CINXE.COM
Ecuación de Hunter-Saxton - Wikipedia, la enciclopedia libre
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="es" dir="ltr"> <head> <meta charset="UTF-8"> <title>Ecuación de Hunter-Saxton - Wikipedia, la enciclopedia libre</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )eswikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","enero","febrero","marzo","abril","mayo","junio","julio","agosto","septiembre","octubre","noviembre","diciembre"],"wgRequestId":"bd8a9d13-5c74-4750-8a6e-f38864e687fd","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Ecuación_de_Hunter-Saxton","wgTitle":"Ecuación de Hunter-Saxton","wgCurRevisionId":160536636,"wgRevisionId":160536636,"wgArticleId":9505836,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Física matemática","Fenómenos físicos","Ondas","Dinámica de fluidos","Cuasipartículas","Ciencia y tecnología de Reino Unido del siglo XIX","Ecuaciones de dinámica de fluidos"],"wgPageViewLanguage":"es","wgPageContentLanguage":"es","wgPageContentModel":"wikitext","wgRelevantPageName":"Ecuación_de_Hunter-Saxton","wgRelevantArticleId":9505836,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true, "wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"es","pageLanguageDir":"ltr","pageVariantFallbacks":"es"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q5944865","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":true,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser": false};RLSTATE={"ext.gadget.imagenesinfobox":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.a-commons-directo","ext.gadget.ReferenceTooltips","ext.gadget.refToolbar","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader", "ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=es&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=es&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=es&modules=ext.gadget.imagenesinfobox&only=styles&skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=es&modules=site.styles&only=styles&skin=vector-2022"> <noscript><link rel="stylesheet" href="/w/load.php?lang=es&modules=noscript&only=styles&skin=vector-2022"></noscript> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Ecuación de Hunter-Saxton - Wikipedia, la enciclopedia libre"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//es.m.wikipedia.org/wiki/Ecuaci%C3%B3n_de_Hunter-Saxton"> <link rel="alternate" type="application/x-wiki" title="Editar" href="/w/index.php?title=Ecuaci%C3%B3n_de_Hunter-Saxton&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (es)"> <link rel="EditURI" type="application/rsd+xml" href="//es.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://es.wikipedia.org/wiki/Ecuaci%C3%B3n_de_Hunter-Saxton"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.es"> <link rel="alternate" type="application/atom+xml" title="Canal Atom de Wikipedia" href="/w/index.php?title=Especial:CambiosRecientes&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Ecuación_de_Hunter-Saxton rootpage-Ecuación_de_Hunter-Saxton skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Ir al contenido</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Sitio"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menú principal" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menú principal</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menú principal</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">ocultar</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navegación </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:Portada" title="Visitar la página principal [z]" accesskey="z"><span>Portada</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Portal:Comunidad" title="Acerca del proyecto, lo que puedes hacer, dónde encontrar información"><span>Portal de la comunidad</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Actualidad" title="Encuentra información de contexto sobre acontecimientos actuales"><span>Actualidad</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Especial:CambiosRecientes" title="Lista de cambios recientes en la wiki [r]" accesskey="r"><span>Cambios recientes</span></a></li><li id="n-newpages" class="mw-list-item"><a href="/wiki/Especial:P%C3%A1ginasNuevas"><span>Páginas nuevas</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Especial:Aleatoria" title="Cargar una página al azar [x]" accesskey="x"><span>Página aleatoria</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Ayuda:Contenidos" title="El lugar para aprender"><span>Ayuda</span></a></li><li id="n-bug_in_article" class="mw-list-item"><a href="/wiki/Wikipedia:Informes_de_error"><span>Notificar un error</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikipedia:Portada" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="La enciclopedia libre" src="/static/images/mobile/copyright/wikipedia-tagline-es.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Especial:Buscar" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Buscar en este wiki [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Buscar</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Buscar en Wikipedia" aria-label="Buscar en Wikipedia" autocapitalize="sentences" title="Buscar en este wiki [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Especial:Buscar"> </div> <button class="cdx-button cdx-search-input__end-button">Buscar</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Herramientas personales"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Apariencia"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Apariencia" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Apariencia</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_es.wikipedia.org&uselang=es" class=""><span>Donaciones</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Especial:Crear_una_cuenta&returnto=Ecuaci%C3%B3n+de+Hunter-Saxton" title="Te recomendamos crear una cuenta e iniciar sesión; sin embargo, no es obligatorio" class=""><span>Crear una cuenta</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Especial:Entrar&returnto=Ecuaci%C3%B3n+de+Hunter-Saxton" title="Te recomendamos iniciar sesión, aunque no es obligatorio [o]" accesskey="o" class=""><span>Acceder</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Más opciones" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Herramientas personales" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Herramientas personales</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menú de usuario" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_es.wikipedia.org&uselang=es"><span>Donaciones</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Especial:Crear_una_cuenta&returnto=Ecuaci%C3%B3n+de+Hunter-Saxton" title="Te recomendamos crear una cuenta e iniciar sesión; sin embargo, no es obligatorio"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Crear una cuenta</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Especial:Entrar&returnto=Ecuaci%C3%B3n+de+Hunter-Saxton" title="Te recomendamos iniciar sesión, aunque no es obligatorio [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Acceder</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Páginas para editores desconectados <a href="/wiki/Ayuda:Introducci%C3%B3n" aria-label="Obtenga más información sobre editar"><span>más información</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Especial:MisContribuciones" title="Una lista de modificaciones hechas desde esta dirección IP [y]" accesskey="y"><span>Contribuciones</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Especial:MiDiscusi%C3%B3n" title="Discusión sobre ediciones hechas desde