CINXE.COM

Search results for: reaction rate constant

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: reaction rate constant</title> <meta name="description" content="Search results for: reaction rate constant"> <meta name="keywords" content="reaction rate constant"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="reaction rate constant" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="reaction rate constant"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11640</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: reaction rate constant</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11640</span> Teaching and Learning Dialectical Relationship between Thermodynamic Equilibrium and Reaction Rate Constant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Anwar">Mohammad Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Waliullah"> Shah Waliullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of science and technology in the present era has an urgent demand for the training of thinking of undergraduates. This requirement actively promotes research and teaching of basic theories, beneficial to the career development of students. This study clarified the dialectical relation between the thermodynamic equilibrium constant and reaction rate constant through the contrast thinking method. Findings reveal that both the isobaric Van't Hoff equation and the Arrhenius equation had four similar forms, and the change in the trend of both constants showed a similar law. By the derivation of the formation rate constant of the product (KY) and the consumption rate constant of the reactant (KA), the ratio of both constants at the end state indicated the nature of the equilibrium state in agreement with that of the thermodynamic equilibrium constant (K^θ (T)). This study has thus presented that the thermodynamic equilibrium constant contained the characteristics of microscopic dynamics based on the analysis of the reaction mechanism, and both constants are organically connected and unified. The reaction enthalpy and activation energy are closely related to each other with the same connotation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20equilibrium%20constant" title="thermodynamic equilibrium constant">thermodynamic equilibrium constant</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20rate%20constant" title=" reaction rate constant"> reaction rate constant</a>, <a href="https://publications.waset.org/abstracts/search?q=PBL%20teaching" title=" PBL teaching"> PBL teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=dialectical%20relation" title=" dialectical relation"> dialectical relation</a>, <a href="https://publications.waset.org/abstracts/search?q=innovative%20thinking" title=" innovative thinking"> innovative thinking</a> </p> <a href="https://publications.waset.org/abstracts/161693/teaching-and-learning-dialectical-relationship-between-thermodynamic-equilibrium-and-reaction-rate-constant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11639</span> Energy Consumption in Biodiesel Production at Various Kinetic Reaction of Transesterification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sariah%20Abang">Sariah Abang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Anisuzzaman"> S. M. Anisuzzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Awang%20Bono"> Awang Bono</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Krishnaiah"> D. Krishnaiah</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rasmih"> S. Rasmih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel is a potential renewable energy due to biodegradable and non-toxic. The challenge of its commercialization is associated with high production cost due to its feedstock also useful in various food products. Non-competitive feedstock such as waste cooking oils normally contains a large amount of free fatty acids (FFAs). Large amount of fatty acid degrades the alkaline catalyst in the biodiesel production, thereby decreasing the biodiesel production rate. Generally, biodiesel production processes including esterification and trans-esterification are conducting in a mixed system, in which the hydrodynamic effect on the reaction could not be completely defined. The aim of this study was to investigate the effect of variation rate constant and activation energy on energy consumption of biodiesel production. Usually, the changes of rate constant and activation energy depend on the operating temperature and the degradation of catalyst. By varying the activation energy and kinetic rate constant, the effects can be seen on the energy consumption of biodiesel production. The result showed that the energy consumption of biodiesel is dependent on the changes of rate constant and activation energy. Furthermore, this study was simulated using Aspen HYSYS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methanol" title="methanol">methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil" title=" palm oil"> palm oil</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=triolein" title=" triolein"> triolein</a> </p> <a href="https://publications.waset.org/abstracts/66326/energy-consumption-in-biodiesel-production-at-various-kinetic-reaction-of-transesterification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11638</span> Influence of Cationic Surfactant (TTAB) on the Rate of Dipeptide (Gly-DL-Asp) Ninhydrin Reaction in Absence and Presence of Organic Solvents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd.%20Akram">Mohd. Akram</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20M.%20Saeed"> A. A. M. Saeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surfactants are widely used in our daily life either directly in household and personal care products or indirectly in the industrial processes. The kinetics of the interaction of glycyl-DL-aspartic acid (Gly-DL-Asp) with ninhydrin has been investigated spectrophotometrically in aqueous and organic-solvent media in the absence and presence of cationic surfactant of tetradecyltrimethylammonium bromide (TTAB). The study was carried out under different experimental conditions. The first and fractional order-rate were observed for [Gly-DL-Asp] and [ninhydrin], respectively. The reaction was enhanced about four-fold by TTAB micelles. The effect of organic solvents was studied at a constant concentration of TTAB and showed an increase in the absorbance as well as the rate constant for the formation of product (Ruhemann's purple). The results obtained in micellar media are treated quantitatively in terms of pseudo-phase and Piszkiewicz cooperativity models. The Arrhenius and Eyring equations are valid for the reaction over the range of temperatures used and different activation parameters (Ea, ∆H#, ∆S#, and ∆G#) have been evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glycyl-DL-aspartic%20acid" title="glycyl-DL-aspartic acid">glycyl-DL-aspartic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=ninhydrin" title=" ninhydrin"> ninhydrin</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solvents" title=" organic solvents"> organic solvents</a>, <a href="https://publications.waset.org/abstracts/search?q=TTAB" title=" TTAB"> TTAB</a> </p> <a href="https://publications.waset.org/abstracts/18950/influence-of-cationic-surfactant-ttab-on-the-rate-of-dipeptide-gly-dl-asp-ninhydrin-reaction-in-absence-and-presence-of-organic-solvents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11637</span> Oxidation of Amitriptyline by Bromamine-T in Acidic Buffer Medium: A Kinetic and Mechanistic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandrashekar">Chandrashekar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20T.