemsCount"); if (onLoad && cookieCartItemCount != null) { formatCartItemCount(parseInt(cookieCartItemCount, 10)); } else { $.ajax({ url: "/Cart/GetItemsCount", cache: false }) .done( function (count) { Cookies.set("Scinet5.CartItemsCount", count, { domain: ".scientific.net", secure: true }); formatCartItemCount(count); }); } } return { loadCartInfo: loadCartInfo }; })(); $(function () { Scinet.public.loadCartInfo(true); $("[data-add-book-to-cart]").on("click", function (e) { e.preventDefault(); var data = $(this).data("add-book-to-cart"); console.log(data); var url = "/Cart/AddBook"; $.post(url, data) .done( function () { Scinet.public.loadCartInfo(); $("#addToCart").modal(); }) .fail( function (xhr) { Scinet.error(xhr.responseText); }); }) }); </script> <script> var $buoop = { required: { e: 11, f: -6, o: -6, s: -3, c: -6 }, insecure: false, unsupported: false, api: 2019.11, reminder: 0, onshow: function () { window.browserUpdateOutdated = true; } }; function $buo_f() { var e = document.createElement("script"); e.src = "//browser-update.org/update.min.js"; document.body.appendChild(e); }; try { document.addEventListener("DOMContentLoaded", $buo_f, false) } catch (e) { window.attachEvent("onload", $buo_f) } </script> <!-- IE polyfills--> <!--[if lt IE 10]> <script src="/Scripts/lib/flexibility/flexibility.js"></script> <script> flexibility(document.documentElement); </script> <![endif]--> <script> window.clientErrorLogActionUrl = "/Errors/LogClientError"; </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10