esta dirección IP [n]" accesskey="n"><span>Discusión</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Sitio"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contenidos" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contenidos</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">ocultar</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Inicio</div> </a> </li> <li id="toc-Antecedentes_físicos" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Antecedentes_físicos"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Antecedentes físicos</span> </div> </a> <ul id="toc-Antecedentes_físicos-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Derivación_de_la_ecuación_de_Hunter-Saxton" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Derivación_de_la_ecuación_de_Hunter-Saxton"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Derivación de la ecuación de Hunter-Saxton</span> </div> </a> <button aria-controls="toc-Derivación_de_la_ecuación_de_Hunter-Saxton-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Alternar subsección Derivación de la ecuación de Hunter-Saxton</span> </button> <ul id="toc-Derivación_de_la_ecuación_de_Hunter-Saxton-sublist" class="vector-toc-list"> <li id="toc-Generalización" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Generalización"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Generalización</span> </div> </a> <ul id="toc-Generalización-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Estructuras_variables_e_integrabilidad" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Estructuras_variables_e_integrabilidad"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Estructuras variables e integrabilidad</span> </div> </a> <ul id="toc-Estructuras_variables_e_integrabilidad-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Referencias" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Referencias"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Referencias</span> </div> </a> <ul id="toc-Referencias-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliografía" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliografía"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Bibliografía</span> </div> </a> <ul id="toc-Bibliografía-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contenidos" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Cambiar a la tabla de contenidos" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Cambiar a la tabla de contenidos</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Ecuación de Hunter-Saxton</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Ir a un artículo en otro idioma. Disponible en 4 idiomas" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-4" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">4 idiomas</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B9%D8%A7%D8%AF%D9%84%D8%A9_%D9%87%D9%86%D8%AA%D8%B1-%D8%B3%D8%A7%D9%83%D8%B3%D8%AA%D9%88%D9%86" title="معادلة هنتر-ساكستون (árabe)" lang="ar" hreflang="ar" data-title="معادلة هنتر-ساكستون" data-language-autonym="العربية" data-language-local-name="árabe" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Hunter%E2%80%93Saxton_equation" title="Hunter–Saxton equation (inglés)" lang="en" hreflang="en" data-title="Hunter–Saxton equation" data-language-autonym="English" data-language-local-name="inglés" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Hunter%E2%80%93Saxtons_ekvation" title="Hunter–Saxtons ekvation (sueco)" lang="sv" hreflang="sv" data-title="Hunter–Saxtons ekvation" data-language-autonym="Svenska" data-language-local-name="sueco" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E4%BA%A8%E7%89%B9_-_%E8%90%A8%E5%85%8B%E6%96%AF%E9%A1%BF%E6%96%B9%E7%A8%8B" title="亨特 - 萨克斯顿方程 (chino)" lang="zh" hreflang="zh" data-title="亨特 - 萨克斯顿方程" data-language-autonym="中文" data-language-local-name="chino" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q5944865#sitelinks-wikipedia" title="Editar enlaces interlingüísticos" class="wbc-editpage">Editar enlaces</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Espacios de nombres"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ecuaci%C3%B3n_de_Hunter-Saxton" title="Ver la página de contenido [c]" accesskey="c"><span>Artículo</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discusi%C3%B3n:Ecuaci%C3%B3n_de_Hunter-Saxton" rel="discussion" title="Discusión acerca de la página [t]" accesskey="t"><span>Discusión</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Cambiar variante de idioma" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">español</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Vistas"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ecuaci%C3%B3n_de_Hunter-Saxton"><span>Leer</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ecuaci%C3%B3n_de_Hunter-Saxton&action=edit" title="Editar esta página [e]" accesskey="e"><span>Editar</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ecuaci%C3%B3n_de_Hunter-Saxton&action=history" title="Versiones anteriores de esta página [h]" accesskey="h"><span>Ver historial</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Página de herramientas"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Herramientas" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Herramientas</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Herramientas</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">ocultar</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Más opciones" > <div class="vector-menu-heading"> Acciones </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Ecuaci%C3%B3n_de_Hunter-Saxton"><span>Leer</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ecuaci%C3%B3n_de_Hunter-Saxton&action=edit" title="Editar esta página [e]" accesskey="e"><span>Editar</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ecuaci%C3%B3n_de_Hunter-Saxton&action=history"><span>Ver historial</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Especial:LoQueEnlazaAqu%C3%AD/Ecuaci%C3%B3n_de_Hunter-Saxton" title="Lista de todas las páginas de la wiki que enlazan aquí [j]" accesskey="j"><span>Lo que enlaza aquí</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Especial:CambiosEnEnlazadas/Ecuaci%C3%B3n_de_Hunter-Saxton" rel="nofollow" title="Cambios recientes en las páginas que enlazan con esta [k]" accesskey="k"><span>Cambios en enlazadas</span></a></li><li id="t-upload" class="mw-list-item"><a href="//commons.wikimedia.org/wiki/Special:UploadWizard?uselang=es" title="Subir archivos [u]" accesskey="u"><span>Subir archivo</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Especial:P%C3%A1ginasEspeciales" title="Lista de todas las páginas especiales [q]" accesskey="q"><span>Páginas especiales</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Ecuaci%C3%B3n_de_Hunter-Saxton&oldid=160536636" title="Enlace permanente a esta versión de la página"><span>Enlace permanente</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Ecuaci%C3%B3n_de_Hunter-Saxton&action=info" title="Más información sobre esta página"><span>Información de la página</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Especial:Citar&page=Ecuaci%C3%B3n_de_Hunter-Saxton&id=160536636&wpFormIdentifier=titleform" title="Información sobre cómo citar esta página"><span>Citar esta página</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Especial:Acortador_de_URL&url=https%3A%2F%2Fes.wikipedia.org%2Fwiki%2FEcuaci%25C3%25B3n_de_Hunter-Saxton"><span>Obtener URL acortado</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Especial:QrCode&url=https%3A%2F%2Fes.wikipedia.org%2Fwiki%2FEcuaci%25C3%25B3n_de_Hunter-Saxton"><span>Descargar código QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Imprimir/exportar </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Especial:Libro&bookcmd=book_creator&referer=Ecuaci%C3%B3n+de+Hunter-Saxton"><span>Crear un libro</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Especial:DownloadAsPdf&page=Ecuaci%C3%B3n_de_Hunter-Saxton&action=show-download-screen"><span>Descargar como PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Ecuaci%C3%B3n_de_Hunter-Saxton&printable=yes" title="Versión imprimible de esta página [p]" accesskey="p"><span>Versión para imprimir</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> En otros proyectos </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q5944865" title="Enlace al elemento conectado del repositorio de datos [g]" accesskey="g"><span>Elemento de Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Página de herramientas"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Apariencia"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Apariencia</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">ocultar</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">De Wikipedia, la enciclopedia libre</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="es" dir="ltr"><p>En <a href="/wiki/F%C3%ADsica_matem%C3%A1tica" title="Física matemática">física matemática</a> , la <b>ecuación de Hunter-Saxton</b> <sup id="cite_ref-HS91_1-0" class="reference separada"><a href="#cite_note-HS91-1"><span class="corchete-llamada">[</span>1<span class="corchete-llamada">]</span></a></sup>​ </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (u_{t}+uu_{x})_{x}={\frac {1}{2}}\,u_{x}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mi>u</mi> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (u_{t}+uu_{x})_{x}={\frac {1}{2}}\,u_{x}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a8b12e6efac14d9b5b88fda64c9c54904d5ac64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.796ex; height:5.176ex;" alt="{\displaystyle (u_{t}+uu_{x})_{x}={\frac {1}{2}}\,u_{x}^{2}}"></span></dd></dl> <p>es una <a href="/wiki/Ecuaci%C3%B3n_en_derivadas_parciales" title="Ecuación en derivadas parciales">ecuación en derivadas parciales</a> <a href="/wiki/Sistema_hamiltoniano_integrable" title="Sistema hamiltoniano integrable"> integrable</a> que surge en el estudio teórico de <a href="/wiki/Cristal_l%C3%ADquido" title="Cristal líquido"> cristales líquidos</a> nemáticos. Si las moléculas en el cristal líquido están inicialmente alineadas y algunas de ellas se mueven ligeramente, esta alteración en la orientación se propagará a través del cristal. La ecuación de Hunter-Saxton describe ciertos aspectos de tales ondas de orientación. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Antecedentes_físicos"><span id="Antecedentes_f.C3.ADsicos"></span>Antecedentes físicos</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ecuaci%C3%B3n_de_Hunter-Saxton&action=edit&section=1" title="Editar sección: Antecedentes físicos"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En los modelos de cristales líquidos considerados aquí, se supone que no hay flujo de fluido, por lo que sólo la <i>orientación</i> de las moléculas es de interés. Dentro de la <i>teoría del elástico continuo</i>, la orientación se describe mediante un campo de vectores unitarios <b>n</b>(<i>x</i>,<i>y</i>,<i>z</i>,<i>t</i>). Para los cristales líquidos nemáticos, no hay diferencia entre orientar una molécula en <b>n</b> direcciones o en −<b>n</b> direcciones y el campo vectorial <b>n</b> es entonces llamado <i>campo director</i>. </p><p>La densidad de energía potencial de un campo director se supone que viene dada por la energía funcional de <a href="/wiki/Carl_Wilhelm_Oseen" title="Carl Wilhelm Oseen">Oseen</a>–<a href="/w/index.php?title=Charles_Frank_(f%C3%ADsico)&action=edit&redlink=1" class="new" title="Charles Frank (físico) (aún no redactado)">Frank</a><sup id="cite_ref-2" class="reference separada"><a href="#cite_note-2"><span class="corchete-llamada">[</span>2<span class="corchete-llamada">]</span></a></sup>​ </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W(\mathbf {n} ,\nabla \mathbf {n} )={\frac {1}{2}}\left(\alpha (\nabla \cdot \mathbf {n} )^{2}+\beta (\mathbf {n} \cdot (\nabla \times \mathbf {n} ))^{2}+\gamma |\mathbf {n} \times (\nabla \times \mathbf {n} )|^{2}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo>,</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>α<!-- α --></mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>β<!-- β --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W(\mathbf {n} ,\nabla \mathbf {n} )={\frac {1}{2}}\left(\alpha (\nabla \cdot \mathbf {n} )^{2}+\beta (\mathbf {n} \cdot (\nabla \times \mathbf {n} ))^{2}+\gamma |\mathbf {n} \times (\nabla \times \mathbf {n} )|^{2}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/879f3f55e369fc74c6ad543e8cf7d50c41bb020b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:66.048ex; height:5.176ex;" alt="{\displaystyle W(\mathbf {n} ,\nabla \mathbf {n} )={\frac {1}{2}}\left(\alpha (\nabla \cdot \mathbf {n} )^{2}+\beta (\mathbf {n} \cdot (\nabla \times \mathbf {n} ))^{2}+\gamma |\mathbf {n} \times (\nabla \times \mathbf {n} )|^{2}\right),}"></span></dd></dl> <p>donde los coeficientes positivos <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed48a5e36207156fb792fa79d29925d2f7901e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.332ex; height:2.509ex;" alt="{\displaystyle \beta }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> son conocidos como los coeficientes elásticos de separación, torsión y flexión, respectivamente. La energía cinética se descuida a menudo debido a la alta <a href="/wiki/Viscosidad" title="Viscosidad">viscosidad</a> de los cristales líquidos. </p> <div class="mw-heading mw-heading2"><h2 id="Derivación_de_la_ecuación_de_Hunter-Saxton"><span id="Derivaci.C3.B3n_de_la_ecuaci.C3.B3n_de_Hunter-Saxton"></span>Derivación de la ecuación de Hunter-Saxton</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ecuaci%C3%B3n_de_Hunter-Saxton&action=edit&section=2" title="Editar sección: Derivación de la ecuación de Hunter-Saxton"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Hunter y Saxton<sup id="cite_ref-HS91_1-1" class="reference separada"><a href="#cite_note-HS91-1"><span class="corchete-llamada">[</span>1<span class="corchete-llamada">]</span></a></sup>​ investigaron el caso en el que se ignora la amortiguación viscosa y se incluye un término de <a href="/wiki/Energ%C3%ADa_cin%C3%A9tica" title="Energía cinética">energía cinética</a> en el modelo. Entonces las ecuaciones rectoras para la dinámica del campo director son las <a href="/wiki/Ecuaciones_de_Euler-Lagrange" title="Ecuaciones de Euler-Lagrange">ecuaciones de Euler-Lagrange</a> para el <a href="/wiki/Lagrangiano" title="Lagrangiano">lagrangiano</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}={\frac {1}{2}}\left|{\frac {\partial \mathbf {n} }{\partial t}}\right|^{2}-W(\mathbf {n} ,\nabla \mathbf {n} )-{\frac {\lambda }{2}}(1-|\mathbf {n} |^{2}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>W</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo>,</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>λ<!