CINXE.COM
sequence in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> sequence in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> sequence </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussions/?CategoryID=0" title="Discuss this page on the nForum. It does not yet have a dedicated thread; feel free to create one, giving it the same name as the title of this page" style="color:black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Sequences</title></head> <body> <h1 id="sequences">Sequences</h1> <div class='maruku_toc'> <ul> <li><a href='#definitions'>Definitions</a></li> <li><a href='#notation'>Notation</a></li> <li><a href='#Generalization'>Generalisations</a></li> <ul> <li><a href='#nets'>Nets</a></li> <li><a href='#sequential_nets'>Sequential nets</a></li> </ul> <li><a href='#sequence_types'>Sequence types</a></li> <li><a href='#sequence_spaces'>Sequence spaces</a></li> <li><a href='#related_concepts'>Related concepts</a></li> </ul> </div> <h2 id="definitions">Definitions</h2> <p>A <strong>sequence</strong> is a <a class="existingWikiWord" href="/nlab/show/function">function</a> whose <a class="existingWikiWord" href="/nlab/show/source">domain</a> is a <a class="existingWikiWord" href="/nlab/show/subset">subset</a> of the set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">\mathbb{N}</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/natural+numbers">natural numbers</a> (or more generally a subset of the set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℤ</mi></mrow><annotation encoding="application/x-tex">\mathbb{Z}</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/integers">integers</a>; cf. <em><a class="existingWikiWord" href="/nlab/show/bi-infinite+sequence">bi-infinite sequence</a></em> and the further generalizations <a href="#Generalizations">below</a>). Often one means an <strong>infinite sequence</strong>, which is a sequence whose domain is infinite. Sequences (especially finite ones) are often called <strong><a class="existingWikiWord" href="/nlab/show/lists">lists</a></strong> in computer science. (In <a class="existingWikiWord" href="/nlab/show/constructive+mathematics">constructive mathematics</a>, the domain of a sequence must be a <a class="existingWikiWord" href="/nlab/show/decidable+subset">decidable subset</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℤ</mi></mrow><annotation encoding="application/x-tex">\mathbb{Z}</annotation></semantics></math>.)</p> <p>Sequences may also be indicated by functions <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ω</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">\omega \to X</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ω</mi></mrow><annotation encoding="application/x-tex">\omega</annotation></semantics></math> is the first countably infinite <a class="existingWikiWord" href="/nlab/show/ordinal">ordinal</a>: the key piece of structure on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">\mathbb{N}</annotation></semantics></math> relevant for the study of sequences, particularly in analysis, is the order structure.</p> <p>Up to <a class="existingWikiWord" href="/nlab/show/bijection">bijection</a>, the only possible <a class="existingWikiWord" href="/nlab/show/domains">domains</a> are those of the form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><mi>i</mi><mo lspace="verythinmathspace">:</mo><mi>ℤ</mi><mspace width="thickmathspace"></mspace><mo stretchy="false">|</mo><mspace width="thickmathspace"></mspace><mn>0</mn><mo>≤</mo><mi>i</mi><mo><</mo><mi>n</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex"> \{i\colon \mathbb{Z} \;|\; 0 \leq i \lt n\} </annotation></semantics></math></div> <p>for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mi>…</mi><mo>,</mo><mn>∞</mn></mrow><annotation encoding="application/x-tex">n = 0, 1, 2, \ldots, \infty</annotation></semantics></math>; other domains are used for notational convenience.</p> <p>An alternative generalisation takes the domain to be a set of <a class="existingWikiWord" href="/nlab/show/ordinal+numbers">ordinal numbers</a>, without loss of generality the set</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><mi>i</mi><mo lspace="verythinmathspace">:</mo><mo lspace="0em" rspace="thinmathspace">Ord</mo><mspace width="thickmathspace"></mspace><mo stretchy="false">|</mo><mspace width="thickmathspace"></mspace><mi>i</mi><mo><</mo><mi>α</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex"> \{i\colon \Ord \;|\; i \lt \alpha\} </annotation></semantics></math></div> <p>for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi></mrow><annotation encoding="application/x-tex">\alpha</annotation></semantics></math> some specific ordinal number (or the <a class="existingWikiWord" href="/nlab/show/proper+class">proper class</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Ord</mo></mrow><annotation encoding="application/x-tex">\Ord</annotation></semantics></math> of all ordinal numbers, if one wishes to allow for a proper class).