CINXE.COM
Search results for: structure tensor
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: structure tensor</title> <meta name="description" content="Search results for: structure tensor"> <meta name="keywords" content="structure tensor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="structure tensor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="structure tensor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7805</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: structure tensor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7805</span> On CR-Structure and F-Structure Satisfying Polynomial Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manisha%20Kankarej">Manisha Kankarej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to show a relation between CR structure and F-structure satisfying polynomial equation. In this paper, we have checked the significance of CR structure and F-structure on Integrability conditions and Nijenhuis tensor. It was proved that all the properties of Integrability conditions and Nijenhuis tensor are satisfied by CR structures and F-structure satisfying polynomial equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CR-submainfolds" title="CR-submainfolds">CR-submainfolds</a>, <a href="https://publications.waset.org/abstracts/search?q=CR-structure" title=" CR-structure"> CR-structure</a>, <a href="https://publications.waset.org/abstracts/search?q=integrability%20condition" title=" integrability condition"> integrability condition</a>, <a href="https://publications.waset.org/abstracts/search?q=Nijenhuis%20tensor" title=" Nijenhuis tensor"> Nijenhuis tensor</a> </p> <a href="https://publications.waset.org/abstracts/63709/on-cr-structure-and-f-structure-satisfying-polynomial-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7804</span> Green Function and Eshelby Tensor Based on Mindlin’s 2nd Gradient Model: An Explicit Study of Spherical Inclusion Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Selmi">A. Selmi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bisharat"> A. Bisharat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using Fourier transform and based on the Mindlin's 2<sup>nd</sup> gradient model that involves two length scale parameters, the Green's function, the Eshelby tensor, and the Eshelby-like tensor for a spherical inclusion are derived. It is proved that the Eshelby tensor consists of two parts; the classical Eshelby tensor and a gradient part including the length scale parameters which enable the interpretation of the size effect. When the strain gradient is not taken into account, the obtained Green's function and Eshelby tensor reduce to its analogue based on the classical elasticity. The Eshelby tensor in and outside the inclusion, the volume average of the gradient part and the Eshelby-like tensor are explicitly obtained. Unlike the classical Eshelby tensor, the results show that the components of the new Eshelby tensor vary with the position and the inclusion dimensions. It is demonstrated that the contribution of the gradient part should not be neglected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eshelby%20tensor" title="Eshelby tensor">Eshelby tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Eshelby-like%20tensor" title=" Eshelby-like tensor"> Eshelby-like tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Green%E2%80%99s%20function" title=" Green’s function"> Green’s function</a>, <a href="https://publications.waset.org/abstracts/search?q=Mindlin%E2%80%99s%202nd%20gradient%20model" title=" Mindlin’s 2nd gradient model"> Mindlin’s 2nd gradient model</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20inclusion" title=" spherical inclusion"> spherical inclusion</a> </p> <a href="https://publications.waset.org/abstracts/95413/green-function-and-eshelby-tensor-based-on-mindlins-2nd-gradient-model-an-explicit-study-of-spherical-inclusion-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7803</span> An Alternative Way to Mapping Cone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousuf%20Alkhezi">Yousuf Alkhezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since most of the literature on algebra does not make much deal with the special case of mapping cone. This paper is an alternative way to examine the special tensor product and mapping cone. Also, we show that the isomorphism that implies the mapping cone commutes with the tensor product for the ordinary tensor product no longer holds for the pinched tensor product. However, we show there is a morphism. We will introduce an alternative way of mapping cone. We are looking for more properties which is our future project. Also, we want to apply these new properties in some application. Many results and examples with classical algorithms will be provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex" title="complex">complex</a>, <a href="https://publications.waset.org/abstracts/search?q=tensor%20product" title=" tensor product"> tensor product</a>, <a href="https://publications.waset.org/abstracts/search?q=pinched%20tensore%20product" title=" pinched tensore product"> pinched tensore product</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping%20cone" title=" mapping cone"> mapping cone</a> </p> <a href="https://publications.waset.org/abstracts/153677/an-alternative-way-to-mapping-cone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7802</span> Simulation of Human Heart Activation Based on Diffusion Tensor Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ihab%20Elaff">Ihab Elaff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulating the heart’s electrical stimulation is essential in modeling and evaluating the electrophysiology behavior of the heart. For achieving that, there are two structures in concern: the ventricles’ Myocardium, and the ventricles’ Conduction Network. Ventricles’ Myocardium has been modeled as anisotropic material from Diffusion Tensor Imaging (DTI) scan, and the Conduction Network has been extracted from DTI as a case-based structure based on the biological properties of the heart tissues and the working methodology of the Magnetic Resonance Imaging (MRI) scanner. Results of the produced activation were much similar to real measurements of the reference model that was presented in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion%20tensor" title="diffusion tensor">diffusion tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=DTI" title=" DTI"> DTI</a>, <a href="https://publications.waset.org/abstracts/search?q=heart" title=" heart"> heart</a>, <a href="https://publications.waset.org/abstracts/search?q=conduction%20network" title=" conduction network"> conduction network</a>, <a href="https://publications.waset.org/abstracts/search?q=excitation%20propagation" title=" excitation propagation"> excitation propagation</a> </p> <a href="https://publications.waset.org/abstracts/75607/simulation-of-human-heart-activation-based-on-diffusion-tensor-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7801</span> Detection of Curvilinear Structure via Recursive Anisotropic Diffusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sardorbek%20Numonov">Sardorbek Numonov</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyohun%20Kim"> Hyohun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongwha%20Shin"> Dongwha Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeonseok%20Kim"> Yeonseok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Su%20Ahn"> Ji-Su Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongeun%20Choi"> Dongeun Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung-Woo%20Hong"> Byung-Woo Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The detection of curvilinear structures often plays an important role in the analysis of images. In particular, it is considered as a crucial step for the diagnosis of chronic respiratory diseases to localize the fissures in chest CT imagery where the lung is divided into five lobes by the fissures that are characterized by linear features in appearance. However, the characteristic linear features for the fissures are often shown to be subtle due to the high intensity variability, pathological deformation or image noise involved in the imaging procedure, which leads to the uncertainty in the quantification of anatomical or functional properties of the lung. Thus, it is desired