%20Radhika"> R. T. Radhika</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Venkatesha"> B. M. Venkatesha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ananda"> S. Ananda</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivalingegowda"> Shivalingegowda</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Shashikumar"> T. S. Shashikumar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ramachandra"> H. Ramachandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The kinetics of the oxidation of amitriptyline (AT) by sodium N-bromotoluene sulphonamide (C<sub>6</sub>H<sub>5</sub>SO<sub>2</sub>NBrNa) has been studied in an acidic buffer medium of pH 1.2 at 303 K. The oxidation reaction of AT was followed spectrophotometrically at maximum wavelength, 410 nm. The reaction rate shows a first order dependence each on concentration of AT and concentration of sodium N-bromotoluene sulphonamide. The reaction also shows an inverse fractional order dependence at low or high concentration of HCl. The dielectric constant of the solvent shows negative effect on the rate of reaction. The addition of halide ions and the reduction product of BAT have no significant effect on the rate. The rate is unchanged with the variation in the ionic strength (NaClO<sub>4</sub>) of the medium. Addition of reaction mixtures to be aqueous acrylamide solution did not initiate polymerization, indicating the absence of free radical species. The stoichiometry of the reaction was found to be 1:1 and oxidation product of AT is identified. The Michaelis-Menton type of kinetics has been proposed. The CH<sub>3</sub>C<sub>6</sub>H<sub>5</sub>SO<sub>2</sub>NHBr has been assumed to be the reactive oxidizing species. Thermodynamical parameters were computed by studying the reactions at different temperatures. A mechanism consistent with observed kinetics is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amitriptyline" title="amitriptyline">amitriptyline</a>, <a href="https://publications.waset.org/abstracts/search?q=bromamine-T" title=" bromamine-T"> bromamine-T</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a> </p> <a href="https://publications.waset.org/abstracts/50625/oxidation-of-amitriptyline-by-bromamine-t-in-acidic-buffer-medium-a-kinetic-and-mechanistic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11636</span> Recovery of Hydrogen Converter Efficiency Affected by Poisoning of Catalyst with Increasing of Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enayat%20Enayati">Enayat Enayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Behtash"> Reza Behtash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the H2 removal system is to reduce a content of hydrogen and other combustibles in the CO2 feed owing to avoid developing a possible explosive condition in the synthesis. In order to reduce the possibility of forming an explosive gas mixture in the synthesis as much as possible, the hydrogen percent in the fresh CO2, will be removed in hydrogen converter. Therefore the partly compressed CO2/Air mixture is led through Hydrogen converter (Reactor) where the H2, present in the CO2, is reduced by catalytic combustion to values less than 50 ppm (vol). According the following exothermic chemical reaction: 2H2 + O2 → 2H2O + Heat. The catalyst in hydrogen converter consist of platinum on a aluminum oxide carrier. Low catalyst activity maybe due to catalyst poisoning. This will result in an increase of the hydrogen content in the CO2 to the synthesis. It is advised to shut down the plant when the outlet of hydrogen converter increased above 100 ppm, to prevent undesirable gas composition in the plant. Replacement of catalyst will be time exhausting and costly so as to prevent this, we increase the inlet temperature of hydrogen converter according to following Arrhenius' equation: K=K0e (-E_a/RT) K is rate constant of a chemical reaction where K0 is the pre-exponential factor, E_a is the activation energy, and R is the universal gas constant. Increment of inlet temperature of hydrogen converter caused to increase the rate constant of chemical reaction and so declining the amount of hydrogen from 125 ppm to 70 ppm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalyst" title="catalyst">catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=converter" title=" converter"> converter</a>, <a href="https://publications.waset.org/abstracts/search?q=poisoning" title=" poisoning"> poisoning</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature "> temperature </a> </p> <a href="https://publications.waset.org/abstracts/28704/recovery-of-hydrogen-converter-efficiency-affected-by-poisoning-of-catalyst-with-increasing-of-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">819</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11635</span> Reaction Kinetics of Biodiesel Production from Refined Cottonseed Oil Using Calcium Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ude%20N.%20Callistus">Ude N. Callistus</a>, <a href="https://publications.waset.org/abstracts/search?q=Amulu%20F.%20Ndidi"> Amulu F. Ndidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Onukwuli%20D.%20Okechukwu"> Onukwuli D. Okechukwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Amulu%20E.%20Patrick"> Amulu E. Patrick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power law approximation was used in this study to evaluate the reaction orders of calcium oxide, CaO catalyzed transesterification of refined cottonseed oil and methanol. The kinetics study was carried out at temperatures of 45, 55 and 65 <sup>o</sup>C. The kinetic parameters such as reaction order 2.02 and rate constant 2.8 hr<sup>-1</sup>g<sup>-1</sup>cat, obtained at the temperature of 65 <sup>o</sup>C best fitted the kinetic model. The activation energy, Ea obtained was 127.744 KJ/mol. The results indicate that the transesterification reaction of the refined cottonseed oil using calcium oxide catalyst is approximately second order reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=refined%20cottonseed%20oil" title="refined cottonseed oil">refined cottonseed oil</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=CaO" title=" CaO"> CaO</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalysts" title=" heterogeneous catalysts"> heterogeneous catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20model" title=" kinetic model"> kinetic model</a> </p> <a href="https://publications.waset.org/abstracts/36873/reaction-kinetics-of-biodiesel-production-from-refined-cottonseed-oil-using-calcium-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11634</span> Implication of Fractal Kinetics and Diffusion Limited Reaction on Biomass Hydrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sibashish%20Baksi">Sibashish Baksi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ujjaini%20Sarkar"> Ujjaini Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudeshna%20Saha"> Sudeshna Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, hydrolysis of Pinus roxburghi wood powder was carried out with Viscozyme, and kinetics of the hydrolysis has been investigated. Finely ground sawdust is submerged into 2% aqueous peroxide solution (pH=11.5) and pretreated through autoclaving, probe sonication, and alkaline peroxide pretreatment. Afterward, the pretreated material is subjected to hydrolysis. A chain of experiments was executed with delignified biomass (50 g/l) and varying enzyme concentrations (24.2–60.5 g/l). In the present study, 14.32 g/l of glucose, along with 7.35 g/l of xylose, have been recovered with a viscozyme concentration of 48.8 g/l and the same condition was treated as optimum condition. Additionally, thermal deactivation of viscozyme has been investigated and found to be gradually decreasing with escalated enzyme loading from 48.4 g/l (dissociation constant= 0.05 h⁻¹) to 60.5 g/l (dissociation constant= 0.02 h⁻¹). The hydrolysis reaction is a pseudo first-order reaction, and therefore, the rate of the hydrolysis can be expressed as a fractal-like kinetic equation that communicates between the product concentration and hydrolytic time t. It is seen that the value of rate constant (K) increases from 0.008 to 0.017 with augmented enzyme concentration from 24.2 g/l to 60.5 g/l. Greater value of K is associated with stronger enzyme binding capacity of the substrate mass. However, escalated concentration of supplied enzyme ensures improved interaction with more substrate molecules resulting in an enhanced de-polymerization of the polymeric sugar chains per unit time which eventually modifies the physiochemical structure of biomass. All fractal dimensions are in between 0 and 1. Lower the value of fractal dimension, more easily the biomass get hydrolyzed. It can be seen that with increased enzyme concentration from 24.2 g/l to 48.4 g/l, the values of fractal dimension go down from 0.1 to 0.044. This indicates that the presence of more enzyme molecules can more easily hydrolyze the substrate. However, an increased value has been observed with a further increment of enzyme concentration to 60.5g/l because of diffusional limitation. It is evident that the hydrolysis reaction system is a heterogeneous organization, and the product formation rate depends strongly on the enzyme diffusion resistances caused by the rate-limiting structures of the substrate-enzyme complex. Value of the rate constant increases from 1.061 to 2.610 with escalated enzyme concentration from 24.2 to 48.4 g/l. As the rate constant is proportional to Fick’s diffusion coefficient, it can be assumed that with a higher concentration of enzyme, a larger amount of enzyme mass dM diffuses into the substrate through the surface dF per unit time dt. Therefore, a higher rate constant value is associated with a faster diffusion of enzyme into the substrate. Regression analysis of time