CINXE.COM
Search results for: plasma cleaning process.
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: plasma cleaning process.</title> <meta name="description" content="Search results for: plasma cleaning process."> <meta name="keywords" content="plasma cleaning process."> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="plasma cleaning process." name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="plasma cleaning process."> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 16265</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: plasma cleaning process.</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16265</span> Development of new Ecological Cleaning Process of Metal Sheets </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20L%C3%B3pez%20L%C3%B3pez">L. M. López López</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20V.%20Montesdeoca%20Contreras"> J. V. Montesdeoca Contreras</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Cuji%20Fajardo"> A. R. Cuji Fajardo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20E.%20Garz%C3%B3n%20Mu%C3%B1oz"> L. E. Garzón Muñoz</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20I.%20Fajardo%20Seminario"> J. I. Fajardo Seminario</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article a new method of cleaning process of metal sheets for household appliances was developed, using low-pressure cold plasma. In this context, this research consist in analyze the results of metal sheets cleaning process using plasma and compare with pickling process to determinate the efficiency of each process and the level of contamination produced. Surface Cleaning was evaluated by measuring the contact angle with deionized water, diiodo methane and ethylene glycol, for the calculus of the surface free energy by means of the Fowkes theories and Wu. Showing that low-pressure cold plasma is very efficient both in cleaning process how in environment impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficient%20use%20of%20plasma" title="efficient use of plasma">efficient use of plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20impact%20of%20plasma" title=" ecological impact of plasma"> ecological impact of plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20sheets%20cleaning%20means" title=" metal sheets cleaning means"> metal sheets cleaning means</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20cleaning%20process." title=" plasma cleaning process. "> plasma cleaning process. </a> </p> <a href="https://publications.waset.org/abstracts/30939/development-of-new-ecological-cleaning-process-of-metal-sheets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16264</span> Photovoltaic Array Cleaning System Design and Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghoname%20Abdullah">Ghoname Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidekazu%20Nishimura"> Hidekazu Nishimura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dust accumulation on the photovoltaic module's surface results in appreciable loss and negatively affects the generated power. Hence, in this paper, the design of a photovoltaic array cleaning system is presented. The cleaning system utilizes one drive motor, two guide rails, and four sweepers during the cleaning process. The cleaning system was experimentally implemented for one month to investigate its efficiency on PV array energy output. The energy capture over a month for PV array cleaned using the proposed cleaning system is compared with that of the energy capture using soiled PV array. The results show a 15% increase in energy generation from PV array with cleaning. From the results, investigating the optimal scheduling of the PV array cleaning could be an interesting research topic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cleaning%20system" title="cleaning system">cleaning system</a>, <a href="https://publications.waset.org/abstracts/search?q=dust%20accumulation" title=" dust accumulation"> dust accumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20array" title=" PV array"> PV array</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20module" title=" PV module"> PV module</a>, <a href="https://publications.waset.org/abstracts/search?q=soiling" title=" soiling"> soiling</a> </p> <a href="https://publications.waset.org/abstracts/136571/photovoltaic-array-cleaning-system-design-and-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16263</span> Research of Data Cleaning Methods Based on Dependency Rules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Bao">Yang Bao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi%20Wei%20Deng"> Shi Wei Deng</a>, <a href="https://publications.waset.org/abstracts/search?q=WangQun%20Lin"> WangQun Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces the concept and principle of data cleaning, analyzes the types and causes of dirty data, and proposes several key steps of typical cleaning process, puts forward a well scalability and versatility data cleaning framework, in view of data with attribute dependency relation, designs several of violation data discovery algorithms by formal formula, which can obtain inconsistent data to all target columns with condition attribute dependent no matter data is structured (SQL) or unstructured (NoSQL), and gives 6 data cleaning methods based on these algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20cleaning" title="data cleaning">data cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=dependency%20rules" title=" dependency rules"> dependency rules</a>, <a href="https://publications.waset.org/abstracts/search?q=violation%20data%20discovery" title=" violation data discovery"> violation data discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20repair" title=" data repair"> data repair</a> </p> <a href="https://publications.waset.org/abstracts/31348/research-of-data-cleaning-methods-based-on-dependency-rules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16262</span> Behavior of Printing Inks on Historical Documents Subjected to Cold RF Plasma Discharges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dorina%20Rusu">Dorina Rusu</a>, <a href="https://publications.waset.org/abstracts/search?q=Emil%20Ghiocel%20Ioanid"> Emil Ghiocel Ioanid</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20Ursescu"> Marta Ursescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Maria%20Vlad"> Ana Maria Vlad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihaela%20Popescu"> Mihaela Popescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last decades the cold plasma discharges made the subject of numerous studies concerning the applications in the cultural heritage field, especially concentrated on ecological and non-invasive aspect of these conservation procedures. The conservation treatment using cold plasma is based, on the one hand, on the well-known property of plasma discharges to inactivate the contaminant biological species and, on the other hand, on the surface cleaning effect. Moreover the plasma discharge produces the functionalization of the treated surface, allowing subsequent deposition of protective layers. The paper presents the behavior of printing inks on historical documents treated in cold RF plasma. Two types of printing inks were studied, namely red and black ink, used on a religious book published in 19 century. SEM-EDX analysis results in the identification of the two inks as carbon black ink (C presence in the EDX spectrum) and cinnabar based red ink (Hg and S lines in the spectrum), result confirmed by XRF analysis. The experiments have been performed on paper samples written with laboratory- made inks, of similar composition with the inks identified on historical documents. The samples were subjected to RF plasma discharge, operating in nitrogen gaseous medium, at 1.2 MHz frequency and low-pressure (0.5 mbar), performed in a self-designed equipment for the application of conservation treatments on naturally aged paper supports. The impact of plasma discharge on the inks has been evaluated by SEM, XRD and color analysis. The color analysis revealed a slight discoloration of cinnabar ink on the historical document. SEM and XRD analyses have been carried out in an attempt to elucidate the process responsable for color modification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RF%20plasma" title="RF plasma">RF plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=printing%20inks" title=" printing