-- λ --></mi> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}={\frac {1}{2}}\left|{\frac {\partial \mathbf {n} }{\partial t}}\right|^{2}-W(\mathbf {n} ,\nabla \mathbf {n} )-{\frac {\lambda }{2}}(1-|\mathbf {n} |^{2}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed5e06359a188e4c68e84e65b5d8e20d70405d01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:41.038ex; height:6.343ex;" alt="{\displaystyle {\mathcal {L}}={\frac {1}{2}}\left|{\frac {\partial \mathbf {n} }{\partial t}}\right|^{2}-W(\mathbf {n} ,\nabla \mathbf {n} )-{\frac {\lambda }{2}}(1-|\mathbf {n} |^{2}),}"></span></dd></dl> <p>donde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> es uno de los <a href="/wiki/Multiplicadores_de_Lagrange" title="Multiplicadores de Lagrange">multiplicadores de Lagrange</a> correspondiente a la restricción |<b>n</b>|=1. Limitaron su atención a las «ondas de separación», donde el campo del director toma la forma especial siguiente: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {n} (x,y,z,t)=(\cos \varphi (x,t),\sin \varphi (x,t),0).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {n} (x,y,z,t)=(\cos \varphi (x,t),\sin \varphi (x,t),0).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a5ea0d93cc1732b8ba4d8aa08a0a273f33770fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.401ex; height:2.843ex;" alt="{\displaystyle \mathbf {n} (x,y,z,t)=(\cos \varphi (x,t),\sin \varphi (x,t),0).}"></span></dd></dl> <p>Esta suposición reduce el lagrangiano a: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}={\frac {1}{2}}\left(\varphi _{t}^{2}-a^{2}(\varphi )\varphi _{x}^{2}\right),\qquad a(\varphi ):={\sqrt {\alpha \sin ^{2}\varphi +\gamma \cos ^{2}\varphi }},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>−<!-- − --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <msubsup> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="2em" /> <mi>a</mi> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>α<!-- α --></mi> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mi>γ<!-- γ --></mi> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}={\frac {1}{2}}\left(\varphi _{t}^{2}-a^{2}(\varphi )\varphi _{x}^{2}\right),\qquad a(\varphi ):={\sqrt {\alpha \sin ^{2}\varphi +\gamma \cos ^{2}\varphi }},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4dc810639e80450146c98120928ce88a3ce22cb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:58.534ex; height:5.176ex;" alt="{\displaystyle {\mathcal {L}}={\frac {1}{2}}\left(\varphi _{t}^{2}-a^{2}(\varphi )\varphi _{x}^{2}\right),\qquad a(\varphi ):={\sqrt {\alpha \sin ^{2}\varphi +\gamma \cos ^{2}\varphi }},}"></span></dd></dl> <p>y entonces la ecuación de Euler-Lagrange para el ángulo φ se convierte en: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{tt}=a(\varphi )[a(\varphi )\varphi _{x}]_{x}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{tt}=a(\varphi )[a(\varphi )\varphi _{x}]_{x}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46455ff2aa8862a16bef5ac08ff8d5975ff5f3b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.962ex; height:2.843ex;" alt="{\displaystyle \varphi _{tt}=a(\varphi )[a(\varphi )\varphi _{x}]_{x}.}"></span></dd></dl> <p>Hay soluciones constantes triviales φ=φ<sub>0</sub> correspondientes a los estados donde las moléculas en el cristal líquido están perfectamente alineados. La linealización alrededor de tal equilibrio conduce a la <a href="/wiki/Ecuaci%C3%B3n_de_onda" title="Ecuación de onda">ecuación de onda</a> lineal que permite la propagación de las ondas en ambas direcciones con velocidad </p> <dl><dt><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{0}:=a(\varphi _{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>:=</mo> <mi>a</mi> <mo stretchy="false">(</mo> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{0}:=a(\varphi _{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64b8569b8aab1b987d0e3ade9e59ab4599f68aaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.643ex; height:2.843ex;" alt="{\displaystyle a_{0}:=a(\varphi _{0})}"></span>,</dt></dl> <p>por lo que se puede esperar que la ecuación no lineal se comporte de manera similar. Con el fin de estudiar las ondas de movimiento correcto para las grandes <i>t</i>, se buscan soluciones asintóticas de la forma </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (x,t;\epsilon )=\varphi _{0}+\epsilon \varphi _{1}(\theta ,\tau )+O(\epsilon ^{2}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>;</mo> <mi>ϵ<!-- ϵ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>ϵ<!-- ϵ --></mi> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo>,</mo> <mi>τ<!-- τ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>ϵ<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (x,t;\epsilon )=\varphi _{0}+\epsilon \varphi _{1}(\theta ,\tau )+O(\epsilon ^{2}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d25dd28defa91d7c0092cfc7394a65d5379d10d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.746ex; height:3.176ex;" alt="{\displaystyle \varphi (x,t;\epsilon )=\varphi _{0}+\epsilon \varphi _{1}(\theta ,\tau )+O(\epsilon ^{2}),}"></span></dd></dl> <p>donde </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta :=x-a_{0}t,\qquad \tau :=\epsilon t.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>θ<!-- θ --></mi> <mo>:=</mo> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>t</mi> <mo>,</mo> <mspace width="2em" /> <mi>τ<!-- τ --></mi> <mo>:=</mo> <mi>ϵ<!-- ϵ --></mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta :=x-a_{0}t,\qquad \tau :=\epsilon t.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b2379dfe935855219f1ce5eef3770b76328e0f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:25.186ex; height:2.509ex;" alt="{\displaystyle \theta :=x-a_{0}t,\qquad \tau :=\epsilon t.}"></span></dd></dl> <p>Insertando esto en la ecuación, se encuentra en el orden <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \epsilon ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ϵ<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \epsilon ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8743fa5384acf4775698331a76dba47aed53ab29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.998ex; height:2.676ex;" alt="{\displaystyle \epsilon ^{2}}"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\varphi _{1\tau }+a'(\varphi _{0})\varphi _{1}\varphi _{1\theta })_{\theta }={\frac {1}{2}}a'(\varphi _{0})\varphi _{1\theta }^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>τ<!-- τ --></mi> </mrow> </msub> <mo>+</mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>θ<!-- θ --></mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>θ<!-- θ --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msubsup> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>θ<!-- θ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\varphi _{1\tau }+a'(\varphi _{0})\varphi _{1}\varphi _{1\theta })_{\theta }={\frac {1}{2}}a'(\varphi _{0})\varphi _{1\theta }^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/172a3c97a3584c5843f5eb3f64ee8116cd0a9a9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:36.683ex; height:5.176ex;" alt="{\displaystyle (\varphi _{1\tau }+a'(\varphi _{0})\varphi _{1}\varphi _{1\theta })_{\theta }={\frac {1}{2}}a'(\varphi _{0})\varphi _{1\theta }^{2}.}"></span></dd></dl> <p><br /> </p> <div class="mw-heading mw-heading3"><h3 id="Generalización"><span id="Generalizaci.C3.B3n"></span>Generalización</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ecuaci%C3%B3n_de_Hunter-Saxton&action=edit&section=3" title="Editar sección: Generalización"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>El análisis fue posteriormente generalizado por Alì y Hunter,<sup id="cite_ref-AH06_3-0" class="reference separada"><a href="#cite_note-AH06-3"><span class="corchete-llamada">[</span>3<span class="corchete-llamada">]</span></a></sup>​ </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {n} (x,y,z,t)=(\cos \varphi (x,t),\sin \varphi (x,t)\cos \psi (x,t),\sin \varphi (x,t)\sin \psi (x,t)).