curves with various enzyme concentrations shows that diffusion resistant constant increases from 0.3 to 0.51 for the first two enzyme concentrations and again decreases with enzyme concentration of 60.5 g/l. During diffusion in a differential scale, the enzyme also experiences a greater resistance during diffusion of larger dM through dF in dt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscozyme" title="viscozyme">viscozyme</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20kinetics" title=" fractal kinetics"> fractal kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20deactivation" title=" thermal deactivation"> thermal deactivation</a> </p> <a href="https://publications.waset.org/abstracts/116453/implication-of-fractal-kinetics-and-diffusion-limited-reaction-on-biomass-hydrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11633</span> Reaction Rate Behavior of a Methane-Air Mixture over a Platinum Catalyst in a Single Channel Catalytic Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doo%20Ki%20Lee">Doo Ki Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumaresh%20Selvakumar"> Kumaresh Selvakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catalytic combustion is an environmentally friendly technique to combust fuels in gas turbines. In this paper, the behavior of surface reaction rate on catalytic combustion is studied with respect to the heterogeneous oxidation of methane-air mixture in a catalytic reactor. Plug flow reactor (PFR), the simplified single catalytic channel assists in investigating the catalytic combustion phenomenon over the Pt catalyst by promoting the desired chemical reactions. The numerical simulation with multi-step elementary surface reactions is governed by the availability of free surface sites onto the catalytic surface and thereby, the catalytic combustion characteristics are demonstrated by examining the rate of the reaction for lean fuel mixture. Further, two different surface reaction mechanisms are adopted and compared for surface reaction rates to indicate the controlling heterogeneous reaction for better fuel conversion. The performance of platinum catalyst under heterogeneous reaction is analyzed under the same temperature condition, where the catalyst with the higher kinetic rate of reaction would have a maximum catalytic activity for enhanced methane catalytic combustion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic%20combustion" title="catalytic combustion">catalytic combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20reaction" title=" heterogeneous reaction"> heterogeneous reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=plug%20flow%20reactor" title=" plug flow reactor"> plug flow reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20reaction%20rate" title=" surface reaction rate"> surface reaction rate</a> </p> <a href="https://publications.waset.org/abstracts/77722/reaction-rate-behavior-of-a-methane-air-mixture-over-a-platinum-catalyst-in-a-single-channel-catalytic-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11632</span> Experimental Assessment of Artificial Flavors Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Unis">M. Unis</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Turky"> S. Turky</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Elalem"> A. Elalem</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Meshrghi"> A. Meshrghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Esterification kinetics of acetic acid with isopropnol in the presence of sulfuric acid as a homogenous catalyst was studied with isothermal batch experiments at 60,70 and 80°C and at a different molar ratio of isopropnol to acetic acid. Investigation of kinetics of the reaction indicated that the low of molar ratio is favored for esterification reaction, this is due to the reaction is catalyzed by acid. The maximum conversion, approximately 60.6% was obtained at 80°C for molar ratio of 1:3 acid : alcohol. It was found that increasing temperature of the reaction, increases the rate constant and conversion at a certain mole ratio, that is due to the esterification is exothermic. The homogenous reaction has been described with simple power-law model. The chemical equilibrium combustion calculated from the kinetic model in agreement with the measured chemical equilibrium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20flavors" title="artificial flavors">artificial flavors</a>, <a href="https://publications.waset.org/abstracts/search?q=esterification" title=" esterification"> esterification</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20equilibria" title=" chemical equilibria"> chemical equilibria</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal" title=" isothermal "> isothermal </a> </p> <a href="https://publications.waset.org/abstracts/18398/experimental-assessment-of-artificial-flavors-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11631</span> 3-D Modeling of Particle Size Reduction from Micro to Nano Scale Using Finite Difference Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Himanshu%20Singh">Himanshu Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rishi%20Kant"> Rishi Kant</a>, <a href="https://publications.waset.org/abstracts/search?q=Shantanu%20Bhattacharya"> Shantanu Bhattacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper adopts a top-down approach for mathematical modeling to predict the size reduction from micro to nano-scale through persistent etching. The process is simulated using a finite difference approach. Previously, various researchers have simulated the etching process for 1-D and 2-D substrates. It consists of two processes: 1) Convection-Diffusion in the etchant domain; 2) Chemical reaction at the surface of the particle. Since the process requires analysis along moving boundary, partial differential equations involved cannot be solved using conventional methods. In 1-D, this problem is very similar to Stefan's problem of moving ice-water boundary. A fixed grid method using finite volume method is very popular for modelling of etching on a one and two dimensional substrate. Other popular approaches include moving grid method and level set method. In this method, finite difference method was used to discretize the spherical diffusion equation. Due to symmetrical distribution of etchant, the angular terms in the equation can be neglected. Concentration is assumed to be constant at the outer boundary. At the particle boundary, the concentration of the etchant is assumed to be zero since the rate of reaction is much faster than rate of diffusion. The rate of reaction is proportional to the velocity of the moving boundary of the particle. Modelling of the above reaction was carried out using Matlab. The initial particle size was taken to be 50 microns. The density, molecular weight and diffusion coefficient of the substrate were taken as 2.1 gm/cm3, 60 and 10-5 cm2/s respectively. The etch-rate was found to decline initially and it gradually became constant at 0.02µ/s (1.2µ/min). The concentration profile was plotted along with space at different time intervals. Initially, a sudden drop is observed at the particle boundary due to high-etch rate. This change becomes more gradual with time due to declination of etch rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20reduction" title="particle size reduction">particle size reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=micromixer" title=" micromixer"> micromixer</a>, <a href="https://publications.waset.org/abstracts/search?q=FDM%20modelling" title=" FDM modelling"> FDM modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20etching" title=" wet etching"> wet etching</a> </p> <a href="https://publications.waset.org/abstracts/33039/3-d-modeling-of-particle-size-reduction-from-micro-to-nano-scale-using-finite-difference-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11630</span> Kinetics and Mechanism of Oxidation of Dimethylglyoxime Chromium (III) Complex by Periodate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Abdel-Khalek">Ahmed A. Abdel-Khalek</a>, <a href="https://publications.waset.org/abstracts/search?q=Reham%20A.%20Mohamed"> Reham A. Mohamed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The kinetics of oxidation of binary complex [CrIII(DMG)2(H2O)4 ]+ to Cr(VI) by periodate has been investigated spectrophotometrically where, [DMG= Dimethylglyoxime] at 370nm under pseudo first order reaction conditions in aqueous medium over 20- 40ºC range, PH 2-3, and I=0.07 mol dm-3. The reaction is first order with respect to both [IO4-] and Cr(III), and the reaction increased with PH increased. Thermodymanic activation parameters have been calculated. It is suggested that electron transfer proceeds through an inner sphere mechanism via coordination of IO4- to Cr (III). The reaction obeys the following rate law Rate= {k1 K5+ k2 K6 K2 } [Cr III (DMG)2(H2O)4 ]+ [H5IO6]. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium" title="chromium">chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=dimethylglyoxime" title=" dimethylglyoxime"> dimethylglyoxime</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=periodate" title=" periodate"> periodate</a> </p> <a href="https://publications.waset.org/abstracts/30916/kinetics-and-mechanism-of-oxidation-of-dimethylglyoxime-chromium-iii-complex-by-periodate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11629</span> Optimization of Leaching Properties of a Low-Grade Copper Ore Using Central Composite Design (CCD)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lawrence%20Koech">Lawrence Koech</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto"> Hilary Rutto</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Mothibedi"> Olga Mothibedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Worldwide demand for copper has led to intensive search for methods of extraction and recovery of copper from different sources. The study investigates the leaching properties of a low-grade copper ore by optimizing the leaching variables using response surface methodology. The effects of key parameters, i.e., temperature, solid to liquid ratio, stirring speed and pH, on the leaching rate constant was investigated using a pH stat apparatus. A Central Composite Design (CCD) of experiments was used to develop a quadratic model which specifically correlates the leaching variables and the rate constant. The results indicated that the model is in good agreement with the experimental data with a correlation coefficient (R2) of 0.93. The temperature and solid to liquid ratio were found to have the most substantial influence on the leaching rate constant. The optimum operating conditions for copper leaching from the ore were identified as temperature at 65C, solid to liquid ratio at 1.625 and stirring speed of 325 rpm which yielded an average leaching efficiency of 93.16%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper" title="copper">copper</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=CCD" title=" CCD"> CCD</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20constant" title=" rate constant"> rate constant</a> </p> <a href="https://publications.waset.org/abstracts/59859/optimization-of-leaching-properties-of-a-low-grade-copper-ore-using-central-composite-design-ccd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11628</span> Kinetic Study of the Esterification of Unsaturated Fatty Acids from Salmon Oil (Salmosalar L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Luis%20Lima%20de%20Oliveira">André Luis Lima de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20L%C3%BAcia%20Viana%20do%20Nascimento"> Vera Lúcia Viana do Nascimento</a>, <a href="https://publications.waset.org/abstracts/search?q=Vict%C3%B3ria%20Maura%20Silva%20Bermudez">Victória Maura Silva Bermudez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Nunes%20Kleinberg"> Mauricio Nunes Kleinberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Carlos%20da%20Costa%20Assun%C3%A7%C3%A3o"> João Carlos da Costa Assunção</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Osvaldo%20Beserra%20Carioca"> José Osvaldo Beserra Carioca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to synthesize a triglyceride with high content of unsaturated fatty acids from salmon oil (Salmo salar L.) by esterification with glycerol catalyzed dealuminized zeolite. A kinetic study was conducted to determine the reaction order and the activation energy. A statistical study was conducted to determine optimal reaction conditions. Initially, the crude oil was refined salmon physically and chemically. The crude oil was hydrolyzed and unsaturated free fatty acids were separated by urea complexation method. An experimental project to verify the parameters (temperature, glycerin and catalyst) with the greatest impact on the reaction was developed. In experiments aliquots were taken at predetermined times to measure the amount of free fatty acids. Pareto, surface, contour and hub graphs were used to determine the factors that maximized the reaction. According to the graphs the best reaction conditions were: temperature 80 ° C, the proportion glycerine/oil 5: 1 and 1% of catalyst. The kinetic data showed that the system was compatible with a second-order reaction. After analyzing the rate constant versus temperature charts a value of 85.31 kJ/mol was obtained for the reaction activation energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=esterification" title="esterification">esterification</a>, <a href="https://publications.waset.org/abstracts/search?q=kinect" title=" kinect"> kinect</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=salmon" title=" salmon"> salmon</a> </p> <a href="https://publications.waset.org/abstracts/21393/kinetic-study-of-the-esterification-of-unsaturated-fatty-acids-from-salmon-oil-salmosalar-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11627</span> Kinetic Aspect Investigation of Chitosan / Nanohydroxyapatite / Na ₂CO₃ Gel System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20D.%20Perera">P. S. D. Perera</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20U.%20Adikary"> S. U. Adikary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gelation behavior of Chitosan/nanohydroxyapatite sol in the presence of a crosslinking agent Na ₂CO₃ was investigated experimentally. In this case, the gelation time(tgel) was determined by the rheological measurements of the final mixture. The tgel has been determined from dynamic viscosity slope experiments. We found that chitosan/nHA sol with 1% nano-hydroxyapatite and 1.6% Na2CO3 required coagulant performance. Hence Na ₂CO₃ and nanohydroxyapatite concentrations remain constant over the experiment. The order of reaction was first order with respect to chitosan and rate constant of the gel system was 9.0 x 10-4 s-1, respectively, depending on the temperature of the system. The gelation temperature was carried out at 37 ⁰C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinetics" title="kinetics">kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=gelation" title=" gelation"> gelation</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20system" title=" sol-gel system"> sol-gel system</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan%2F%20nHA%2F%20Na%20%E2%82%82CO%E2%82%83%20composite" title=" chitosan/ nHA/ Na ₂CO₃ composite"> chitosan/ nHA/ Na ₂CO₃ composite</a> </p> <a href="https://publications.waset.org/abstracts/143713/kinetic-aspect-investigation-of-chitosan-nanohydroxyapatite-na-2co3-gel-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11626</span> Reaction Kinetics for the Pyrolysis of Urea Phosphate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20Broodryk">P. A. Broodryk</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Van%20Der%20Merwe"> A. F. Van Der Merwe</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20W.%20J.%20P.%20Neomagus"> H. W. J. P. Neomagus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The production of the clear liquid fertilizer ammonium polyphosphate (APP) is best achieved by the pyrolysis of urea phosphate, as it produces a product that is free from any of the impurities present in the raw phosphoric acid it was made from. This is a multiphase, multi-step reaction that produces carbon dioxide and ammonia as gasses and ammonium polyphosphate as liquid products. The polyphosphate chain length affects the solubility and thus the applicability of the product as liquid fertiliser, thus proper control of the reaction conditions is thus required for the use of this reaction in the production of fertilisers. This study investigates the reaction kinetics of the aforementioned reaction, describing a mathematical model for the kinetics of the reaction along with the accompanying rate constants. The reaction is initially exothermic, producing only carbon dioxide as a gas product and ammonium diphosphate, at higher temperatures the reaction becomes endothermic, producing ammonia gas as an additional by-product and longer chain polyphosphates, which when condensed too far becomes highly water insoluble. The aim of this study was to (i) characterise the pyrolysis reaction of urea phosphate by determining the mechanisms and the associated kinetic constants, and (ii) to determine the optimum conditions for ammonium diphosphate production. A qualitative investigation was also done to find the rate of hydrolysis of APP as this provides an estimate of the shelf life of an APP clear liquid fertiliser solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20polyphosphate" title="ammonium polyphosphate">ammonium polyphosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=urea%20phosphate" title=" urea phosphate"> urea phosphate</a> </p> <a href="https://publications.waset.org/abstracts/92068/reaction-kinetics-for-the-pyrolysis-of-urea-phosphate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11625</span> Flow-Through Supercritical Installation for Producing Biodiesel Fuel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20A.