inks"> printing inks</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20documents" title=" historical documents"> historical documents</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20cleaning%20effect" title=" surface cleaning effect"> surface cleaning effect</a> </p> <a href="https://publications.waset.org/abstracts/27316/behavior-of-printing-inks-on-historical-documents-subjected-to-cold-rf-plasma-discharges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16261</span> Green Technologies and Sustainability in the Care and Maintenance of Protective Textiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Nayak">R. Nayak</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Panwar"> T. Panwar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Padhye"> R. Padhye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protective textiles get soiled, stained and even worn during their use, which may not be usable after a certain period due to the loss of protective performance. They need regular cleaning and maintenance, which helps to extend the durability of the clothing, retains their useful properties and ensures that fresh clothing is ready to wear when needed. Generally, the cleaning processes used for various protective clothing include dry-cleaning (using solvents) or wet cleaning (using water). These cleaning processes can alter the fabric surface properties, dimensions, and physical, mechanical and performance properties. The technology of laundering and dry-cleaning has undergone several changes. Sustainable methods and products are available for faster, safer and improved cleaning of protective textiles. We performed a comprehensive and systematic review of green technologies and eco-friendly products for sustainable cleaning of protective textiles. Special emphasis is given on the care and maintenance procedures of protective textiles for protection from fire, bullets, chemical and other types of protective clothing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sustainable%20cleaning" title="Sustainable cleaning">Sustainable cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=protective%20textiles" title=" protective textiles"> protective textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=ecofriendly%20cleaning" title=" ecofriendly cleaning"> ecofriendly cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone%20laundering" title=" ozone laundering"> ozone laundering</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20cleaning" title=" ultrasonic cleaning"> ultrasonic cleaning</a> </p> <a href="https://publications.waset.org/abstracts/75945/green-technologies-and-sustainability-in-the-care-and-maintenance-of-protective-textiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16260</span> Adapting Grain Crop Cleaning Equipment for Sesame and Other Emerging Spice Crops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramadas%20Narayanan">Ramadas Narayanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Surya%20Bhattrai"> Surya Bhattrai</a>, <a href="https://publications.waset.org/abstracts/search?q=Vu%20Hoan"> Vu Hoan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Threshing and cleaning are crucial post-harvest procedures that are carried out to separate the grain or seed from the harvested plant and eliminate any potential contaminants or foreign debris. After harvesting, threshing and cleaning are necessary for the clean seeds to guarantee high quality and acceptable for consumption or further processing. For mechanised production, threshing can be conducted in a thresher. Afterwards, the seeds are to be cleaned in dedicated seed-cleaning facilities. This research investigates the effectiveness of Kimseed cleaning equipment MK3, designed for grain crops for processing new crops such as sesame, fennel and kalonji. Subsequently, systematic trials were conducted to adapt the equipment to the applications in sesame and spice crops. It was done to develop methods for mechanising harvest and post-harvest operations. For sesame, it is recommended to have t a two-step process in the cleaning machine to remove large and small contaminants. The first step is to remove the large contaminants, and the second is to remove the smaller ones. The optimal parameters for cleaning fennel are a shaker frequency of 6.0 to 6.5 Hz and an airflow of 1.0 to 1.5 m/s. The optimal parameters for cleaning kalonji are a shaker frequency of 5.5Hz to 6.0 Hz and airflow of 1.0 to under 1.5m/s. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20mechanisation" title="sustainable mechanisation">sustainable mechanisation</a>, <a href="https://publications.waset.org/abstracts/search?q=sead%20cleaning%20process" title=" sead cleaning process"> sead cleaning process</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20setting" title=" optimal setting"> optimal setting</a>, <a href="https://publications.waset.org/abstracts/search?q=shaker%20frequency" title=" shaker frequency"> shaker frequency</a> </p> <a href="https://publications.waset.org/abstracts/172258/adapting-grain-crop-cleaning-equipment-for-sesame-and-other-emerging-spice-crops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16259</span> Plasma Gasification as a Sustainable Way for Energy Recovery from Scrap Tyre </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gloria%20James">Gloria James</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Nema"> S. K. Nema</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Anantha%20Singh"> T. S. Anantha Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Vadivel%20Murugan"> P. Vadivel Murugan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The usage of tyre has increased enormously in day to day life. The used tyre and rubber products pose major threat to the environment. Conventional thermal techniques such as low temperature pyrolysis and incineration produce high molecular organic compounds (condensed and collected as aromatic oil) and carbon soot particles. Plasma gasification technique can dispose tyre waste and generate combustible gases and avoid the formation of high molecular aromatic compounds. These gases generated in plasma gasification process can be used to generate electricity or as fuel wherever required. Although many experiments have been done on plasma pyrolysis of tyres, very little work has been done on plasma gasification of tyres. In this work plasma gasification of waste tyres have been conducted in a fixed bed reactor having graphite electrodes and direct current (DC) arc plasma system. The output of this work has been compared with the previous work done on plasma pyrolysis of tyres by different authors. The aim of this work is to compare different process based on gas generation, efficiency of the process and explore the most effective option for energy recovery from waste tyres. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma" title="plasma">plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a>, <a href="https://publications.waset.org/abstracts/search?q=tyre%20waste" title=" tyre waste"> tyre waste</a> </p> <a href="https://publications.waset.org/abstracts/103318/plasma-gasification-as-a-sustainable-way-for-energy-recovery-from-scrap-tyre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16258</span> RF Plasma Discharge Equipment for Conservation Treatments of Paper Supports </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emil%20Ghiocel%20Ioanid">Emil Ghiocel Ioanid</a>, <a href="https://publications.waset.org/abstracts/search?q=Viorica%20Frunz%C4%83"> Viorica Frunză</a>, <a href="https://publications.waset.org/abstracts/search?q=Dorina%20Rusu"> Dorina Rusu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Maria%20Vlad"> Ana Maria Vlad</a>, <a href="https://publications.waset.org/abstracts/search?q=Catalin%20Tanase"> Catalin Tanase</a>, <a href="https://publications.waset.org/abstracts/search?q=Simona%20Dunca"> Simona Dunca </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of cold radio-frequency (RF) plasma in the conservation of cultural heritage became important in the last decades due to the positive results obtained in decontamination treatments. This paper presents an equipment especially designed for RF cold plasma application on paper documents, developed within a research project. The equipment allows the application of decontamination and cleaning treatments on any type of paper support, as well as the coating with a protective polymer. The equipment consists in a Pyrex