to enhance the linear features present in the chest CT images so that the distinctiveness in the delineation of the lobe is improved. We propose a recursive diffusion process that prefers coherent features based on the analysis of structure tensor in an anisotropic manner. The local image features associated with certain scales and directions can be characterized by the eigenanalysis of the structure tensor that is often regularized via isotropic diffusion filters. However, the isotropic diffusion filters involved in the computation of the structure tensor generally blur geometrically significant structure of the features leading to the degradation of the characteristic power in the feature space. Thus, it is required to take into consideration of local structure of the feature in scale and direction when computing the structure tensor. We apply an anisotropic diffusion in consideration of scale and direction of the features in the computation of the structure tensor that subsequently provides the geometrical structure of the features by its eigenanalysis that determines the shape of the anisotropic diffusion kernel. The recursive application of the anisotropic diffusion with the kernel the shape of which is derived from the structure tensor leading to the anisotropic scale-space where the geometrical features are preserved via the eigenanalysis of the structure tensor computed from the diffused image. The recursive interaction between the anisotropic diffusion based on the geometry-driven kernels and the computation of the structure tensor that determines the shape of the diffusion kernels yields a scale-space where geometrical properties of the image structure are effectively characterized. We apply our recursive anisotropic diffusion algorithm to the detection of curvilinear structure in the chest CT imagery where the fissures present curvilinear features and define the boundary of lobes. It is shown that our algorithm yields precise detection of the fissures while overcoming the subtlety in defining the characteristic linear features. The quantitative evaluation demonstrates the robustness and effectiveness of the proposed algorithm for the detection of fissures in the chest CT in terms of the false positive and the true positive measures. The receiver operating characteristic curves indicate the potential of our algorithm as a segmentation tool in the clinical environment. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20diffusion" title="anisotropic diffusion">anisotropic diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=chest%20CT%20imagery" title=" chest CT imagery"> chest CT imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20respiratory%20disease" title=" chronic respiratory disease"> chronic respiratory disease</a>, <a href="https://publications.waset.org/abstracts/search?q=curvilinear%20structure" title=" curvilinear structure"> curvilinear structure</a>, <a href="https://publications.waset.org/abstracts/search?q=fissure%20detection" title=" fissure detection"> fissure detection</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20tensor" title=" structure tensor"> structure tensor</a> </p> <a href="https://publications.waset.org/abstracts/75801/detection-of-curvilinear-structure-via-recursive-anisotropic-diffusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7800</span> Experimental Options for the Role of Dynamic Torsion in General Relativity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Ravlich">Ivan Ravlich</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Linscott"> Ivan Linscott</a>, <a href="https://publications.waset.org/abstracts/search?q=Sigrid%20Close"> Sigrid Close</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experimental search for spin coupling in General Relativity via torsion has been inconclusive. In this work, further experimental avenues to test dynamic torsion are proposed and evaluated. In the extended theory, by relaxing the torsion free condition on the metric connection, general relativity is reformulated to relate the spin density of particles to a new quantity, the torsion tensor. In torsion theories, the spin tensor and torsion tensor are related in much the same way as the stress-energy tensor is related to the metric connection. Similarly, as the metric is the field associated with the metric connection, fields can be associated with the torsion tensor resulting in a field that is either propagating or static. Experimental searches for static torsion have thus far been inconclusive, and currently, there have been no experimental tests for propagating torsion. Experimental tests of propagating theories of torsion are proposed utilizing various spin densities of matter, such as interfaces in superconducting materials and plasmas. The experimental feasibility and observable bounds are estimated, and the most viable candidates are selected to pursue in detail in a future work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=general%20relativity" title="general relativity">general relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=gravitation" title=" gravitation"> gravitation</a>, <a href="https://publications.waset.org/abstracts/search?q=propagating%20torsion" title=" propagating torsion"> propagating torsion</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20density" title=" spin density"> spin density</a> </p> <a href="https://publications.waset.org/abstracts/77296/experimental-options-for-the-role-of-dynamic-torsion-in-general-relativity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7799</span> Gravitational Wave Solutions in Modified Gravity Theories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafiza%20Rizwana%20Kausar">Hafiza Rizwana Kausar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we formulate the wave equation in modified theories, particularly in f(R) theory, scalar-tensor theory, and metric palatine f(X) theory. We solve the wave equation in each case and try to find maximum possible solutions in the form polarization modes. It is found that modified theories present at most six modes however the mentioned metric theories allow four polarization modes, two of which are tensor in nature and other two are scalars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravitational%20waves" title="gravitational waves">gravitational waves</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20theories" title=" modified theories"> modified theories</a>, <a href="https://publications.waset.org/abstracts/search?q=polariozation%20modes" title=" polariozation modes"> polariozation modes</a>, <a href="https://publications.waset.org/abstracts/search?q=scalar%20tensor%20theories" title=" scalar tensor theories"> scalar tensor theories</a> </p> <a href="https://publications.waset.org/abstracts/65098/gravitational-wave-solutions-in-modified-gravity-theories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7798</span> Anomaly Detection in Financial Markets Using Tucker Decomposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salma%20Krafessi">Salma Krafessi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tucker%20decomposition" title="tucker decomposition">tucker decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20markets" title=" financial markets"> financial markets</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20engineering" title=" financial engineering"> financial engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=decomposition%20models" title=" decomposition models"> decomposition models</a> </p> <a href="https://publications.waset.org/abstracts/183176/anomaly-detection-in-financial-markets-using-tucker-decomposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7797</span> Constant-Roll Warm Inflation within Rastall Gravity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabia%20Saleem">Rabia Saleem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research has a recently proposed strategy to find the exact inflationary solution of the Friedman equations in the context of the Rastall theory of gravity (RTG), known as constant-roll warm inflation, including dissipation effects. We establish the model to evaluate the effective potential of inflation and entropy. We develop the inflationary observable like scalar-tensor power spectra, scalar-tensor spectral indices, tensor-to-scalar ratio, and running of spectral-index. The