</p> <p>A <em>subsequence</em> of a sequence <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>=</mo><msub><mi>a</mi> <mi>n</mi></msub><mo>:</mo><mi>ℕ</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">a = a_n: \mathbb{N} \to X</annotation></semantics></math> is a composition</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>ℕ</mi><mover><mo>→</mo><mi>i</mi></mover><mi>ℕ</mi><mover><mo>→</mo><mi>a</mi></mover><mi>X</mi></mrow><annotation encoding="application/x-tex">\mathbb{N} \stackrel{i}{\to} \mathbb{N} \stackrel{a}{\to} X</annotation></semantics></math></div> <p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math> is an order-preserving monomorphism. The salient point is that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math> be <a class="existingWikiWord" href="/nlab/show/cofinal+diagram">cofinal</a> as an embedding.</p> <h2 id="notation">Notation</h2> <p>One normally writes the value of the sequence <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math> at the argument <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math> as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>a</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">a_i</annotation></semantics></math> rather than <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">a(i)</annotation></semantics></math>. Similarly, given a term <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo stretchy="false">[</mo><mi>i</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">a[i]</annotation></semantics></math> with the free variable <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math>, one often defines a sequence whose values equal those terms as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">[</mo><mi>i</mi><mo stretchy="false">]</mo><msub><mo stretchy="false">)</mo> <mrow><mi>i</mi><mo><</mo><mi>n</mi></mrow></msub></mrow><annotation encoding="application/x-tex">(a[i])_{i \lt n}</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><mi>a</mi><mo stretchy="false">[</mo><mi>i</mi><mo stretchy="false">]</mo><msub><mo stretchy="false">}</mo> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\{a[i]\}_i</annotation></semantics></math>, or the like. In fact, one even often says literally ‘Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>a</mi> <mi>i</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a_i)</annotation></semantics></math> be a sequence.’ even though ‘Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math> be a sequence.’ would be less of an abuse of notation. This is all because notation for sequences arose before <a class="existingWikiWord" href="/nlab/show/functions">functions</a> were considered in their full generality, and one distinguished a ‘sequence’ (whose domain was a set of integers) from a ‘function’ (whose domain was an interval in the real line or a region in the complex plane). Early mathematicians also often conflated the sequence (the function itself) with its range (a subset of the function's <a class="existingWikiWord" href="/nlab/show/target">target</a>); hence the use of curly braces. All of this applies in greater generality to <a class="existingWikiWord" href="/nlab/show/families">families</a> with index sets other than <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">\mathbb{N}</annotation></semantics></math>.</p> <h2 id="Generalization">Generalisations</h2> <h3 id="nets">Nets</h3> <p>Infinite sequences are often used in <a class="existingWikiWord" href="/nlab/show/topology">topology</a>, but for topology in general, one needs to generalise to <a class="existingWikiWord" href="/nlab/show/nets">nets</a>, also called <em>Moore–Smith sequences</em>. Here one replaces the domain <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">\mathbb{N}</annotation></semantics></math> by any arbitrary <a class="existingWikiWord" href="/nlab/show/direction">directed set</a>.