vessel, inside which are placed two plane-parallel electrodes, capacitively coupled to a radio-frequency generator. The operating parameters of the equipment are: 1.2 MHz frequency, 50V/cm electric field intensity, current intensity in the discharge 100 mA, 40 W power in the discharge, the pressure varying from 5∙10-1 mbar to 5.5∙10-1 mbar, depending on the fragility of the material, operating in gaseous nitrogen. In order to optimize the equipment treatments in nitrogen plasma have been performed on samples infested with microorganisms, then the decontamination and the changes in surface properties (color, pH) were assessed. The analyses results presented in the table revealed only minor modifications of surface pH the colorimetric analysis showing a slight change to yellow. The equipment offers the possibility of performing decontamination, cleaning and protective coating of paper-based documents in successive stages, thus avoiding the recontamination with harmful biological agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20plasma" title="nitrogen plasma">nitrogen plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20heritage" title=" cultural heritage"> cultural heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=paper%20support" title=" paper support"> paper support</a>, <a href="https://publications.waset.org/abstracts/search?q=radio-frequency" title=" radio-frequency"> radio-frequency</a> </p> <a href="https://publications.waset.org/abstracts/27321/rf-plasma-discharge-equipment-for-conservation-treatments-of-paper-supports" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16257</span> Learning Materials of Atmospheric Pressure Plasma Process: Turning Hydrophilic Surface to Hydrophobic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.W.%20Kan">C.W. Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the use of atmospheric pressure plasma for improving the surface hydrophobicity of polyurethane synthetic leather with tetramethylsilane (TMS). The atmospheric pressure plasma treatment with TMS is a single-step process to enhance the hydrophobicity of polyurethane synthetic leather. The hydrophobicity of the treated surface was examined by contact angle measurement. The physical and chemical surface changes were evaluated by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). The purpose of this paper is to provide learning materials for understanding how to use atmospheric pressure plasma in the textile finishing process to transform a hydrophilic surface to hydrophobic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Learning%20materials" title="Learning materials">Learning materials</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20pressure%20plasma%20treatment" title=" atmospheric pressure plasma treatment"> atmospheric pressure plasma treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic" title=" hydrophobic"> hydrophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilic" title=" hydrophilic"> hydrophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=surface" title=" surface"> surface</a> </p> <a href="https://publications.waset.org/abstracts/49534/learning-materials-of-atmospheric-pressure-plasma-process-turning-hydrophilic-surface-to-hydrophobic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16256</span> A New Criterion for Removal of Fouling Deposit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20B%C3%A4cker">D. Bäcker</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Chaves"> H. Chaves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The key to improve surface cleaning of the fouling is understanding of the mechanism of separation process of the deposit from the surface. The authors give basic principles of characterization of separation process and introduce a corresponding criterion. The developed criterion is a measure for the moment of separation of the deposit from the surface. For this purpose a new measurement technique is described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cleaning" title="cleaning">cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling" title=" fouling"> fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a>, <a href="https://publications.waset.org/abstracts/search?q=criterion" title=" criterion"> criterion</a> </p> <a href="https://publications.waset.org/abstracts/33125/a-new-criterion-for-removal-of-fouling-deposit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16255</span> Cleaning Performance of High-Frequency, High-Intensity 360 kHz Frequency Operating in Thickness Mode Transducers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Vetrimurugan">R. Vetrimurugan</a>, <a href="https://publications.waset.org/abstracts/search?q=Terry%20Lim"> Terry Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Goodson"> M. J. Goodson</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Nagarajan"> R. Nagarajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the cleaning performance of high intensity 360 kHz frequency on the removal of nano-dimensional and sub-micron particles from various surfaces, uniformity of the cleaning tank and run to run variation of cleaning process. The uniformity of the cleaning tank was measured by two different methods i.e 1. ppbTM meter and 2. Liquid Particle Counting (LPC) technique. In the second method, aluminium metal spacer components was placed at various locations of the cleaning tank (such as centre, top left corner, bottom left corner, top right corner, bottom right corner) and the resultant particles removed by 360 kHz frequency was measured. The result indicates that the energy was distributed more uniformly throughout the entire cleaning vessel even at the corners and edges of the tank when megasonic sweeping technology is applied. The result also shows that rinsing the parts with 360 kHz frequency at final rinse gives lower particle counts, hence higher cleaning efficiency as compared to other frequencies. When megasonic sweeping technology is applied each piezoelectric transducers will operate at their optimum resonant frequency and generates stronger acoustic cavitational force and higher acoustic streaming velocity. These combined forces are helping to enhance the particle removal and at the same time improve the overall cleaning performance. The multiple extractions study was also carried out for various frequencies to measure the cleaning potential and asymptote value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20distribution" title="power distribution">power distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=megasonic%20sweeping" title=" megasonic sweeping"> megasonic sweeping</a>, <a href="https://publications.waset.org/abstracts/search?q=cavitation%20intensity" title=" cavitation intensity"> cavitation intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20removal" title=" particle removal"> particle removal</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20particle%20counting" title=" laser particle counting"> laser particle counting</a>, <a href="https://publications.waset.org/abstracts/search?q=nano" title=" nano"> nano</a>, <a href="https://publications.waset.org/abstracts/search?q=submicron" title=" submicron"> submicron</a> </p> <a href="https://publications.waset.org/abstracts/23901/cleaning-performance-of-high-frequency-high-intensity-360-khz-frequency-operating-in-thickness-mode-transducers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16254</span> Contribution of Exchange-correlation Effects on Weakly Relativistic Plasma Expansion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Fermous">Rachid Fermous</a>, <a href="https://publications.waset.org/abstracts/search?q=Rima%20Mebrek"> Rima Mebrek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamic multi-fluid equations, we investigated the expansion of dense plasma. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. It is shown that dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20expansion" title="plasma expansion">plasma expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20degeneracy" title=" quantum degeneracy"> quantum degeneracy</a>, <a href="https://publications.waset.org/abstracts/search?q=weakly%20relativistic" title=" weakly relativistic"> weakly relativistic</a>, <a href="https://publications.waset.org/abstracts/search?q=under-dense%20%20plasma" title=" under-dense plasma"> under-dense plasma</a> </p> <a href="https://publications.waset.org/abstracts/167933/contribution-of-exchange-correlation-effects-on-weakly-relativistic-plasma-expansion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16253</span> The Evolution of the Strategic Plasma Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Ghasemi">Zahra Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Babaei"> Fatemeh Babaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma-derived medicinal products are vital categories of biological therapies. These products are used to treat rare, chronic, severe, and life-threatening conditions, such as bleeding disorders (Hemophilia A and B), hemolytic disease of the fetus and newborn, severe infections, burns and liver diseases, and other diseases caused by the absence or malfunction of certain proteins. In addition, they improve the patient’s quality of life. The process of producing plasma-derived medicinal products begins with the collection of human plasma from healthy donors. This initial stage is complex and is monitored with high precision and sensitivity by global authorities to maintain the quality and safety of the final products as well as the health of the donors. The amount of manufactured plasma-derived medicinal products depends on the availability of its raw material, human plasma, so collecting enough plasma for fractionation is essential. Therefore, adopting a suitable national policy regarding plasma donation, establishing collection centers, and increasing public awareness of the importance of plasma donation will improve any country’s conditions regarding the timely and sufficient supply of these medicines. In this study, we tried to briefly examine the importance of sustainability of the plasma industry and its situation in our beloved country of Iran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma" title="plasma">plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20plasma" title=" source plasma"> source plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma-derived%20medicinal%20products" title=" plasma-derived medicinal products"> plasma-derived medicinal products</a>, <a href="https://publications.waset.org/abstracts/search?q=fractionation" title=" fractionation"> fractionation</a> </p> <a href="https://publications.waset.org/abstracts/158132/the-evolution-of-the-strategic-plasma-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16252</span> Study of Ion Density Distribution and Sheath Thickness in Warm Electronegative Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajat%20Dhawan">Rajat Dhawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitendra%20K.%20Malik"> Hitendra K. Malik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electronegative plasmas comprising electrons, positive ions, and negative ions are advantageous for their expanding applications in industries. In plasma cleaning, plasma etching, and plasma deposition process, electronegative plasmas are preferred because of relatively less potential developed on the surface of the material under investigation. Also, the presence of negative ions avoid the irregularity in etching shapes and also enhance the material working during the fabrication process. The interaction of metallic conducting surface with plasma becomes mandatory to understand these applications. A metallic conducting probe immersed in a plasma results in the formation of a thin layer of charged species around the probe called as a sheath. The density of the ions embedded on the surface of the material and the sheath thickness are the important parameters for the surface-plasma interaction. Sheath thickness will give rise to the information of affected plasma region due to conducting surface/probe. The knowledge of the density of ions in the sheath region is advantageous in plasma nitriding, and their temperature is equally important as it strongly influences the thickness of the modified layer during surface plasma interaction. In the present work, we considered a negatively biased metallic probe immersed in a warm electronegative plasma. For this system, we adopted the continuity equation and momentum transfer equation for both the positive and negative ions, whereas electrons are described by Boltzmann distribution. Finally, we use the Poisson’s equation. Here, we assumed the spherical geometry for small probe radius. Poisson’s equation reveals the behaviour of potential surrounding a conducting metallic probe along with the use of the continuity and momentum transfer equations, with the help of proper boundary conditions. In turn, it gives rise to the information about the density profile of charged species and most importantly the thickness of the sheath. By keeping in mind, the well-known Bohm-Sheath criterion, all calculations are done. We found that positive ion density decreases with an increase in positive ion temperature, whereas it increases with the higher temperature of the negative ions. Positive ion density decreases as we move away from the center of the probe and is found to show a discontinuity at a particular distance from the center of the probe. The distance where discontinuity occurs is designated as sheath edge, i.e., the point where sheath ends. These results are beneficial for industrial applications, as the density of ions embedded on material surface is strongly affected by the temperature of plasma species. It has a drastic influence on the surface properties, i.e., the hardness, corrosion resistance, etc. of the materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronegative%20plasmas" title="electronegative plasmas">electronegative plasmas</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20surface%20interaction%20positive%20ion%20density" title=" plasma surface interaction positive ion density"> plasma surface interaction positive ion density</a>, <a href="https://publications.waset.org/abstracts/search?q=sheath%20thickness" title=" sheath thickness"> sheath thickness</a> </p> <a href="https://publications.waset.org/abstracts/103124/study-of-ion-density-distribution-and-sheath-thickness-in-warm-electronegative-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16251</span> Effect of Pre-Plasma Potential on Laser Ion Acceleration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djemai%20Bara">Djemai Bara</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Faouzi%20Mahboub"> Mohamed Faouzi Mahboub</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamila%20Bennaceur-Doumaz"> Djamila Bennaceur-Doumaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the role of the preformed plasma created on the front face of a target, irradiated by a high intensity short pulse laser, in the framework of ion acceleration process, modeled by Target Normal Sheath Acceleration (TNSA) mechanism, is studied. This plasma is composed of cold ions governed by fluid equations and non-thermal & trapped with densities represented by a "Cairns-Gurevich" equation. The self-similar solution of the equations shows that electronic trapping and the presence of non-thermal electrons in the pre-plasma are both responsible in ion acceleration as long as the proportion of energetic electrons is not too high. In the case where the majority of electrons are energetic, the electrons are accelerated directly by the ponderomotive force of the laser without the intermediate of an accelerating plasma wave. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cairns-Gurevich%20Equation" title="Cairns-Gurevich Equation">Cairns-Gurevich Equation</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20acceleration" title=" ion acceleration"> ion acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20expansion" title=" plasma expansion"> plasma expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-plasma" title=" pre-plasma"> pre-plasma</a> </p> <a href="https://publications.waset.org/abstracts/105424/effect-of-pre-plasma-potential-on-laser-ion-acceleration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16250</span> Plasma Treatment of a Lignite Using Water-Stabilized Plasma Torch at Atmospheric Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anton%20Serov">Anton Serov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Maslani"> Alan Maslani</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Hlina"> Michal Hlina</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Kopecky"> Vladimir Kopecky</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Hrabovsky"> Milan Hrabovsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recycling of organic waste is an increasingly hot topic in recent years. This issue becomes even more interesting if the raw material for the fuel production can be obtained as the result of that recycling. A process of high-temperature decomposition of a lignite (a non-hydrolysable complex organic compound) was studied on the plasma gasification reactor PLASGAS, where water-stabilized plasma torch was used as a source of high enthalpy plasma. The plasma torch power was 120 kW and allowed heating of the reactor to more than 1000 °C. The material feeding rate in the gasification reactor was selected 30 and 60 kg per hour that could be compared with small industrial production. An efficiency estimation of the thermal decomposition process was done. A balance of the torch energy distribution was studied as well as an influence of the lignite particle size and an addition of methane (CH4) in a reaction volume on the syngas composition (H2+CO). It was found that the ratio H2:CO had values in the range of 1,5 to 2,5 depending on the experimental conditions. The recycling process occurred at atmospheric pressure that was one of the important benefits because of the lack of expensive vacuum pump systems. The work was supported by the Grant Agency of the Czech Republic under the project GA15-19444S. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20pressure" title="atmospheric pressure">atmospheric pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=lignite" title=" lignite"> lignite</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20treatment" title=" plasma treatment"> plasma treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=water-stabilized%20plasma%20torch" title=" water-stabilized plasma torch"> water-stabilized plasma torch</a> </p> <a href="https://publications.waset.org/abstracts/47529/plasma-treatment-of-a-lignite-using-water-stabilized-plasma-torch-at-atmospheric-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16249</span> Magnetic Field Generation in Inhomogeneous Plasma via Ponderomotive Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Shahi">Fatemeh Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Sharifian"> Mehdi Sharifian</a>, <a href="https://publications.waset.org/abstracts/search?q=Laia%20Shahrassai"> Laia Shahrassai</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Eskandari%20A."> Elham Eskandari A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new mechanism is reported here for magnetic field generation in laser-plasma interaction by means of nonlinear ponderomotive force. The plasma considered here is unmagnetized inhomogeneous plasma with an exponentially decreasing profile. A damped periodic magnetic field with a relatively lower frequency is obtained using the ponderomotive force exerted on plasma electrons. Finally, with an electric field and by using Faraday’s law, the magnetic field profile in the plasma has been obtained. Because of the negative exponential density profile, the generated magnetic field is relatively slowly oscillating and damped through the plasma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field%20generation" title="magnetic field generation">magnetic field generation</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-plasma%20interaction" title=" laser-plasma interaction"> laser-plasma interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ponderomotive%20force" title=" ponderomotive force"> ponderomotive force</a>, <a href="https://publications.waset.org/abstracts/search?q=inhomogeneous%20plasma" title=" inhomogeneous plasma"> inhomogeneous plasma</a> </p> <a href="https://publications.waset.org/abstracts/134152/magnetic-field-generation-in-inhomogeneous-plasma-via-ponderomotive-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16248</span> The Effect of Different Surface Cleaning Methods on Porosity Formation and Mechanical Property of AA6xxx Aluminum Gas Metal Arc Welds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Mirakhorli">Fatemeh Mirakhorli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Porosity is the main issue during welding of aluminum alloys, and surface cleaning has a critical influence to reduce the porosity level by removing the oxidized surface layer before fusion welding. Developing an optimum and economical surface cleaning method has an enormous benefit for aluminum welding industries to reduce costs related to repairing and repeating welds as well as increasing the mechanical properties of the joints. In this study, several mechanical and chemical surface cleaning methods were examined for butt joint welding of 2 mm thick AA6xxx alloys using ER5556 filler metal. The effects of each method on porosity formation and tensile properties are evaluated. It has been found that, compared to the conventional mechanical cleaning method, the use of chemical cleaning leads to an important reduction in porosity level even after a significant delay between cleaning and welding. The effect of the higher porosity level in the fusion zone to reduce the tensile strength of the welds is shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20metal%20arc%20welding%20%28GMAW%29" title="gas metal arc welding (GMAW)">gas metal arc welding (GMAW)</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy" title=" aluminum alloy"> aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20cleaning" title=" surface cleaning"> surface cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%20formation" title=" porosity formation"> porosity formation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20property" title=" mechanical property "> mechanical property </a> </p> <a href="https://publications.waset.org/abstracts/122819/the-effect-of-different-surface-cleaning-methods-on-porosity-formation-and-mechanical-property-of-aa6xxx-aluminum-gas-metal-arc-welds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16247</span> Condition for Plasma Instability and Stability Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratna%20Sen">Ratna Sen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As due to very high temperature of Plasma it is very difficult to confine it for sufficient time so that nuclear fusion reactions to take place, As we know Plasma escapes faster than the binary collision rates. We studied the ball analogy and the ‘energy principle’ and calculated the total potential energy for the whole Plasma. If δ ⃗w is negative, that is decrease in potential energy then the plasma will be unstable. We also discussed different approaches of stability analysis such as Nyquist Method, MHD approximation and Vlasov approach of plasma stability. So that by using magnetic field configurations we can able to create a stable Plasma in Tokamak for generating energy for future generations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jello" title="jello">jello</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field%20configuration" title=" magnetic field configuration"> magnetic field configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD%20approximation" title=" MHD approximation"> MHD approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20principle" title=" energy principle"> energy principle</a> </p> <a href="https://publications.waset.org/abstracts/50172/condition-for-plasma-instability-and-stability-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16246</span> Reforming of CO₂-Containing Natural Gas by Using an AC Gliding Arc Discharge Plasma System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krittiya%20Pornmai">Krittiya Pornmai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumaeth%20Chavadej"> Sumaeth Chavadej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing in global energy demand has affected the climate change caused by the generation of greenhouse gases. Therefore, the objective of this work was to investigate a direct production of synthesis gas from a CO₂-containing natural gas by using gliding arc discharge plasma technology. In this research, the effects of steam reforming, combined steam reforming and partial oxidation, and using multistage gliding arc discharge system on the process performance have been discussed. The simulated natural gas used in this study contains 70% methane, 5% ethane, 5% propane, and 20% carbon dioxide. In comparison with different plasma reforming processes (under their optimum conditions), the steam reforming provides the highest H₂ selectivity resulting from the cracking reaction of steam. In addition, the combined steam reforming