CINXE.COM
Search results for: ejection and sweep
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ejection and sweep</title> <meta name="description" content="Search results for: ejection and sweep"> <meta name="keywords" content="ejection and sweep"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ejection and sweep" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ejection and sweep"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 161</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ejection and sweep</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">161</span> Ballistics of Main Seat Ejection Cartridges for Aircraft Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20A.%20Parate">B. A. Parate</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20D.%20Deodhar"> K. D. Deodhar</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Dixit"> V. K. Dixit</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Rao"> V. V. Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article outlines the ballistics of main seat ejection cartridges for aircraft application. The ballistics of main seat ejection cartridges plays a vital role during the ejection of the pilot in an emergency. The ballistic parameters such as maximum pressure, time is taken to reach the maximum pressure, and time required to reach half the maximum pressure contributes to the spinal injury of the pilot. Therefore, the evaluations of these parameters are very critical during various stages of development. Elaborate testing was carried out for main seat ejection cartridges on seat ejection tower (SET) at different operating temperatures considering physiological limits. As these trials are cumbersome in nature, a vented vessel (VV) testing facility was devised to lay down the performance parameters at hot and cold temperature conditions. Single base (SB) propellant having hepta-tubular configuration is selected as the main filling. Gun powder plays the role of a booster based on ballistic requirements. The evaluation methodology of various performance parameters of main seat ejection cartridges is explained in this paper. Physiological parameters such as maximum seat ejection velocity, acceleration, and rate of rising of acceleration are also experimentally determined on seat ejection tower. All the parameters are observed well within physiological limits. This paper addresses the internal ballistic of main seat ejection cartridges, propellant selection, its calculation, and evaluation of various performance parameters for an aircraft application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballistics%20of%20seat%20ejection" title="ballistics of seat ejection">ballistics of seat ejection</a>, <a href="https://publications.waset.org/abstracts/search?q=ejection%20seat" title=" ejection seat"> ejection seat</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20generator" title=" gas generator"> gas generator</a>, <a href="https://publications.waset.org/abstracts/search?q=gun%20propulsion" title=" gun propulsion"> gun propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=main%20seat%20ejection%20cartridges" title=" main seat ejection cartridges"> main seat ejection cartridges</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20pressure" title=" maximum pressure"> maximum pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20parameters" title=" performance parameters"> performance parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=propellant" title=" propellant"> propellant</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20burning%20and%20vented%20vessel" title=" progressive burning and vented vessel"> progressive burning and vented vessel</a> </p> <a href="https://publications.waset.org/abstracts/131210/ballistics-of-main-seat-ejection-cartridges-for-aircraft-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">160</span> Modelling of a Biomechanical Vertebral System for Seat Ejection in Aircrafts Using Lumped Mass Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Unnikrishnan">R. Unnikrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Shankar"> K. Shankar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the case of high-speed fighter aircrafts, seat ejection is designed mainly for the safety of the pilot in case of an emergency. Strong windblast due to the high velocity of flight is one main difficulty in clearing the tail of the aircraft. Excessive G-forces generated, immobilizes the pilot from escape. In most of the cases, seats are ejected out of the aircrafts by explosives or by rocket motors attached to the bottom of the seat. Ejection forces are primarily in the vertical direction with the objective of attaining the maximum possible velocity in a specified period of time. The safe ejection parameters are studied to estimate the critical time of ejection for various geometries and velocities of flight. An equivalent analytical 2-dimensional biomechanical model of the human spine has been modelled consisting of vertebrae and intervertebral discs with a lumped mass approach. The 24 vertebrae, which consists of the cervical, thoracic and lumbar regions, in addition to the head mass and the pelvis has been designed as 26 rigid structures and the intervertebral discs are assumed as 25 flexible joint structures. The rigid structures are modelled as mass elements and the flexible joints as spring and damper elements. Here, the motions are restricted only in the mid-sagittal plane to form a 26 degree of freedom system. The equations of motions are derived for translational movement of the spinal column. An ejection force with a linearly increasing acceleration profile is applied as vertical base excitation on to the pelvis. The dynamic vibrational response of each vertebra in time-domain is estimated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomechanical%20model" title="biomechanical model">biomechanical model</a>, <a href="https://publications.waset.org/abstracts/search?q=lumped%20mass" title=" lumped mass"> lumped mass</a>, <a href="https://publications.waset.org/abstracts/search?q=seat%20ejection" title=" seat ejection"> seat ejection</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrational%20response" title=" vibrational response"> vibrational response</a> </p> <a href="https://publications.waset.org/abstracts/56135/modelling-of-a-biomechanical-vertebral-system-for-seat-ejection-in-aircrafts-using-lumped-mass-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> Semiautomatic Calculation of Ejection Fraction Using Echocardiographic Image Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diana%20Pombo">Diana Pombo</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Loaiza"> Maria Loaiza</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Quijano"> Mauricio Quijano</a>, <a href="https://publications.waset.org/abstracts/search?q=Alberto%20Cadena"> Alberto Cadena</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Pablo%20Tello"> Juan Pablo Tello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a semi-automatic tool for calculating ejection fraction from an echocardiographic video signal which is derived from a database in DICOM format, of Clinica de la Costa - Barranquilla. Described in this paper are each of the steps and methods used to find the respective calculation that includes acquisition and formation of the test samples, processing and finally the calculation of the parameters to obtain the ejection fraction. Two imaging segmentation methods were compared following a methodological framework that is similar only in the initial stages of processing (process of filtering and image enhancement) and differ in the end when algorithms are implemented (Active Contour and Region Growing Algorithms). The results were compared with the measurements obtained by two different medical specialists in cardiology who calculated the ejection fraction of the study samples using the traditional method, which consists of drawing the region of interest directly from the computer using echocardiography equipment and a simple equation to calculate the desired value. The results showed that if the quality of video samples are good (i.e., after the pre-processing there is evidence of an improvement in the contrast), the values provided by the tool are substantially close to those reported by physicians; also the correlation between physicians does not vary significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=echocardiography" title="echocardiography">echocardiography</a>, <a href="https://publications.waset.org/abstracts/search?q=DICOM" title=" DICOM"> DICOM</a>, <a href="https://publications.waset.org/abstracts/search?q=processing" title=" processing"> processing</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=EDV" title=" EDV"> EDV</a>, <a href="https://publications.waset.org/abstracts/search?q=ESV" title=" ESV"> ESV</a>, <a href="https://publications.waset.org/abstracts/search?q=ejection%20fraction" title=" ejection fraction"> ejection fraction</a> </p> <a href="https://publications.waset.org/abstracts/2710/semiautomatic-calculation-of-ejection-fraction-using-echocardiographic-image-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> Efficacy of Heart Failure Reversal Treatment Followed by 90 Days Follow up in Chronic Heart Failure Patients with Low Ejection Fraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Sane">Rohit Sane</a>, <a href="https://publications.waset.org/abstracts/search?q=Snehal%20Dongre"> Snehal Dongre</a>, <a href="https://publications.waset.org/abstracts/search?q=Pravin%20Ghadigaonkar"> Pravin Ghadigaonkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Mandole"> Rahul