</p> <h3 id="sequential_nets">Sequential nets</h3> <p>Recall that <a class="existingWikiWord" href="/nlab/show/weak+countable+choice">weak countable choice</a> is a rather weak version of the <a class="existingWikiWord" href="/nlab/show/axiom+of+choice">axiom of choice</a> that is accepted even in most schools of <a class="existingWikiWord" href="/nlab/show/constructive+mathematics">constructive mathematics</a>; it follows separately from both <a class="existingWikiWord" href="/nlab/show/excluded+middle">excluded middle</a> and <a class="existingWikiWord" href="/nlab/show/countable+choice">countable choice</a>. However, when it fails (as it does in the <a class="existingWikiWord" href="/nlab/show/internal+language">internal language</a> of some widely studied <a class="existingWikiWord" href="/nlab/show/toposes">toposes</a>, such as the <a class="existingWikiWord" href="/nlab/show/topos+of+sheaves">topos of sheaves</a> over the <a class="existingWikiWord" href="/nlab/show/real+line">real line</a>), then some important results about sequences fail, including many standard results in <a class="existingWikiWord" href="/nlab/show/topology">topology</a>. In this case, we may want a slight generalisation that we call <em>sequential nets</em>.</p> <p>A <strong><a class="existingWikiWord" href="/nlab/show/sequential+net">sequential net</a></strong> is a <a class="existingWikiWord" href="/nlab/show/multi-valued+function">multi-valued function</a> from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">\mathbb{N}</annotation></semantics></math> (or a <a class="existingWikiWord" href="/nlab/show/decidable+subset">decidable</a> <a class="existingWikiWord" href="/nlab/show/subset">subset</a> thereof) to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>, that is a <a class="existingWikiWord" href="/nlab/show/span">span</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℕ</mi><mo>←</mo><mi>A</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">\mathbb{N} \leftarrow A \rightarrow X</annotation></semantics></math> where the map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>→</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">A \to \mathbb{N}</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/surjection">surjection</a> (or has a decidable range). Note that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> inherits the structure of a directed set via <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>→</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">A \to \mathbb{N}</annotation></semantics></math>, so that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">A \to X</annotation></semantics></math> is a net. As a net, every sequential net is equivalent (in the sense of corresponding to the same <a class="existingWikiWord" href="/nlab/show/filter">filter</a>) to some sequence, if you assume WCC. Without WCC, however, this equivalence fails.</p> <p>(Using a multi-valued function here is a special case of an alternative definition of <a class="existingWikiWord" href="/nlab/show/net">net</a> that uses only <a class="existingWikiWord" href="/nlab/show/partially+ordered">partially ordered</a> directed sets; see <a class="existingWikiWord" href="/nlab/show/net">net</a>. In some <a class="existingWikiWord" href="/nlab/show/foundations+of+mathematics">foundations of mathematics</a>, we can get the same result by defining a sequential net to be a <strong>presequence</strong>: a <a class="existingWikiWord" href="/nlab/show/prefunction">prefunction</a>, which is like a function but need not preserve <a class="existingWikiWord" href="/nlab/show/equality">equality</a>, from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">\mathbb{N}</annotation></semantics></math> or a decidable subset thereof.)</p> <p>Without WCC, many of the usual properties of <a class="existingWikiWord" href="/nlab/show/metric+spaces">metric spaces</a> and other <a class="existingWikiWord" href="/nlab/show/sequential+spaces">sequential spaces</a> fail, but they continue to hold using sequential nets in the place of sequences. For example, every (located Dedekind) <a class="existingWikiWord" href="/nlab/show/real+number">real number</a> may be represented as a sequential Cauchy net, even when they might not all be represented as Cauchy sequences; see <a class="existingWikiWord" href="/nlab/show/Cauchy+real+number">Cauchy real number</a>.