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {n} (x,y,z,t)=(\cos \varphi (x,t),\sin \varphi (x,t)\cos \psi (x,t),\sin \varphi (x,t)\sin \psi (x,t)).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d38ce7007eca009d34e68fa7d9e39c015b04784" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:68.58ex; height:2.843ex;" alt="{\displaystyle \mathbf {n} (x,y,z,t)=(\cos \varphi (x,t),\sin \varphi (x,t)\cos \psi (x,t),\sin \varphi (x,t)\sin \psi (x,t)).}"></span></dd></dl> <p>Entonces, el lagrangiano es: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}={\frac {1}{2}}\left(\varphi _{t}^{2}-a^{2}(\varphi )\varphi _{x}^{2}+\sin ^{2}\varphi \left[\psi _{t}^{2}-b^{2}(\varphi )\psi _{x}^{2}\right]\right),\qquad a(\varphi ):={\sqrt {\alpha \sin ^{2}\varphi +\gamma \cos ^{2}\varphi }},\quad b(\varphi ):={\sqrt {\beta \sin ^{2}\varphi +\gamma \cos ^{2}\varphi }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>−<!-- − --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <msubsup> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mrow> <mo>[</mo> <mrow> <msubsup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <msubsup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>]</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="2em" /> <mi>a</mi> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>α<!-- α --></mi> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mi>γ<!-- γ --></mi> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> </msqrt> </mrow> <mo>,</mo> <mspace width="1em" /> <mi>b</mi> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>β<!-- β --></mi> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mi>γ<!-- γ --></mi> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}={\frac {1}{2}}\left(\varphi _{t}^{2}-a^{2}(\varphi )\varphi _{x}^{2}+\sin ^{2}\varphi \left[\psi _{t}^{2}-b^{2}(\varphi )\psi _{x}^{2}\right]\right),\qquad a(\varphi ):={\sqrt {\alpha \sin ^{2}\varphi +\gamma \cos ^{2}\varphi }},\quad b(\varphi ):={\sqrt {\beta \sin ^{2}\varphi +\gamma \cos ^{2}\varphi }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/641ad9ea01a6a831bf65d185b01ebc499b992916" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:114.844ex; height:5.176ex;" alt="{\displaystyle {\mathcal {L}}={\frac {1}{2}}\left(\varphi _{t}^{2}-a^{2}(\varphi )\varphi _{x}^{2}+\sin ^{2}\varphi \left[\psi _{t}^{2}-b^{2}(\varphi )\psi _{x}^{2}\right]\right),\qquad a(\varphi ):={\sqrt {\alpha \sin ^{2}\varphi +\gamma \cos ^{2}\varphi }},\quad b(\varphi ):={\sqrt {\beta \sin ^{2}\varphi +\gamma \cos ^{2}\varphi }}.}"></span></dd></dl> <p>Las ecuaciones correspondientes de Euler-Lagrange son ecuaciones de <a href="/wiki/Ondas_no_lineales" title="Ondas no lineales">ondas no lineales</a> acopladas para los ángulos φ y ψ, correspondiendo φ a ondas separadas y ψ a ondas giratorias. El caso anterior de Hunter-Saxton (ondas separadas puras) se recupera tomando la constante ψ, pero también se pueden considerar ondas separadas y giratorias acopladas en las que varían tanto φ como ψ. Las expansiones asintóticas similares a la anterior conducen a un sistema de ecuaciones que, después de renombrar y reescalar las variables, adopta la forma </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (v_{t}+uv_{x})_{x}=0,\qquad u_{xx}=v_{x}^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mi>u</mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="2em" /> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (v_{t}+uv_{x})_{x}=0,\qquad u_{xx}=v_{x}^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a24a57c4409b71523089c5a29b11fec089340af6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.833ex; height:3.009ex;" alt="{\displaystyle (v_{t}+uv_{x})_{x}=0,\qquad u_{xx}=v_{x}^{2},}"></span></dd></dl> <p>donde «u» se relaciona con φ y «v» con ψ. Este sistema implica, diferenciando la segunda ecuación con respecto a <i>t</i>, sustituyendo <i>v</i><sub><i>xt</i></sub>' de la primera ecuación, y eliminando <i>v</i> usando la segunda ecuación, que «u» satisface la siguiente ecuación: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[(u_{t}+uu_{x})_{x}-{\frac {1}{2}}\,u_{x}^{2}\right]_{x}=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mi>u</mi> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[(u_{t}+uu_{x})_{x}-{\frac {1}{2}}\,u_{x}^{2}\right]_{x}=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f37ce1a6e1b87d44cc2c91855ac941a57b27a2b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:28.073ex; height:6.176ex;" alt="{\displaystyle \left[(u_{t}+uu_{x})_{x}-{\frac {1}{2}}\,u_{x}^{2}\right]_{x}=0,}"></span></dd></dl> <p>así que (de manera bastante notable) la ecuación de Hunter-Saxton surge en este contexto también, pero de una manera diferente. </p> <div class="mw-heading mw-heading2"><h2 id="Estructuras_variables_e_integrabilidad">Estructuras variables e integrabilidad</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ecuaci%C3%B3n_de_Hunter-Saxton&action=edit&section=4" title="Editar sección: Estructuras variables e integrabilidad"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>La <a href="/wiki/Sistema_hamiltoniano_integrable" title="Sistema hamiltoniano integrable"> integrabilidad</a> de la ecuación de Hunter-Saxton o, más precisamente, la de su derivada </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (u_{t}+uu_{x})_{xx}=u_{x}u_{xx},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mi>u</mi> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (u_{t}+uu_{x})_{xx}=u_{x}u_{xx},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ae55b6da31f2d2d2b3e4bee4566a2565935cbbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.44ex; height:2.843ex;" alt="{\displaystyle (u_{t}+uu_{x})_{xx}=u_{x}u_{xx},}"></span></dd></dl> <p>fue demostrado por Hunter y Zheng,<sup id="cite_ref-HZ94_4-0" class="reference separada"><a href="#cite_note-HZ94-4"><span class="corchete-llamada">[</span>4<span class="corchete-llamada">]</span></a></sup>​ quienes explicaron que esta ecuación se obtiene de la <a href="/wiki/Ecuaci%C3%B3n_de_Camassa-Holm" title="Ecuación de Camassa-Holm">ecuación de Camassa-Holm</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{t}-u_{xxt}+3uu_{x}=2u_{x}u_{xx}+uu_{xxx}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mn>3</mn> <mi>u</mi> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>2</mn> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>+</mo> <mi>u</mi> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{t}-u_{xxt}+3uu_{x}=2u_{x}u_{xx}+uu_{xxx}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ad48e5a072cd486ee55987586887e6c1a60a2e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:35.625ex; height:2.509ex;" alt="{\displaystyle u_{t}-u_{xxt}+3uu_{x}=2u_{x}u_{xx}+uu_{xxx}}"></span></dd></dl> <p>en el "límite de alta frecuencia" </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,t)\mapsto (\epsilon x,\epsilon t),\qquad \epsilon \to 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">↦<!-- ↦ --></mo> <mo stretchy="false">(</mo> <mi>ϵ<!-- ϵ --></mi> <mi>x</mi> <mo>,</mo> <mi>ϵ<!-- ϵ --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="2em" /> <mi>ϵ<!-- ϵ --></mi> <mo stretchy="false">→<!-- → --></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,t)\mapsto (\epsilon x,\epsilon t),\qquad \epsilon \to 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf455f6b4461980d60c7db59e0051849b6abd4ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.574ex; height:2.843ex;" alt="{\displaystyle (x,t)\mapsto (\epsilon x,\epsilon t),\qquad \epsilon \to 0.