Mandole</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was designed to evaluate efficacy of heart failure reversal therapy (HFRT) that uses herbal procedure (panchakarma) and allied therapies, in chronic heart failure (CHF) patients with low ejection fraction. Methods: This efficacy study was conducted in CHF patients (aged: 25-65 years, ejection fraction (EF) < 30%) wherein HFRT (60-75 minutes) consisting of snehana (external oleation), swedana (passive heat therapy), hrudaydhara(concoction dripping treatment) and basti(enema) was administered twice daily for 7 days. During this therapy and next 30 days, patients followed the study dinarcharya and were prescribed ARJ kadha in addition to their conventional treatment. The primary endpoint of this study was evaluation of maximum aerobic capacity uptake (MAC) as assessed by 6-minute walk distance (6MWD) using Cahalins equation from baseline, at end of 7 day treatment, follow-up after 30 days and 90 days. EF was assessed by 2D Echo at baseline and after 30 days of follow-up. Results: CHF patients with < 30% EF (N=52, mean [SD] age: 58.8 [10.8], 85% men) were enrolled in the study. There was a 100% compliance to study therapy. A significant improvement was observed in MAC levels (7.11%, p =0.029), at end of 7 day therapy as compared to baseline. This improvement was maintained at two follow-up visits. Moreover, ejection fraction was observed to be increased by 6.38%, p=0,012 as compared to baseline at day 7 of the therapy. Conclusions: This 90 day follow up study highlights benefit of HFRT, as a part of maintenance treatment for CHF patients with reduced ejection fraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20heart%20failure" title="chronic heart failure">chronic heart failure</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20capacity" title=" functional capacity"> functional capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20failure%20reversal%20therapy" title=" heart failure reversal therapy"> heart failure reversal therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20uptake" title=" oxygen uptake"> oxygen uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=panchakarma" title=" panchakarma"> panchakarma</a> </p> <a href="https://publications.waset.org/abstracts/80349/efficacy-of-heart-failure-reversal-treatment-followed-by-90-days-follow-up-in-chronic-heart-failure-patients-with-low-ejection-fraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> A Comprehensive Review of Foam Assisted Water Alternating Gas (FAWAG) Technique: Foam Applications and Mechanisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Shabib-Asl">A. Shabib-Asl</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdalla%20Ayoub%20Mohammed"> M. Abdalla Ayoub Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Alta%E2%80%99ee"> A. F. Alta’ee</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Bin%20Mohd%20Saaid"> I. Bin Mohd Saaid</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Paulo%20Jose%20Valentim"> P. Paulo Jose Valentim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last few decades, much focus has been placed on enhancing oil recovery from existing fields. This is accomplished by the study and application of various methods. As for recent cases, the study of fluid mobility control and sweep efficiency in gas injection process as well as water alternating gas (WAG) method have demonstrated positive results on oil recovery and thus gained wide interest in petroleum industry. WAG injection application results in an increased oil recovery. Its mechanism consists in reduction of gas oil ratio (GOR). However, there are some problems associated with this which includes poor volumetric sweep efficiency due to its low density and high mobility when compared with oil. This has led to the introduction of foam assisted water alternating gas (FAWAG) technique, which in contrast with WAG injection, acts in improving the sweep efficiency and reducing the gas oil ration therefore maximizing the production rate from the producer wells. This paper presents a comprehensive review of FAWAG process from perspective of Snorre field experience. In addition, some comparative results between FAWAG and the other EOR methods are presented including their setbacks. The main aim is to provide a solid background for future laboratory research and successful field application-extend. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GOR" title="GOR">GOR</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility%20ratio" title=" mobility ratio"> mobility ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=sweep%20efficiency" title=" sweep efficiency"> sweep efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=WAG" title=" WAG "> WAG </a> </p> <a href="https://publications.waset.org/abstracts/14396/a-comprehensive-review-of-foam-assisted-water-alternating-gas-fawag-technique-foam-applications-and-mechanisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Measurement of Echocardiographic Ejection Fraction Reference Values and Evaluation between Body Weight and Ejection Fraction in Domestic Rabbits (Oryctolagus cuniculus)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Behmanesh">Reza Behmanesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Nasrolahzadeh-Masouleh"> Mohammad Nasrolahzadeh-Masouleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Khaksar"> Ehsan Khaksar</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Bokaie"> Saeed Bokaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Domestic rabbits (Oryctolagus cuniculus) are an excellent model for cardiovascular research because the size of these animals is more suitable for study and experimentation than smaller animals. One of the most important diagnostic imaging methods is echocardiography, which is used today to evaluate the anatomical and functional cardiovascular system and is one of the most accurate and sensitive non-invasive methods for examining heart disease. Ventricular function indices can be assessed with cardiac imaging techniques. One of these important cardiac parameters is the ejection fraction (EF), which has a valuable place along with other involved parameters. EF is a measure of the percentage of blood that comes out of the heart with each contraction. For this study, 100 adult and young standard domestic rabbits, six months to one year old and of both sexes (50 female and 50 male rabbits) without anesthesia and sedation were used. In this study, the mean EF in domestic rabbits studied in males was 58.753 ± 6.889 and in females, 61.397 ± 6.530, which are comparable to the items mentioned in the valid books and the average size of EF measured in this study; there is no significant difference between this research and other research. There was no significant difference in the percentage of EF between most weight groups, but there was a significant difference (p < 0.05) in weight groups (2161–2320 g and 2481–2640 g). Echocardiographic EF reference values for domestic rabbits (Oryctolagus cuniculus) non-anesthetized are presented, providing reference values for future studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=echocardiography" title="echocardiography">echocardiography</a>, <a href="https://publications.waset.org/abstracts/search?q=ejection%20fraction" title=" ejection fraction"> ejection fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=rabbit" title=" rabbit"> rabbit</a>, <a href="https://publications.waset.org/abstracts/search?q=heart" title=" heart"> heart</a> </p> <a href="https://publications.waset.org/abstracts/149602/measurement-of-echocardiographic-ejection-fraction-reference-values-and-evaluation-between-body-weight-and-ejection-fraction-in-domestic-rabbits-oryctolagus-cuniculus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> CFD Analysis of an Aft Sweep Wing in Subsonic Flow and Making Analogy with Roskam Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Sakhaei">Ehsan Sakhaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Taherabadi"> Ali Taherabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an aft sweep wing with specific characteristic feature was analysis with CFD method in Fluent software. In this analysis wings aerodynamic coefficient was calculated in different rake angle and wing lift curve slope to rake angle was achieved. Wing section was selected among NACA airfoils version 6. The sweep angle of wing is 15 degree, aspect ratio 8 and taper ratios 0.4. Designing and modeling this wing was done in CATIA software. This model was meshed in Gambit software and its three dimensional analysis was done in Fluent software. CFD methods used here were based on pressure base algorithm. SIMPLE technique was used for solving Navier-Stokes equation and Spalart-Allmaras model was utilized to simulate three dimensional wing in air. Roskam method is one of the common and most used methods for determining aerodynamics parameters in the field of airplane designing. In this study besides CFD analysis, an advanced aircraft analysis was used for calculating aerodynamic coefficient using Roskam method. The results of CFD were compared with measured data acquired from Roskam method and authenticity of relation was evaluated. The results and comparison showed that in linear region of lift curve there is a minor difference between aerodynamics parameter acquired from CFD to relation present by Roskam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aft%20sweep%20wing" title="aft sweep wing">aft sweep wing</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20method" title=" CFD method"> CFD method</a>, <a