</p> <h2 id="sequence_types">Sequence types</h2> <p>In <a class="existingWikiWord" href="/nlab/show/dependent+type+theory">dependent type theory</a>, a sequence type is simply the <a class="existingWikiWord" href="/nlab/show/function+type">function type</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℕ</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">\mathbb{N} \to A</annotation></semantics></math>, and thus comes with the following rules:</p> <p>Formation rules for sequence types:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mfrac><mrow><mi>Γ</mi><mo>⊢</mo><mi>A</mi><mspace width="thickmathspace"></mspace><mi mathvariant="normal">type</mi></mrow><mrow><mi>Γ</mi><mo>⊢</mo><mi>ℕ</mi><mo>→</mo><mi>A</mi><mspace width="thickmathspace"></mspace><mi mathvariant="normal">type</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma \vdash \mathbb{N} \to A \; \mathrm{type}}</annotation></semantics></math></div> <p>Introduction rules for sequence types:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mfrac><mrow><mi>Γ</mi><mo>⊢</mo><mi>A</mi><mspace width="thickmathspace"></mspace><mi mathvariant="normal">type</mi><mspace width="1em"></mspace><mi>Γ</mi><mo>,</mo><mi>n</mi><mo>:</mo><mi>ℕ</mi><mo>⊢</mo><mi>a</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>:</mo><mi>A</mi></mrow><mrow><mi>Γ</mi><mo>⊢</mo><mi>λ</mi><mo stretchy="false">(</mo><mi>n</mi><mo>:</mo><mi>ℕ</mi><mo stretchy="false">)</mo><mo>.</mo><mi>a</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>:</mo><mi>ℕ</mi><mo>→</mo><mi>A</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, n:\mathbb{N} \vdash a(n):A}{\Gamma \vdash \lambda(n:\mathbb{N}).a(n):\mathbb{N} \to A}</annotation></semantics></math></div> <p>Elimination rules for sequence types:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mfrac><mrow><mi>Γ</mi><mo>⊢</mo><mi>A</mi><mspace width="thickmathspace"></mspace><mi mathvariant="normal">type</mi></mrow><mrow><mi>Γ</mi><mo>,</mo><mi>a</mi><mo>:</mo><mi>ℕ</mi><mo>→</mo><mi>A</mi><mo>,</mo><mi>n</mi><mo>:</mo><mi>ℕ</mi><mo>⊢</mo><mi mathvariant="normal">ev</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>n</mi><mo stretchy="false">)</mo><mo>:</mo><mi>A</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma, a:\mathbb{N} \to A, n:\mathbb{N} \vdash \mathrm{ev}(a, n):A}</annotation></semantics></math></div> <p>Computation rules for sequence types:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mfrac><mrow><mi>Γ</mi><mo>⊢</mo><mi>A</mi><mspace width="thickmathspace"></mspace><mi mathvariant="normal">type</mi><mspace width="1em"></mspace><mi>Γ</mi><mo>,</mo><mi>n</mi><mo>:</mo><mi>ℕ</mi><mo>⊢</mo><mi>a</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>:</mo><mi>A</mi></mrow><mrow><mi>Γ</mi><mo>,</mo><mi>m</mi><mo>:</mo><mi>ℕ</mi><mo>⊢</mo><msub><mi>β</mi> <mi>Π</mi></msub><mo stretchy="false">(</mo><mi>m</mi><mo stretchy="false">)</mo><mo>:</mo><mi mathvariant="normal">ev</mi><mo stretchy="false">(</mo><mi>λ</mi><mo stretchy="false">(</mo><mi>n</mi><mo>:</mo><mi>ℕ</mi><mo stretchy="false">)</mo><mo>.</mo><mi>a</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>,</mo><mi>m</mi><mo stretchy="false">)</mo><msub><mo>=</mo> <mi>A</mi></msub><mi>a</mi><mo stretchy="false">(</mo><mi>m</mi><mo stretchy="false">)</mo></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, n:\mathbb{N} \vdash a(n):A}{\Gamma, m:\mathbb{N} \vdash \beta_\Pi(m):\mathrm{ev}(\lambda(n:\mathbb{N}).a(n), m) =_{A} a(m)}</annotation></semantics></math></div> <p>Uniqueness rules for sequence types:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mfrac><mrow><mi>Γ</mi><mo>⊢</mo><mi>A</mi><mspace width="thickmathspace"></mspace><mi mathvariant="normal">type</mi></mrow><mrow><mi>Γ</mi><mo>,</mo><mi>a</mi><mo>:</mo><mi>ℕ</mi><mo>→</mo><mi>A</mi><mo>⊢</mo><msub><mi>η</mi> <mi>Π</mi></msub><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>:</mo><mi>a</mi><msub><mo>=</mo> <mrow><mi>ℕ</mi><mo>→</mo><mi>A</mi></mrow></msub><mi>λ</mi><mo stretchy="false">(</mo><mi>n</mi><mo>:</mo><mi>ℕ</mi><mo stretchy="false">)</mo><mo>.