}"></span></dd></dl> <p>Aplicando este procedimiento limitativo a un lagrangiano para la ecuación de Camassa-Holm, obtuvieron un lagrangiano </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{2}={\frac {1}{2}}u_{x}^{2}+w(v_{t}+uv_{x})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>w</mi> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mi>u</mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{2}={\frac {1}{2}}u_{x}^{2}+w(v_{t}+uv_{x})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c51a64bdb8f06602bcfe2d3b37708bfd84e27c96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:24.995ex; height:5.176ex;" alt="{\displaystyle {\mathcal {L}}_{2}={\frac {1}{2}}u_{x}^{2}+w(v_{t}+uv_{x})}"></span></dd></dl> <p>que genera la ecuación de Hunter-Saxton después de eliminar la <i>v</i> y la <i>w</i> de las ecuaciones de Euler-Lagrange para la <i>u</i>, la <i>v</i> y la <i>w</i>. Ya que también existe el más obvio lagrangiano </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{1}=u_{x}u_{t}+uu_{x}^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mi>u</mi> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{1}=u_{x}u_{t}+uu_{x}^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a55266d3fdf4e9ad7fef4841eacccfa90536c03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.733ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}_{1}=u_{x}u_{t}+uu_{x}^{2},}"></span></dd></dl> <p>el Hunter-Saxton tiene dos estructuras variantes no equivalentes. Hunter y Zheng también obtuvieron una formulación bihamiltoniana y un <a href="/w/index.php?title=Par_Lax&action=edit&redlink=1" class="new" title="Par Lax (aún no redactado)">par Lax</a> de las estructuras correspondientes para la ecuación de Camassa-Holm de manera similar. </p><p>El hecho de que la ecuación Hunter-Saxton surge físicamente de dos maneras diferentes, como se muestra más arriba, fue utilizada por Alì y Hunter<sup id="cite_ref-AH06_3-1" class="reference separada"><a href="#cite_note-AH06-3"><span class="corchete-llamada">[</span>3<span class="corchete-llamada">]</span></a></sup>​ para explicar por qué tiene esta estructura bivariante o bihamiltoniana. </p> <div class="mw-heading mw-heading2"><h2 id="Referencias">Referencias</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ecuaci%C3%B3n_de_Hunter-Saxton&action=edit&section=5" title="Editar sección: Referencias"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="listaref" style="list-style-type: decimal;"><ol class="references"> <li id="cite_note-HS91-1"><span class="mw-cite-backlink">↑ <a href="#cite_ref-HS91_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-HS91_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Hunter & Saxton 1991</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text">de Gennes & Prost 1994 (Ch. 3)</span> </li> <li id="cite_note-AH06-3"><span class="mw-cite-backlink">↑ <a href="#cite_ref-AH06_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-AH06_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Alì & Hunter 2006</span> </li> <li id="cite_note-HZ94-4"><span class="mw-cite-backlink"><a href="#cite_ref-HZ94_4-0">↑</a></span> <span class="reference-text">Hunter & Zheng 1994</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Bibliografía"><span id="Bibliograf.C3.ADa"></span>Bibliografía</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ecuaci%C3%B3n_de_Hunter-Saxton&action=edit&section=6" title="Editar sección: Bibliografía"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span id="CITAREFAlìHunter2006" class="citation">Alì, Giuseppe; Hunter, John K. (2006), <i>Orientation waves in a director field with rotational inertia</i>, <small><a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/math.AP/0609189">math.AP/0609189</a></small></span><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fes.wikipedia.org%3AEcuaci%C3%B3n+de+Hunter-Saxton&rft.au=Al%C3%AC%2C+Giuseppe&rft.au=Hunter%2C+John+K.&rft.aufirst=Giuseppe&rft.aulast=Al%C3%AC&rft.btitle=Orientation+waves+in+a+director+field+with+rotational+inertia&rft.date=2006&rft.genre=book&rft_id=info%3Aarxiv%2Fmath.AP%2F0609189&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;"> </span></span>.</li> <li><span id="CITAREFde_GennesProst1994" class="citation">de Gennes, Pierre-Gilles; Prost, Jacques (1994), <i>The Physics of Liquid Crystals</i>, International Series of Monographs on Physics (2nd edición), Oxford University Press, <small><a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Especial:FuentesDeLibros/0-19-852024-7" title="Especial:FuentesDeLibros/0-19-852024-7">0-19-852024-7</a></small></span><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fes.wikipedia.org%3AEcuaci%C3%B3n+de+Hunter-Saxton&rft.au=Prost%2C+Jacques&rft.au=de+Gennes%2C+Pierre-Gilles&rft.aufirst=Pierre-Gilles&rft.aulast=de+Gennes&rft.btitle=The+Physics+of+Liquid+Crystals&rft.date=1994&rft.edition=2nd&rft.genre=book&rft.isbn=0-19-852024-7&rft.pub=Oxford+University+Press&rft.series=International+Series+of+Monographs+on+Physics&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;"> </span></span>.</li> <li><span id="CITAREFHunterSaxton1991" class="citation">Hunter, John K.; Saxton, Ralph (1991), «Dynamics of director fields», <i>SIAM J. Appl. Math.</i> <b>51</b> (6): 1498-1521, <small><a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1137%2F0151075">10.1137/0151075</a></small></span><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fes.wikipedia.org%3AEcuaci%C3%B3n+de+Hunter-Saxton&rft.atitle=Dynamics+of+director+fields&rft.au=Hunter%2C+John+K.&rft.au=Saxton%2C+Ralph&rft.aufirst=John+K.&rft.aulast=Hunter&rft.date=1991&rft.genre=article&rft.issue=6&rft.jtitle=SIAM+J.+Appl.+Math.&rft.pages=1498-1521&rft.volume=51&rft_id=info%3Adoi%2F10.1137%2F0151075&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;"> </span></span>.</li> <li><span id="CITAREFHunterZheng1994" class="citation">Hunter, John K.; Zheng, Yuxi (1994), «On a completely integrable nonlinear hyperbolic variational equation», <i>Physica D</i> <b>79</b> (2–4): 361-386, <small><a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1994PhyD...79..361H">1994PhyD...79..361H</a></small>, <small><a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016%2FS0167-2789%2805%2980015-6">10.1016/S0167-2789(05)80015-6</a></small></span><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fes.wikipedia.org%3AEcuaci%C3%B3n+de+Hunter-Saxton&rft.atitle=On+a+completely+integrable+nonlinear+hyperbolic+variational+equation&rft.au=Hunter%2C+John+K.&rft.au=Zheng%2C+Yuxi&rft.aufirst=John+K.&rft.aulast=Hunter&rft.date=1994&rft.genre=article&rft.issue=2%E2%80%934&rft.jtitle=Physica+D&rft.pages=361-386&rft.volume=79&rft_id=info%3Abibcode%2F1994PhyD...79..361H&rft_id=info%3Adoi%2F10.1016%2FS0167-2789%2805%2980015-6&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;"> </span></span>.</li> <li><span id="CITAREFBealsSattingerSzmigielski2001" class="citation"><a href="/w/index.php?title=Richard_Beals_(mathematician)&action=edit&redlink=1" class="new" title="Richard Beals (mathematician) (aún no redactado)">Beals, Richard</a>; Sattinger, David H.; Szmigielski, Jacek (2001), <a rel="nofollow" class="external text" href="http://www.math.usu.edu/~dhs/hunter209.ps">«Inverse scattering solutions of the Hunter–Saxton equation»</a>, <i>Applicable Analysis</i> <b>78</b> (3–4): 255-269, <small><a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1080%2F00036810108840938">10.1080/00036810108840938</a></small></span><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fes.wikipedia.org%3AEcuaci%C3%B3n+de+Hunter-Saxton&rft.atitle=Inverse+scattering+solutions+of+the+Hunter%E2%80%93Saxton+equation&rft.au=Beals%2C+Richard&rft.au=Sattinger%2C+David+H.