and partial oxidation process gives a very high CO production implying that the addition of both oxygen and steam can offer the acceptably highest synthesis gas production. The stage number of plasma reactor plays an important role in the improvement of CO₂ conversion. Moreover, 3 stage number of plasma reactor is considered as an optimum stage number for the reforming of CO₂-containing natural gas with steam and partial oxidation in term of providing low energy consumption as compared with other plasma reforming processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title="natural gas">natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=reforming%20process" title=" reforming process"> reforming process</a>, <a href="https://publications.waset.org/abstracts/search?q=gliding%20arc%20discharge" title=" gliding arc discharge"> gliding arc discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20technology" title=" plasma technology"> plasma technology</a> </p> <a href="https://publications.waset.org/abstracts/98440/reforming-of-co2-containing-natural-gas-by-using-an-ac-gliding-arc-discharge-plasma-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16245</span> Simulation for the Magnetized Plasma Compression Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20V.%20Kuzenov">Victor V. Kuzenov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20V.%20Ryzhkov"> Sergei V. Ryzhkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ongoing experimental and theoretical studies on magneto-inertial confinement fusion (Angara, C-2, CJS-100, General Fusion, MagLIF, MAGPIE, MC-1, YG-1, Omega) and new constructing facilities (Baikal, C-2W, Z300 and Z800) require adequate modeling and description of the physical processes occurring in high-temperature dense plasma in a strong magnetic field. This paper presents a mathematical model, numerical method, and results of the computer analysis of the compression process and the energy transfer in the target plasma, used in magneto-inertial fusion (MIF). The computer simulation of the compression process of the magnetized target by the high-power laser pulse and the high-speed plasma jets is presented. The characteristic patterns of the two methods of the target compression are being analysed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetized%20target" title="magnetized target">magnetized target</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto-inertial%20fusion" title=" magneto-inertial fusion"> magneto-inertial fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20and%20laser%20beams" title=" plasma and laser beams"> plasma and laser beams</a> </p> <a href="https://publications.waset.org/abstracts/66035/simulation-for-the-magnetized-plasma-compression-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16244</span> Effect of Plasma Radiation on Keratinocyte Cells Involved in the Wound Healing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Fazekas">B. Fazekas</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Korolov"> I. Korolov</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kutasi"> K. Kutasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma medicine, which involves the use of gas discharge plasmas for medical applications is a rapidly growing research field. The use of non-thermal atmospheric pressure plasmas in dermatology to assist tissue regeneration by improving the healing of infected and/or chronic wounds is a promising application. It is believed that plasma can activate cells, which are involved in the wound closure. Non-thermal atmospheric plasmas are rich in chemically active species (such as O and N-atoms, O2(a) molecules) and radiative species such as the NO, N2+ and N2 excited molecules, which dominantly radiate in the 200-500 nm spectral range. In order to understand the effect of plasma species, both of chemically active and radiative species on wound healing process, the interaction of physical plasma with the human skin cells is necessary. In order to clarify the effect of plasma radiation on the wound healing process we treated keratinocyte cells – that are one of the main cell types in human skin epidermis – covered with a layer of phosphate-buffered saline (PBS) with a low power atmospheric pressure plasma. For the generation of such plasma we have applied a plasma needle. Here, the plasma is ignited at the tip of the needle in flowing helium gas in contact with the ambient air. To study the effect of plasma radiation we used a plasma needle configuration, where the plasma species – chemically active radicals and charged species – could not reach the treated cells, but only the radiation. For the comparison purposes, we also irradiated the cells using a UV-B light source (FS20 lamp) with a 20 and 40 mJ cm-2 dose of 312 nm. After treatment the viability and the proliferation of the cells have been examined. The proliferation of cells has been studied with a real time monitoring system called Xcelligence. The results have indicated, that the 20 mJ cm-2 dose did not affect cell viability, whereas the 40 mJ cm-2 dose resulted a decrease in cell viability. The results have shown that the plasma radiation have no quantifiable effect on the cell proliferation as compared to the non-treated cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UV%20radiation" title="UV radiation">UV radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-equilibrium%20gas%20discharges%20%28non-thermal%20plasmas%29" title=" non-equilibrium gas discharges (non-thermal plasmas)"> non-equilibrium gas discharges (non-thermal plasmas)</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20emission" title=" plasma emission"> plasma emission</a>, <a href="https://publications.waset.org/abstracts/search?q=keratinocyte%20cells" title=" keratinocyte cells"> keratinocyte cells</a> </p> <a href="https://publications.waset.org/abstracts/19358/effect-of-plasma-radiation-on-keratinocyte-cells-involved-in-the-wound-healing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16243</span> Photocatalytic Self-Cleaning Concrete Production Using Nano-Size Titanium Dioxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Akhnoukh">Amin Akhnoukh</a>, <a href="https://publications.waset.org/abstracts/search?q=Halla%20Elea"> Halla Elea</a>, <a href="https://publications.waset.org/abstracts/search?q=Lawrence%20Benzmiller"> Lawrence Benzmiller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research is to evaluate the possibility of using nano-sized materials, mainly titanium dioxide (TiO2), in producing economic self-cleaning concrete using photo-catalysis process. In photo-catalysis, the nano-particles react and dissolve smog, dust, and dirt particles in the presence of sunlight, resulting in a cleaned concrete surface. To-date, the Italian cement company (Italcementi) produces a proprietary self-cleaning cementitious material that is currently used in government buildings and major highways in Europe. The high initial cost of the proprietary product represents a major obstacle to the wide spread of the self-cleaning concrete in industrial and commercial projects. In this research project, titanium dioxide nano-sized particles are infused to the top layer of a concrete pour before the concrete surface is finished. Once hardened, a blue dye is applied to the concrete surface to simulate smog and dirt effect. The concrete surface is subjected to direct light to investigate the effectiveness of the nano-sized titanium dioxide in cleaning the concrete surface. The outcome of this research project proved that the titanium dioxide can be successfully used in reducing smog and dirt particles attached to the concrete when infused to the surface concrete layer. The majority of cleansing effect due to photocatalysis happens within 24 hours of photocatalysis process. The non-proprietary mix can be used in highway, industrial, and commercial projects due to its economy and ease of production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-cleaning%20concrete" title="self-cleaning concrete">self-cleaning concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Smog-eating%20concrete" title=" Smog-eating concrete"> Smog-eating concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a> </p> <a href="https://publications.waset.org/abstracts/49513/photocatalytic-self-cleaning-concrete-production-using-nano-size-titanium-dioxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16242</span> Learning Materials of Atmospheric Pressure Plasma Process: Application in Wrinkle-Resistant Finishing of Cotton Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Kan">C. W. Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cotton fibre is a commonly-used natural fibre because of its good fibre strength, high moisture absorption behaviour and minimal static problems. However, one of the main drawbacks of cotton fibre is wrinkling after washing, which is recently overcome by wrinkle-resistant treatment. 1,2,3,4-butanetetracarboxylic acid (BTCA) could improve the wrinkle-resistant properties of cotton fibre. Although the BTCA process is an effective method for wrinkle resistant application of cotton fabrics, reduced fabric strength was observed after treatment. Therefore, this paper would explore the use of atmospheric pressure plasma treatment under different discharge powers as a pretreatment process to enhance the application of BTCA process on cotton fabric without generating adverse effect. The aim of this study is to provide learning information to the users to know how the atmospheric pressure plasma treatment can be incorporated in textile finishing process with positive impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=learning%20materials" title="learning materials">learning materials</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20pressure%20plasma%20treatment" title=" atmospheric pressure plasma treatment"> atmospheric pressure plasma treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkle-resistant" title=" wrinkle-resistant"> wrinkle-resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=BTCA" title=" BTCA"> BTCA</a> </p> <a href="https://publications.waset.org/abstracts/49532/learning-materials-of-atmospheric-pressure-plasma-process-application-in-wrinkle-resistant-finishing-of-cotton-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16241</span> Thermodynamic Analysis of Hydrogen Plasma Reduction of TiCl₄</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hong%20Min">Seok Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With increasing demands for high performance materials, intensive interest on the Ti has been focused. Especially, low cost production process of Ti has been extremely necessitated from wide parts and various industries. Tetrachloride (TiCl₄) is produced by fluidized bed using high TiO₂ feedstock and used as an intermediate product for the production of metal titanium sponge. Reduction of TiCl₄ is usually conducted by Kroll process using magnesium as a reduction reagent, producing metallic Ti in the shape of sponge. The process is batch type and takes very long time including post processes treating sponge. As an alternative reduction reagent, hydrogen in the state of plasma has long been strongly recommended. Experimental confirmation has not been completely reported yet and more strict analysis is required. In the present study, hydrogen plasma reduction process has been thermodynamically analyzed focusing the effects of temperature, pressure and concentration. All thermodynamic calculations were performed using the FactSage® thermodynamical software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TiCl%E2%82%84" title="TiCl₄">TiCl₄</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction" title=" reduction"> reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20calculation" title=" thermodynamic calculation"> thermodynamic calculation</a> </p> <a href="https://publications.waset.org/abstracts/86053/thermodynamic-analysis-of-hydrogen-plasma-reduction-of-ticl4" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16240</span> Pilot Scale Production and Compatibility Criteria of New Self-Cleaning Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonjaua%20Ranogajec">Jonjaua Ranogajec</a>, <a href="https://publications.waset.org/abstracts/search?q=Ognjen%20Rudic"> Ognjen Rudic</a>, <a href="https://publications.waset.org/abstracts/search?q=Snezana%20Pasalic"> Snezana Pasalic</a>, <a href="https://publications.waset.org/abstracts/search?q=Snezana%20Vucetic"> Snezana Vucetic</a>, <a href="https://publications.waset.org/abstracts/search?q=Damir%20Cjepa"> Damir Cjepa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper involves a chain of activities from synthesis, establishment of the methodology for characterization and testing of novel protective materials through the pilot production and application on model supports. It summarizes the results regarding the development of the pilot production protocol for newly developed self-cleaning materials. The optimization of the production parameters was completed in order to improve the most important functional properties (mineralogy characteristics, particle size, self-cleaning properties and photocatalytic activity) of the newly designed nanocomposite material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pilot%20production" title="pilot production">pilot production</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning%20materials" title=" self-cleaning materials"> self-cleaning materials</a>, <a href="https://publications.waset.org/abstracts/search?q=compatibility" title=" compatibility"> compatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20heritage" title=" cultural heritage"> cultural heritage</a> </p> <a href="https://publications.waset.org/abstracts/14472/pilot-scale-production-and-compatibility-criteria-of-new-self-cleaning-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16239</span> Plasma-Assisted Nitrogen Fixation for the Elevation of Seed Germination and Plant Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Lamichhane">Pradeep Lamichhane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma-assisted nitrogen fixation is a process by which atomic nitrogen generated by plasma is converted into ammonia (NH₃) or related nitrogenous compounds. Nitrogen fixation is essential to plant because fixed inorganic nitrogen compounds are required to them for the biosynthesis of all nitrogen-containing organic compounds, such as amino acids and proteins, nucleoside triphosphates and nucleic acid. Most of our atmosphere is composed of nitrogen; however, the plant cannot absorb it directly from the air ambient. As a portion of the nitrogen cycle, nitrogen fixation fundamental for agriculture and the manufacture of fertilizer. In this study, plasma-assisted nitrogen fixation was performed by exposing a non-thermal atmospheric pressure nitrogen plasma generated a sinusoidal power supply (with an applied voltage of 10 kV and frequency of 33 kHz) on a water surface. Besides this, UV excitation of water molecules at the water interface was also done in order to disassociate water. Hydrogen and hydroxyl radical obtained from this UV photolysis electrochemically combine with nitrogen atom obtained from plasma. As a result of this, nitrogen fixation on plasma-activated water (PAW) significantly enhanced. The amount of nitrogen-based products like NOₓ and ammonia (NH₃) synthesized by this combined process of UV and plasma are 1.4 and 2.8 times higher than those obtained by plasma alone. In every 48 hours, 20 ml of plasma-activated water (pH≈3.15) for 10 minutes with moderate concentrations of NOₓ, NH₃ and hydrogen peroxide (H₂O₂) was irrigated on each corn plant (Zea Mays). It was found that the PAW has shown a significant impact on seeds germination rate and improved seedling growth. The result obtained from this experiment suggested that crop yield could increase in a short duration. In the future, this experiment could open boundless opportunities in plasma agriculture to mobilize nitrogen because nitrite, nitrate, and ammonia are more suitable for plant uptake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma-assisted%20nitrogen%20fixation" title="plasma-assisted nitrogen fixation">plasma-assisted nitrogen fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20plasma" title=" nitrogen plasma"> nitrogen plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20excitation%20of%20water" title=" UV excitation of water"> UV excitation of water</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia%20synthesis" title=" ammonia synthesis"> ammonia synthesis</a> </p> <a href="https://publications.waset.org/abstracts/118194/plasma-assisted-nitrogen-fixation-for-the-elevation-of-seed-germination-and-plant-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16238</span> Intensification of Process Kinetics for Conversion of Organic Volatiles into Syngas Using