</mo><mi>a</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma, a:\mathbb{N} \to A \vdash \eta_\Pi(a):a =_{\mathbb{N} \to A} \lambda(n:\mathbb{N}).a(n)}</annotation></semantics></math></div> <p>Sequence types also have their own extensionality principle, called <a class="existingWikiWord" href="/nlab/show/sequence+extensionality">sequence extensionality</a>. This states that given two sequences <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>:</mo><mi>ℕ</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">a:\mathbb{N} \to A</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi><mo>:</mo><mi>ℕ</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">b:\mathbb{N} \to A</annotation></semantics></math> there is an <a class="existingWikiWord" href="/nlab/show/equivalence+of+types">equivalence of types</a> between the <a class="existingWikiWord" href="/nlab/show/identity+type">identity type</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><msub><mo>=</mo> <mrow><mi>ℕ</mi><mo>→</mo><mi>A</mi></mrow></msub><mi>b</mi></mrow><annotation encoding="application/x-tex">a =_{\mathbb{N} \to A} b</annotation></semantics></math> and the <a class="existingWikiWord" href="/nlab/show/dependent+sequence+type">dependent sequence type</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>:</mo><mi>ℕ</mi><mo stretchy="false">)</mo><mo>→</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><msub><mo>=</mo> <mi>A</mi></msub><mi>b</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n:\mathbb{N}) \to (a(n) =_{A} b(n))</annotation></semantics></math>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mfrac><mrow><mi>Γ</mi><mo>⊢</mo><mi>A</mi><mspace width="thickmathspace"></mspace><mi mathvariant="normal">type</mi></mrow><mrow><mi>Γ</mi><mo>,</mo><mi>a</mi><mo>:</mo><mi>ℕ</mi><mo>→</mo><mi>A</mi><mo>,</mo><mi>b</mi><mo>:</mo><mi>ℕ</mi><mo>→</mo><mi>A</mi><mo>⊢</mo><mi mathvariant="normal">seqext</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>:</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mo>=</mo> <mrow><mi>ℕ</mi><mo>→</mo><mi>A</mi></mrow></msub><mi>b</mi><mo stretchy="false">)</mo><mo>≃</mo><mo stretchy="false">(</mo><mi>n</mi><mo>:</mo><mi>ℕ</mi><mo stretchy="false">)</mo><mo>→</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><msub><mo>=</mo> <mi>A</mi></msub><mi>b</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma, a:\mathbb{N} \to A, b:\mathbb{N} \to A \vdash \mathrm{seqext}(a, b):(a =_{\mathbb{N} \to A} b) \simeq (n:\mathbb{N}) \to (a(n) =_{A} b(n))}</annotation></semantics></math></div> <p>Sequence types are used in <a class="existingWikiWord" href="/nlab/show/strongly+predicative+mathematics">strongly predicative mathematics</a>, where one does not have <a class="existingWikiWord" href="/nlab/show/function+types">function types</a>, to construct the <a class="existingWikiWord" href="/nlab/show/real+numbers">real numbers</a>.</p> <h2 id="sequence_spaces">Sequence spaces</h2> <p>In <a class="existingWikiWord" href="/nlab/show/functional+analysis">functional analysis</a>, one considers <a class="existingWikiWord" href="/nlab/show/topological+vector+spaces">topological vector spaces</a> of infinite sequences; these are the <a class="existingWikiWord" href="/nlab/show/sequence+spaces">sequence spaces</a>. (Actually, these generalise quite nicely to <a class="existingWikiWord" href="/nlab/show/net">net</a> spaces.)</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/limit+of+a+sequence">limit of a sequence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequentially+compact+space">sequentially compact space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequence+algebra">sequence algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequential+net">sequential net</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/tuple">tuple</a>, <strong>sequence</strong>, <a class="existingWikiWord" href="/nlab/show/function">function</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dependent+tuple">dependent tuple</a>, <a class="existingWikiWord" href="/nlab/show/dependent+sequence">dependent sequence</a>, <a class="existingWikiWord" href="/nlab/show/dependent+function">dependent function</a></p> </li> </ul> <p>Not all that related, but similar sounding:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/sequential+limit">sequential limit</a></li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on January 9, 2023 at 23:27:59. See the <a href="/nlab/history/sequence" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/sequence" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussions/?CategoryID=0">Discuss</a><span class="backintime"><a href="/nlab/revision/sequence/25" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/sequence" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/sequence" accesskey="S" class="navlink" id="history" rel="nofollow">History (25 revisions)</a> <a href="/nlab/show/sequence/cite" style="color: black">Cite</a> <a href="/nlab/print/sequence" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/sequence" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>