%20Shapovalov">Y. A. Shapovalov</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Gumerov"> F. M. Gumerov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Nauryzbaev"> M. K. Nauryzbaev</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20Mazanov"> S. V. Mazanov</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Usmanov"> R. A. Usmanov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Klinov"> A. V. Klinov</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20K.%20Safiullina"> L. K. Safiullina</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Soshin"> S. A. Soshin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A flow-through installation was created and manufactured for the transesterification of triglycerides of fatty acids and production of biodiesel fuel under supercritical fluid conditions. Transesterification of rapeseed oil with ethanol was carried out according to two parameters: temperature and the ratio of alcohol/oil mixture at the constant pressure of 19 MPa. The kinetics of the yield of fatty acids ethyl esters (FAEE) was determined in the temperature range of 320-380 &deg;C at the alcohol/oil molar ratio of 6:1-20:1. The content of the formed FAEE was determined by the method of correlation of the resulting biodiesel fuel by its kinematic viscosity. The maximum FAEE yield (about 90%) was obtained within 30 min at the ethanol/oil molar ratio of 12:1 and a temperature of 380 &deg;C. When studying of transesterification of triglycerides, a kinetic model of an isothermal flow reactor was used. The reaction order implemented in the flow reactor has been determined. The first order of the reaction was confirmed by data on the conversion of FAEE during the reaction at different temperatures and the molar ratios of the initial reagents (ethanol/oil). Using the Arrhenius equation, the values of the effective constants of the transesterification reaction rate were calculated at different reaction temperatures. In addition, based on the experimental data, the activation energy and the pre-exponential factor of the transesterification reaction were determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20esters" title=" fatty acid esters"> fatty acid esters</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20fluid%20technology" title=" supercritical fluid technology"> supercritical fluid technology</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/124693/flow-through-supercritical-installation-for-producing-biodiesel-fuel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11624</span> Brief Inquisition of Photocatalytic Degradation of Azo Dyes by Magnetically Enhanced Zinc Oxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thian%20Khoon%20Tan">Thian Khoon Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Poi%20Sim%20Khiew"> Poi Sim Khiew</a>, <a href="https://publications.waset.org/abstracts/search?q=Wee%20Siong%20Chiu"> Wee Siong Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin%20Hua%20Chia"> Chin Hua Chia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the efficacy of magnetically enhanced zinc oxide (MZnO) nanoparticles as a photocatalyst in the photodegradation of synthetic dyes, especially azo dyes. This magnetised zinc oxide has been simply fabricated by mechanical mixing through low-temperature calcination. This MZnO has been analysed through several analytical measurements, including FESEM, XRD, BET, EDX, and TEM, as well as VSM analysis which reflects successful fabrication. A high volume of azo dyes was found in industries effluent wastewater. They contribute to serious environmental stability and are very harmful to human health due to their high stability and carcinogenic properties. Therefore, five azo dyes, Reactive Red 120 (RR120), Disperse Blue 15 (DB15), Acid Brown 14 (AB14), Orange G (OG), and Acid Orange 7 (AO7), have been randomly selected to study their photodegradation property with reference to few characteristics, such as number of azo functional groups, benzene groups, molecular mass, and absorbance. The photocatalytic degradation efficiency was analysed by using a UV-vis spectrophotometer, where the reaction rate constant was obtained. It was found that azo dyes were significantly degraded through the first-order rate constant, which shows a higher kinetic constant as the number of azo functional groups and benzene group increases. However, the kinetic constant is inversely proportional to the molecular weight of these azo dyes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetically%20enhanced" title=" magnetically enhanced"> magnetically enhanced</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20dyes" title=" synthetic dyes"> synthetic dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=azo%20dyes" title=" azo dyes"> azo dyes</a> </p> <a href="https://publications.waset.org/abstracts/193545/brief-inquisition-of-photocatalytic-degradation-of-azo-dyes-by-magnetically-enhanced-zinc-oxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11623</span> A New Approach on the Synthesis of Zinc Borates by Ultrasonic Method and Determination of the Zinc Oxide and Boric Acid Optimum Molar Ratio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ersan">A. Ersan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Kipcak"> A. S. Kipcak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Yildirim"> M. Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Erayvaz"> A. M. Erayvaz</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Derun"> E. M. Derun</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Piskin"> S. Piskin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tugrul"> N. Tugrul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc borates are used as a multi-functional flame retardant additive for its high dehydration temperature. In this study, a new method of ultrasonic mixing was used in the synthesis of zinc borates. The reactants of zinc oxide (ZnO) and boric acid (H3BO3) were used at the constant reaction parameters of 90°C reaction temperature and 55 min of reaction time. Several molar ratios of ZnO:H3BO3 (1:1, 1:2, 1:3, 1:4, and 1:5) were conducted for the determination of the optimum reaction ratio. Prior to the synthesis, the characterization of the synthesized zinc borates were made by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). From the results Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], were synthesized optimum at the molar ratio of 1:3, with a reaction efficiency of 95.2%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zinc%20borates" title="zinc borates">zinc borates</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20mixing" title=" ultrasonic mixing"> ultrasonic mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=FT-IR" title=" FT-IR"> FT-IR</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20efficiency" title=" reaction efficiency"> reaction efficiency</a> </p> <a href="https://publications.waset.org/abstracts/32403/a-new-approach-on-the-synthesis-of-zinc-borates-by-ultrasonic-method-and-determination-of-the-zinc-oxide-and-boric-acid-optimum-molar-ratio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11622</span> An Experimental Study of the Parameters Affecting the Compression Index of Clay Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rami%20Rami%20Mahmoud%20Bakr">Rami Rami Mahmoud Bakr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The constant rate of strain (CRS) test is a rapid technique that effectively measures specific properties of cohesive soil, including the rate of consolidation, hydraulic conductivity, compressibility, and stress history. Its simple operation and frequent readings enable efficient definition, especially of the compression curve. However, its limitations include an inability to handle strain-rate-dependent soil behavior, initial transient conditions, and pore pressure evaluation errors. There are currently no effective techniques for interpreting CRS data. In this study, experiments were performed to evaluate the effects of different parameters on CRS results. Extensive tests were performed on two types of clay to analyze the soil behavior during strain consolidation at a constant rate. The results were used to evaluate the