Non-Thermal Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Palash%20Kumar%20Mollick">Palash Kumar Mollick</a>, <a href="https://publications.waset.org/abstracts/search?q=Leire%20Olazar"> Leire Olazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Santamaria"> Laura Santamaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Comendador"> Pablo Comendador</a>, <a href="https://publications.waset.org/abstracts/search?q=Manomita%20Mollick"> Manomita Mollick</a>, <a href="https://publications.waset.org/abstracts/search?q=Gartzen%20Lopez"> Gartzen Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Olazar"> Martin Olazar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The entire world is skeptical towards a silver line technology of converting plastic waste into valuable synthetic gas. At this junction, besides an adequately studied conventional catalytic process for steam reforming, a non-thermal plasma is being introduced. Organic volatiles are produced in the first step, pyrolysing the plastic materials. Resultant lightweight olefins and carbon monoxide are the major components that undergo a steam reforming process to achieve syngas. A non-thermal plasma consists of ionized gases and free electrons with an electronic temperature as high as 10³ K. Organic volatiles are, in general, endorganics inactive and thus demand huge bond-breaking energy. Conventional catalyst is incapable of providing the required activation energy, leading to poor thermodynamic equilibrium, whereas a non-thermal plasma can actively collide with reactants to produce a rich mix of reactive species, including vibrationally or electronically excited molecules, radicals, atoms, and ions. In addition, non-thermal plasma provides nonequilibrium conditions leading to electric discharge only in certain degrees of freedom without affecting the intrinsic chemical conditions of the participating reactants and products. In this work, we report thermodynamic and kinetic aspects of the conversion of organic volatiles into syngas using a non-thermal plasma. Detailed characteristics of plasma and its effect on the overall yield of the process will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non%20thermal%20plasma" title="non thermal plasma">non thermal plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20catalysis" title=" plasma catalysis"> plasma catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20reforming" title=" steam reforming"> steam reforming</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20waste" title=" plastic waste"> plastic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20energy" title=" green energy"> green energy</a> </p> <a href="https://publications.waset.org/abstracts/172095/intensification-of-process-kinetics-for-conversion-of-organic-volatiles-into-syngas-using-non-thermal-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16237</span> The Cleaning Equipment to Prevents Dust Diffusion of Bus Air Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiraphorn%20Satechan">Jiraphorn Satechan</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanaphon%20Khamthieng"> Thanaphon Khamthieng</a>, <a href="https://publications.waset.org/abstracts/search?q=Warunee%20Phanwong"> Warunee Phanwong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This action research aimed at designing and developing the cleaning equipment to preventing dust diffusion of bus air filter. Quantitative and qualitative data collection methods were used to conduct data from October 1st, 2018 to September 30th, 2019. All of participants were male (100.0%) with aged 40- 49 years and 57.15%, of them finish bachelor degree. 71.43% of them was a driver and 57.15% of them had the working experience between 10 and 15 years. Research revealed that the participants assessed the quality of the bus air filter cleaning equipment for preventing dust diffusion at a moderate level (σ= 0.29), and 71.43 of them also suggested the development methods in order to improve the quality of bus air filters cleaning equipment as follows: 1) to install the circuit breaker for cutting the electricity and controlling the on-off of the equipment and to change the motor to the DC system, 2) should install the display monitor for wind pressure and electricity system as well as to install the air pressure gauge, 3) should install the tank lid lock for preventing air leakage and dust diffusion by increasing the blowing force and sucking power, 4) to stabilize the holding points for preventing the filter shaking while rotating and blowing for cleaning and to reduce the rotation speed in order to allow the filters to move slowly for the air system to blow for cleaning more thoroughly, 5) the amount of dust should be measured before and after cleaning and should be designed the cleaning equipment to be able to clean with a variety of filters, and sizes. Moreover, the light-weight materials should be used to build the cleaning equipment and the wheels should be installed at the base of the equipment in order to make it easier to move. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cleaning%20Equipment" title="Cleaning Equipment">Cleaning Equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=Bus%20Air%20Filters" title=" Bus Air Filters"> Bus Air Filters</a>, <a href="https://publications.waset.org/abstracts/search?q=Preventing%20Dust%20Diffusion" title=" Preventing Dust Diffusion"> Preventing Dust Diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=Innovation" title=" Innovation"> Innovation</a> </p> <a href="https://publications.waset.org/abstracts/121879/the-cleaning-equipment-to-prevents-dust-diffusion-of-bus-air-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16236</span> Enhanced Cell Adhesion on PMMA by Radio Frequency Oxygen Plasma Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Rezaei">Fatemeh Rezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Shokri"> Babak Shokri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, PMMA films are modified by oxygen plasma treatment for biomedical applications. The plasma generator is capacitively coupled radio frequency (13.56 MHz) power source. The oxygen pressure and gas flow rate are kept constant at 40 mTorr and 30 sccm, respectively and samples are treated for 2 minutes. Hydrophilicity and biocompatibility of PMMA films are studied before and after treatments in different applied powers (10-80 W). In order to monitor the plasma process, the optical emission spectroscopy is used. The wettability and cellular response of samples are investigated by water contact angle (WCA) analysis and MTT assay, respectively. Also, surface free energy (SFE) variations are studied based on the contact angle measurements of three liquids. It is found that RF oxygen plasma treatment enhances the biocompatibility and also hydrophilicity of PMMA films. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20response" title="cellular response">cellular response</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilicity" title=" hydrophilicity"> hydrophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=MTT%20assay" title=" MTT assay"> MTT assay</a>, <a href="https://publications.waset.org/abstracts/search?q=PMMA" title=" PMMA"> PMMA</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20plasma" title=" RF plasma"> RF plasma</a> </p> <a href="https://publications.waset.org/abstracts/14636/enhanced-cell-adhesion-on-pmma-by-radio-frequency-oxygen-plasma-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">671</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20cleaning%20process.&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20cleaning%20process.&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20cleaning%20process.&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20cleaning%20process.&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20cleaning%20process.&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20cleaning%20process.&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20cleaning%20process.&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20cleaning%20process.&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20cleaning%20process.&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20cleaning%20process.&page=542">542</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20cleaning%20process.&page=543">543</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20cleaning%20process.&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>