href="https://publications.waset.org/abstracts/search?q=fluent" title=" fluent"> fluent</a>, <a href="https://publications.waset.org/abstracts/search?q=Roskam" title=" Roskam"> Roskam</a>, <a href="https://publications.waset.org/abstracts/search?q=Spalart-Allmaras%20model" title=" Spalart-Allmaras model"> Spalart-Allmaras model</a> </p> <a href="https://publications.waset.org/abstracts/33671/cfd-analysis-of-an-aft-sweep-wing-in-subsonic-flow-and-making-analogy-with-roskam-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Study the Effect of Roughness on the Higher Order Moment to Extract Information about the Turbulent Flow Structure in an Open Channel Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Abdullah%20Al%20Faruque">Md Abdullah Al Faruque</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Balachandar"> Ram Balachandar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was carried out to understand the extent of effect of roughness and Reynolds number in open channel flow (OCF). To this extent, four different types of bed surface conditions consisting smooth, distributed roughness, continuous roughness, natural sand bed and two different Reynolds number for each bed surfaces were adopted in this study. Particular attention was given on mean velocity, turbulence intensity, Reynolds shear stress, correlation, higher order moments and quadrant analysis. Further, the extent of influence of roughness and Reynolds number in the depth-wise direction also studied. Increasing Reynolds shear stress near rough beds are noticed due to arrays of discrete roughness elements and flow over these elements generating a series of wakes which contributes to the generation of significantly higher Reynolds shear stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bed%20roughness" title="bed roughness">bed roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=ejection%20and%20sweep" title=" ejection and sweep"> ejection and sweep</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel%20flow" title=" open channel flow"> open channel flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20shear%20stress" title=" Reynolds shear stress"> Reynolds shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20boundary%20layer" title=" turbulent boundary layer"> turbulent boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20triple%20product" title=" velocity triple product"> velocity triple product</a> </p> <a href="https://publications.waset.org/abstracts/45772/study-the-effect-of-roughness-on-the-higher-order-moment-to-extract-information-about-the-turbulent-flow-structure-in-an-open-channel-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> A Study on Diversity of the Family Encyrtidae (Hymenoptera: Chalcidoidea) in Forest Habitat of Doon Valley, Uttarakhand, India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashmi%20Nautiyal">Rashmi Nautiyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhir%20Singh"> Sudhir Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Encyrtidae is the largest family of superfamily Chalcidoidea of parasitic Hymenoptera group. They are endoparasitoids or hyperparasitoids of other arthropods and have the greatest impact on maintaining diversity. It not only forms a major component of diversity itself but also is very important in sustaining diversity in other groups. They are used as efficient biological control agents against key insect pests world over. The present study is based on the collection of Encyrtidae (Chalcidoidea: Hymenoptera) made during a survey in Doon Valley from 2008 to 2011 in all the five seasons (Spring, Summer cum Pre-monsoon, Monsoon, Post-monsoon, Winter) for each year. The collections were made from forest habitat in different localities of the Valley using sweep net and yellow pan trap methods. A total of 1346 specimens of encyrtids were collected and identified from the forest habitat (745 with a sweep net and 601with yellow pan trap).Of these, season-wise (post monsoon, spring, summer, monsoon, and winter) represented Encyrtids were 30.46%, 19.31%, 17.16%, 16.64% and 16.41%, respectively. A total of 161 species of Encyrtids belonging to 43 genera under 2 subfamilies were recorded. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diversity" title="diversity">diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=Encyrtidae" title=" Encyrtidae"> Encyrtidae</a>, <a href="https://publications.waset.org/abstracts/search?q=sweep%20net" title=" sweep net"> sweep net</a>, <a href="https://publications.waset.org/abstracts/search?q=yellow%20pan" title=" yellow pan"> yellow pan</a> </p> <a href="https://publications.waset.org/abstracts/69600/a-study-on-diversity-of-the-family-encyrtidae-hymenoptera-chalcidoidea-in-forest-habitat-of-doon-valley-uttarakhand-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Reduction Study of As(III)-Cysteine Complex through Linear Sweep Voltammetry </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Mittal">Sunil Mittal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhpreet%20Singh"> Sukhpreet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hardeep%20Kaur"> Hardeep Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple voltammetric technique for on-line analysis of arsenite [As (III)] is reported. Owing to the affinity of As (III) with thiol group of proteins and enzymes, cysteine has been employed as reducing agent. The reduction study of As(III)-cysteine complex on indium tin oxide (ITO) electrode has been explored. The experimental parameters such as scan rate, cysteine concentration, pH etc. were optimized to achieve As (III) determination. The developed method provided dynamic linear range of detection from 0.1 to 1 mM with a detection limit of 0.1 mM. The method is applicable to environmental monitoring of As (III) from highly contaminated sources such as industrial effluents, wastewater sludge etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenite" title="arsenite">arsenite</a>, <a href="https://publications.waset.org/abstracts/search?q=cysteine" title=" cysteine"> cysteine</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20sweep%20voltammetry" title=" linear sweep voltammetry"> linear sweep voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction" title=" reduction"> reduction</a> </p> <a href="https://publications.waset.org/abstracts/84523/reduction-study-of-asiii-cysteine-complex-through-linear-sweep-voltammetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Assessment of the Effect of Orally Administered Itopride on Gall Bladder Ejection Fraction by a Fatty Meal Cholescintigraphy in Patients with Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avani%20Jain">Avani Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasmukh%20Jain"> Hasmukh Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shelley"> S. Shelley</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Indirani"> M. Indirani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20Kalal"> Shilpa Kalal</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayakanth%20Amalachandran"> Jayakanth Amalachandran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim of the Study: To assess the effect of orally administered Itopride on gall bladder ejection fraction by fatty meal cholescintigraphy in patients with diabetes. Materials and Methods: Thirty patients (20 males, 10 females, mean age 46+10 yrs) with history of diabetes mellitus (mean duration 4.8+4.1 yrs, fasting blood glucose level 130+35 mg/dl and 2-hours post-prandial blood glucose level 196+76 mg/dl) and found to have gall bladder dysfunction on fatty-meal stimulated cholescintigraphy were selected for this study. These patients underwent a repeat cholescintigraphy similar to baseline study, with 50 mg of Itopride orally along with fatty meal. Pre- and post-Itopride GBEF were then compared to assess the effect of Itopride on gall bladder contraction. Results: Out of these 30 patients, 2 had dyskinetic, 4 had akinetic, 22 had moderately hypokinetic and the remaining 2 had hypokinetic gall bladder function in the baseline study with > 60% GBEF being taken as the normal value. Mean percentage of GBEF in the baseline study was 32%+13% and the mean percentage of GBEF in the post-Itopride study was 57%+17% with change in mean percentage of GBEF being 24%+21%. GBEF of the “baseline study” was significantly lower as compared to GBEF in the “post-Itopride study” (p < 0.05). Conclusion: Diabetic patients with biliary-type pain often tend to have impaired gallbladder function. Cholescintigraphy with fatty meal-stimulation is a simple, cheap and useful investigation for assessment of gallbladder dysfunction in these patients, before any structural changes occur within the lumen or wall of the gall bladder. Improvement in gallbladder ejection fraction after oral administration of a single dose of Itopride, a newer prokinetic drug with fewer side effects, as assessed by cholescintigraphy, provides enough evidence of future therapeutic response. Administration of Itopride, in therapeutic dosage, therefore may be expected to cause significant improvement in gallbladder ejection fraction and hence prolong stone formation within the gall bladder and also prevent the associated long term complications. Hence, based on scintigraphic evidence, Itopride may be recommended, by clinicians, for management of symptomatic diabetic patients having gallbladder dysfunction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=itopride" title="itopride">itopride</a>, <a href="https://publications.waset.org/abstracts/search?q=gall%20bladder%20ejection%20fraction" title=" gall bladder ejection fraction"> gall bladder ejection fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20meal" title=" fatty meal"> fatty meal</a>, <a href="https://publications.waset.org/abstracts/search?q=cholescintigraphy" title=" cholescintigraphy"> cholescintigraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a> </p> <a href="https://publications.waset.org/abstracts/13709/assessment-of-the-effect-of-orally-administered-itopride-on-gall-bladder-ejection-fraction-by-a-fatty-meal-cholescintigraphy-in-patients-with-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Aerodynamic Optimization of Oblique Biplane by Using Supercritical Airfoil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Abdullah">Asma Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Awais%20Khan"> Awais Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Reem%20Al-Ghumlasi"> Reem Al-Ghumlasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pritam%20Kumari"> Pritam Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasir%20Nawaz"> Yasir Nawaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: This study verified the potential applications of two Oblique Wing configurations that were initiated by the Germans Aerodynamicists during the WWII. Due to the end of the war, this project was not completed and in this research is targeting the revival of German Oblique biplane configuration. The research draws upon the use of two Oblique wings mounted on the top and bottom of the fuselage through a single pivot. The wings are capable of sweeping at different angles ranging from 0° at takeoff to 60° at cruising Altitude. The top wing, right half, behaves like a forward swept wing and the left half, behaves like a backward swept wing. Vice Versa applies to the lower wing. This opposite deflection of the top and lower wing cancel out the rotary moment created by each wing and the aircraft remains stable. Problem to better understand or solve: The purpose of this research is to investigate the potential of achieving improved aerodynamic performance and efficiency of flight at a wide range of sweep angles. This will help examine the most accurate value for the sweep angle at which the aircraft will possess both stability and better aerodynamics. Explaining the methods used: The Aircraft configuration is designed using Solidworks after which a series of Aerodynamic prediction are conducted, both in the subsonic and the supersonic flow regime. Computations are carried on Ansys Fluent. The results are then compared to theoretical and flight data of different Supersonic fighter aircraft of the same category (AD-1) and with the Wind tunnel testing model at subsonic speed. Results: At zero sweep angle, the aircraft has an excellent lift coefficient value with almost double that found for fighter jets. In acquiring of supersonic speed the sweep angle is increased to maximum 60 degrees depending on the mission profile. General findings: Oblique biplane can be the future fighter jet aircraft because of its high value performance in terms of aerodynamics, cost, structural design and weight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biplane" title="biplane">biplane</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20wing" title=" oblique wing"> oblique wing</a>, <a href="https://publications.waset.org/abstracts/search?q=sweep%20angle" title=" sweep angle"> sweep angle</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20airfoil" title=" supercritical airfoil"> supercritical airfoil</a> </p> <a href="https://publications.waset.org/abstracts/72045/aerodynamic-optimization-of-oblique-biplane-by-using-supercritical-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Interpretation of Sweep Frequency Response Analysis (SFRA) Traces for the Earth Fault Damage Practically Simulated on the Power Transformer Specially Developed for Performing Sweep Frequency Response Analysis for Various Transformers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akshay%20A.%20Pandya">Akshay A. Pandya</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20Parekh"> B. R. Parekh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents how earth fault damage in the transformer can be detected by Sweep Frequency Response Analysis (SFRA). The test methods used by the authors for presenting the results are described. The power transformer of rating 10 KVA, 11000 V/440 V, 3-phase, 50 Hz, Dyn11 has been specially developed in-house for carrying out SFRA testing by practically simulated various transformer damages on it. Earth fault has been practically simulated on HV “U” phase winding and LV “W” phase winding separately. The result of these simulated faults are presented and discussed. The motivation of this presented work is to extend the guideline approach; there are ideas to organize database containing collected measurement results. Since the SFRA interpretation is based on experience, such databases are thought to be of great importance when interpreting SFRA response. The evaluation of the SFRA responses against guidelines and experience have to be performed and conclusions regarding usefulness of each simulation has been drawn and at last overall conclusion has also been drawn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earth%20fault%20damage" title="earth fault damage">earth fault damage</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20transformer" title=" power transformer"> power transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=practical%20simulation" title=" practical simulation"> practical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=SFRA%20traces" title=" SFRA traces"> SFRA traces</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer%20damages" title=" transformer damages"> transformer damages</a> </p> <a href="https://publications.waset.org/abstracts/7095/interpretation-of-sweep-frequency-response-analysis-sfra-traces-for-the-earth-fault-damage-practically-simulated-on-the-power-transformer-specially-developed-for-performing-sweep-frequency-response-analysis-for-various-transformers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> A Finite Element Based Predictive Stone Lofting Simulation Methodology for Automotive Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Bisht">Gaurav Bisht</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Rathnakumar"> Rahul Rathnakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravikumar%20Duggirala"> Ravikumar Duggirala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Predictive simulations are one of the key focus areas in safety-critical industries such as aerospace and high-performance automotive engineering. The stone-chipping study is one such effort taken up by the industry to predict and evaluate the damage caused due to gravel impact on vehicles. This paper describes a finite elements based method that can simulate the ejection of gravel chips from a vehicle tire. The FE simulations were used to obtain the initial ejection velocity of the stones for various driving conditions using a computational contact mechanics approach. To verify the accuracy of the tire model, several parametric studies were conducted. The FE simulations resulted in stone loft velocities ranging from 0–8 m/s, regardless of tire speed. The stress on the tire at the instant of initial contact with the stone increased linearly with vehicle speed. Mesh convergence studies indicated that a highly resolved tire mesh tends to result in better momentum transfer between the tire and the stone. A fine tire mesh also showed a linearly increasing relationship between the tire forward speed and stone lofting speed, which was not observed in coarser meshes. However, it also highlighted a potential challenge, in that the ejection velocity vector of the stone seemed to be sensitive to the mesh, owing to the FE-based contact mechanical formulation of the problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abaqus" title="abaqus">abaqus</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20mechanics" title=" contact mechanics"> contact mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=foreign%20object%20debris" title=" foreign object debris"> foreign object debris</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20chipping" title=" stone chipping"> stone chipping</a> </p> <a href="https://publications.waset.org/abstracts/81245/a-finite-element-based-predictive-stone-lofting-simulation-methodology-for-automotive-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Insect Diversity Assessment of Maize Crop (Zea mays L.) by Using Sweep Net, Pitfall Trap and Plant Inspection Methods </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naeem%20Mushtaq">Muhammad Naeem Mushtaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arshad"> Muhammad Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahid%20Majeed"> Shahid Majeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maize is known as queen of cereals because of its highest genetic yield potential and multipurpose characteristics in human being and animal diet. Maize crop visited by many major, minor, visitors and sporadic insect pests. This study was conducted during 2014 to evaluate the richness and evenness of these insect pests and their interaction with metrological conditions at University of Agriculture, Faisalabad. In this experiment, two localities were selected; one was treated with pesticide and second was untreated. Maize field visited by many insect pests. Those insect pests were collected by using three collection method: sweep net, pitfall trap and plant inspection. The data was collected weekly interval from August to October and statistically analyzed by using Shannon Index which showed the results of insect pest