transient conditions and pore pressure system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constant%20rate%20of%20strain%20%28CRS%29" title="constant rate of strain (CRS)">constant rate of strain (CRS)</a>, <a href="https://publications.waset.org/abstracts/search?q=resedimented%20boston%20blue%20clay%20%28RBBC%29" title=" resedimented boston blue clay (RBBC)"> resedimented boston blue clay (RBBC)</a>, <a href="https://publications.waset.org/abstracts/search?q=resedimented%20vicksburg%20buckshot%20clay%20%28RVBC%29" title=" resedimented vicksburg buckshot clay (RVBC)"> resedimented vicksburg buckshot clay (RVBC)</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20index" title=" compression index"> compression index</a> </p> <a href="https://publications.waset.org/abstracts/187178/an-experimental-study-of-the-parameters-affecting-the-compression-index-of-clay-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11621</span> Preparation and Characterization of a Nickel-Based Catalyst Supported by Silica Promoted by Cerium for the Methane Steam Reforming Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Zazi">Ali Zazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouiza%20Cherifi"> Ouiza Cherifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural gas currently represents a raw material of choice for the manufacture of a wide range of chemical products via synthesis gas, among the routes of transformation of methane into synthesis gas The reaction of the oxidation of methane by gas vapor 'water. This work focuses on the study of the effect of cerieum on the nickel-based catalyst supported by silica for the methane vapor reforming reaction, with a variation of certain parameters of the reaction. The reaction temperature, the H₂O / CH₄ ratio and the flow rate of the reaction mixture (CH₄-H₂O). Two catalysts were prepared by impregnation of Degussa silica with a solution of nickel nitrates and a solution of cerium nitrates [Ni (NO₃) 2 6H₂O and Ce (NO₃) 3 6H₂O] so as to obtain the 1.5% nickel concentrations. For both catalysts and plus 1% cerium for the second catalyst. These Catalysts have been characterized by physical and chemical analysis techniques: BET technique, Atomic Absorption, IR Spectroscopy, X-ray diffraction. These characterizations indicated that the nitrates had impregnated the silica. And that the NiO and Ce₂O3 phases are present and Ni°(after reaction). The BET surface of the silica decreases without being affected. The catalytic tests carried out on the two catalysts for the steam reforming reactions show that the addition of cerium to the nickel improves the catalytic performances of the nickel. And that these performances also depend on the parameters of the reaction, namely the temperature, the rate of the reaction mixture, and the ratio (H₂O / CH₄). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalysis" title="heterogeneous catalysis">heterogeneous catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20reforming" title=" steam reforming"> steam reforming</a>, <a href="https://publications.waset.org/abstracts/search?q=Methane" title=" Methane"> Methane</a>, <a href="https://publications.waset.org/abstracts/search?q=Nickel" title=" Nickel"> Nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=Cerium" title=" Cerium"> Cerium</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis%20gas" title=" synthesis gas"> synthesis gas</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title="hydrogen">hydrogen</a> </p> <a href="https://publications.waset.org/abstracts/143761/preparation-and-characterization-of-a-nickel-based-catalyst-supported-by-silica-promoted-by-cerium-for-the-methane-steam-reforming-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11620</span> Modeling the Time-Dependent Rheological Behavior of Clays Used in Fabrication of Ceramic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Larbi%20Hammadi">Larbi Hammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Boudjenane"> N. Boudjenane</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benhallou"> N. Benhallou</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Houjedje"> R. Houjedje</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Reffis"> R. Reffis</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belhadri"> M. Belhadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many of clays exhibited the thixotropic behavior in which, the apparent viscosity of material decreases with time of shearing at constant shear rate. The structural kinetic model (SKM) was used to characterize the thixotropic behavior of two different kinds of clays used in fabrication of ceramic. Clays selected for analysis represent the fluid and semisolid clays materials. The SKM postulates that the change in the rheological behavior is associated with shear-induced breakdown of the internal structure of the clays. This model for the structure decay with time at constant shear rate assumes nth order kinetics for the decay of the material structure with a rate constant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic" title="ceramic">ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=clays" title=" clays"> clays</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20kinetic%20model" title=" structural kinetic model"> structural kinetic model</a>, <a href="https://publications.waset.org/abstracts/search?q=thixotropy" title=" thixotropy"> thixotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/31716/modeling-the-time-dependent-rheological-behavior-of-clays-used-in-fabrication-of-ceramic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11619</span> Predictions of Values in a Causticizing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Andreola">R. Andreola</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20A.%20Santos"> O. A. A. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20M.%20Jorge"> L. M. M. Jorge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An industrial system for the production of white liquor of a paper industry, Klabin Paraná Papé is, formed by ten reactors was modeled, simulated, and analyzed. The developed model considered possible water losses by evaporation and reaction, in addition to variations in volumetric flow of lime mud across the reactors due to composition variations. The model predictions agreed well with the process measurements at the plant and the results showed that the slaking reaction is nearly complete at the third causticizing reactor, while causticizing ends by the seventh reactor. Water loss due to slaking reaction and evaporation occurs more pronouncedly in the slaking reaction than in the final causticizing reactors; nevertheless, the lime mud flow remains nearly constant across the reactors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causticizing" title="causticizing">causticizing</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=process" title=" process"> process</a> </p> <a href="https://publications.waset.org/abstracts/24627/predictions-of-values-in-a-causticizing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11618</span> In silico Model of Transamination Reaction Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang-Woo%20Han">Sang-Woo Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Shik%20Shin"> Jong-Shik Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> w-Transaminase (w-TA) is broadly used for synthesizing chiral amines with a high enantiopurity. However, the reaction mechanism of w-TA has been not well studied, contrary to a-transaminase (a-TA) such as AspTA. Here, we propose in silico model on the reaction mechanism of w-TA. Based on the modeling results which showed large free energy gaps between external aldimine and quinonoid on deamination (or ketimine and quinonoid on amination), withdrawal of Ca-H seemed as a critical step which determines the reaction rate on both amination and deamination reactions, which is consistent with previous researches. Hyperconjugation was also observed in both external aldimine and ketimine which weakens Ca-H bond to elevate Ca-H abstraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20modeling" title="computational modeling">computational modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20intermediates" title=" reaction intermediates"> reaction intermediates</a>, <a href="https://publications.waset.org/abstracts/search?q=w-transaminase" title=" w-transaminase"> w-transaminase</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20silico%20model" title=" in silico model"> in silico model</a> </p> <a href="https://publications.waset.org/abstracts/23667/in-silico-model-of-transamination-reaction-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11617</span> Laccase Catalysed Conjugation of Tea Polyphenols for Enhanced Antioxidant Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parikshit%20Gogo">Parikshit Gogo</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20N.