theory parameter $\lambda$ is constrained to observe the compatibility of our model with Planck 2013, Planck TT, TE, EE+lowP (2015), and Planck 2018 bounds. The results are feasible and interesting up to the 2$\sigma$ confidence level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modified%20gravity" title="modified gravity">modified gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=warm%20inflation" title=" warm inflation"> warm inflation</a>, <a href="https://publications.waset.org/abstracts/search?q=constant-roll%20limit" title=" constant-roll limit"> constant-roll limit</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipation" title=" dissipation"> dissipation</a> </p> <a href="https://publications.waset.org/abstracts/156363/constant-roll-warm-inflation-within-rastall-gravity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7796</span> Modeling Anisotropic Damage Algorithms of Metallic Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahar%20Ayhan">Bahar Ayhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper is concerned with the numerical modeling of the inelastic behavior of the anisotropically damaged ductile materials, which are based on a generalized macroscopic theory within the framework of continuum damage mechanics. Kinematic decomposition of the strain rates into elastic, plastic and damage parts is basis for accomplishing the structure of continuum theory. The evolution of the damage strain rate tensor is detailed with the consideration of anisotropic effects. Helmholtz free energy functions are constructed separately for the elastic and inelastic behaviors in order to be able to address the plastic and damage process. Additionally, the constitutive structure, which is based on the standard dissipative material approach, is elaborated with stress tensor, a yield criterion for plasticity and a fracture criterion for damage besides the potential functions of each inelastic phenomenon. The finite element method is used to approximate the linearized variational problem. Stress and strain outcomes are solved by using the numerical integration algorithm based on operator split methodology with a plastic and damage (multiplicator) variable separately. Numerical simulations are proposed in order to demonstrate the efficiency of the formulation by comparing the examples in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20damage" title="anisotropic damage">anisotropic damage</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling" title=" coupling"> coupling</a> </p> <a href="https://publications.waset.org/abstracts/75980/modeling-anisotropic-damage-algorithms-of-metallic-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7795</span> Enhanced Tensor Tomographic Reconstruction: Integrating Absorption, Refraction and Temporal Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Vierus">Lukas Vierus</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Schuster"> Thomas Schuster</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A general framework is examined for dynamic tensor field tomography within an inhomogeneous medium characterized by refraction and absorption, treated as an inverse source problem concerning the associated transport equation. Guided by Fermat’s principle, the Riemannian metric within the specified domain is determined by the medium's refractive index. While considerable literature exists on the inverse problem of reconstructing a tensor field from its longitudinal ray transform within a static Euclidean environment, limited inversion formulas and algorithms are available for general Riemannian metrics and time-varying tensor fields. It is established that tensor field tomography, akin to an inverse source problem for a transport equation, persists in dynamic scenarios. Framing dynamic tensor tomography as an inverse source problem embodies a comprehensive perspective within this domain. Ensuring well-defined forward mappings necessitates establishing existence and uniqueness for the underlying transport equations. However, the bilinear forms of the associated weak formulations fail to meet the coercivity condition. Consequently, recourse to viscosity solutions is taken, demonstrating their unique existence within suitable Sobolev spaces (in the static case) and Sobolev-Bochner spaces (in the dynamic case), under a specific assumption restricting variations in the refractive index. Notably, the adjoint problem can also be reformulated as a transport equation, with analogous results regarding uniqueness. Analytical solutions are expressed as integrals over geodesics, facilitating more efficient evaluation of forward and adjoint operators compared to solving partial differential equations. Certainly, here's the revised sentence in English: Numerical experiments are conducted using a Nesterov-accelerated Landweber method, encompassing various fields, absorption coefficients, and refractive indices, thereby illustrating the enhanced reconstruction achieved through this holistic modeling approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attenuated%20refractive%20dynamic%20ray%20transform%20of%20tensor%20fields" title="attenuated refractive dynamic ray transform of tensor fields">attenuated refractive dynamic ray transform of tensor fields</a>, <a href="https://publications.waset.org/abstracts/search?q=geodesics" title=" geodesics"> geodesics</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20equation" title=" transport equation"> transport equation</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity%20solutions" title=" viscosity solutions"> viscosity solutions</a> </p> <a href="https://publications.waset.org/abstracts/184677/enhanced-tensor-tomographic-reconstruction-integrating-absorption-refraction-and-temporal-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7794</span> Data-Driven Analysis of Velocity Gradient Dynamics Using Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nishant%20Parashar">Nishant Parashar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sawan%20S.%20Sinha"> Sawan S. Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Balaji%20Srinivasan"> Balaji Srinivasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We perform an investigation of the unclosed terms in the evolution equation of the velocity gradient tensor (VGT) in compressible decaying turbulent flow. Velocity gradients in a compressible turbulent flow field influence several important nonlinear turbulent processes like cascading and intermittency. In an attempt to understand the dynamics of the velocity gradients various researchers have tried to model the unclosed terms in the evolution equation of the VGT. The existing models proposed for these unclosed terms have limited applicability. This is mainly attributable to the complex structure of the higher order gradient terms appearing in the evolution equation of VGT. We investigate these higher order gradients using the data from direct numerical simulation (DNS) of compressible decaying isotropic turbulent flow. The gas kinetic method aided with weighted essentially non-oscillatory scheme (WENO) based flow- reconstruction is employed to generate DNS data. By applying neural-network to the DNS data, we map the structure of the unclosed higher order gradient terms in the evolution of the equation of the VGT with VGT itself. We validate our findings by performing alignment based study of the unclosed higher order gradient terms obtained using the neural network with the strain rate eigenvectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressible%20turbulence" title="compressible turbulence">compressible turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20gradient%20tensor" title=" velocity gradient tensor"> velocity gradient tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20numerical%20simulation" title=" direct numerical simulation"> direct numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/101552/data-driven-analysis-of-velocity-gradient-dynamics-using-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7793</span> Effect of Viscosity on Propagation of MHD Waves in Astrophysical Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alemayehu%20Mengesha">Alemayehu Mengesha</a>, <a href="https://publications.waset.org/abstracts/search?q=Solomon%20Belay"> Solomon Belay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We