richness and evenness. The value of Shannon Index was higher with the increase in number of species and abundance of insects. Camponotus nearcticus was most abundant in sweep net and pitfall trap method while Rhopalosiphum maidis was abundant in plant inspection method. Temperature was negatively co-relate with the insect population in all three collection methods while the relative humidity and rainfall had varying results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abundance" title="abundance">abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=evenness" title=" evenness"> evenness</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=richness" title=" richness"> richness</a> </p> <a href="https://publications.waset.org/abstracts/99026/insect-diversity-assessment-of-maize-crop-zea-mays-l-by-using-sweep-net-pitfall-trap-and-plant-inspection-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> Automatic LV Segmentation with K-means Clustering and Graph Searching on Cardiac MRI</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hae-Yeoun%20Lee">Hae-Yeoun Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantification of cardiac function is performed by calculating blood volume and ejection fraction in routine clinical practice. However, these works have been performed by manual contouring,which requires computational costs and varies on the observer. In this paper, an automatic left ventricle segmentation algorithm on cardiac magnetic resonance images (MRI) is presented. Using knowledge on cardiac MRI, a K-mean clustering technique is applied to segment blood region on a coil-sensitivity corrected image. Then, a graph searching technique is used to correct segmentation errors from coil distortion and noises. Finally, blood volume and ejection fraction are calculated. Using cardiac MRI from 15 subjects, the presented algorithm is tested and compared with manual contouring by experts to show outstanding performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiac%20MRI" title="cardiac MRI">cardiac MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20searching" title=" graph searching"> graph searching</a>, <a href="https://publications.waset.org/abstracts/search?q=left%20ventricle%20segmentation" title=" left ventricle segmentation"> left ventricle segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=K-means%20clustering" title=" K-means clustering"> K-means clustering</a> </p> <a href="https://publications.waset.org/abstracts/26435/automatic-lv-segmentation-with-k-means-clustering-and-graph-searching-on-cardiac-mri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Rheological Evaluation of Wall Materials and β-Carotene Loaded Microencapsules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gargi%20Ghoshal">Gargi Ghoshal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashay%20Jain"> Ashay Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepika%20Thakur"> Deepika Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20S.%20Shivhare"> U. S. Shivhare</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20P.%20Katare"> O. P. Katare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objectives of this work were the rheological characterization of dispersions, emulsions at different pH used in the microcapsules preparation and the microcapsules obtain from gum arabic (A), guar gum (G), casein (C) and whey protein isolate (W) to keep β-carotene protected from degradation using the complex coacervation microencapsulation technique (CCM). The evaluation of rheological properties of dispersions, emulsions of different pH and so obtained microencapsules manifest the changes occur in the molecular structure of wall materials during the encapsulation process of β-carotene. These dispersions, emulsions of different pH and formulated microencapsules were subjected to go through various conducted experiments (flow curve test, amplitude sweep, and frequency sweep test) using controlled stress dynamic rheometer. Flow properties were evaluated as a function of apparent viscosity under steady shear rate ranging from 0.1 to 100 s-1. The frequency sweep test was conducted to determine the extent of viscosity and elasticity present in the samples at constant strain under changing angular frequency range from 0.1 to 100 rad/s at 25ºC. The dispersions and emulsion exhibited a shear thinning non-Newtonian behavior whereas microencapsules are considered as shear-thickening respectively. The apparent viscosity for dispersion, emulsions were decreased at low shear rates 20 s-1 and for microencapsules, it decreases up to ~50 s-1 besides these value, it has shown constant pattern. Oscillatory shear experiments showed a predominant viscous liquid behavior up to crossover frequencies of dispersions of C, W, A at 49.47 rad/s, 57.60 rad/s and 21.45 rad/s emulsion sample of AW at pH 5.0 it was 17.85 rad/s and GW microencapsules 61.40 rad/s respectively whereas no such crossover was found in G dispersion, emulsion with C and microencapsules still it showed more viscous behavior. Storage and loss modulus decreases with time also a shift of the crossover towards lower frequencies for A, W and C was observed respectively. However, their microencapsules showed more viscous behavior as compared to samples prior to blending. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscosity" title="viscosity">viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=gums" title=" gums"> gums</a>, <a href="https://publications.waset.org/abstracts/search?q=proteins" title=" proteins"> proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20sweep%20test" title=" frequency sweep test"> frequency sweep test</a>, <a href="https://publications.waset.org/abstracts/search?q=apparent%20viscosity" title=" apparent viscosity"> apparent viscosity</a> </p> <a href="https://publications.waset.org/abstracts/46739/rheological-evaluation-of-wall-materials-and-v-carotene-loaded-microencapsules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> Field Experience with Sweep Frequency Response Analysis for Power Transformer Diagnosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ambuj%20Kumar">Ambuj Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Kumar%20Singh"> Sunil Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrikant%20Singh"> Shrikant Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakir%20Husain"> Zakir Husain</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Jarial"> R. K. Jarial</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sweep frequency response analysis has been turning out a powerful tool for investigation of mechanical as well as electrical integration of transformers. In this paper various aspect of practical application of SFRA has been studied. Open circuit and short circuit measurement were done on different phases of high voltage and low voltage winding. A case study was presented for the transformer of rating 31.5 MVA for various frequency ranges. A clear picture was presented for sub- frequency ranges for HV as well as LV winding. The main motive of work is to investigate high voltage short circuit response. The theoretical concept about SFRA responses is validated with expert system software results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transformer%20winding" title="transformer winding">transformer winding</a>, <a href="https://publications.waset.org/abstracts/search?q=SFRA" title=" SFRA"> SFRA</a>, <a href="https://publications.waset.org/abstracts/search?q=OCT%20%26%20SCT" title=" OCT & SCT"> OCT & SCT</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20deviation" title=" frequency deviation"> frequency deviation</a> </p> <a href="https://publications.waset.org/abstracts/27973/field-experience-with-sweep-frequency-response-analysis-for-power-transformer-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">957</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> Optimization of the Transfer Molding Process by Implementation of Online Monitoring Techniques for Electronic Packages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burcu%20Kaya">Burcu Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan-Martin%20Kaiser"> Jan-Martin Kaiser</a>, <a href="https://publications.waset.org/abstracts/search?q=Karl-Friedrich%20Becker"> Karl-Friedrich Becker</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanja%20Braun"> Tanja Braun</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus-Dieter%20Lang"> Klaus-Dieter Lang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quality of the molded packages is strongly influenced by the process parameters of the transfer molding. To achieve a better package quality and a stable transfer molding process, it is necessary to understand the influence of the process parameters on the package quality. This work aims to comprehend the relationship between the process parameters, and to identify the optimum process parameters for the transfer molding process in order to achieve less voids and wire sweep. To achieve this, a DoE is executed for process optimization and a regression analysis is carried out. A systematic approach is represented to generate models which enable an estimation of the number of voids and wire sweep. Validation experiments are conducted to verify the model and the results are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20analysis" title="dielectric analysis">dielectric analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20packages" title=" electronic packages"> electronic packages</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20molding%20compounds" title=" epoxy molding compounds"> epoxy molding compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20molding%20process" title=" transfer molding process"> transfer molding process</a> </p> <a href="https://publications.waset.org/abstracts/46904/optimization-of-the-transfer-molding-process-by-implementation-of-online-monitoring-techniques-for-electronic-packages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> Excitation Experiments of a Cone Loudspeaker and Vibration-Acoustic Analysis Using FEM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Hu">Y. Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Zhao"> X. Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Yamaguchi"> T. Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sasajima"> M. Sasajima</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Koike"> Y. Koike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To focus on the vibration mode of a cone loudspeaker, which acts as an electroacoustic transducer, excitation experiments were performed using two types of loudspeaker units: one employing an impulse hammer and the other a sweep signal. The on-axis sound pressure frequency properties of the loudspeaker were evaluated, and the characteristic properties of the loudspeakers were successfully determined in both excitation experiments. Moreover, under conditions identical to the experiment conditions, a coupled analysis of the vibration-acoustics of the cone loudspeaker was performed using an acoustic analysis software program that considers the impact of damping caused by air viscosity. The result of sound pressure frequency properties with the numerical analysis are the most closely match that measured in the excitation experiments over a wide range of frequency bands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anechoic%20room" title="anechoic room">anechoic room</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=impulse%20hammer" title=" impulse hammer"> impulse hammer</a>, <a href="https://publications.waset.org/abstracts/search?q=loudspeaker" title=" loudspeaker"> loudspeaker</a>, <a href="https://publications.waset.org/abstracts/search?q=reverberation%20room" title=" reverberation room"> reverberation room</a>, <a href="https://publications.waset.org/abstracts/search?q=sweep%20signal" title=" sweep signal"> sweep signal</a> </p> <a href="https://publications.waset.org/abstracts/39427/excitation-experiments-of-a-cone-loudspeaker-and-vibration-acoustic-analysis-using-fem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> Coarse-Graining in Micromagnetic Simulations of Magnetic Hyperthermia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razyeh%20Behbahani">Razyeh Behbahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20L.%20Plumer"> Martin L. Plumer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Saika-Voivod"> Ivan Saika-Voivod</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micromagnetic simulations based on the stochastic Landau-Lifshitz-Gilbert equation are used to calculate dynamic magnetic hysteresis loops relevant to magnetic hyperthermia applications. With the goal to effectively simulate room-temperature loops for large iron-oxide based systems at relatively slow sweep rates on the order of 1 Oe/ns or less, a coarse-graining scheme is proposed and tested. The scheme is derived from a previously developed renormalization-group approach. Loops associated with nanorods, used as building blocks for larger nanoparticles that were employed in preclinical trials (Dennis et al., 2009 Nanotechnology 20 395103), serve as the model test system. The scaling algorithm is shown to produce nearly identical loops over several decades in the model grain sizes. Sweep-rate scaling involving the damping constant alpha is also demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coarse-graining" title="coarse-graining">coarse-graining</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis%20loops" title=" hysteresis loops"> hysteresis loops</a>, <a href="https://publications.waset.org/abstracts/search?q=micromagnetic%20simulations" title=" micromagnetic simulations"> micromagnetic simulations</a> </p> <a href="https://publications.waset.org/abstracts/112852/coarse-graining-in-micromagnetic-simulations-of-magnetic-hyperthermia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> A Novel Approach of Power Transformer Diagnostic Using 3D FEM Parametrical Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Brandt">M. Brandt</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Peniak"> A. Peniak</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Makarovi%C4%8D"> J. Makarovič</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rafajdus"> P. Rafajdus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with a novel approach of power transformers diagnostics. This approach identifies the exact location and the range of a fault in the transformer and helps to reduce operation costs related to handling of the faulty transformer, its disassembly and repair. The advantage of the approach is a possibility to simulate healthy transformer and also all faults, which can occur in transformer during its operation without its disassembling, which is very expensive in practice. The approach is based on creating frequency dependent impedance of the transformer by sweep frequency response analysis measurements and by 3D FE parametrical modeling of the fault in the transformer. The parameters of the 3D FE model are the position and the range of the axial short circuit. Then, by comparing the frequency dependent impedances of the parametrical models with the measured ones, the location and the range of the fault is identified. The approach was tested on a real transformer and showed high coincidence between the real fault and the simulated one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transformer" title="transformer">transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=parametrical%20model%20of%20transformer" title=" parametrical model of transformer"> parametrical model of transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=fault" title=" fault"> fault</a>, <a href="https://publications.waset.org/abstracts/search?q=sweep%20frequency%20response%20analysis" title=" sweep frequency response analysis"> sweep frequency response analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/13144/a-novel-approach-of-power-transformer-diagnostic-using-3d-fem-parametrical-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> Sodium-glucose Co-transporter-2 Inhibitors in Heart Failure with Mildly Reduced Reduced Ejection Fraction: Future Perspectives in Patients with Neoplasia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Munteanu">M. A. Munteanu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Lungu"> A. M. Lungu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Chivescu"> A. I. Chivescu</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Teodorescu"> V. Teodorescu</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Tufanoiu"> E. Tufanoiu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Nicolae"> C. Nicolae</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20I.%20Nanea"> T. I. Nanea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Sodium-glucose co-transporter 2 inhibitors (SGLT2i), which were first developed as antidiabetic medications, have demonstrated numerous positive benefits on the cardiovascular system, especially in the prevention of heart failure (HF). HF is a challenging, multifaceted disease that needs all-encompassing therapy. It should not be viewed as a limited form of heart illness but rather as a systemic disease that leads to multiple organ failure and death. SGLT2i is an extremely effective tool for treating HF by using its pleiotropic effects. In addition to its use in patients with diabetes mellitus who are at high cardiovascular risk or who have already experienced a cardiovascular event, SGLT2i administration has been shown to have positive effects on a variety of HF manifestations and stages, regardless of the patient's presence of diabetes mellitus. Material and Methods: According to the guide, 110 patients (83 males and 27 females) with heart failure with mildly reduced ejection fraction (HFmrEF), with T2D and neoplasia, were enrolled in the prospective study. The structural and functional state of the left ventricle myocardium and ejection fraction was assessed through echocardiography. Patients were randomized to receive once-daily dapagliflozin 10 mg. Results: Patients with HFmrEF were divided into 3 subgroups according to age. 7% (8) patients aged < 45 years, 35% (28) patients aged between 46-59 years, and 58% (74) patients aged> 60 years. The most prevalent comorbidities were hypertension (43.1%), coronary heart disease (40%), and obesity (33.2%). Study drug discontinuation and serious adverse events were not frequent in the subgroups, in either men or women, until now. Conclusions: SGLT-2 inhibitors are a novel class of antidiabetic agents that have demonstrated positive efficacy and safety outcomes in the setting of HFmrEF. Until now, in our study, dapagliflozin was safe and well-tolerated irrespective of sex. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus%20type%202" title="diabetes mellitus type 2">diabetes mellitus type 2</a>, <a href="https://publications.waset.org/abstracts/search?q=Sodium-glucose%20co-transporters-2%20inhibitors" title=" Sodium-glucose co-transporters-2 inhibitors"> Sodium-glucose co-transporters-2 inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20failure" title=" heart failure"> heart failure</a>, <a href="https://publications.waset.org/abstracts/search?q=neoplasia" title=" neoplasia"> neoplasia</a> </p> <a href="https://publications.waset.org/abstracts/158939/sodium-glucose-co-transporter-2-inhibitors-in-heart-failure-with-mildly-reduced-reduced-ejection-fraction-future-perspectives-in-patients-with-neoplasia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Skew Planar Wheel Antenna for First Person View of Unmanned Aerial Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Yudhi%20Purba">Raymond Yudhi Purba</a>, <a href="https://publications.waset.org/abstracts/search?q=Levy%20Olivia%20Nur"> Levy Olivia Nur</a>, <a href="https://publications.waset.org/abstracts/search?q=Radial%20Anwar"> Radial Anwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents the design and measurement of a skew planar wheel antenna that is used to visualize the first person view perspective of unmanned aerial vehicles. The antenna has been designed using CST Studio Suite 2019 to have voltage standing wave ratio (VSWR) ≤ 2, return loss ≤ -10 dB, bandwidth ≥ 100 MHz to covering outdoor access point band from 5.725 to 5.825 GHz, omnidirectional radiation pattern, and elliptical polarization. Dimensions of skew planar wheel antenna have been modified using parameter sweep technique to provide good performances. The simulation results provide VSWR 1.231, return loss -19.693 dB, bandwidth 828.8 MHz, gain 3.292 dB, and axial ratio 9.229 dB. Meanwhile, the measurement results provide VSWR 1.237, return loss -19.476 dB, bandwidth 790.5 MHz, gain 3.2034 dB, and axial ratio 4.12 dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skew%20planar%20wheel" title="skew planar wheel">skew planar wheel</a>, <a href="https://publications.waset.org/abstracts/search?q=cloverleaf" title=" cloverleaf"> cloverleaf</a>, <a href="https://publications.waset.org/abstracts/search?q=first-person%20view" title=" first-person view"> first-person view</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle" title=" unmanned aerial vehicle"> unmanned aerial vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20sweep" title=" parameter sweep"> parameter sweep</a> </p> <a href="https://publications.waset.org/abstracts/139082/skew-planar-wheel-antenna-for-first-person-view-of-unmanned-aerial-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Establishment of Kinetic Zone Diagrams via Simulated Linear Sweep Voltammograms for Soluble-Insoluble Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imene%20Atek">Imene Atek</a>, <a href="https://publications.waset.org/abstracts/search?q=Abed%20M.%20Affoune"> Abed M. Affoune</a>, <a href="https://publications.waset.org/abstracts/search?q=Hubert%20Girault"> Hubert Girault</a>, <a href="https://publications.waset.org/abstracts/search?q=Pekka%20Peljo"> Pekka Peljo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the need for a rigorous mathematical model that can help to estimate kinetic properties for soluble-insoluble systems, through voltammetric experiments, a Nicholson Semi Analytical Approach was used in this work for modeling and prediction of theoretical linear sweep voltammetry responses for reversible, quasi reversible or irreversible electron transfer reactions. The redox system of interest is a one-step metal electrodeposition process. A rigorous analysis of simulated linear scan voltammetric responses following variation of dimensionless factors, the rate constant and charge transfer coefficients in a broad range was studied and presented in the form of the so called kinetic zones diagrams. These kinetic diagrams were divided into three kinetics zones. Interpreting these zones leads to empirical mathematical models which can allow the experimenter to determine electrodeposition reactions kinetics whatever the degree of reversibility. The validity of the obtained results was tested and an excellent experiment–theory agreement has been showed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics%20diagrams" title=" kinetics diagrams"> kinetics diagrams</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=voltammetry" title=" voltammetry"> voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/120819/establishment-of-kinetic-zone-diagrams-via-simulated-linear-sweep-voltammograms-for-soluble-insoluble-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Study of the Hysteretic I-V Characteristics in a Polystyrene/ZnO-Nanorods Stack Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=You-Lin%20Wu">You-Lin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Hsing%20Sung"> Yi-Hsing Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Hung%20Lin"> Shih-Hung Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing-Jenn%20Lin"> Jing-Jenn Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performance improvement in optoelectronic devices such as solar cells and photodetectors has been reported when a polymer/ZnO nanorods stack is used. Resistance switching of polymer/ZnO nanocrystals (or nanorods) hybrid has also gained a lot of research interests recently. It has been reported that high- and low-resistance states of a metal/insulator/metal (MIM) structure diode with a polystyrene (PS) and ZnO hybrid as the insulator layer can be switched by applied bias after a high-voltage forming process, while the same device structure merely with a PS layer does not show any forming behavior. In this work, we investigated the current-voltage (I-V) characteristics of an MIM device with a PS/ZnO nanorods stack deposited on fluorine-doped tin oxide (FTO) glass substrate. The ZnO nanorods were grown by a hydrothermal method using a mixture of zinc nitrate, hexamethylenetetramine, and DI water. Following that, a PS layer was deposited by spin coating. Finally, the device with a structure of Ti/ PS/ZnO nanorods/FTO was completed by e-gun evaporated Ti layer on top of the PS layer. Semiconductor parameters analyzer Agilent 4156C was then used to measure the I-V characteristics of the device by applying linear ramp sweep voltage with sweep sequence of 0V → 4V → 0V → 3V → 0V → 2V → 0V → 1V → 0V in both positive and negative directions. It is interesting to find that the I-V characteristics are bias dependent and hysteretic, indicating that the device Ti/PS/ZnO nanorods/FTO structure has ferroelectricity. Our results also show that the maximum hysteresis loop height of the I-V characteristics as well as the voltage at which the maximum hysteresis loop height of each scan occurs increase with increasing maximum sweep voltage. It should be noticed that, although ferroelectricity has been found in ZnO at its melting temperature (1975℃) and in Li- or Co-doped ZnO, neither PS nor ZnO has ferroelectricity at room temperature. Using the same structure but with a PS or ZnO layer only as the insulator does not give and hysteretic I-V characteristics. It is believed that a charge polarization layer is induced near the PS/ZnO nanorods stack interface and thus causes the ferroelectricity in the device with Ti/PS/ZnO nanorods/FTO structure. Our results show that the PS/ZnO stack can find a potential application in a resistive switching memory device with MIM structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferroelectricity" title="ferroelectricity">ferroelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis" title=" hysteresis"> hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene" title=" polystyrene"> polystyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20switching" title=" resistance switching"> resistance switching</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20nanorods" title=" ZnO nanorods"> ZnO nanorods</a> </p> <a href="https://publications.waset.org/abstracts/49163/study-of-the-hysteretic-i-v-characteristics-in-a-polystyrenezno-nanorods-stack-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Statistical Tools for SFRA Diagnosis in Power Transformers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Srivastava">Rahul Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Priti%20Pundir"> Priti Pundir</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20R.%20Sood"> Y. R. Sood</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajnish%20Shrivastava"> Rajnish Shrivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the interpretation of the signatures of sweep frequency response analysis(SFRA) of transformer different types of statistical techniques serves as an effective tool for doing either phase to phase comparison or sister unit comparison. In this paper with the discussion on SFRA several statistics techniques like cross correlation coefficient (CCF), root square error (RSQ), comparative standard deviation (CSD), Absolute difference, mean square error(MSE),Min-Max ratio(MM) are presented through several case studies. These methods require sample data size and spot frequencies of SFRA signatures that are being compared. The techniques used are based on power signal processing tools that can simplify result and limits can be created for the severity of the fault occurring in the transformer due to several short circuit forces or due to ageing. The advantages of using statistics techniques for analyzing of SFRA result are being indicated through several case studies and hence the results are obtained which determines the state of the transformer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absolute%20difference%20%28DABS%29" title="absolute difference (DABS)">absolute difference (DABS)</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20correlation%20coefficient%20%28CCF%29" title=" cross correlation coefficient (CCF)"> cross correlation coefficient (CCF)</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20square%20error%20%28MSE%29" title=" mean square error (MSE)"> mean square error (MSE)</a>, <a