%20Dutta"> N. N. Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oxidative enzymes specially laccase (benzenediol: oxygen oxidoreductase, E.C.1.10.3.2) from bacteria, fungi and plants have been playing an important role in green technologies due to their specific advantageous properties. Laccase from different sources and in different forms was used as a biocatalyst in many oxidation and conjugation reactions starting from phenol to hydrocarbons. Tea polyphenols and its derivatives attract the scientific community because of their potential use as antioxidants in food, pharmaceutical and cosmetic industries. Conjugate of polyphenols emerged as a novel materials which shows better stability and antioxidant properties in applied fields. The conjugation reaction of catechin with poly (allylamine) has been studied using free, immobilized and cross-linked enzyme crystals (CLEC) of laccase from Trametes versicolor with particular emphasis on the effect of pertinent variables and kinetic aspects of the reaction. The stability and antioxidant property of the conjugated product was improved as compared to the unconjugated tea polyphenols. The reaction was studied in 11 different solvents in order to deduce the solvent effect through an attempt to correlate the initial reaction rate with solvent properties such as hydrophobicity (logP), water solubility (logSw), electron pair acceptance (ETN) and donation abilities (DNN), polarisibility and dielectric constant which exhibit reasonable correlations. The study revealed, in general that polar solvents favour the initial reaction rate. The kinetics of the conjugation reaction conformed to the so-called Ping-Pong-Bi-Bi mechanism with catechin inhibition. The stability as well as activity of the CLEC was better than the free enzymes and immobilized laccase for practical application. In case of immobilized laccase system marginal diffusional limitation could be inferred from the experimental data. The kinetic parameters estimated by non-linear regression analysis were found to be KmPAA(mM) = 0.75, 1.8967 and Kmcat (mM) = 11.769, 15.1816 for free and immobilized laccase respectively. An attempt has been made to assess the activity of the laccase for the conjugation reaction in relation to other reactions such as dimerisation of ferulic acids and develop a protocol to enhance polyphenol antioxidant activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laccase" title="laccase">laccase</a>, <a href="https://publications.waset.org/abstracts/search?q=catechin" title=" catechin"> catechin</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugation%20reaction" title=" conjugation reaction"> conjugation reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20properties" title=" antioxidant properties"> antioxidant properties</a> </p> <a href="https://publications.waset.org/abstracts/28634/laccase-catalysed-conjugation-of-tea-polyphenols-for-enhanced-antioxidant-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11616</span> Calcium Complexing Properties of Isosaccharinate Ion in Highly Alkaline Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Csilla%20Dud%C3%A1s">Csilla Dudás</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89va%20B%C3%B6sz%C3%B6rm%C3%A9nyi"> Éva Böszörményi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bence%20Kutus"> Bence Kutus</a>, <a href="https://publications.waset.org/abstracts/search?q=Istv%C3%A1n%20P%C3%A1link%C3%B3"> István Pálinkó</a>, <a href="https://publications.waset.org/abstracts/search?q=P%C3%A1l%20Sipos"> Pál Sipos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the behavior of alpha-D-isosaccharinate (2-hydroxymethyl-3-deoxy-D-erythro-pentonate, ISA−) in alkaline medium in the presence of calcium was studied. At first the Ca–ISA system was studied by Ca-ion selective electrode (Ca-ISE) in neutral medium at T = 25 °C and I = 1 M NaCl to determine the formation constant of the CaISA+ monocomplex, which was found to be logK = 1.01 ± 0.01 for the reaction of Ca2+ + ISA– = CaISA+. In alkaline medium pH potentiometric titrations were carried out to determine the composition and stability constant of the complex(es) formed. It was found that in these systems above pH = 12.5 the predominant species is the CaISAOH complex. Its formation constant was found to be logK = 3.04 ± 0.05 for the reaction of Ca2+ + ISA– + H2O = CaISAOH + H+ at T = 25 °C and I = 1 M NaCl. Solubility measurements resulted in data consistent with those of the potentiometric titrations. Temperature dependent NMR spectra showed that the slow exchange range between the complex and the free ligand is below 5 °C. It was also showed that ISA– acts as a multidentate ligand forming macrochelate Ca-complexes. The structure of the complexes was determined by using ab initio quantum chemical calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ca-ISE%20potentiometry" title="Ca-ISE potentiometry">Ca-ISE potentiometry</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20complexes" title=" calcium complexes"> calcium complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=isosaccharinate%20ion" title=" isosaccharinate ion"> isosaccharinate ion</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR%20spectroscopy" title=" NMR spectroscopy"> NMR spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20potentiometry" title=" pH potentiometry"> pH potentiometry</a> </p> <a href="https://publications.waset.org/abstracts/57082/calcium-complexing-properties-of-isosaccharinate-ion-in-highly-alkaline-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11615</span> The Hydrolysis of Phosphate Esters Can Be Enhanced by Intramolecular Hydrogen Bonding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Sasi">Mohamed S. Sasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research project aim is to study the hydrolysis of 8-diethylphosphate-1-naphthalenol with hydroxylamine in water. 8-diethylphosphate-1-naphthalenol, 1 was successfully synthesized and its rate of reaction with hydroxylamine was studied at 60°C. Pseudo first order behavior was observed. The rate of P-O cleavage of 1 at 60°C (7.43 x 10-3 M-1s-1) was found to be 178 fold and 7 fold slower than diethyl 8-dimethylamino-1-naphthyl phosphate, 3 at 60°C (1.32 M-1s-1) and diethyl 8-amino-1-naphthyl phosphate, 2 at 90 °C (5.5 x 10-2 M-1s-1) respectively. The rate of P-O cleavage of 1 with hydroxylamine was found to be faster than that of 4-chlorophenyl-1-cyclopropylphosphate triester, 5 where the reaction was too slow to observe at 60°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphate%20esters" title="phosphate esters">phosphate esters</a>, <a href="https://publications.waset.org/abstracts/search?q=intramolecular%20hydrogen%20bonding" title=" intramolecular hydrogen bonding"> intramolecular hydrogen bonding</a> </p> <a href="https://publications.waset.org/abstracts/14160/the-hydrolysis-of-phosphate-esters-can-be-enhanced-by-intramolecular-hydrogen-bonding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11614</span> Hydrothermal Treatment for Production of Aqueous Co-Product and Efficient Oil Extraction from Microalgae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manatchanok%20Tantiphiphatthana">Manatchanok Tantiphiphatthana</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Peng"> Lin Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Rujira%20Jitrwung"> Rujira Jitrwung</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunio%20Yoshikawa"> Kunio Yoshikawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrothermal liquefaction (HTL) is a technique for obtaining clean biofuel from biomass in the presence of heat and pressure in an aqueous medium which leads to a decomposition of this biomass to the formation of various products. A role of operating conditions is essential for the bio-oil and other products’ yield and also quality of the products. The effects of these parameters were investigated in regards to the composition and yield of the products. Chlorellaceae microalgae were tested under different HTL conditions to clarify suitable conditions for extracting bio-oil together with value-added co-products. Firstly, different microalgae loading rates (5-30%) were tested and found that this parameter has not much significant to product yield. Therefore, 10% microalgae loading rate was selected as a proper economical solution for conditioned schedule at 250oC and 30 min-reaction time. Next, a range of temperature (210-290oC) was applied to verify the effects of each parameter by keeping the reaction time constant at 30 min. The results showed