&rft.au=Szmigielski%2C+Jacek&rft.aufirst=Richard&rft.aulast=Beals&rft.date=2001&rft.genre=article&rft.issue=3%E2%80%934&rft.jtitle=Applicable+Analysis&rft.pages=255-269&rft.volume=78&rft_id=http%3A%2F%2Fwww.math.usu.edu%2F~dhs%2Fhunter209.ps&rft_id=info%3Adoi%2F10.1080%2F00036810108840938&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;"> </span></span>.</li> <li><span id="CITAREFBressanConstantin2005" class="citation">Bressan, Alberto; Constantin, Adrian (2005), «Global solutions of the Hunter–Saxton equation», <i>SIAM J. Math. Anal.</i> <b>37</b> (3): 996-1026, <small><a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/math/0502059">math/0502059</a></small>, <small><a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1137%2F050623036">10.1137/050623036</a></small></span><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fes.wikipedia.org%3AEcuaci%C3%B3n+de+Hunter-Saxton&rft.atitle=Global+solutions+of+the+Hunter%E2%80%93Saxton+equation&rft.au=Bressan%2C+Alberto&rft.au=Constantin%2C+Adrian&rft.aufirst=Alberto&rft.aulast=Bressan&rft.date=2005&rft.genre=article&rft.issue=3&rft.jtitle=SIAM+J.+Math.+Anal.&rft.pages=996-1026&rft.volume=37&rft_id=info%3Aarxiv%2Fmath%2F0502059&rft_id=info%3Adoi%2F10.1137%2F050623036&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;"> </span></span>.</li> <li><span id="CITAREFHoldenKarlsenRisebro2007" class="citation"><a href="/w/index.php?title=Helge_Holden&action=edit&redlink=1" class="new" title="Helge Holden (aún no redactado)">Holden, Helge</a>; Karlsen, Kenneth Hvistendahl; Risebro, Nils Henrik (2007), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20070922012502/http://www.math.uio.no/eprint/pure_math/2005/20-05/index.html">«Convergent difference schemes for the Hunter–Saxton equation»</a>, <i>Math. Comp.</i> <b>76</b> (258): 699-745, <small><a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2007MaCom..76..699H">2007MaCom..76..699H</a></small>, <small><a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1090%2FS0025-5718-07-01919-9">10.1090/S0025-5718-07-01919-9</a></small>, archivado desde <a rel="nofollow" class="external text" href="http://www.math.uio.no/eprint/pure_math/2005/20-05/index.html">el original</a> el 22 de septiembre de 2007<span class="reference-accessdate">, consultado el 12 de julio de 2020</span></span><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fes.wikipedia.org%3AEcuaci%C3%B3n+de+Hunter-Saxton&rft.atitle=Convergent+difference+schemes+for+the+Hunter%E2%80%93Saxton+equation&rft.au=Holden%2C+Helge&rft.au=Karlsen%2C+Kenneth+Hvistendahl&rft.au=Risebro%2C+Nils+Henrik&rft.aufirst=Helge&rft.aulast=Holden&rft.date=2007&rft.genre=article&rft.issue=258&rft.jtitle=Math.+Comp.&rft.pages=699-745&rft.volume=76&rft_id=http%3A%2F%2Fwww.math.uio.no%2Feprint%2Fpure_math%2F2005%2F20-05%2Findex.html&rft_id=info%3Abibcode%2F2007MaCom..76..699H&rft_id=info%3Adoi%2F10.1090%2FS0025-5718-07-01919-9&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;"> </span></span>.</li> <li><span id="CITAREFHunterZheng1995" class="citation">Hunter, John K.; Zheng, Yuxi (1995), «On a nonlinear hyperbolic variational equation. I. Global existence of weak solutions», <i>Arch. Rational Mech. Anal.</i> <b>129</b> (4): 305-353, <small><a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1995ArRMA.129..305H">1995ArRMA.129..305H</a></small>, <small><a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2FBF00379259">10.1007/BF00379259</a></small></span><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fes.wikipedia.org%3AEcuaci%C3%B3n+de+Hunter-Saxton&rft.atitle=On+a+nonlinear+hyperbolic+variational+equation.+I.+Global+existence+of+weak+solutions&rft.au=Hunter%2C+John+K.&rft.au=Zheng%2C+Yuxi&rft.aufirst=John+K.&rft.aulast=Hunter&rft.date=1995&rft.genre=article&rft.issue=4&rft.jtitle=Arch.+Rational+Mech.+Anal.&rft.pages=305-353&rft.volume=129&rft_id=info%3Abibcode%2F1995ArRMA.129..305H&rft_id=info%3Adoi%2F10.1007%2FBF00379259&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;"> </span></span>.</li> <li><span id="CITAREFHunterZheng1995" class="citation">Hunter, John K.; Zheng, Yuxi (1995), «On a nonlinear hyperbolic variational equation. II. The zero-viscosity and dispersion limits», <i>Arch. Rational Mech. Anal.</i> <b>129</b> (4): 355-383, <small><a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1995ArRMA.129..355H">1995ArRMA.129..355H</a></small>, <small><a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2FBF00379260">10.1007/BF00379260</a></small></span><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fes.wikipedia.org%3AEcuaci%C3%B3n+de+Hunter-Saxton&rft.atitle=On+a+nonlinear+hyperbolic+variational+equation.+II.+The+zero-viscosity+and+dispersion+limits&rft.au=Hunter%2C+John+K.&rft.au=Zheng%2C+Yuxi&rft.aufirst=John+K.&rft.aulast=Hunter&rft.date=1995&rft.genre=article&rft.issue=4&rft.jtitle=Arch.+Rational+Mech.+Anal.&rft.pages=355-383&rft.volume=129&rft_id=info%3Abibcode%2F1995ArRMA.129..355H&rft_id=info%3Adoi%2F10.1007%2FBF00379260&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;"> </span></span>.</li> <li><span id="CITAREFLenells2007" class="citation">Lenells, Jonatan (2007), «The Hunter–Saxton equation describes the geodesic flow on a sphere», <i>J. Geom. Phys.</i> <b>57</b> (10): 2049-2064, <small><a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2007JGP....57.2049L">2007JGP....57.2049L</a></small>, <small><a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016%2Fj.geomphys.2007.05.003">10.1016/j.geomphys.2007.05.003</a></small></span><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fes.wikipedia.org%3AEcuaci%C3%B3n+de+Hunter-Saxton&rft.atitle=The+Hunter%E2%80%93Saxton+equation+describes+the+geodesic+flow+on+a+sphere&rft.au=Lenells%2C+Jonatan&rft.aufirst=Jonatan&rft.aulast=Lenells&rft.date=2007&rft.genre=article&rft.issue=10&rft.jtitle=J.+Geom.+Phys.&rft.pages=2049-2064&rft.volume=57&rft_id=info%3Abibcode%2F2007JGP....57.2049L&rft_id=info%3Adoi%2F10.1016%2Fj.geomphys.2007.05.003&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;"> </span></span>.</li></ul> <style data-mw-deduplicate="TemplateStyles:r161257576">.mw-parser-output .mw-authority-control{margin-top:1.5em}.mw-parser-output .mw-authority-control .navbox table{margin:0}.mw-parser-output .mw-authority-control .navbox hr:last-child{display:none}.mw-parser-output .mw-authority-control .navbox+.mw-mf-linked-projects{display:none}.mw-parser-output .mw-authority-control .mw-mf-linked-projects{display:flex;padding:0.5em;border:1px solid var(--border-color-base,#a2a9b1);background-color:var(--background-color-neutral,#eaecf0);color:var(--color-base,#202122)}.mw-parser-output .mw-authority-control .mw-mf-linked-projects ul li{margin-bottom:0}.mw-parser-output .mw-authority-control .navbox{border:1px solid var(--border-color-base,#a2a9b1);background-color:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .mw-authority-control .navbox-list{border-color:#f8f9fa}.mw-parser-output .mw-authority-control .navbox th{background-color:#eeeeff}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .mw-mf-linked-projects{border:1px solid var(--border-color-base,#72777d);background-color:var(--background-color-neutral,#27292d);color:var(--color-base,#eaecf0)}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .navbox{border:1px solid var(--border-color-base,#72777d)!important;background-color:var(--background-color-neutral-subtle,#202122)!important}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .navbox-list{border-color:#202122!important}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .navbox th{background-color:#27292d!