href="https://publications.waset.org/abstracts/search?q=min-max%20ratio%20%28MM-ratio%29" title=" min-max ratio (MM-ratio)"> min-max ratio (MM-ratio)</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20square%20error%20%28RSQ%29" title=" root square error (RSQ)"> root square error (RSQ)</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20deviation%20%28CSD%29" title=" standard deviation (CSD)"> standard deviation (CSD)</a>, <a href="https://publications.waset.org/abstracts/search?q=sweep%20frequency%20response%20analysis%20%28SFRA%29" title=" sweep frequency response analysis (SFRA)"> sweep frequency response analysis (SFRA)</a> </p> <a href="https://publications.waset.org/abstracts/27968/statistical-tools-for-sfra-diagnosis-in-power-transformers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">697</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> The System for Root Canal Length Measurement Based on Multifrequency Impedance Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zheng%20Zhang">Zheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Chen"> Xin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoqing%20Ding"> Guoqing Ding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electronic apex locators (EAL) has been widely used clinically for measuring root canal working length with high accuracy, which is crucial for successful endodontic treatment. In order to maintain high accuracy in different measurement environments, this study presented a system for root canal length measurement based on multifrequency impedance method. This measuring system can generate a sweep current with frequencies from 100 Hz to 1 MHz through a direct digital synthesizer. Multiple impedance ratios with different combinations of frequencies were obtained and transmitted by an analog-to-digital converter and several of them with representatives will be selected after data process. The system analyzed the functional relationship between these impedance ratios and the distance between the file and the apex with statistics by measuring plenty of teeth. The position of the apical foramen can be determined by the statistical model using these impedance ratios. The experimental results revealed that the accuracy of the system based on multifrequency impedance ratios method to determine the position of the apical foramen was higher than the dual-frequency impedance ratio method. Besides that, for more complex measurement environments, the performance of the system was more stable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=root%20canal%20length" title="root canal length">root canal length</a>, <a href="https://publications.waset.org/abstracts/search?q=apex%20locator" title=" apex locator"> apex locator</a>, <a href="https://publications.waset.org/abstracts/search?q=multifrequency%20impedance" title=" multifrequency impedance"> multifrequency impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=sweep%20frequency" title=" sweep frequency"> sweep frequency</a> </p> <a href="https://publications.waset.org/abstracts/102124/the-system-for-root-canal-length-measurement-based-on-multifrequency-impedance-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Central Finite Volume Methods Applied in Relativistic Magnetohydrodynamics: Applications in Disks and Jets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raphael%20de%20Oliveira%20Garcia">Raphael de Oliveira Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Rocha%20de%20Oliveira"> Samuel Rocha de Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have developed a new computer program in Fortran 90, in order to obtain numerical solutions of a system of Relativistic Magnetohydrodynamics partial differential equations with predetermined gravitation (GRMHD), capable of simulating the formation of relativistic jets from the accretion disk of matter up to his ejection. Initially we carried out a study on numerical methods of unidimensional Finite Volume, namely Lax-Friedrichs, Lax-Wendroff, Nessyahu-Tadmor method and Godunov methods dependent on Riemann problems, applied to equations Euler in order to verify their main features and make comparisons among those methods. It was then implemented the method of Finite Volume Centered of Nessyahu-Tadmor, a numerical schemes that has a formulation free and without dimensional separation of Riemann problem solvers, even in two or more spatial dimensions, at this point, already applied in equations GRMHD. Finally, the Nessyahu-Tadmor method was possible to obtain stable numerical solutions - without spurious oscillations or excessive dissipation - from the magnetized accretion disk process in rotation with respect to a central black hole (BH) Schwarzschild and immersed in a magnetosphere, for the ejection of matter in the form of jet over a distance of fourteen times the radius of the BH, a record in terms of astrophysical simulation of this kind. Also in our simulations, we managed to get substructures jets. A great advantage obtained was that, with the our code, we got simulate GRMHD equations in a simple personal computer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20methods" title="finite volume methods">finite volume methods</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20schemes" title=" central schemes"> central schemes</a>, <a href="https://publications.waset.org/abstracts/search?q=fortran%2090" title=" fortran 90"> fortran 90</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20astrophysics" title=" relativistic astrophysics"> relativistic astrophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=jet" title=" jet"> jet</a> </p> <a href="https://publications.waset.org/abstracts/19952/central-finite-volume-methods-applied-in-relativistic-magnetohydrodynamics-applications-in-disks-and-jets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Prediction of Super-Response to Cardiac Resynchronisation Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vadim%20A.%20Kuznetsov">Vadim A. Kuznetsov</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20M.%20Soldatova"> Anna M. Soldatova</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20N.%20Enina"> Tatyana N. Enina</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20A.%20Gorbatenko"> Elena A. Gorbatenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitrii%20V.%20Krinochkin"> Dmitrii V. Krinochkin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study was to evaluate potential parameters related with super-response to CRT. Methods: 60 CRT patients (mean age 54.3 ± 9.8 years; 80% men) with congestive heart failure (CHF) II-IV NYHA functional class, left ventricular ejection fraction < 35% were enrolled. At baseline, 1 month, 3 months and each 6 months after implantation clinical, electrocardiographic and echocardiographic parameters, NT-proBNP level were evaluated. According to the best decrease of left ventricular end-systolic volume (LVESV) (mean follow-up period 33.7 ± 15.1 months) patients were classified as super-responders (SR) (n=28; reduction in LVESV ≥ 30%) and non-SR (n=32; reduction in LVESV < 30%). Results: At baseline groups differed in age (58.1 ± 5.8 years in SR vs 50.8 ± 11.4 years in non-SR; p=0.003), gender (female gender 32.1% vs 9.4% respectively; p=0.028), width of QRS complex (157.6 ± 40.6 ms in SR vs 137.6 ± 33.9 ms in non-SR; p=0.044). Percentage of LBBB was equal between groups (75% in SR vs 59.4% in non-SR; p=0.274). All parameters of mechanical dyssynchrony were higher in SR, but only difference in left ventricular pre-ejection period (LVPEP) was statistically significant (153.0 ± 35.9 ms vs. 129.3 ± 28.7 ms p=0.032). NT-proBNP level was lower in SR (1581 ± 1369 pg/ml vs 3024 ± 2431 pg/ml; p=0.006). The survival rates were 100% in SR and 90.6% in non-SR (log-rank test P=0.002). Multiple logistic regression analysis showed that LVPEP (HR 1.024; 95% CI 1.004–1.044; P = 0.017), baseline NT-proBNP level (HR 0.628; 95% CI 0.414–0.953; P=0.029) and age at baseline (HR 1.094; 95% CI 1.009-1.168; P=0.30) were independent predictors for CRT super-response. ROC curve analysis demonstrated sensitivity 71.9% and specificity 82.1% (AUC=0.827; p < 0.001) of this model in prediction of super-response to CRT. Conclusion: Super-response to CRT is associated with better survival in long-term period. Presence of LBBB was not associated with super-response. LVPEP, NT-proBNP level, and age at baseline can be used as independent predictors of CRT super-response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiac%20resynchronisation%20therapy" title="cardiac resynchronisation therapy">cardiac resynchronisation therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=superresponse" title=" superresponse"> superresponse</a>, <a href="https://publications.waset.org/abstracts/search?q=congestive%20heart%20failure" title=" congestive heart failure"> congestive heart failure</a>, <a href="https://publications.waset.org/abstracts/search?q=left%20bundle%20branch%20block" title=" left bundle branch block"> left bundle branch block</a> </p> <a href="https://publications.waset.org/abstracts/80501/prediction-of-super-response-to-cardiac-resynchronisation-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ejection%20and%20sweep&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ejection%20and%20sweep&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ejection%20and%20sweep&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ejection%20and%20sweep&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ejection%20and%20sweep&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ejection%20and%20sweep&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>