no linkage with the increase of the reaction temperature and some reactions occurred that lead to different product yields. Moreover, some nutrients found in the aqueous product are possible to be utilized for nutrient recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-oil" title="bio-oil">bio-oil</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20liquefaction" title=" hydrothermal liquefaction"> hydrothermal liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous%20co-product" title=" aqueous co-product"> aqueous co-product</a> </p> <a href="https://publications.waset.org/abstracts/25776/hydrothermal-treatment-for-production-of-aqueous-co-product-and-efficient-oil-extraction-from-microalgae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11613</span> Theoretical Study of Acetylation of P-Methylaniline Catalyzed by Cu²⁺ Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silvana%20Caglieri">Silvana Caglieri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Theoretical study of acetylation of p-methylaniline catalyzed by Cu2+ ions from the analysis of intermediate of the reaction was carried out. The study of acetylation of amines is of great interest by the utility of its products of reaction and is one of the most frequently used transformations in organic synthesis as it provides an efficient and inexpensive means for protecting amino groups in a multistep synthetic process. Acetylation of amine is a nucleophilic substitution reaction. This reaction can be catalyzed by Lewis acid, metallic ion. In reaction mechanism, the metallic ion formed a complex with the oxygen of the acetic anhydride carbonyl, facilitating the polarization of the same and the successive addition of amine at the position to form a tetrahedral intermediate, determining step of the rate of the reaction. Experimental work agreed that this reaction takes place with the formation of a tetrahedral intermediate. In the present theoretical work were investigated the structure and energy of the tetrahedral intermediate of the reaction catalyzed by Cu2+ ions. Geometries of all species involved in the acetylation were made and identified. All of the geometry optimizations were performed by the method at the DFT/B3LYP level of theory and the method MP2. Were adopted the 6-31+G* basis sets. Energies were calculated using the Mechanics-UFF method. Following the same procedure it was identified the geometric parameters and energy of reaction intermediate. The calculations show 61.35 kcal/mol of energy for the tetrahedral intermediate and the energy of activation for the reaction was 15.55 kcal/mol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amides" title="amides">amides</a>, <a href="https://publications.waset.org/abstracts/search?q=amines" title=" amines"> amines</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=MP2" title=" MP2"> MP2</a> </p> <a href="https://publications.waset.org/abstracts/56510/theoretical-study-of-acetylation-of-p-methylaniline-catalyzed-by-cu2-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11612</span> C₅₉Pd: A Heterogeneous Catalytic Material for Heck Coupling Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjusha%20C.%20Padole">Manjusha C. Padole</a>, <a href="https://publications.waset.org/abstracts/search?q=Parag%20A.%20Deshpande"> Parag A. Deshpande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Density functional theory calculations were carried out for identification of an active heterogeneous catalyst to carry out Heck coupling reaction which is of pharmaceutical importance. One of the carbonaceous nanomaterials, heterofullerene, was designed for the reaction. Stability and reactivity of the proposed heterofullerenes (C59M, M = Pd/Ni) were established with insights into the metal-carbon bond, electron affinity and chemical potential. Adsorbent potentials of both the heterofullerenes were examined from the adsorption study of four halobenzenes (C6H5F, C6H5Cl, C6H5Br and C6H5I). Oxidative addition activities of all four halobenzenes were investigated by developing free energy landscapes over both the heterofullerenes for rate determining step (oxidative addition). C6H5I showed a good catalytic activity for the rate determining step. Thus, C6H5I was proposed as a suitable halobenzene and complete free energy landscapes for Heck coupling reaction were developed over C59Pd and C59Ni. Smaller activation barriers observed over C59Pd in comparison with C59Ni put us in a position to propose C59Pd to be an efficient heterofullerene for carrying Heck coupling reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal-substituted%20fullerene" title="metal-substituted fullerene">metal-substituted fullerene</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title=" density functional theory"> density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20affinity" title=" electron affinity"> electron affinity</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20addition" title=" oxidative addition"> oxidative addition</a>, <a href="https://publications.waset.org/abstracts/search?q=Heck%20coupling%20reaction" title=" Heck coupling reaction"> Heck coupling reaction</a> </p> <a href="https://publications.waset.org/abstracts/60474/c59pd-a-heterogeneous-catalytic-material-for-heck-coupling-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11611</span> Methanol Steam Reforming with Heat Recovery for Hydrogen-Rich Gas Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Horng-Wen%20Wu">Horng-Wen Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Chao"> Yi Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=Rong-Fang%20Horng"> Rong-Fang Horng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is to develop a methanol steam reformer with a heat recovery zone, which recovers heat from exhaust gas of a diesel engine, and to investigate waste heat recovery ratio at the required reaction temperature. The operation conditions of the reformer are reaction temperature (200 °C, 250 °C, and 300 °C), steam to carbonate (S/C) ratio (0.9, 1.1, and 1.3), and N2 volume flow rate (40 cm3/min, 70 cm3/min, and 100 cm3/min). Finally, the hydrogen concentration, the CO, CO2, and N2 concentrations are measured and recorded to calculate methanol conversion efficiency, hydrogen flow rate, and assisting combustion gas and impeding combustion gas ratio. The heat source of this reformer comes from electric heater and waste heat of exhaust gas from diesel engines. The objective is to recover waste heat from the engine and to make more uniform temperature distribution within the reformer. It is beneficial for the reformer to enhance the methanol conversion efficiency and hydrogen-rich gas production. Experimental results show that the highest hydrogen flow rate exists at N2 of the volume rate 40 cm3/min and reforming reaction temperature of 300 °C and the value is 19.6 l/min. With the electric heater and heat recovery from exhaust gas, the maximum heat recovery ratio is 13.18 % occurring at water-methanol (S/C) ratio of 1.3 and the reforming reaction temperature of 300 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20recovery" title="heat recovery">heat recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen-rich%20production" title=" hydrogen-rich production"> hydrogen-rich production</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol%20steam%20reformer" title=" methanol steam reformer"> methanol steam reformer</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol%20conversion%20efficiency" title=" methanol conversion efficiency"> methanol conversion efficiency</a> </p> <a href="https://publications.waset.org/abstracts/14202/methanol-steam-reforming-with-heat-recovery-for-hydrogen-rich-gas-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reaction%20rate%20constant&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reaction%20rate%20constant&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reaction%20rate%20constant&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reaction%20rate%20constant&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reaction%20rate%20constant&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reaction%20rate%20constant&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reaction%20rate%20constant&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reaction%20rate%20constant&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reaction%20rate%20constant&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reaction%20rate%20constant&amp;page=387">387</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reaction%20rate%20constant&amp;page=388">388</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reaction%20rate%20constant&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10