determine the general dispersion relation for the propagation of magnetohydrodynamic (MHD) waves in an astrophysical plasma by considering the effect of viscosity with an anisotropic pressure tensor. Basic MHD equations have been derived and linearized by the method of perturbation to develop the general form of the dispersion relation equation. Our result indicates that an astrophysical plasma with an anisotropic pressure tensor is stable in the presence of viscosity and a strong magnetic field at considerable wavelength. Currently, we are doing the numerical analysis of this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=astrophysical" title="astrophysical">astrophysical</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=instability" title=" instability"> instability</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD" title=" MHD"> MHD</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelength" title=" wavelength"> wavelength</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/47904/effect-of-viscosity-on-propagation-of-mhd-waves-in-astrophysical-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7792</span> A Local Tensor Clustering Algorithm to Annotate Uncharacterized Genes with Many Biological Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Shize%20Li">Paul Shize Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Alber"> Frank Alber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A fundamental task of clinical genomics is to unravel the functions of genes and their associations with disorders. Although experimental biology has made efforts to discover and elucidate the molecular mechanisms of individual genes in the past decades, still about 40% of human genes have unknown functions, not to mention the diseases they may be related to. For those biologists who are interested in a particular gene with unknown functions, a powerful computational method tailored for inferring the functions and disease relevance of uncharacterized genes is strongly needed. Studies have shown that genes strongly linked to each other in multiple biological networks are more likely to have similar functions. This indicates that the densely connected subgraphs in multiple biological networks are useful in the functional and phenotypic annotation of uncharacterized genes. Therefore, in this work, we have developed an integrative network approach to identify the frequent local clusters, which are defined as those densely connected subgraphs that frequently occur in multiple biological networks and consist of the query gene that has few or no disease or function annotations. This is a local clustering algorithm that models multiple biological networks sharing the same gene set as a three-dimensional matrix, the so-called tensor, and employs the tensor-based optimization method to efficiently find the frequent local clusters. Specifically, massive public gene expression data sets that comprehensively cover dynamic, physiological, and environmental conditions are used to generate hundreds of gene co-expression networks. By integrating these gene co-expression networks, for a given uncharacterized gene that is of biologist’s interest, the proposed method can be applied to identify the frequent local clusters that consist of this uncharacterized gene. Finally, those frequent local clusters are used for function and disease annotation of this uncharacterized gene. This local tensor clustering algorithm outperformed the competing tensor-based algorithm in both module discovery and running time. We also demonstrated the use of the proposed method on real data of hundreds of gene co-expression data and showed that it can comprehensively characterize the query gene. Therefore, this study provides a new tool for annotating the uncharacterized genes and has great potential to assist clinical genomic diagnostics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=local%20tensor%20clustering" title="local tensor clustering">local tensor clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=query%20gene" title=" query gene"> query gene</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20co-expression%20network" title=" gene co-expression network"> gene co-expression network</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20annotation" title=" gene annotation"> gene annotation</a> </p> <a href="https://publications.waset.org/abstracts/155115/a-local-tensor-clustering-algorithm-to-annotate-uncharacterized-genes-with-many-biological-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7791</span> Operator Optimization Based on Hardware Architecture Alignment Requirements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qingqing%20Gai">Qingqing Gai</a>, <a href="https://publications.waset.org/abstracts/search?q=Junxing%20Shen"> Junxing Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Luo"> Yu Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the hardware architecture characteristics, some operators tend to acquire better performance if the input/output tensor dimensions are aligned to a certain minimum granularity, such as convolution and deconvolution commonly used in deep learning. Furthermore, if the requirements are not met, the general strategy is to pad with 0 to satisfy the requirements, potentially leading to the under-utilization of the hardware resources. Therefore, for the convolution and deconvolution whose input and output channels do not meet the minimum granularity alignment, we propose to transfer the W-dimensional data to the C-dimension for computation (W2C) to enable the C-dimension to meet the hardware requirements. This scheme also reduces the number of computations in the W-dimension. Although this scheme substantially increases computation, the operator’s speed can improve significantly. It achieves remarkable speedups on multiple hardware accelerators, including Nvidia Tensor cores, Qualcomm digital signal processors (DSPs), and Huawei neural processing units (NPUs). All you need to do is modify the network structure and rearrange the operator weights offline without retraining. At the same time, for some operators, such as the Reducemax, we observe that transferring the Cdimensional data to the W-dimension(C2W) and replacing the Reducemax with the Maxpool can accomplish acceleration under certain circumstances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolution" title="convolution">convolution</a>, <a href="https://publications.waset.org/abstracts/search?q=deconvolution" title=" deconvolution"> deconvolution</a>, <a href="https://publications.waset.org/abstracts/search?q=W2C" title=" W2C"> W2C</a>, <a href="https://publications.waset.org/abstracts/search?q=C2W" title=" C2W"> C2W</a>, <a href="https://publications.waset.org/abstracts/search?q=alignment" title=" alignment"> alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware%20accelerator" title=" hardware accelerator"> hardware accelerator</a> </p> <a href="https://publications.waset.org/abstracts/157366/operator-optimization-based-on-hardware-architecture-alignment-requirements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7790</span> Quantum Mechanism Approach for Non-Ruin Probability and Comparison of Path Integral Method and Stochastic Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Kaya">Ahmet Kaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum mechanism is one of the most important approaches to calculating non-ruin probability. We apply standard Dirac notation to model given Hamiltonians. By using the traditional method and eigenvector basis, non-ruin probability is found for several examples. Also, non-ruin probability is calculated for two different Hamiltonian by using the tensor product. Finally, the path integral method is applied to the examples and comparison is made for stochastic simulations and path integral calculation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20physics" title="quantum physics">quantum physics</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamiltonian%20system" title=" Hamiltonian system"> Hamiltonian system</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20integral" title=" path integral"> path integral</a>, <a href="https://publications.waset.org/abstracts/search?q=tensor%20product" title=" tensor product"> tensor product</a>, <a href="https://publications.waset.org/abstracts/search?q=ruin%20probability" title=" ruin probability"> ruin probability</a> </p> <a href="https://publications.waset.org/abstracts/56920/quantum-mechanism-approach-for-non-ruin-probability-and-comparison-of-path-integral-method-and-stochastic-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7789</span> Estimation of Source Parameters and Moment Tensor Solution through Waveform Modeling of 2013 Kishtwar Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shveta%20Puri">Shveta Puri</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiv%20Jyoti%20Pandey"> Shiv Jyoti Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Bhat"> G. M. Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Raina"> Neha Raina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> TheJammu and Kashmir region of the Northwest Himalaya had witnessed many devastating earthquakes in the recent past and has remained unexplored for any kind of seismic investigations except scanty records of the earthquakes that occurred in this region in the past. In this study, we have used local seismic data of year 2013 that was recorded by the network of Broadband Seismographs in J&K. During this period, our seismic stations recorded about 207 earthquakes including two moderate events of Mw 5.7 on 1st May, 2013 and Mw 5.1 of 2nd August, 2013.We analyzed the events of Mw 3-4.6 and the main events only (for minimizing the error) for source parameters, b value and sense of movement through waveform modeling for understanding seismotectonic and seismic hazard of the region. It has been observed that most of the events are bounded between 32.9° N – 33.3° N latitude and 75.4° E – 76.1° E longitudes, Moment Magnitude (Mw) ranges from Mw 3 to 5.7, Source radius (r), from 0.21 to 3.5 km, stress drop, from 1.90 bars to 71.1 bars and Corner frequency, from 0.39 – 6.06 Hz. The b-value for this region was found to be 0.83±0 from these events which are lower than the normal value (b=1), indicating the area is under high stress. The travel time inversion and waveform inversion method suggest focal depth up to 10 km probably above the detachment depth of the Himalayan region. Moment tensor solution of the (Mw 5.1, 02:32:47 UTC) main event of 2ndAugust suggested that the source fault is striking at 295° with dip of 33° and rake value of 85°. It was found that these events form intense clustering of small to moderate events within a narrow zone between Panjal Thrust and Kishtwar Window. Moment tensor solution of the main events and their aftershocks indicating thrust type of movement is occurring in this region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=b-value" title="b-value">b-value</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20tensor" title=" moment tensor"> moment tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=seismotectonics" title=" seismotectonics"> seismotectonics</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20parameters" title=" source parameters"> source parameters</a> </p> <a href="https://publications.waset.org/abstracts/60685/estimation-of-source-parameters-and-moment-tensor-solution-through-waveform-modeling-of-2013-kishtwar-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7788</span> Fast and Accurate Finite-Difference Method Solving Multicomponent Smoluchowski Coagulation Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20P.%20Smirnov">Alexander P. Smirnov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20A.%20Matveev"> Sergey A. Matveev</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20A.%20Zheltkov"> Dmitry A. Zheltkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugene%20E.%20Tyrtyshnikov"> Eugene E. Tyrtyshnikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a new computational technique for multidimensional (multicomponent) Smoluchowski coagulation equation. Using low-rank approximations in Tensor Train format of both the solution and the coagulation kernel, we accelerate the classical finite-difference Runge-Kutta scheme keeping its level of accuracy. The complexity of the taken finite-difference scheme is reduced from O(N^2d) to O(d^2 N log N ), where N is the number of grid nodes and d is a dimensionality of the problem. The efficiency and the accuracy of the new method are demonstrated on concrete problem with known analytical solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tensor%20train%20decomposition" title="tensor train decomposition">tensor train decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=multicomponent%20Smoluchowski%20equation" title=" multicomponent Smoluchowski equation"> multicomponent Smoluchowski equation</a>, <a href="https://publications.waset.org/abstracts/search?q=runge-kutta%20scheme" title=" runge-kutta scheme"> runge-kutta scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=convolution" title=" convolution"> convolution</a> </p> <a href="https://publications.waset.org/abstracts/40417/fast-and-accurate-finite-difference-method-solving-multicomponent-smoluchowski-coagulation-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7787</span> Modifying Hawking Radiation in 2D-Approximated Schwarzschild Black Holes near the Event Horizon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20Pincak">Richard Pincak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starting from a 4D spacetime model using a partially negative dimensional product manifold (PNDP-manifold), which emerges as a 2D spacetime, we developed an analysis of tidal forces and Hawking radiation near the event horizon of a Schwarzchild black hole. The modified 2D metric, incorporating the effects of the four-dimensional Weyl tensor, with the dilatonic field and the newly derived time relation \(2\alpha t = \ln \epsilon\), can enable a deeper understanding of quantum gravity. The analysis shows how the modified Hawking temperature and distribution of emitted particles are affected by additional fields, providing potential observables for future experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20holes" title="black holes">black holes</a>, <a href="https://publications.waset.org/abstracts/search?q=Hawking%20radiation" title=" Hawking radiation"> Hawking radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=Weyl%20tensor" title=" Weyl tensor"> Weyl tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20paradox" title=" information paradox"> information paradox</a> </p> <a href="https://publications.waset.org/abstracts/191161/modifying-hawking-radiation-in-2d-approximated-schwarzschild-black-holes-near-the-event-horizon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7786</span> Tensor Deep Stacking Neural Networks and Bilinear Mapping Based Speech Emotion Classification Using Facial Electromyography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Jagadeesh%20Kumar">P. S. Jagadeesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yung"> Yang Yung</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenli%20Hu"> Wenli Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Speech emotion classification is a dominant research field in finding a sturdy and profligate classifier appropriate for different real-life applications. This effort accentuates on classifying different emotions from speech signal quarried from the features related to pitch, formants, energy contours, jitter, shimmer, spectral, perceptual and temporal features. Tensor deep stacking neural networks were supported to examine the factors that influence the classification success rate. Facial electromyography signals were composed of several forms of focuses in a controlled atmosphere by means of audio-visual stimuli. Proficient facial electromyography signals were pre-processed using moving average filter, and a set of arithmetical features were excavated. Extracted features were mapped into consistent emotions using bilinear mapping. With facial electromyography signals, a database comprising diverse emotions will be exposed with a suitable fine-tuning of features and training data. A success rate of 92% can be attained deprived of increasing the system connivance and the computation time for sorting diverse emotional states. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=speech%20emotion%20classification" title="speech emotion classification">speech emotion classification</a>, <a href="https://publications.waset.org/abstracts/search?q=tensor%20deep%20stacking%20neural%20networks" title=" tensor deep stacking neural networks"> tensor deep stacking neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20electromyography" title=" facial electromyography"> facial electromyography</a>, <a href="https://publications.waset.org/abstracts/search?q=bilinear%20mapping" title=" bilinear mapping"> bilinear mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=audio-visual%20stimuli" title=" audio-visual stimuli"> audio-visual stimuli</a> </p> <a href="https://publications.waset.org/abstracts/78499/tensor-deep-stacking-neural-networks-and-bilinear-mapping-based-speech-emotion-classification-using-facial-electromyography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7785</span> On Quasi Conformally Flat LP-Sasakian Manifolds with a Coefficient α</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jay%20Prakash%20Singh">Jay Prakash Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present paper is to study properties of Quasi conformally flat LP-Sasakian manifolds with a coefficient α. In this paper, we prove that a Quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α is an η−Einstein and in a quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α if the scalar curvature tensor is constant then M is of constant curvature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LP-Sasakian%20manifolds" title="LP-Sasakian manifolds">LP-Sasakian manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-conformal%20curvature%20tensor" title=" quasi-conformal curvature tensor"> quasi-conformal curvature tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=concircular%20vector%20%0Cfield" title=" concircular vector field"> concircular vector field</a>, <a href="https://publications.waset.org/abstracts/search?q=torse%20forming%20vector%20%0Cfield" title=" torse forming vector field"> torse forming vector field</a>, <a href="https://publications.waset.org/abstracts/search?q=Einstein%20manifold" title=" Einstein manifold"> Einstein manifold</a> </p> <a href="https://publications.waset.org/abstracts/50415/on-quasi-conformally-flat-lp-sasakian-manifolds-with-a-coefficient-a" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">792</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7784</span> Implicit Eulerian Fluid-Structure Interaction Method for the Modeling of Highly Deformable Elastic Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aymen%20Laadhari">Aymen Laadhari</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%A1bor%20Sz%C3%A9kely"> Gábor Székely</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with the development of a fully implicit and purely Eulerian fluid-structure interaction method tailored for the modeling of the large deformations of elastic membranes in a surrounding Newtonian fluid. We consider a simplified model for the mechanical properties of the membrane, in which the surface strain energy depends on the membrane stretching. The fully Eulerian description is based on the advection of a modified surface tension tensor, and the deformations of the membrane are tracked using a level set strategy. The resulting nonlinear problem is solved by a Newton-Raphson method, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the presented method. We show that stability is maintained for significantly larger time steps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=implicit" title=" implicit"> implicit</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20set" title=" level set"> level set</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton%20method" title=" Newton method"> Newton method</a> </p> <a href="https://publications.waset.org/abstracts/60543/implicit-eulerian-fluid-structure-interaction-method-for-the-modeling-of-highly-deformable-elastic-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7783</span> Reliability of Diffusion Tensor Imaging in Differentiation of Salivary Gland Tumors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sally%20Salah%20El%20Menshawy">Sally Salah El Menshawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghada%20M.%20Ahmed%20GabAllah"> Ghada M. Ahmed GabAllah</a>, <a href="https://publications.waset.org/abstracts/search?q=Doaa%20Khedr%20M.%20Khedr"> Doaa Khedr M. Khedr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Our study aims to detect the diagnostic role of DTI in the differentiation of salivary glands benign and malignant lesions. Results: Our study included 50 patients (25males and 25 females) divided into 4 groups (benign lesions n=20, malignant tumors n=13, post-operative changes n=10 and normal n=7). 28 patients were with parotid gland lesions, 4 patients were with submandibular gland lesions and only 1 case with sublingual gland affection. The mean fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of malignant salivary gland tumors (n = 13) (0.380±0.082 and 0.877±0.234× 10⁻³ mm² s⁻¹) were significantly different (P<0.001) than that of benign tumors (n = 20) (0.147±0.03 and 1.47±0.605 × 10⁻³ mm² s⁻¹), respectively. The mean FA and ADC of post-operative changes (n = 10) were (0.211±0.069 and 1.63±0.20× 10⁻³ mm² s⁻¹) while that of normal glands (n =7) was (0.251±0.034and 1.54±0.29× 10⁻³ mm² s⁻¹), respectively. Using ADC to differentiate malignant lesions from benign lesions has an (AUC) of 0.810, with an accuracy of 69.7%. ADC used to differentiate malignant lesions from post-operative changes has (AUC) of 1.0, and an accuracy of 95.7%. FA used to discriminate malignant from benign lesions has (AUC) of 1.0, and an accuracy of 93.9%. FA used to differentiate malignant from post-operative changes has (AUC) of 0.923, and an accuracy of 95.7%. Combined FA and ADC used to differentiate malignant from benign lesions has (AUC) of 1.0, and an accuracy of 100%. Combined FA and ADC used to differentiate malignant from post-operative changes has (AUC) of 1.0, and an accuracy of 100%. Conclusion: Combined FA and ADC can differentiate malignant tumors from benign salivary gland lesions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion%20tensor%20imaging" title="diffusion tensor imaging">diffusion tensor imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=salivary%20gland" title=" salivary gland"> salivary gland</a>, <a href="https://publications.waset.org/abstracts/search?q=tumors" title=" tumors"> tumors</a> </p> <a href="https://publications.waset.org/abstracts/154784/reliability-of-diffusion-tensor-imaging-in-differentiation-of-salivary-gland-tumors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7782</span> Riemannain Geometries Of Visual Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacek%20Turski">Jacek Turski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The visual space geometries are constructed in the Riemannian geometry framework from simulated iso-disparity conics in the horizontalvisual plane of the binocular system with the asymmetric eyes (AEs). For the eyes fixating at the abathic distance, which depends on the AE’s parameters, the iso-disparity conics are frontal straight lines in physical space. For allother fixations, the iso-disparity conics consist of families of the ellipses or hyperbolas depending on both the AE’s parameters and the bifoveal fixation. However, the iso-disparity conic’s arcs are perceived in the gaze direction asthe frontal lines and are referred to as visual geodesics. Thus, geometriesof physical and visual spaces are different. A simple postulate that combines simulated iso-disparity conics with basic anatomy od the human visual system gives the relative depth for the fixation at the abathic distance that establishes the Riemann matric tensor. The resulting geodesics are incomplete in the gaze direction and, therefore, give thefinite distances to the horizon that depend on the AE’s parameters. Moreover, the curvature vanishes in this eyes posture such that visual space is flat. For all other fixations, only the sign of the curvature canbe inferred from the global behavior of the simulated iso-disparity conics: the curvature is positive for the elliptic iso-disparity curves and negative for the hyperbolic iso-disparity curves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20eye%20model" title="asymmetric eye model">asymmetric eye model</a>, <a href="https://publications.waset.org/abstracts/search?q=iso-disparity%20conics" title=" iso-disparity conics"> iso-disparity conics</a>, <a href="https://publications.waset.org/abstracts/search?q=metric%20tensor" title=" metric tensor"> metric tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=geodesics" title=" geodesics"> geodesics</a>, <a href="https://publications.waset.org/abstracts/search?q=curvature" title=" curvature"> curvature</a> </p> <a href="https://publications.waset.org/abstracts/144276/riemannain-geometries-of-visual-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7781</span> Integral Form Solutions of the Linearized Navier-Stokes Equations without Deviatoric Stress Tensor Term in the Forward Modeling for FWI</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anyeres%20N.