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .mw-mf-linked-projects{border:1px solid var(--border-color-base,#72777d)!important;background-color:var(--background-color-neutral,#27292d)!important;color:var(--color-base,#eaecf0)!important}html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .navbox{border:1px solid var(--border-color-base,#72777d)!important;background-color:var(--background-color-neutral-subtle,#202122)!important}html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .navbox-list{border-color:#202122!important}html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .navbox th{background-color:#27292d!important}}</style><div class="mw-authority-control"><div role="navigation" class="navbox" aria-label="Navbox" style="width: inherit;padding:3px"><table class="hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width: 12%; text-align:center;"><a href="/wiki/Control_de_autoridades" title="Control de autoridades">Control de autoridades</a></th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><b>Proyectos Wikimedia</b></li> <li><span style="white-space:nowrap;"><span typeof="mw:File"><a href="/wiki/Wikidata" title="Wikidata"><img alt="Wd" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/20px-Wikidata-logo.svg.png" decoding="async" width="20" height="11" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/30px-Wikidata-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/40px-Wikidata-logo.svg.png 2x" data-file-width="1050" data-file-height="590" /></a></span> Datos:</span> <span class="uid"><a href="https://www.wikidata.org/wiki/Q5944865" class="extiw" title="wikidata:Q5944865">Q5944865</a></span></li></ul> </div></td></tr></tbody></table></div><div class="mw-mf-linked-projects hlist"> <ul><li><span style="white-space:nowrap;"><span typeof="mw:File"><a href="/wiki/Wikidata" title="Wikidata"><img alt="Wd" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/20px-Wikidata-logo.svg.png" decoding="async" width="20" height="11" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/30px-Wikidata-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/40px-Wikidata-logo.svg.png 2x" data-file-width="1050" data-file-height="590" /></a></span> Datos:</span> <span class="uid"><a href="https://www.wikidata.org/wiki/Q5944865" class="extiw" title="wikidata:Q5944865">Q5944865</a></span></li></ul> </div></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐7fc47fc68d‐zqfds Cached time: 20241128194415 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.156 seconds Real time usage: 0.287 seconds Preprocessor visited node count: 740/1000000 Post‐expand include size: 32263/2097152 bytes Template argument size: 0/2097152 bytes Highest expansion depth: 5/100 Expensive parser function count: 0/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 5628/5000000 bytes Lua time usage: 0.074/10.000 seconds Lua memory usage: 2215442/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 142.739 1 -total 53.96% 77.015 1 Plantilla:Control_de_autoridades 40.87% 58.335 10 Plantilla:Citation 4.52% 6.456 1 Plantilla:Listaref --> <!-- Saved in parser cache with key eswiki:pcache:9505836:|#|:idhash:canonical and timestamp 20241128194415 and revision id 160536636. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Obtenido de «<a dir="ltr" href="https://es.wikipedia.org/w/index.php?title=Ecuación_de_Hunter-Saxton&oldid=160536636">https://es.wikipedia.org/w/index.php?title=Ecuación_de_Hunter-Saxton&oldid=160536636</a>»</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Especial:Categor%C3%ADas" title="Especial:Categorías">Categorías</a>: <ul><li><a href="/wiki/Categor%C3%ADa:F%C3%ADsica_matem%C3%A1tica" title="Categoría:Física matemática">Física matemática</a></li><li><a href="/wiki/Categor%C3%ADa:Fen%C3%B3menos_f%C3%ADsicos" title="Categoría:Fenómenos físicos">Fenómenos físicos</a></li><li><a href="/wiki/Categor%C3%ADa:Ondas" title="Categoría:Ondas">Ondas</a></li><li><a href="/wiki/Categor%C3%ADa:Din%C3%A1mica_de_fluidos" title="Categoría:Dinámica de fluidos">Dinámica de fluidos</a></li><li><a href="/wiki/Categor%C3%ADa:Cuasipart%C3%ADculas" title="Categoría:Cuasipartículas">Cuasipartículas</a></li><li><a href="/wiki/Categor%C3%ADa:Ciencia_y_tecnolog%C3%ADa_de_Reino_Unido_del_siglo_XIX" title="Categoría:Ciencia y tecnología de Reino Unido del siglo XIX">Ciencia y tecnología de Reino Unido del siglo XIX</a></li><li><a href="/wiki/Categor%C3%ADa:Ecuaciones_de_din%C3%A1mica_de_fluidos" title="Categoría:Ecuaciones de dinámica de fluidos">Ecuaciones de dinámica de fluidos</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Esta página se editó por última vez el 4 jun 2024 a las 09:04.</li> <li id="footer-info-copyright">El texto está disponible bajo la <a href="/wiki/Wikipedia:Texto_de_la_Licencia_Creative_Commons_Atribuci%C3%B3n-CompartirIgual_4.0_Internacional" title="Wikipedia:Texto de la Licencia Creative Commons Atribución-CompartirIgual 4.0 Internacional">Licencia Creative Commons Atribución-CompartirIgual 4.0</a>; pueden aplicarse cláusulas adicionales. Al usar este sitio aceptas nuestros <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/es">términos de uso</a> y nuestra <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Privacy_policy/es">política de privacidad</a>.<br />Wikipedia® es una marca registrada de la <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/es/">Fundación Wikimedia</a>, una organización sin ánimo de lucro.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/es">Política de privacidad</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Acerca_de">Acerca de Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Limitaci%C3%B3n_general_de_responsabilidad">Limitación de responsabilidad</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Código de conducta</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Desarrolladores</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/es.wikipedia.org">Estadísticas</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement/es">Declaración de cookies</a></li> <li id="footer-places-mobileview"><a href="//es.m.wikipedia.org/w/index.php?title=Ecuaci%C3%B3n_de_Hunter-Saxton&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versión para móviles</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-7fc47fc68d-zqfds","wgBackendResponseTime":488,"wgPageParseReport":{"limitreport":{"cputime":"0.156","walltime":"0.287","ppvisitednodes":{"value":740,"limit":1000000},"postexpandincludesize":{"value":32263,"limit":2097152},"templateargumentsize":{"value":0,"limit":2097152},"expansiondepth":{"value":5,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":5628,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 142.739 1 -total"," 53.96% 77.015 1 Plantilla:Control_de_autoridades"," 40.87% 58.335 10 Plantilla:Citation"," 4.52% 6.456 1 Plantilla:Listaref"]},"scribunto":{"limitreport-timeusage":{"value":"0.074","limit":"10.000"},"limitreport-memusage":{"value":2215442,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-7fc47fc68d-zqfds","timestamp":"20241128194415","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Ecuaci\u00f3n de Hunter-Saxton","url":"https:\/\/es.wikipedia.org\/wiki\/Ecuaci%C3%B3n_de_Hunter-Saxton","sameAs":"http:\/\/www.wikidata.org\/entity\/Q5944865","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q5944865","author":{"@type":"Organization","name":"Colaboradores de los proyectos Wikimedia"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2020-07-09T16:49:22Z","dateModified":"2024-06-04T09:04:02Z"}</script> </body> </html>