%20Atehortua%20Jimenez">Anyeres N. Atehortua Jimenez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20David%20Lambra%C3%B1o"> J. David Lambraño</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Carlos%20Mu%C3%B1oz"> Juan Carlos Muñoz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Navier-Stokes equations (NSE), which describe the dynamics of a fluid, have an important application on modeling waves used for data inversion techniques as full waveform inversion (FWI). In this work a linearized version of NSE and its variables, neglecting deviatoric terms of stress tensor, is presented. In order to get a theoretical modeling of pressure p(x,t) and wave velocity profile c(x,t), a wave equation of visco-acoustic medium (VAE) is written. A change of variables p(x,t)=q(x,t)h(ρ), is made on the equation for the VAE leading to a well known Klein-Gordon equation (KGE) describing waves propagating in variable density medium (ρ) with dispersive term α^2(x). KGE is reduced to a Poisson equation and solved by proposing a specific function for α^2(x) accounting for the energy dissipation and dispersion. Finally, an integral form solution is derived for p(x,t), c(x,t) and kinematics variables like particle velocity v(x,t), displacement u(x,t) and bulk modulus function k_b(x,t). Further, it is compared this visco-acoustic formulation with another form broadly used in the geophysics; it is argued that this formalism is more general and, given its integral form, it may offer several advantages from the modern parallel computing point of view. Applications to minimize the errors in modeling for FWI applied to oils resources in geophysics are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navier-Stokes%20equations" title="Navier-Stokes equations">Navier-Stokes equations</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=visco-acoustic" title=" visco-acoustic"> visco-acoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=inversion%20FWI" title=" inversion FWI "> inversion FWI </a> </p> <a href="https://publications.waset.org/abstracts/33620/integral-form-solutions-of-the-linearized-navier-stokes-equations-without-deviatoric-stress-tensor-term-in-the-forward-modeling-for-fwi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7780</span> Automatic Detection and Update of Region of Interest in Vehicular Traffic Surveillance Videos</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naydelis%20Brito%20Su%C3%A1rez">Naydelis Brito Suárez</a>, <a href="https://publications.waset.org/abstracts/search?q=Deni%20Librado%20Torres%20Rom%C3%A1n"> Deni Librado Torres Román</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Hermosillo%20Reynoso"> Fernando Hermosillo Reynoso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic detection and generation of a dynamic ROI (Region of Interest) in vehicle traffic surveillance videos based on a static camera in Intelligent Transportation Systems is challenging for computer vision-based systems. The dynamic ROI, being a changing ROI, should capture any other moving object located outside of a static ROI. In this work, the video is represented by a Tensor model composed of a Background and a Foreground Tensor, which contains all moving vehicles or objects. The values of each pixel over a time interval are represented by time series, and some pixel rows were selected. This paper proposes a pixel entropy-based algorithm for automatic detection and generation of a dynamic ROI in traffic videos under the assumption of two types of theoretical pixel entropy behaviors: (1) a pixel located at the road shows a high entropy value due to disturbances in this zone by vehicle traffic, (2) a pixel located outside the road shows a relatively low entropy value. To study the statistical behavior of the selected pixels, detecting the entropy changes and consequently moving objects, Shannon, Tsallis, and Approximate entropies were employed. Although Tsallis entropy achieved very high results in real-time, Approximate entropy showed results slightly better but in greater time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convex%20hull" title="convex hull">convex hull</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20ROI%20detection" title=" dynamic ROI detection"> dynamic ROI detection</a>, <a href="https://publications.waset.org/abstracts/search?q=pixel%20entropy" title=" pixel entropy"> pixel entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20objects" title=" moving objects"> moving objects</a> </p> <a href="https://publications.waset.org/abstracts/174020/automatic-detection-and-update-of-region-of-interest-in-vehicular-traffic-surveillance-videos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7779</span> Social Structure, Involuntary Relations and Urban Poverty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Niroobakhsh">Mahmood Niroobakhsh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article deals with special structuralism approaches to explain a certain kind of social problem. Widespread presence of poverty is a reminder of deep-rooted unresolved problems of social relations. The expected role from an individual for the social system recognizes poverty derived from an interrelated social structure. By the time, enabled to act on his role in the course of social interaction, reintegration of the poor in society may take place. Poverty and housing type are reflections of the underlying social structure, primarily structure’s elements, systemic interrelations, and the overall strength or weakness of that structure. Poverty varies based on social structure in that the stronger structures are less likely to produce poverty. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absolute%20poverty" title="absolute poverty">absolute poverty</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20poverty" title=" relative poverty"> relative poverty</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20structure" title=" social structure"> social structure</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20poverty" title=" urban poverty"> urban poverty</a> </p> <a href="https://publications.waset.org/abstracts/22096/social-structure-involuntary-relations-and-urban-poverty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">679</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7778</span> Surface Characterization of Zincblende and Wurtzite Semiconductors Using Nonlinear Optics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hendradi%20Hardhienata">Hendradi Hardhienata</a>, <a href="https://publications.waset.org/abstracts/search?q=Tony%20Sumaryada"> Tony Sumaryada</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Setyaningsih"> Sri Setyaningsih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current progress in the field of nonlinear optics has enabled precise surface characterization in semiconductor materials. Nonlinear optical techniques are favorable due to their nondestructive measurement and ability to work in nonvacuum and ambient conditions. The advance of the bond hyperpolarizability models opens a wide range of nanoscale surface investigation including the possibility to detect molecular orientation at the surface of silicon and zincblende semiconductors, investigation of electric field induced second harmonic fields at the semiconductor interface, detection of surface impurities, and very recently, study surface defects such as twin boundary in wurtzite semiconductors. In this work, we show using nonlinear optical techniques, e.g. nonlinear bond models how arbitrary polarization of the incoming electric field in Rotational Anisotropy Spectroscopy experiments can provide more information regarding the origin of the nonlinear sources in zincblende and wurtzite semiconductor structure. In addition, using hyperpolarizability consideration, we describe how the nonlinear susceptibility tensor describing SHG can be well modelled using only few parameter because of the symmetry of the bonds. We also show how the third harmonic intensity feature shows considerable changes when the incoming field polarization angle is changed from s-polarized to p-polarized. We also propose a method how to investigate surface reconstruction and defects in wurtzite and zincblende structure at the nanoscale level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20characterization" title="surface characterization">surface characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20model" title=" bond model"> bond model</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20anisotropy%20spectroscopy" title=" rotational anisotropy spectroscopy"> rotational anisotropy spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20hyperpolarizability" title=" effective hyperpolarizability"> effective hyperpolarizability</a> </p> <a href="https://publications.waset.org/abstracts/94221/surface-characterization-of-zincblende-and-wurtzite-semiconductors-using-nonlinear-optics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7777</span> Introduction of Para-Sasaki-Like Riemannian Manifolds and Construction of New Einstein Metrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mancho%20Manev">Mancho Manev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of almost paracontact Riemannian manifolds (abbr., apcR manifolds) was introduced by I. Sato in 1976 as an analogue of almost contact Riemannian manifolds. The notion of an apcR manifold of type (p,q) was defined by S. Sasaki in 1980, where p and q are respectively the numbers of the multiplicity of the structure eigenvalues 1 and -1. It also has a simple eigenvalue of 0. In our work, we consider (2n+1)-dimensional apcR manifolds of type (n,n), i.e., the paracontact distribution of the studied manifold can be considered as a 2n-dimensional almost paracomplex Riemannian distribution with almost paracomplex structure and structure group O(n) × O(n). The aim of the present study is to introduce a new class of apcR manifolds. Such a manifold is obtained using the construction of a certain Riemannian cone over it, and the resulting manifold is a paraholomorphic paracomplex Riemannian manifold (abbr., phpcR manifold). We call it a para-Sasaki-like Riemannian manifold (abbr., pSlR manifold) and give some explicit examples. We study the structure of pSlR spaces and find that the paracontact form η is closed and each pSlR manifold locally can be considered as a certain product of the real line with a phpcR manifold, which is locally a Riemannian product of two equidimensional Riemannian spaces. We also obtain that the curvature of the pSlR manifolds is completely determined by the curvature of the underlying local phpcR manifold. Moreover, the ξ-directed Ricci curvature is equal to -2n, while in the Sasaki case, it is 2n. Accordingly, the pSlR manifolds can be interpreted as the counterpart of the Sasaki manifolds; the skew-symmetric part of ∇η vanishes, while in the Sasaki case, the symmetric part vanishes. We define a hyperbolic extension of a (complete) phpcR manifold that resembles a certain warped product, and we indicate that it is a (complete) pSlR manifold. In addition, we consider the hyperbolic extension of a phpcR manifold and prove that if the initial manifold is a complete Einstein manifold with negative scalar curvature, then the resulting manifold is a complete Einstein pSlR manifold with negative scalar curvature. In this way, we produce new examples of a complete Einstein Riemannian manifold with negative scalar curvature. Finally, we define and study para contact conformal/homothetic deformations by deriving a subclass that preserves the para-Sasaki-like condition. We then find that if we apply a paracontact homothetic deformation of a pSlR space, we obtain that the Ricci tensor is invariant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=almost%20paracontact%20Riemannian%20manifolds" title="almost paracontact Riemannian manifolds">almost paracontact Riemannian manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=Einstein%20manifolds" title=" Einstein manifolds"> Einstein manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=holomorphic%20product%20manifold" title=" holomorphic product manifold"> holomorphic product manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=warped%20product%20manifold" title=" warped product manifold"> warped product manifold</a> </p> <a href="https://publications.waset.org/abstracts/138178/introduction-of-para-sasaki-like-riemannian-manifolds-and-construction-of-new-einstein-metrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7776</span> On the Existence of Homotopic Mapping Between Knowledge Graphs and Graph Embeddings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jude%20K.%20Safo">Jude K. Safo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Knowledge Graphs KG) and their relation to Graph Embeddings (GE) represent a unique data structure in the landscape of machine learning (relative to image, text and acoustic data). Unlike the latter, GEs are the only data structure sufficient for representing hierarchically dense, semantic information needed for use-cases like supply chain data and protein folding where the search space exceeds the limits traditional search methods (e.g. page-rank, Dijkstra, etc.). While GEs are effective for compressing low rank tensor data, at scale, they begin to introduce a new problem of ’data retreival’ which we observe in Large Language Models. Notable attempts by transE, TransR and other prominent industry standards have shown a peak performance just north of 57% on WN18 and FB15K benchmarks, insufficient practical industry applications. They’re also limited, in scope, to next node/link predictions. Traditional linear methods like Tucker, CP, PARAFAC and CANDECOMP quickly hit memory limits on tensors exceeding 6.4 million nodes. This paper outlines a topological framework for linear mapping between concepts in KG space and GE space that preserve cardinality. Most importantly we introduce a traceable framework for composing dense linguistic strcutures. We demonstrate performance on WN18 benchmark this model hits. This model does not rely on Large Langauge Models (LLM) though the applications are certainy relevant here as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=representation%20theory" title="representation theory">representation theory</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20language%20models" title=" large language models"> large language models</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20embeddings" title=" graph embeddings"> graph embeddings</a>, <a href="https://publications.waset.org/abstracts/search?q=applied%20algebraic%20topology" title=" applied algebraic topology"> applied algebraic topology</a>, <a href="https://publications.waset.org/abstracts/search?q=applied%20knot%20theory" title=" applied knot theory"> applied knot theory</a>, <a href="https://publications.waset.org/abstracts/search?q=combinatorics" title=" combinatorics"> combinatorics</a> </p> <a href="https://publications.waset.org/abstracts/161671/on-the-existence-of-homotopic-mapping-between-knowledge-graphs-and-graph-embeddings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structure%20tensor&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structure%20tensor&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structure%20tensor&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structure%20tensor&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structure%20tensor&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structure%20tensor&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structure%20tensor&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structure%20tensor&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structure%20tensor&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structure%20tensor&page=260">260</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structure%20tensor&page=261">261</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structure%20tensor&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>